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1. Introduction

An automorphismˆ of the rank n free group Fn is typically represented by giving

its effect on a basis of Fn. Equivalently, if we identify the edges of the rose Rn

(the graph with one vertex � and n edges) with basis elements of Fn, then ˆ may

be represented as a self homotopy equivalence of Rn preserving �. In this paper,

we are interested in outer automorphisms, that is we are interested in elements of

the quotient

Out.Fn/ WD Aut.Fn/=Inn.Fn/

of the automorphism group Aut.Fn/ of Fn by its subgroup Inn.Fn/ of inner

automorphisms. Since outer automorphisms are defined only up to conjugation,

the base point loses its special role and � 2 Out.Fn/ is typically represented as

a self homotopy equivalence of Rn that is not required to fix �. More generally

it is also typical to take advantage of the flexibility gained by representing � as

a self homotopy equivalence f WG ! G of a marked graph G, i.e. a graph G

equipped with a homotopy equivalence �WRn ! G. The marking identifies the

fundamental group of G with Fn, but only up to conjugation. In an analogy with

linear maps, representing � as f WG ! G corresponds to writing a linear map in

terms of a particular basis.
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In [BH92], Bestvina–Handel showed that every element of Out.Fn/ has a

representation as a relative train track map, that is a representation f WG ! G as

above but with strong properties. In the analogy with linear maps, a relative train

track map corresponds to a normal form. [BH92] goes on to use relative train track

maps to solve the Scott conjecture: the rank of the fixed subgroup of an element of

Aut.Fn/ is at most n. Further applications spurred the further development of the

theory of relative train tracks. See for example, [BFH00] where improved relative

train tracks (IRTs) were used to show that Out.Fn/ satisfies the Tits alternative

or [FH09] where completely split relative train tracks (CTs) [FH11] were used to

classify abelian subgroups of Out.Fn/.

CTs are relative train tracks that were designed to satisfy the properties that

have proven most useful (to us) for investigating elements of Out.Fn/. By conven-

tion, the identity map on the rose with one petal is a CT representing the trivial

element of Out.F1/. For the definition when n � 2, see Section 5. Not every

� 2 Out.Fn/ is represented by a CT, but all rotationless (see Definition 3.3) ele-

ments are. This is not a big restriction since there is a specific M > 0 depending

only on n (see Corollary 3.14) such that �M is rotationless. We believe that CTs

will be of general use in approaching algorithmic questions about Out.Fn/. As a

first step in that process, our main theorem (Theorem 1.1) verifes that CTs can be

constructed algorithmically.

Many arguments involving CTs go by induction up through the strata. It is

therefore useful if a CT f WG ! G satisfies the following axiom.

Inheritance. The restriction of f to each component of each core filtration

element is a CT.

As Example 5.6 shows, not every CT satisfies (inheritance). By using an

upward induction argument (see Section 7) instead of the downward induction

arguments used in previous relative train track constructions, we prove that CTs

satisfying (Inheritance) can be constructed algorithmically.

Theorem 1.1. There is an algorithm whose input is a rotationless � 2 Out.Fn/

and whose output is a CT f WG ! G that represents � and satisfies (Inheritance).

Moreover, for any nested sequence C of �-invariant free factor systems, one can

choose f WG ! G so that each non-empty element of C is realized by a core

filtration element.

A CT f WG ! G representing rotationless � 2 Out.Fn/ is a graphical rep-

resentation of �, and may be used to find graphical representations of some im-

portant invariants of �. For example, there is an algorithm to compute a finite

core graph S.f / immersing to G such that a closed path in G represents a fixed

�-conjugacy class if and only if it lifts to a closed path in S.f /. There is also a

graph SN .f / immersing toG, obtained from S.f / by attaching finitely many rays,

that additionally records fixed points at infinity (see Sections 10 and 12). Arbitrar-

ily large neighborhoods of S.f / in SN .f / may be computed algorithmically.
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The proof of Theorem 1.1 is in Sections 7 and 8. It relies heavily on our paper

[FH11] and, more specifically, on the proof of Theorem 4.28 of [FH11] which states

that every rotationless outer automorphism of Fn is represented by a CT. We

strongly recommend that the reader have a copy of [FH11] handy while reading

the current one. We will also rely on [FH11] for complete references. Much of the

proof of [FH11, Theorem 4.28] is already algorithmic and the main work in the

current paper is to make algorithmic the parts of that proof that are not explicitly

algorithmic. In fact, there are only three places in the proof of Theorem 4.28 where

non-algorithmic arguments are given. The first has to do with relative train track

maps for general elements of Out.Fn/ [BH92]. In this case there is an underlying

algorithm to the arguments and we make it explicit in Sections 2 and 3.

The second part of the proof to be made algorithmic involves checking whether

the filtration by invariant free factor systems induced by the given filtration by

invariant subgraphs is reduced. (See Section 2.1 for a review of the relevant

definitions.) This requires new arguments and is carried out in Section 4. The

main result of Section 4 is captured in Corollary 1.2 below, which we believe

to be of independent interest. Although we present this result as a corollary of

Theorem 1.1, a stand-alone proof could be given using the methods in Section 4;

see in particular Proposition 4.9. These methods are in turn key ingredients in the

proof of the Theorem 1.1.

Recall that if  2 Out.Fn/ and F1 @ F2 are  -invariant free factor systems

then  is said to be fully irreducible relative to F1 @ F2 if for all k � 1 there

are no  k-invariant free factor systems properly contained between F1 and F2.

Equivalently, if � is a rotationless iterate of  then there are no �-invariant free

factor systems properly contained between F1 and F2; see [FH11, Lemma 3.30].

Corollary 1.2. There is an algorithm with input  2 Out.Fn/ and  -invariant

free factor systems F1 @ F2 and output yes or no depending on whether or not  

is fully irreducible relative to F1 @ F2. In the case that  is not fully irreducible,

k � 1 and a  k-invariant free factor system that is properly contained between

F1 and F2 are found.

Proof. Construct a CT f WG ! G with filtration ; D G0 � G1 � � � � � GN D G

for a rotationless � D  M with M as in Corollary 3.14 in which F1 @ F2 are

realized by core subgraphs Gr � Gt . Then, by defining property (Filtration) of

a CT,  is fully irreducible relative to F1 @ F2 if there are no core subgraphs

Gs properly contained between Gr and Gt . If there is such a subgraph then its

associated free factor system is properly contained between F1 and F2. �

Remark 1.3. In the special case that F1 D ;, Corollary 1.2 is an algorithm for

checking if  is fully irreducible. Our algorithm in this special case is different

from the ones given in [Kap14] and [CMP15]. More recently, Kapovich [Kap] has

produced a polynomial time algorithm to detect full irreducibility.
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The third and final non-algorithmic part of the proof of [FH11, Theorem 4.28]

requires a new fixed point result (Lemma 6.4) allowing us to properly attach the

terminal endpoints of NEG edges; this takes place in Section 6.

We include some sample applications of Theorem 1.1 – most already known.

� In Proposition 9.10, we give another proof of the result of Bogopolski and

Maslakova [BM16] that it is algorithmic to compute Fix.ˆ/ for ˆ 2 Aut.Fn/.

� An outer automorphism � is primitively atoroidal if it does not act periodi-

cally on the conjugacy class of a primitive element of Fn, i.e. an element of

some basis. In Corollary 14.4 we give an algorithm to decide if � is primi-

tively atoroidal.

� In Section 15 we prove that the well-known index invariant i.�/ of [GJLL98]

can be computed algorithmically and introduce a similar invariant j.�/ �
i.�/ that can also be computed algorithmically. In Proposition 15.14 we show

that j.�/ � n � 1 and so the key inequality satisfied by i.�/ is still satisfied

by j.�/.

� In Corollary 16.4 we reprove a result of Ilya Kapovich [Kap00] that it is

algorithmic to tell if a given � 2 Out.Fn/ is hyperbolic. The Kapovich result

is stronger in that � is only assumed to be an injective endomorphism.

We thank the referee for suggesting applications to be added to this paper,

specifically: algorithmically computing the index (Proposition 15.2); algorithmi-

cally deciding if an automorphism is primitively atoroidal (Corollary 14.4); and

algorithmically finding the possibilities for ŒFix.ˆ/� for a ˆ representing a rota-

tionless outer automorphism (Corollary 11.1).

2. Relative train track maps in the general case

In this section we revisit three existence theorems for relative train track maps

representing arbitrary � 2 Out.Fn/, rotationless or not. The original statements of

these results did not mention algorithms and the original proofs did not emphasize

their algorithmic natures. In this section we give the algorithmic versions of two

of these results; see Theorem 2.2 and Lemma 2.10. The third existence result

that we revisit is [FH11, Theorem 2.19] which in the current paper is reproduced

as Theorem 2.12. We will need the algorithmic version of Theorem 2.12 and its

proof is postponed until Section 3.4 because the proof depends on consequences

of Theorem 2.12 established in Section 3.

Rather than cut and paste arguments from [BH92], [BFH00], and [FH11] into

this paper, we will point the reader to specific sections in those papers and explain

how they fit together to give the desired results. In some cases, we refer to

arguments that occur in lemmas whose hypotheses are not satisfied in our current

context. Nonetheless the arguments that we refer to will apply.
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2.1. Some standard notation and definitions. In this section we recall the

basic definitions of relative train track theory, assuming that the reader has some

familiarity with this material. Complete details can be found in any of [BH92,

Sections 1 and 5], [BFH00, Sections 2 and 3], [FH11, Section 2], and Part I of

[HM].

Identify Fn with �1.Rn; �/ where the rose Rn is the graph with one vertex

� and n edges. A (not necessarily connected) graph is core if it is the union

of its immersed circuits. A marked graph is a finite core graph G equipped

with a homotopy equivalence �WRn ! G called the marking by which we

identify Out.�1.G// with Out.�1.Rn// and hence with Out.Fn/. In this way, a

homotopy equivalence f WG ! G determines an element � 2 Out.Fn/; we say

that f WG ! G represents � or that f WG ! G is a topological representative of

�. Conversely, each � 2 Out.Fn/ is represented (non-uniquely) by a homotopy

equivalence of any marked graph G, cf. Lemma 7.2.

Convention 2.1. Unless otherwise stated, we assume that f is an immersion when

restricted to edges and that if J is an interval in the interior of an edge then some

f -iterate of J either contains a vertex or is contained in a periodic edge. This

can be arranged for example by assigning each edge length one and making the

restriction of f to each edge linear.

A (finite, infinite or bi-infinite) path in G is an immersion � W J ! G defined

on an interval J such that the image of each end of J crosses infinitely many

edges of G; equivalently, � lifts to a proper map into the universal cover zG. We

allow the possibility that J is a single point in which case we say that the path is

trivial. Subdividing at the full pre-image of the set V of vertices of G, we view J

as a simplicial complex and � as a map whose restriction to an edge is one-to-one

with image an edge or partial edge. In this way we view � as an edge path; i.e. a

concatenation of edges of G, where we allow the first and last to be partial edges

if the endpoints are not at vertices. We do not distinguish between paths that have

the same associated edge path and we often identify a path with its associated edge

path and write � � G. A path has height r if it is contained in Gr but not Gr�1.

A bi-infinite path � is called a line. Each lift Q� � zG of a line � � G has well

defined endpoints in the set @G of ends ofG. A singly infinite path is called a ray.

Each lift of a ray has one endpoint in zG and one ideal endpoint in @ zG. Conversely,

each ordered pair of distinct points in @ zG is the endpoint set of a unique line in zG.

For any marked graph G, one can identify @G with @Fn; see Section 3. In this

way lines in G are identified with Fn-orbits of ordered pairs .P;Q/ of distinct

points in @Fn. We sometimes refer to .P;Q/ as an abstract line or even just a line.

Thus each line in G determines an Fn-orbit of abstract lines. Each lift Qf W zG ! zG

extends to a homeomorphism (also called Qf ) of the set @G of the ends of zG.
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We denote the conjugacy class of a subgroup A of Fn by ŒA�. If A1 � � � � �Am

is a free factor of Fn and each Ai is non-trivial then ¹ŒA1�; : : : ; ŒAm�º is a free

factor system and each ŒAi � is a component of that free factor system. We

also allow the trivial free factor system ;. For any marked graph G and sub-

graph C with non-contractible components C1; : : : ; Cm, the fundamental group

of each Ci determines a well defined conjugacy class that we denote ŒCi � and

ŒC � WD ¹ŒC1�; : : : ; ŒCm�º is a free factor system. We say that C � G re-

alizes ŒC �. Every free factor system is realized by some subgraph of some

marked graph. There is a partial order @ on free factor systems defined by

¹ŒA1�; : : : ; ŒAk�º @ ¹ŒB1�; : : : ; ŒBl �º if each Ai is conjugate to a subgroup of some

Bj . There is a natural action of � 2 Out.Fn/ on conjugacy classes of free fac-

tors. If each element of a free factor system F is �-invariant then we say that F is

�-invariant.

More generally, a subgroup system is a finite collection ¹ŒA1�; : : : ; ŒAk�º of

distinct conjugacy classes of finitely generated non-trivial subgroups of Fn. The

conjugacy class Œc� of c 2 Fn is carried by the subgroup system ¹ŒA1�; : : : ; ŒAk�º
if c is conjugate to an element of some Ai . Equivalently, the fixed points for the

action of a conjugate of c on @Fn are contained in some @Ai . More generally

if P;Q 2 @Ai then the Fn-orbit of the abstract line with endpoints P and Q is

carried by ¹ŒA1�; : : : ; ŒAk�º. If a subgraph C of a marked graph G realizes a free

factor system F then a conjugacy class is carried by F if and only if the circuit

representing it in G is contained in C ; similarly, the Fn-orbit of an abstract line

is carried by F if and only if the corresponding line in G is contained in C . By

[BFH00, Lemma 2.6.5] (see also Lemma 4.2), for each collection of conjugacy

classes of elements and Fn-orbits of abstract lines there is a unique minimal (with

respect to the above partial order @) free factor system that carries them all. If

that minimal free factor system is ¹ŒFn�º then we say that the collection fills. In

this context, we will treat a subgroup as the collection of conjugacy classes that it

carries. In particular, it makes sense to talk about a subgroup system filling.

A filtration of a marked graph G is an increasing sequence of subgraphs

; D G0 � G1 � � � � � GN D G. The r thstratum Hr is the subgraph whose edges

are contained in Gr but not Gr�1. A homotopy equivalence f WG ! G preserves

the filtration if f .Gr / � Gr for each Gr . Assuming this to be the case and that

the edges in Hr have been ordered, the transition matrix Mr associated to Hr is

the square matrix with one row and column for each edge of Hr and whose ij th

coordinate is the number of times that the f -image of the i th edge of Hr crosses

(in either direction) the j th edge ofHr . After enlarging the filtration if necessary,

we may assume that each Mr is either the zero matrix or irreducible; we say that

Hr is a zero stratum or an irreducible stratum respectively. In the irreducible

case, each Mi has a Perron-Frobenius eigenvalue �r � 1. The stratum Hr is EG

if �r > 1 and is NEG if �r D 1. If f WG ! G is a topological representative of

� then we sometimes say that f WG ! G and ; D G0 � G1 � � � � � GN D G

represent �.
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If � � G is a path and f WG ! G is a homotopy equivalence then f .�/ WD

f ı� W J ! G need not be immersed and so need not be a path. If � is a finite path,

we define f#.�/ to be the unique path that is homotopic to f .�/ rel endpoints. For

rays and lines, one defines f#.�/ by choosing a lift Q� , defining Qf#. Q�/ to be the

unique path that is homotopic to Qf . Q�/ rel endpoints (including ideal endpoints)

and then projecting Qf#. Q�/ to a path f#.�/ � G.

If paths �1 and �2 can be concatenated then we denote the concatenation by

�1�2. A decomposition � D : : : �1�2 : : : �m : : : of a path into subpaths is a splitting

if f k
#
.�/ D : : : f k

#
.�1/f

k
#
.�2/ : : : f

k
#
.�m/ : : : for all k � 1; in this case we usually

write � D � � � � �1 � �2 � � � � � �m � � � � .
If f k

#
.�/ D � for some k � 1 and finite path � then � is a periodic Nielsen

path. If k D 1 then � is a Nielsen path. If a (periodic) Nielsen path � can not

be written as the concatenation of non-trivial (periodic) Nielsen subpaths then it

is indivisible. Two points in Fix.f / are in the same Nielsen class if they bound a

Nielsen path.

An edge E in a (necessarily NEG) stratum Hi is linear if f .E/ D Eu where

u � Gi�1 is a non-trivial Nielsen path. If u D wd for some root-free w and some

d ¤ 0 then the unoriented conjugacy class of w is called the axis for E. All other

edges in NEG strata are non-linear.

A direction at a point x 2 G is a germ of non-trivial finite paths with initial

vertex x. If x is not a vertex then there are two directions at x. Otherwise there

is one direction for each oriented edge based at x and we identify the direction

with the oriented edge. A homotopy equivalence f WG ! G induces a map

Df from directions at x to directions at f .x/. A turn at x is an unordered pair

.d1; d2/ of directions based at x; it is degenerate if d1 D d2 and non-degenerate

otherwise. Df induces a map on turns that we also denote by Df . A turn is

illegal if its image under some iterate of Df is degenerate and is legal otherwise.

If � D : : :EiEiC1 : : : and if each turn . xEi ; EiC1/ is legal then � is legal. Here xEi

denotes Ei with the opposite orientation. We sometimes also use the exponent -1

to indicate the inverse of a path. If � has height r then � is r-legal if each turn

. xEi ; EiC1/ for which both Ei and EiC1 are edges in Hr is legal.

The homotopy equivalence f WG ! G is a relative train track map [BH92,

p. 38] if it maps vertices to vertices and if the following conditions hold for every

EG stratum Hr .

(RTT-i) Df maps directions in Hr to directions in Hr .

(RTT-ii) If � � Gr�1 is a non-trivial path with endpoints in Hr \ Gr�1 then

f#.�/ is a non-trivial path with endpoints in Hr \ Gr�1.

(RTT-iii) If � � Hr is legal then f .�/ is an r-legal path.

2.2. Algorithmic proofs. The following theorem is modeled on [BH92, Theo-

rem 5.12] which proves the existence of relative train track maps that satisfy an

additional condition called stability. This condition is algorithmically built into
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CTs at a later stage of the argument (see [FH11, Step 1( EG Nielsen paths) in Sec-

tion 4.5]) so we do not need it here. See also [DV96]. The proof of [BH92, Theo-

rem 5.12] is mostly algorithmic. We have added Lemmas 2.4 and 2.7 to make the

entire argument algorithmic.

Theorem 2.2. There is an algorithm that produces for each� 2 Out.Fn/ a relative

train track map f WG ! G representing �.

The proof of Theorem 2.2 appears at the end of this section after we recall

some definitions and results from [BH92].

Definition 2.3. Suppose that f WG ! G and ; D G0 � G1 � � � � � GN D G

are a topological representative and filtration representing �. For each EG stratum

Hr , let �r � 1 be the Perron–Frobenious eigenvalue of the transition matrix Mr

associated to Hr . Letƒ.f / be the set of (not necessarily distinct) �r ’s associated

to EG strataHr of f WG ! G, listed in non-increasing order. Say that f WG ! G

is bounded if there are at most 3n� 3 exponentially growing strataHr and if each

�r is the Perron–Frobenious eigenvalue of some irreducible matrix with at most

3n� 3 rows and columns. Note that if each vertex of G has valence at least 3 then

f WG ! G is bounded because G has at most 3n � 3 edges. Note also that if the

set of all possibleƒ.f /’s is ordered lexicographically, then any strictly decreasing

sequence of ƒ.f /’s associated to bounded f ’s is finite; see [BH92, p. 37].

Lemma 2.4. There is an algorithm that checks if a given bounded topological

representative f WG ! G of � is a relative train track map.

Proof. Property (RTT-i) is obviously a finite property. We may therefore assume

that each EG stratum satisfies (RTT-i). Suppose that Hj is an EG stratum and

that C is a component of Gj �1. If C is contractible then it contains only finitely

many paths with endpoints at vertices so checking (RTT-ii) for paths in C is a

finite process. If C is not contractible then there is a smallest p � 1 such that

f p.C / � C . Since Hj satisfies (RTT-i), f p.Hj \ C/ � Hj \ C . If f p induces

a bijection of Hj \ C then (RTT-ii) is satisfied for all � � C . Otherwise, there

exist distinct v; w 2 Hj \C and a smallest 1 � q � p such that f q.v/ D f q.w/.

After replacing v and w by f q�1.v/ and f q�1.w/, we may assume that q D 1. In

this case v andw are connected by a unique path � � C whose f#-image is trivial

and (RTT-ii) fails. We have now proved that (RTT-ii) is a finite property. Finally,

(RTT-iii) is equivalent to the statement that f .E/ is j -legal for each edgeE � Hj

and so is a finite property. �

Definition 2.5. [BH92, paragraph before Lemma 5.13] Suppose that f WG ! G is

a topological representative and that E is an edge in an EG stratumHr . The core

of E is defined to be the smallest closed subinterval of E such that each point in
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the complement of the core is eventually mapped into Gr�1. The set of endpoints

of the cores of all the edges in Hj is mapped into itself by f . Subdivision at

this finite set (and enlarging the original filtration to accommodate the new edges

formed by the complements of the core) is called the core subdivision of Hr .

Lemma 2.6. [BH92, Lemma 5.13] Suppose that f WG ! G is a bounded topo-

logical representative of � and that f 0WG0 ! G0 is obtained from f WG ! G by

a core subdivision of the EG stratum Hr . Then,

(1) ƒ.f / D ƒ.f 0/ and

(2) there is a bijection Hj $ H 0
j 0 between the EG strata of f and the EG strata

of f 0 such that

(a) H 0
j 0 satisfies (RTT-i);

(b) relative height is preserved; i.e. j < k if and only if j 0 < k0;

(c) if j ¤ r andHj satisfies (RTT-i) or (RTT-ii) thenH 0
j 0 satisfies (RTT-i)

or (RTT-ii), respectively.

Lemma 2.7. Core subdivision is algorithmic.

Proof. Suppose that f WG ! G is a topological representative and that E is an

edge in an EG stratumHr . If theDf orbit of E (thought of as the initial direction

ofE) is contained inHr then the core ofE contains an initial segment ofE andE

does not contribute to the set of core subdivision points. Suppose then that some

iterate of Df maps E into Gr�1. Define Drf .E/ to be the first Hr -edge in the

edge path f .E/. If E is Drf -periodic of minimal period p, let Ei D Drf
i .E/

for i D 0; : : : ; p�1. Thus f .Ei / D uiEiC1vi where ui is a possibly trivial path in

Gr�1 and indices are taken mod p. Consider the subintervals of Ei whose images

under f p are single edges. The first such subinterval ei that is mapped into Hr

satisfies f p.ei/ D Ei and we choose the core subdivision point corresponding to

Ei to be the unique point in ei that is fixed by f p. If E is not Drf -periodic

then choose the minimal q such that Drf
q.E/ is Drf -periodic and take the

core subdivision point for E to be the first point in E that is mapped to the core

subdivision point of Drf
q.E/. �

Lemma 2.8. Given a bounded topological representative f WG ! G of � with

an EG stratum that satisfies (RTT-i), but not (RTT-iii) there is an algorithm to

construct a bounded topological representative f 00WG00 ! G00 of � such that

ƒ.f 00/ < ƒ.f /.

Proof. The proof of [BH92, Lemma 5.9] contains an algorithm that modifies

f WG ! G to produce a not necessarily bounded, topological representative

f 0WG0 ! G0 such that ƒ.f 0/ < ƒ.f /. The proof of [BH92, Lemma 5.5]

contains an algorithm that modifies f 0WG0 ! G0 to produce a bounded topological

representative f 00WG00 ! G00 of � such that ƒ.f 00/ � ƒ.f 0/ < ƒ.f /. �
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We next recall [BH92, Lemma 5.14], making the algorithm used in its proof

part of the statement of the lemma.

Lemma 2.9. [BH92, Lemma 5.14] Suppose that f WG ! G is a bounded topo-

logical representative of � and that Hs is an EG stratum that does not satisfy

(RTT-ii). Then there is an algorithm to construct a bounded topological repre-

sentative f 0WG0 ! G0 of � such that

(1) ƒ.f / D ƒ.f 0/ and

(2) there is a bijection Hj $ H 0
j 0 between the EG strata of f and the EG strata

of f 0 such that

(a) relative height is preserved; i.e. j < k if and only if j 0 < k0;

(b) jH 0
s0 \G

0
s0�1j < jHs \Gs�1j;

(c) if k > s andHk satisfies (RTT-i) and (RTT-ii) thenH 0
k0 satisfies (RTT-i)

and (RTT-ii);

(d) if k � s and Hk satisfies (RTT-i) then H 0
k0 (RTT-i).

Proof of Theorem 2.2. Start with any bounded topological representative f WG !

G of �. For example, one can choose any homotopy equivalence of the rose that

represents �. If there are no EG strata then f WG ! G is a relative train track map

and we are done. Otherwise, apply Lemma 2.6 to produce a bounded topological

representative (still called f WG ! G) of � whose top EG stratum satisfies

(RTT-i). If the top EG stratum does not also satisfy (RTT-ii), apply Lemma 2.9 to

produce a new bounded topological representative (still called f WG ! G) of �

whose top EG stratum still satisfies (RTT-i). If the top EG stratum of the current

f WG ! G does not satisfy (RTT-ii) apply Lemma 2.9 again. Item (b) of that

lemma guarantees that after finitely many applications of Lemma 2.9, we arrive

at f WG ! G whose top EG stratum satisfies (RTT-i) and (RTT-ii).

Repeat this procedure on the second highest EG stratum to produce a bounded

topological representative of � whose top two EG stratum satisfies (RTT-i) and

(RTT-ii). After finitely many iterations, we have a bounded topological represen-

tative (still called f WG ! G) of �, all of whose EG strata satisfy (RTT-i) and

(RTT-ii).

Apply Lemma 2.4 to check if f WG ! G is a relative train track map. If

yes, we are done. Otherwise apply Lemma 2.8 to produce a bounded topological

representative f 0WG0 ! G0 of � with ƒ.f 0/ < ƒ.f /. Then start over again with

f 0WG0 ! G0 replacing the original f WG ! G. Since every decreasing sequence

ƒ.f / > ƒ.f 0/ > : : : is finite, this process produces a relative train track map in

finite time. �
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Corollary 2.10. There is an algorithm that takes � 2 Out.Fn/ and a nested

sequence C D F1 @ F2 @ � � � @ Fm of �-invariant free factor systems as input

and produces a relative train track map f WG ! G and filtration ; D G0 � G1 �

� � � � GN D G representing � and such that for each Fi there exists Gj satisfying

Fi D ŒGj �.

Proof. The proof of this corollary is explicitly contained in the proof of [BFH00,

Lemma 2.6.7] (even though the statement of that lemma is weaker in that it

assumes that C is a single free factor system). The first step of the proof of the

lemma is to inductively construct a bounded topological representative f WG ! G

and filtration ; D G0 � G1 � � � � � GN D G representing � such that for each

Fi there exists Gj satisfying Fi D ŒGj �. Then one applies the relative train track

algorithm of Theorem 2.2, checking that C is preserved, to promote f WG ! G to

a relative train track map. �

The third existence theorem that needs discussion is [FH11, Theorem 2.19]. We

first recall some notation that is used in its statement.

Notation 2.11. If u < r and

(1) Hu is irreducible;

(2) Hr is EG and each component of Gr is non-contractible; and

(3) for each u < i < r , Hi is a zero stratum that is a component of Gr�1 and

each vertex of Hi has valence at least two in Gr

then we say that eachHi is enveloped by Hr and write H z
r D

Sr
kDuC1 Hk.

Theorem 2.12 ([FH11, Theorem 2.19]). For each � 2 Out.Fn/ there is a relative

train track map f WG ! G and a filtration ; D G0 � G1 � � � � � GN D G

representing � and satisfying the following properties.

(V) The endpoints of all indivisible periodic Nielsen paths are vertices.

(P) If a stratum Hm � Per.f / is a forest then there exists a filtration element

Gj such ŒGj � ¤ ŒGl [Hm� for any Gl .

(Z) Each zero stratum Hi is enveloped by an EG stratum Hr . Each vertex in

Hi is contained in Hr and has link contained in Hi [Hr .

(NEG) The terminal endpoint of an edge in a non-periodic NEG stratum Hi is

periodic and is contained in a filtration element of height less than i that

is its own core.

(F) The core of each filtration element is a filtration element.

Moreover, if C is a nested sequence of �-invariant free factor systems then we may

choose f WG ! G so that for each Fi 2 C there exists Gj satisfying F D ŒGj �.

The proof that f WG ! G as in Theorem 2.12 can be constructed algorithmi-

cally is contained in Section 3.4
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3. Rotationless iterates

Every element of Out.Fn/ has an iterate that is rotationless (Definition 3.3).

Corollary 3.14 below gives an explicit bound on the size of the iterate; see also

[FH11, Lemma 4.42] for a proof that such a bound exists.

3.1. More on markings. In this subsection we discuss markings in more detail

and recall definitions and results from [FH11, Section 3]. We assume throughout

this subsection that f WG ! G is a relative train track map representing � 2
Out.Fn/.

Markings are used to translate the geometric properties of f WG ! G into

algebraic properties of �. In this paper, we will focus on the geometric properties

of the homotopy equivalences and only bring in markings at the last minute when

necessary. Further details on the material presented in this section can be found

in [FH11, Section 2.3].

Recall that the rose Rn denotes the rose with vertex � and that we have once

and for all identified �1.Rn; �/ with Fn. A lift Q� 2 zRn of � to the universal cover
zRn determines an isomorphism JQ� from Fn D �1.Rn; �/ to the group T. zRn/ of

covering translations of zRn given by Œ
� maps to the covering translation T of zRn

that takes Q� to the terminal endpoint of the lift of 
 with initial endpoint Q�.

LetG be a finite graph equipped with a marking�WRn ! G. Denoting�.�/ by

?, �W .Rn; �/ ! .G; ?/ induces an isomorphism �#W�1.Rn; �/ ! �1.G; ?/ that

identifies Fn with �1.G; ?/. Fix a lift Q? of ? to zG. The lift Q�W . zRn; Q�/ ! . zG; Q?/
determines a homeomorphism @ Q�W @ zRn! @ zG of Gromov boundaries. In this way

@Fn, @ zRn, and @ zG are all identified. Since covering translations are determined

by their action on Gromov boundaries, there is an induced identification of T. zRn/

with T. zG/. For any v 2 G and lift Qv 2 zG, there is an induced isomorphism

JQvW�1.G; v/ ! T. zG/ defined exactly as JQ�. It is straightforward to check that

�# D J
�1
Q?
JQ�W�1.Rn; �/! �1.G; ?/.

We also have an identification of automorphisms representing � 2 Out.Fn/

with lifts Qf W zG ! zG of f WG ! G given by ˆ $ Qf if the actions of ˆ and
Qf on @Fn agree, i.e. if @ˆ D @ Qf . We usually specify Qf by specifying Qf . Q?/ or

equivalently by specifying the path Q� D Œ Q?; Qf . Q?/� or its image � in G. We say that

ˆ or Qf is determined by Qf . Q?/, Q�, or �. The action of ˆ on �1.G; ?/ is given by


 7! f .
/� WD �f .
/ N�. If Qf is determined by � and Qf 0 is determined by �0 then

ˆ0 D i
ˆ where ˆ $ Qf , ˆ0 $ Qf 0, and 
 2 Fn is represented by the loop �0 N�.

Working in the universal cover zG is algorithmic in the sense that we can always

compute the action of Qf on arbitrarily large balls (in the graph metric) around Q?.

In particular, givenˆ we may algorithmically find Qf with ˆ$ Qf and vice versa.

If Qf fixes Qv 2 zG then Qf $ ˆ for ˆ determined by � where Q� D Q� Qf . Q��1/ and

Q� D Œ Q?; Qv�.
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Definition 3.1. For Qf W zG ! zG a lift of f WG ! G, we denote the subgroup of

T. zG/ consisting of covering translations that commute with Qf by ZT. Qf /.

We state the following well known fact (see for example [FH11, Lemma 2.1])

as a lemma for easy reference.

Lemma 3.2. If Qf corresponds to ˆ as above then ZT. Qf / and Fix.ˆ/ are equal

when viewed as subgroups of T. zG/.

Automorphisms ˆ1; ˆ2 2 Aut.Fn/ are isogredient if ˆ1 D iaˆ2i
�1
a for some

inner automorphism ia. Lifts Qf1 and Qf2 of f are isogredient if the corresponding

automorphisms are isogredient. That is, Qf1 and Qf2 are isogredient if there exists

a covering translation T of zG such that Qf2 D T Qf1T
�1. The set of attracting

laminations for � 2 Out.Fn/ is denoted L.�/; see [BFH00, Section 3].

3.2. Principal automorphisms and principal points. Recall from [GJLL98]

that for each ‚ 2 Aut.Fn/,

Fix.@‚/ D Fix�.@‚/[ FixC.@‚/[ @Fix.‚/

where Fix.‚/ is the fixed subgroup for ˆ, Fix�.@‚/ � @Fn is a finite union of

Fix.‚/-orbits of isolated repellers and FixC.@‚/ � @Fn is a finite union of Fix.‚/-

orbits of isolated attractors.

Associated to each � 2 Out.Fn/ is a finite set L.�/ of attracting laminations,

each a closed subset of abstract lines which we refer to as leaves of the lamination.

A leaf 
 of ƒ 2 L.�/ is generic in ƒ if both of its ends are dense in ƒ. See

[BFH00, Section 3.1].

Definition 3.3 (Definition 3.1 in [FH11]). For ˆ 2 Aut.Fn/ representing �, denote

the set of non-repelling fixed points of @ˆ by FixN .@ˆ/. We say that ˆ is a

principal automorphism and write ˆ 2 P.�/ if either of the following hold.

� FixN .@ˆ/ contains at least three points.

� FixN .@ˆ/ is a two point set that is neither the set of fixed points for the action

of some non-trivial a 2 Fn on @Fn nor the set of endpoints of a lift of a generic

leaf of an element of L.�/.

If f WG ! G is a topological representative of � and Qf W zG ! zG is the lift

corresponding to principal ˆ then Qf is a principal lift.

If ˆ 2 P.�/ and k > 1 then FixN .@ˆ/ � FixN .@ˆ
k/ and ˆk 2 P.�k/. It may

be that the injection ˆ 7! ˆk of P.�/ into P.�k/ is not surjective. It may also

be that FixN .@ˆ
k/ properly contains FixN .@ˆ/ for some principal ˆ and some

k > 1. If neither of these happen then we say that � is forward rotationless. For a

formal definition, see [FH11, Definition 3.13].
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Remark 3.4. It is becoming common usage to suppress the word “forward” in

“forward rotationless” and we will follow that convention in this paper. So, when

we say that � 2 Out.Fn/ is rotationless, we mean that � is forward rotationless.

This convention was followed in the recent work of Handel and Mosher [HM].

Be aware though that the term “rotationless” has a slightly different meaning in

[FH09].

Suppose that f WG ! G is a topological representative of �. By [FH11,

Corollary 3.17], Fix. Qf / ¤ ; for each principal lift Qf . The projected image

of Fix. Qf / is exactly a Nielsen class in Fix.f / and a pair of principal lifts are

isogredient if and only if they determine the same Nielsen class of Fix.f / [FH11,

Lemma 3.8].

Definition 3.5. We say that x 2 Per.f / is principal if neither of the following

conditions are satisfied.

� x is not an endpoint of a non-trivial periodic Nielsen path and there are

exactly two periodic directions at x, both of which are contained in the same

EG stratum.

� x is contained in a component C of Per.f / that is topologically a circle and

each point in C has exactly two periodic directions.

If each principal periodic vertex is fixed and if each periodic direction based at a

principal periodic vertex is fixed then we say that f is rotationless.

Remark 3.6. By definition, a point is principal with respect to f if and only if it

is principal with respect to f k for all k � 1.

Remark 3.7. Definition 3.5 is a corrected version of Definition 3.18 of [FH11]

in which ‘x is not an endpoint of a non-trivial Nielsen path’ in the first item of

Definition 3.5 is replaced with the inequivalent condition ‘x is the only point in its

Nielsen class.’ Our thanks to Lee Mosher who pointed this out to us. Fortunately,

the definition we give here and not the one given in [FH11] is the one that is actually

used in [FH11] so no further corrections to [FH11] are necessary.

We are mostly interested in the case of a CT, where characterizations of

principal points are simpler. The next lemma gives two.

Lemma 3.8. Suppose f WG ! G is a CT.

(1) A point x 2 Per.f / is principal if and only if x 2 Fix.f / and the following

condition is not satisfied:

� x is not an endpoint of a non-trivial Nielsen path and there are exactly

two periodic directions at x, both of which are contained in the same

EG-stratum.
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(2) The following are equivalent for a point x 2 Fix.f /. Let Qf W zG ! zG be a lift

of f fixing a lift Qx of x:

(a) x is principal;

(b) Qf is principal;

(c) FixN .@ Qf
2/ is not the set of endpoints of a generic leaf of an element of

L.�/.

Proof. (1) Periodic Nielsen paths in a CT are fixed [FH11, Lemma 4.13] and so

the bulleted item in the lemma is equivalent to the first bulleted item of the

Definition 3.5. By definition, periodic edges of a CT are fixed and the endpoints of

fixed edges are principal. Therefore the second item in Definition 3.5 never holds.

To complete the proof it remains to show that all principal points of f are fixed.

This holds for vertices because CTs are rotationless. If x is a periodic but not fixed

point in the interior of an edge then (by definition of a CT) that edge must be in

an EG stratum and so x is not principal.

(2) By [FH11, Corollaries 3.22 and 3.27], (2a) and (2b) are equivalent. If Qf is

principal, then by definition of rotationless and principal, FixN .@ Qf / D FixN .@ Qf
2/

is not contained in the set of endpoints of a generic leaf. We see (2b) implies (2c).

If x is not principal for f then the bulleted item in (1) holds. In particular there are

exactly two periodic directions at x, both of which are in the same EG-stratum.

By [FH11, Lemma 2.13], FixN .@ Qf
2/ contains the set of endpoints of a generic leaf

of an element of L.�/. By Remark 3.6, x is not principal for f 2, and so Qf 2 is not

a principal lift. Hence jFixN .@ Qf
2/j < 3. We conclude (2c) implies (2a). �

3.3. A sufficient condition to be rotationless and a uniform bound. Before

turning to Lemma 3.12, which gives a sufficient condition for an outer automor-

phism to be rotationless, we recall the connection between edges in a CT and

elements of FixC.ˆ/.

Definition 3.9. Given a CT f WG ! G representing �, let E (or Ef ) be the set

of oriented, non-fixed, and non-linear edges in G whose initial vertex is principal

and whose initial direction is fixed by Df . For each E 2 E, there is a path u such

that f k
#
.E/ D E �u �f#.u/ � � � � �f

k�1
#

.u/ for all k � 1 and such that jf k
#
.u/j ! 1

with k. The union of the increasing sequence

E � f .E/ � f 2
#
.E/ � � � �

of paths in G is a ray RE . Each lift zRE of RE to the universal cover of G has

a well-defined terminal endpoint @ zRE 2 @Fn and so RE determines an Fn-orbit

@RE in @Fn.
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Lemma 3.10. Suppose that f WG ! G is a CT and that E 2 E. If zE is a lift of E

and Qf is the lift of f that fixes the initial endpoint of zE then the lift zR zE
ofRE that

begins with zE converges to a point in FixC.@ Qf /. Moreover, E 7! @RE defines a

surjection E!
�

S

ˆ2P.�/ FixC.@ˆ/
�

=Fn.

Proof. Suppose that x is the initial endpoint of E 2 E, that Qx is a lift of x, that

R zE is the lift of RE that begins at Qx and that Qf W zG ! zG is the lift of f that

fixes Qx. Lemma 3.8(2) implies that Qf is a principal lift and [FH11, Lemma 4.36(1)]

implies that zR zE
converges to a point @ zRE 2 FixN .@ˆ/ where ˆ is the principal

automorphism corresponding to Qf . Since jf k
#
.u/j ! 1, it follows [GJLL98,

Proposition I.1] that @ zR zE 2 FixC.@ˆ/. [FH11, Lemma 4.36(2)] implies that

E 7! @RE is surjective. �

Remark 3.11. By [GJLL98, Proposition I.1], P 2 FixC.@ˆ/ is not fixed by any ia
and so is not fixed by @ˆ0 for anyˆ0 ¤ ˆ representing �. Thus

S

ˆ2P.�/ FixC.@ˆ/

is a disjoint union.

Lemma 3.12. Suppose that � 2 Out.Fn/ acts trivially on H1.FnIZ=3Z/ and

induces the trivial permutation on
�

S

ˆ2P.�/ FixC.@ˆ/
�

=Fn for some (any) rota-

tionless iterate � D �L of � . Then � is rotationless.

Proof. We show below that

� for any ˆ 2 P.�/, there is ‚ 2 P.�/ with the property that FixN .@ˆ/ �
FixN .@‚/.

To see why this is sufficient to prove the lemma, let ‚k 2 P.�k/ for some k � 1.
Since �kL D �k , ‚L

k
2 P.�k/. Since � is rotationless, there exists ˆ 2 P.�/

such that ‚L
k
D ˆk and FixN .@ˆ/ D FixN .@ˆ

k/ D FixN .@‚
L
k
/. By .�/, there is

‚ 2 P.�/ such that

FixN .@‚k/ � FixN .@‚
L
k / D FixN .@ˆ/ � FixN .@‚/ � FixN .@‚

k/

It follows that ‚k D ‚k. We have now seen that P.�/ ! P.�k/ given by

‚ 7! ‚k is surjective. By [FH11, Definition 3.13 and Remark 3.14], to show that

� is rotationless it remains to show that FixN .@‚
k/ D FixN .@‚/ for all ‚ 2 P.�/

and k � 1. This follows from the above displayed sequence of inclusions by taking

‚k WD ‚
k.

We now turn to the proof of (�). Set F WD Fix.ˆ/. We claim that there exists

‚ representing � such that F � Fix.‚/. If the rank of F is < 2 then this follows

from [HM, Part II Theorem 4.1], which implies that � fixes each conjugacy class

that is fixed by � and in particular fixes each conjugacy class represented by an

element of Fix.ˆ/.
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Suppose then that F has rank � 2. We recall two facts.

� Each element of Fn is fixed by only finitely many elements of P.�/ and the

root-free ones that are fixed by at least two such automorphisms determine

only finitely many conjugacy classes; see [FH11, Lemma 4.40].

� F is its own normalizer in Fn. Proof: Since F is finitely generated and

has rank > 1, we can choose x 2 @F � @Fn that is not fixed by any @ia,

a 2 Fn n ¹1º; and so is not fixed by @ˆ0 for any automorphism ˆ0 ¤ ˆ

representing �. If y normalizes F then @iy.x/ 2 @F and x is fixed by @ˆ0

where ˆ0 D iy�1ˆiy D iy�1ˆ.y/ˆ. It follows that ˆ.y/ D y and hence

y 2 F.

By the first bullet, we may choose a basis ¹bj º for F consisting of elements that are

not fixed by any other element of P.�/. Applying [HM, Part II Theorem 4.1] again,

choose an automorphism ‚j representing � and fixing bj . The automorphism

‚jˆ‚
�1
j fixes bj by construction and belongs to P.�/ by [FH09, Lemma 2.6]

and the fact that � and � commute. By uniqueness, ‚jˆ‚
�1
j D ˆ and so ‚j

commutes withˆ. In particular,‚j preservesF. SinceF is its own normalizer, the

outer automorphism � jF ofF determined by‚j is independent of j . It follows that

� jF acts trivially onH1.FIZ=3Z/. Since �LjF is the identity and since the kernel

of natural map Out.Fn/! H1.FnIZ=3Z/ is torsion-free1, � jF is the identity and

the claim is proved.

Since � acts trivially on
�

S

ˆ2P.�/ FixC.@ˆ/
�

=Fn, eachQ 2 FixC.@ˆ/ is fixed

by some‚Q representing � . Since‚L
Q andˆ both fixQ and represent � we have

‚L
Q D ˆ. As above,‚Q commutes withˆ and so preserves F and FixC.@ˆ/. For

any otherQ0 2 FixC.@ˆ/ we have ‚Q D ia‚Q0 for some a 2 Fn. Since both ‚Q

and ‚Q0 preserve F, ia does as well and so a 2 F.

It suffices to show that ‚Q is independent of Q and F � Fix.‚Q/. This is

obvious if F is trivial. If F has rank one then F D Fix.‚Q/ and

Q0 D ˆ.Q0/ D ‚L
Q.Q

0/ D .ia‚Q0/L.Q0/ D iLa ‚
L
Q0.Q

0/ D iLa .Q
0/

which implies that a must be trivial and we are done. If F has rank � 2 then there

is a unique‚ such that F � Fix.‚/ and ˆ is the only automorphism representing

� such that F � Fix.ˆ/. Thus ‚L D ˆ. There exists b 2 F such that ‚Q D ib‚.

We have ˆ D ‚L
Q D i

L
b
‚L D iL

b
ˆ so b is trivial and the proof is complete. �

To apply Lemma 3.12 we will need a bound on the cardinality of

� S

ˆ2P.�/ FixC.@ˆ/
�

=Fn:

1 This follows from the standard fact that the kernel of the natural map GLn.Z/ !
GLn.Z=3Z/ is torsion-free and the result of Baumslag-Taylor [BT68] that the kernel of the nat-
ural map Out.Fn/ ! GLn.Z/ is torsion-free.
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Lemma 3.13. If � 2 Out.Fn/ is rotationless then

�
S

ˆ2P.�/ FixC.@ˆ/
�

=Fn � 15.n� 1/:

Proof. Choose a CT f WG ! G representing � and assume the notation of

Definition 3.9. By Lemma 3.10 it suffices to show that the cardinality of the image

of E 7! ŒRE � is bounded by 15.n � 1/. By construction, the initial vertex of E is

principal. If it has valence at least three then we say that it is natural.

There are at most 6.n � 1/ oriented edges based at natural vertices. Some

of these are not fixed and so do not contribute to E. For example, if E is NEG

then (Lemma 4.21 of [FH11]) the terminal vertex of E is natural and the direction

determined by xE is not fixed. Similarly, if .E1; E2/ is an illegal turn of EG height

then the basepoint for this turn is natural and either E1 or E2 determines a non-

fixed direction. It follows that 6.n�1/ is an upper bound for the sum of the number

of edges in E that are based at natural vertices, the number of non-fixed NEG edges

and the number of EG stratum Hr with an illegal turn of height r .

It remains to account for those EG edges E 2 E that are based at valence

two vertices v. By our previous estimate there are at most 6.n � 1/ such v with

the other edge incident to v being non-fixed NEG. The only other possibility is

that both edges incident to v are EG. If the edges were in different strata, say Hr

and Hr 0 with r < r 0 then v would have valence � 2 in Gr (because Gr is a core

subgraph), a contradiction. Thus both edges belong to the same stratumHr . Since

v is a principal vertex, it must be an endpoint of a Nielsen path � of height r . There

are at most four edges incident to valence two vertices at the endpoints of � and

these determine at most three points in
� S

ˆ2P.�/ FixC.@ˆ/
�

=Fn because the two

directions pointing into � determine the same point. There is at most one such �

for each EG stratumHr and � has an illegal turn of height r so our initial bound of

6.n� 1/ counted each � once; we now have to count it two more times. In passing

from the highest core Gs with s < r to Gr , at least two natural edges are added.

It follows that the number of EG strata is � 3
2
.n � 1/. The total count then is

6.n � 1/C 6.n � 1/C 3.n � 1/ D 15.n� 1/. �

Corollary 3.14. Let h.n/ D jGL.Z=3=Z; n/j D 3.n2�1/, let g.m/ be Landau’s

function, the maximum order of an element in the symmetric group Sm, and let

Kn D g.15.n � 1//Š � h.n/. If � 2 Out.Fn/ then �Kn is rotationless.

Proof. Lemma 3.13 implies that �g.15.n�1//Š induces the trivial permutation on

�
S

ˆ2P.�/ FixC.@ˆ/
�

=Fn

for any rotationless iterate � of � . Hence �Kn D .�g.15.n�1//Š/h.n/ satisfies the

hypotheses of Lemma 3.12. �
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Remark 3.15. In Corollary 15.18, we will see that

ˇ

ˇ

�
S

ˆ2P.�/ FixC.@ˆ/
�

=Fn

ˇ

ˇ � 6.n � 1/

and so we could take Kn D g.6.n � 1//Š � h.n/ in Corollary 3.14.

3.4. Algorithmic Proof of Theorem 2.12. We review the proof of the existence

of f WG ! G for � as given in [FH11, Theorem 2.19], altering it slightly to make

it algorithmic.

If C is not specified, take it to be the single free factor system ŒFn�. Apply

Corollary 2.10 to construct a relative train track map f WG ! G and ; D G0 �
G1 � � � � � GN D G such that for eachFi 2 C there existsGj satisfyingF D ŒGj �.

The modifications necessary to arrange all the properties but (V) are explicitly

described in the original proof. These steps come after (V) has been established

in that proof but make no use of (V) so there is no harm in our switching the order

in which properties are arranged. For notational simplicity we continue to refer

to the relative train track map as f WG ! G even though it has been modified to

satisfy all the properties except possibly (V).

For Kn as in Corollary 3.14, �Kn is rotationless. Subdivide f WG ! G at

the (finite) set S of isolated points in Fix.f Kn/ that are not already vertices;

these occur only in EG edges E and are in one to one correspondence with the

occurrences of E or xE in the edge path f Kn

#
.E/. We claim that property (V) is

satisfied. If not, then perform a further finite ([FH11, Lemma 2.12]) subdivision

so that (V) is satisfied. [FH11, Proposition 3.29] and [FH11, Lemma 3.28] imply

that every periodic Nielsen path of f WG ! G (after the further subdivision) has

period at most Kn. But then S contains the endpoints of all indivisible periodic

Nielsen paths after all and no further subdivision was necessary. Since subdivision

at S is algorithmic, we are done.

4. Reducibility

Given a relative train track map f WG ! G and filtration ; D G0 � G1 � � � � �
GN D G representing � 2 Out.Fn/, let ; D F0 @ F1 @ � � � @ FK be the

increasing sequence of distinct �-invariant free factor systems that are realized by

the Gi ’s. Assuming that f WG ! G satisfies property (F) of Theorem 2.12, Fi is

realized by a unique core filtration element for each i � 1 and F0 is realized by

G0. If F is a free factor system that is invariant by some iterate �k of � and that

is properly contained between Fi and FiC1 then we say that F is a reduction for

Fi @ FiC1 with respect to �; if there is no such F then Fi @ FiC1 is reduced

with respect to �. If each Fi @ FiC1 is reduced with respect to � then we say that

f WG ! G is reduced.
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We assume for the rest of the section that � is rotationless. In particular,

a free factor system that is invariant by some iterate of � is �-invariant [FH11,

Lemma 3.30].

The main results of this section are Proposition 4.9 and Lemma 4.12. The

former, which assumes that f WG ! G satisfies the conclusions of Theorem 2.12,

provides an algorithm in the EG case for deciding if Fi @ FiC1 is reduced and for

finding a reduction if there is one. The latter has stronger requirements and easily

leads to an algorithm that handles the NEG case. We save the final details of that

algorithm for Section 8.

4.1. The EG case. Recall ([BFH00, Section 2] or [HM, Part I Fact 1.3]) that a

pair of free factor systemsF1 andF2 has a well-defined meetF1^F2 characterized

by ŒA� 2 F
1 ^ F

2 if and only if there exist subgroups A1; A2 such that ŒAi � 2 F
i

and A1 \ A2 D A.

Let B be the basis of Fn corresponding to the edges of Rn (see Section 2.1).

If A is a finitely generated subgroup of Fn then the Stallings graph RA of the

conjugacy class ŒA� of A is the core of the cover of Rn corresponding to A. There

is an immersionRA ! Rn and if we subdivideRA at the pre-image of the vertex of

Rn then we view the edges ofRA as labeled by their image edges in Rn and hence

by elements of B. The complexity ofA is the number of edges in (subdivided)RA.

Stallings graphs are generalized in Section 9.2 and more discussion can be found

there.

Lemma 4.1. Given free factor systems F
1 and F

2 one can algorithmically con-

struct F1 ^ F
2.

Proof. We may assume without loss that F1 D ¹ŒA�º and F
2 D ¹ŒB�º for given

subgroups A;B . According to Stallings [Sta83, Theorem 5.5 and Section 5.7(b)],

the conjugacy classes of the intersections of A with conjugates of B are all

represented by components of the pullback of the diagram RA ! R RB . �

Lemma 4.2. Given a finite set ¹aiº of elements ofFn and a finite set ¹Aj º of finitely

generated subgroups of Fn there is an algorithm that finds the unique minimal free

factor system that carries each Œai � and each conjugacy class carried by some ŒAj �.

Proof. By replacing Œai � by Œhai i�, we may assume that finite set ¹aiº is empty. The

complexity of A D ¹ŒAj �º is the sum of the complexities of the ŒAj �. By Gersten

[Ger84], there is an algorithm to find ‚ 2 Aut.Fn/ so that ‚.A/ D ¹Œ‚.Aj /�º
has minimal complexity in the orbit of A under the action of Aut.Fn/. Let P be

the finest partition of B such that the labels of each Stallings graph R‚.Aj / are

contained in some element of P. The free factor system F.P/ determined by P is

the minimal free factor system carrying ‚.A/; see [DF05, Lemma 9.19]. Hence

‚�1.F.P// is the minimal free factor system carrying A. �
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Corollary 4.3. Suppose that � 2 Out.Fn/, that F1 is a proper free factor system

and that F0
@ F

1 is a ( possibly trivial) �-invariant free factor system. Then there

is an algorithm that decides if there is a �-invariant free factor system F @ F
1

that properly contains F0 and that finds such an F if one exists.

Proof. First check if F
1 is �-invariant or if F

1 D F
0. If the latter is true the

output of the algorithm is no. If the latter is false and the former is true the output

is yes. If neither is true apply Lemma 4.1 to compute F1^�.F1/which is properly

contained in F
1, containsF0 and contains every �-invariant free factor system that

is contained in F
1. Repeat these steps with F

1 ^ �.F1/ replacing F
1. Since there

is a uniform bound to the length of a strictly decreasing sequence of free factor

systems [HM, Part I Fact 1.3] the process stops after finitely many steps. �

The following lemma is used in Step 1 of the proof of Proposition 4.9. Recall

from [FH11, Remark 3.20] that if f WG ! G represents a rotationless � and

satisfies the conclusions of Theorem 2.12, then for each ƒ 2 L.�/ there is an

EG stratumHr such thatƒ has height r and this defines a bijection between L.�/

and the set of EG strata. The definition of a path being weakly attracted to ƒC

appears as [BFH00, Definition 4.2.3].

Lemma 4.4. Suppose that f WG ! G and ; D G0 � G1 � � � � � GN D G are a

relative train track map and filtration representing a rotationless � and satisfying

the conclusions of Theorem 2.12 and that Hr is an EG stratum with associated

attracting lamination ƒC. Then there is a computable constant C such that if

�0 � Gr is an r-legal path that crosses at least C edges in Hr then every path

� � Gr that contains �0 as a subpath is weakly attracted to ƒC.

Proof. Choose l so that the f l image of each edge in Hr crosses at least two

edges inHr . It is shown in the proof of [BFH00, Lemma 4.2.2] (see also [BFH00,

Corollary 4.2.4]) thatC D 4lC0C1 satisfies the conclusions of our lemma for any

constant C0 that is greater than or equal to the bounded cancellation constant for

f . Since the latter can be computed [BFH97, Lemma 3.1] using only the transition

matrix for f , we are done. �

Lemma 4.5. Suppose that f WG ! G and ; D G0 � G1 � � � � � GN D G are a

relative train track map and filtration representing a rotationless � and satisfying

the conclusions of Theorem 2.12. Suppose further thatHr is an EG stratum. Then

every indivisible periodic Nielsen path with height r has period one and there is

an algorithm that finds them all.

Remark 4.6. For a more efficient method than the one described in the proof see

[HM11, Section 3.4].
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Proof. Suppose that � is an indivisible periodic Nielsen path of height r . Propo-

sition 3.29 and Lemma 3.28 of [FH11] imply that � has period 1 and prop-

erty (V) of Theorem 2.12 implies that the endpoints of � are vertices. By [BH92,

Lemma 5.11], � decomposes as a concatenation � D ˛ˇ�1 of r-legal edge paths

whose initial and terminal edges are in Hr . Let ˛0 and ˇ0 be the initial edges

of ˛ and ˇ respectively. By Lemma 4.4 we can bound the number of Hr edges

crossed by ˛ and ˇ by some positive constant C . Since Hr is an EG stratum we

can choose k so that f k
#
.E/ crosses more than C edges in Hr for each edge E in

Hr . Since � D f k
#
.�/ is obtained from f k

#
.˛/f k

#
.ˇ�1/ by canceling edges at the

juncture point and since no edges inHr are cancelled when f k.˛/ and f k.ˇ/ are

tightened to f k
#
.˛/ and f k

#
.ˇ/, ˛ � f k

#
.˛0/ and ˇ � f k

#
.ˇ0/. In particular, we

can compute an upper bound for the number of edges crossed by �, reducing us to

testing a finite set of paths to decide which are indivisible Nielsen paths. �

A subgroup systemA is a vertex group system if there exists a real Fn-tree with

trivial arc stabilizers such that A is the set of non-trivial vertex stabilizers.

Lemma 4.7. Suppose that f WG ! G and ; D G0 � G1 � � � � � GN D G are a

relative train track map and filtration representing a rotationless � and satisfying

the conclusions of Theorem 2.12. Suppose also that HN is an EG stratum with

attracting lamination ƒC, and that ŒGu� [ ƒ
C fills where Gu D G nH z

N . Then

the following are satisfied.

(1) There is a unique vertex group system A such that a conjugacy class Œa� is

not weakly attracted to ƒC if and only if Œa� is carried by an element of A.

(2) A circuit � � G represents an element of A if and only if � splits as a

concatenation of subpaths each of which is either contained in Gu or is an

indivisible Nielsen path of height N .

(3) There is a proper free factor system F
0
A ŒGu� such that one of the following

holds:

(a) A D F
0;

(b) A fills and A D F
0 [ ¹ŒA�º where ŒA� has rank one.

Moreover, ŒGu� @ ŒGN � is reduced with respect to � if and only if F0 D ŒGu�.

Remark 4.8. Gu is not necessarily a core subgraph. It deformation retracts to a

core subgraph Gs and is obtained from Gs by adding NEG edges with terminal

endpoints in Gs . We use Gu in this lemma rather than Gs because indivisible

Nielsen paths of height N can have endpoints at the valence one vertices of Gu.

Proof. The existence of a vertex group system A as in (1) follows from [BFH00,

Theorem 6.1] and [HM, Part III Proposition 1.4(1)]. Uniqueness of A follows from

the fact [HM, Part I Lemma 3.1] that a vertex group system is determined by the
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conjugacy classes that it carries. For the rest of this proof we take (1) to be the

defining property of A. Note that A depends only on ƒC and � and not on the

choice of f WG ! G. In particular, A is �-invariant.

If a circuit � � G splits into subpaths that are either contained in Gu or are

Nielsen paths of height N then the number ofHN edges in f k
#
.�/ is independent

of k and � is not weakly attracted to ƒC. This proves the if direction of (2).

The only if direction of (2) is more work. [BFH00, Lemmas 4.2.6 and 2.5.1]

and Lemma 4.5 imply that there exists k � 1 such that f k
#
.�/ splits into subpaths

that are either contained in GN �1, are indivisible Nielsen paths of heightN or are

edges of height N . Assuming that � , and hence f k
#
.�/, is not weakly attracted to

ƒC, [BFH00, Corollary 4.2.4] implies that no term in this splitting is an edge of

height N . If f k
#
.�/ � Gu then � � Gu and we are done. If f k

#
.�/ is a closed

Nielsen path of height N then � and f k
#
.�/ have the same f k

#
-image and so are

equal. In particular, � is a Nielsen path of height N . In the remaining case, there

is a splitting

f k
#
.�/ D �1 � �1 � �2 � �2 � � � � � �m � �m

into subpaths �i � Gu and Nielsen paths �i of height N . Since the endpoints

of each �i are fixed by f and since the restriction of f to each f -invariant

component of Gu is a homotopy equivalence, there exist paths �0
i � Gu with

the same endpoints as �i such that f k
#
.�0

i / D �i . Letting

� 0 D �0
1 � �1 � �

0
2 � �2 � � � � � �

0
m � �m

we have f k
#
.� 0/ D f k

#
.�/ and hence � 0 D � . In particular, � splits into subpaths

of Gu and indivisible Nielsen paths of height N . This completes the proof of (2).

The main statement of (3) follows from [BFH00, Proposition 6.0.1 and Re-

mark 6.0.2] (which applies because there is a CT representing � in which ƒC

corresponds to the highest stratum and ŒGu� is realized by a core filtration ele-

ment). Since � preserves A, it acts periodically on the components of A. [FH11,

Lemma 3.30] therefore implies that � preserves each rank one component of A

and so also preserves F0. If F0 ¤ ŒGu� then F
0 is a reduction for ŒGu� @ ŒGN �. This

proves the only if direction of the moreover statement.

Suppose then that F0 D ŒGu�. If either (a) or (b) holds then any free factor

system F that properly contains ŒGu� carries a conjugacy class not carried by A.

Item (1) implies that F carries a conjugacy classs that is weakly attracted toƒC. If

F is �-invariant then F carriesƒC in addition to containingGu and so is improper.

This completes the proof of the if direction of the moreover statement. �

The next proposition shows how to reduce a relative train track map satisfying

the conclusions of Theorem 2.12. One way to create an unreduced example is to

identify a pair of distinct fixed points in a stratum Hr of a CT where Hr is both

highest and EG.



Algorithmic constructions 1183

Proposition 4.9. Suppose that f WG ! G and ; D G0 � G1 � � � � � GN D G

are a relative train track map and filtration representing a rotationless � and

satisfying the conclusions of Theorem 2.12. Suppose also thatHr is an EG stratum

and that Gs is the highest core filtration element below Gr . Then there is an

algorithm to decide if ŒGs � @ ŒGr � is reduced and if it is not to find a reduction.

Proof. By [FH11, Lemma 3.30], the non-contractible components of Gr are f -in-

variant; in particular Hr is contained in a single component of Gr . By restricting

to this component we may assume thatHr is the top stratum and hence that r D N .

LetƒC2L.�/ be the lamination associated toHN . By [BFH00, Lemma 3.2.4]

there existsƒ� 2 L.��1/ such that the smallest free factor system that carriesƒC

is the same as the smallest free factor system that carriesƒ� and we denote this by

Fƒ. It follows that the realizations of ƒC and ƒ� in any marked graph cross the

same set of edges in that graph. It also follows that the smallest free factor system

that carries ŒGs� andƒC is the same as the smallest free factor system that carries

ŒGs � and ƒ� and we denote this by Fs;ƒ. Since both ŒGs� and ƒ˙ are �-invariant,

[BFH00, Corollary 2.6.5] implies that Fs;ƒ is �-invariant.

Choose constants as follows.

� CE D 6.n� 1/ is the maximal number of oriented natural edges in a marked

core graph of rank n.

� M D 2n; if F0 @ F1 @ � � � @ FP is an increasing nested sequence of free

factor systems of Fn then P �M �1. (This follows by induction on the rank

n and the observation that if FP D ¹Fnº with n > 1 then there exists F such

that FP �1 @ F @ FP and F consists of a pair of conjugacy classes whose

ranks add to n.)

� C0 D C C 2 where C satisfies the conclusion of Lemma 4.4.

Step 1: an existence result when Fs;ƒ is proper. Consider the set K of marked

graphs K containing a (possibly empty) core subgraph K0 and equipped with a

marking preserving homotopy equivalence pWK ! G taking vertices to vertices

such that

(a) p
ˇ

ˇ K0WK0 ! Gs is a homeomorphism (If s D 0 then Gs D K0 D ;);

(b) the restriction of p to each natural edge is either an immersion or constant;

(c) there is at most one natural edge on which p is constant.

Each natural edge E of K 2 K is labeled by p.E/, thought of as a (possibly

trivial) edge path in G. We do not distinguish between two elements of K if there

is a label preserving homeomorphism between them. The length jEj of a natural

edge E is the number of edges in p.E/ and the total length jKj of K is the sum

of the length of its natural edges. The number of HN edges in p.E/ is denoted

jEjN . LetƒC
K andƒ�

K be the realizations ofƒC andƒ� inK. As observed above,

the set of edges crossed by ƒC is the same as the set of edges crossed by ƒ�. We

denote this common core subgraph by Kƒ.
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We claim that if Fs;ƒ is proper then there exists an element K 2 K with the

following properties:

(1) jEjN � C0 for all natural edges E of K;

(2) the restriction of p to a leaf of ƒC
K is an immersion;

(3) K0 [Kƒ is a proper core subgraph.

Note that K0 [Kƒ is a core subgraph because it is a union of core subgraphs so

the content of (3) is that K0 [Kƒ is proper. Our proof of the claim makes use of

an idea from the proof of Proposition 3.4 in Part IV of [HM].

Assuming that Fs;ƒ is proper, there exists a marked graph K with proper

core subgraphs K0 � K1 � K and a marking preserving homotopy equivalence

pWK ! G satisfying (a) and (b) and ŒK1� D Fs;ƒ. The last property implies that

K1 D K0 [ Kƒ so (3) is satisfied. If there is at least one natural edge in K nK1

on which p is an immersion then collapse each natural edge in K on which p is

constant to a point. Otherwise, collapse each natural edge in K1 on which p is

constant and all but one natural edge in K nK1 on which p is constant to a point.

The resulting marked graph, which we continue to denoteK, still satisfies (a) and

(b) because pjK0 is injective and so K0 is unaffected by the collapsing and (c) is

now satisfied so K 2 K. Replacing K1 by its image under the collapse, it is still

true that K1 D K0 [ Kƒ is a proper core subgraph and now the restriction of p

to each natural edge of K1 is an immersion. (It may now be that ŒK1� properly

contains Fs;ƒ.)

If p
ˇ

ˇ K1 is not an immersion then there is a pair of natural edgesE1; E2 inK1

with the same initial vertex and such that the edge paths p.E1/ and p.E2/ have

the same first edge, say e. Folding the initial segments of E1 and E2 that map

to e produces an element K 0 2 K with subgraph K 0
0 satisfying (a) and such that

jK 0j < jKj. Note that (3) is still satisfied because K 0
0 [ K

0
ƒ is contained in the

image K 0
1 � K

0 and ŒK1� D ŒK
0
1�. ReplacingK with K 0 and repeating this finitely

many times, we may assume that p
ˇ

ˇ K1 is an immersion and hence that p restricts

to an immersion on leaves of ƒC
K and ƒ�

K . In particular, (2) is satisfied. If (1) is

satisfied then the proof of the claim is complete.

Suppose then that there is a natural edgeE ofK such that jEjr > C0 D C C2.

By [BFH00, Theorem 6.0.1], a leaf of ƒ� is not weakly attracted to a generic

leaf of ƒC. Lemma 4.4 therefore implies that at least one of the two laminations

ƒC
K and ƒ�

K does not cross E. It follows that Fƒ @ ŒK n E� and hence that E

is contained in the complement of Kƒ. Since E is obviously in the complement

of K0, we have that E is contained in the complement of K0 [ Kƒ. If there is a

natural edge on which p is constant, it must be in the complement ofK0[Kƒ[E
and we collapse it to a point. As above, the resulting marked graph is still in K

and (2) and (3) are still satisfied. We may now assume that p is an immersion

on each natural edge of K. The map pWK ! G is not a homeomorphism so

there is at least one pair of edges that can be folded. Perform the fold and carry
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the K0 � K notation to the new marked graph. It is still true that K 2 K and

that (2) holds. Folding reduces jEjr by at most 2 so there is still an edge with

jEjr > C . Arguing as above we see that E is contained in the complement of

K0 [ Kƒ so (3) is still satisfied. If (1) is satisfied then the proof of the claim is

complete. Otherwise perform another fold. Conditions (2) and (3) are satisfied so

check condition (1) again. Folding reduces jKj so after finitely many folds, (1) is

satisfied and the claim is proved.

Step 2: Part 1 of the algorithm. In this step we present an algorithm that

either finds a reduction for ŒGs� @ ŒGr � or concludes that Fs;ƒ is improper, i.e.

Fs;ƒ D ¹ŒFn�º. In the former case we are done. In the latter case we move on to

the second part of the algorithm in which we either find a reduction for ŒGs � @ ŒGr �

or we conclude that ŒGs� @ ŒGr � is irreducible.

(A1) Choose a generic leaf 
 � G of ƒC. One way to do this is to choose an

edge e ofHr and k > 0 so that at least one occurrence of e in the edge path

f k
#
.e/ is neither the first nor lastHr edge. Then e � f k

#
.e/ � f 2k

#
.e/ � � � �

and the union of these paths is a generic leaf of ƒC by [BFH00, Corollary

3.1.11 and Lemma 3.1.15].

(A2) Let C1 D 1. Choose a subpath 
1 of 
 that crosses at least

.CE C 1/C0 C CE .C1 C C0/C 2C0

edges in Hr and let L1 be the number of edges in 
1. (The choice of these

constants will be clarified in Step 3.)

(A3) Enumerate all core graphs J of rank< n satisfying: there is a core subgraph

J0 � J and a map pW J ! G taking vertices to vertices such that the

restriction of p to each natural edge is an immersion onto a path of length

at most L1 and such that p
ˇ

ˇ J0W J0 ! Gs is a homeomorphism. Label the

natural edges of J by their p images. We do not distinguish between labeled

graphs that differ by a label preserving homeomorphism so there are only

finitely many J and we consider them one at a time. If � � J is a path with

endpoints at natural vertices and if p restricts to an immersion on � then we

let j� j be the number of edges crossed by p.�/ and j� jr the number of Hr

edges crossed by p.�/.

Let p# be the homomorphism induced by pW J ! G on fundamental

groups. By Lemma 4.2 we can decide if p# is an isomorphism to a free factor

system ŒJ � of Fn. If not, then move on to the next candidate. If yes, then

apply Lemma 4.3 with F0 D ŒJ0� D ŒGs � and F1 D ŒJ �. If this produces a �-

invariant F @ ŒJ � that properly contains ŒGs� then we have found a reduction

and the algorithm stops. Otherwise we know that ŒJ � does not contain such

an F. In particular ŒJ � does not contain Fs;ƒ and so does not carry ƒC.

Choose a finite subpath 
1;J � 
 � G that does not lift to J .
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By [BFH00, Lemma 3.1.10(4)] there exists an edge E in Hr and k � 1

such that 
1;J is a subpath of Qf k
#
.E/. By [BFH00, Lemma 3.1.8(3)] there is a

computable k0 so that for any edgeE 0 inHr and any l � kCk0, Qf k
#
.E/, and

hence 
1;J , is a subpath of f l
#
.E 0/. Finally, by [BFH00, Lemma 3.1.10(3)]

there exists computable C2;J > 0 so that if � is a subpath of 
 that crosses

� C2;J edges ofHr then � contains some f l
#
.E 0/, and hence contains 
1;J ,

as a subpath and so does not lift into J . Now move on to the next candidate.

At the end of the process we have either found a reduction and the

algorithm stops or we have found a constant C2 D max¹C2;J º so that if

� is a subpath of 
 that crosses at least C2 edges of Hr then � does not lift

into any J . Choose a subpath 
2 of 
 that crosses at least

.CE C 1/C0 C CE .C2 C C0/C 2C0

edges of Hr and let L2 be the number of edges crossed by 
2.

(A4) Repeat (A3) replacing L1 with L2. At the end of the process we have either

found a reduction and the algorithm stops or we have found a constant C3

so that if � is a subpath of 
 that crosses at least C3 edges ofHr then � does

not lift into any J . Choose a subpath 
3 of 
 that crosses at least

.CE C 1/C0 C CE .C3 C C0/C 2C0

edges of Hr and let L3 be the number of edges crossed by 
3.

(A5) Iterate this process up toM times. If afterM iterations the algorithm has not

found a reduction and stopped, then stop and conclude that Fs;ƒ D ¹ŒFn�º.

Step 3: justifying Part 1 of the algorithm. In this step we verify that if Fs;ƒ is

proper then the above algorithm finds a reduction in at most M steps.

SupposeK 2 K satisfies (1)–(3) and letK.L1/ be the subgraph ofK consisting

of natural edges E with jEj � L1. Lift the path 
1 into Kƒ. After removing

initial and terminal subpaths contained in single natural edges of Kƒ, we have a

natural (in K) edge path 
1;K � ƒC
K � Kƒ that projects onto all of 
1 except

perhaps initial and terminal segments that cross at most C0 edges of Hr . Thus


1;K � K.L1/ and

j
1;K jr � .CE C 1/C0 C CE .C1 C C0/

Combining this inequality with (1), we see that 
1;K has a subpath that decomposes

as

˛1ˇ1˛2 : : : ˇCE
˛CE C1

where each ˛i is a single natural edge and eachˇi is a natural subpath whose image

underp crosses at leastC1 edges inHr . Since there are at mostCE oriented natural
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edges in K, it follows that 
1;K contains a natural subpath that begins and ends

with the same oriented natural edge and whose p-image crosses at least C1 D 1

edges in Hr . This proves that that there is a circuit in K.L1/ that is not in K0

and hence that ŒK.L1/� properly contains ŒK0�. By (3), K0 [ Kƒ is proper and

so if K0 [ Kƒ � K.L1/ then K0 [ Kƒ occurs as a J in the first iteration of

the process and Lemma 4.3 finds a reduction in the first iteration of (A3) because

Fs;ƒ @ ŒK0 [Kƒ�.

If no reduction is found in the first iteration then proceed to the second iteration

as described in (A4). By the same reasoning, there is a natural edge path 
2;K �
K.L2/ such that

j
2;K jr � .CE C 1/C0 C CE .C2 C C0/

and there is a subpath of 
1;K that decomposes as

˛1ˇ1˛2 : : : ˇCE
˛CE C1

where each ˛i is a single natural edge and each ˇi is a natural subpath whose

image under p crosses at least C2 edges in Hr . It follows that there is a circuit

in K.L2/ that is not in K.L1/ and hence that ŒK.L2/� properly contains ŒK.L1/�.

If K0 [ Kƒ � K.L2/ then K0 [ Kƒ occurs as a J in the second iteration of the

process and our algorithm finds a reduction.

Continuing on, the iteration either produces a reduction within M steps or

produces a properly nested sequence

ŒK0� @ ŒK.L1/� @ ŒK.L2/� @ � � � @ ŒK.LM /�

of free factors. Since the latter contradicts the definition of M , a reduction must

have been found.

Step 4: Part 2 of the algorithm. In this part of the algorithm we assume that

Fs;ƒ is improper. The filtration element Gu D GN nH
z
N deformation retracts to

Gs , see Remark 4.8. In particular, ŒGu� D ŒGs �.

Given a circuit � � G [resp. a subgroupA] let Fu;� [resp.Fu;A] be the smallest

free factor system that carries Œ�� [resp. every conjugacy class in ŒA�] and every

conjugacy class in ŒGu�. By Lemma 4.2, Fu;� and Fu;A can be algorithmically

determined.

By Lemma 4.5, the set P of indivisible periodic Nielsen paths with height r is

finite, can be determined algorithmically and each element of P has period one.

For notational convenience we assume that P is closed under orientation reversal.

Let † be the set of circuits in G that split into a concatenation of paths in Gu and

elements of P . Lemma 4.7 implies that† is the set of circuits that are not weakly

attracted to ƒC and that the conjugacy classes determined by † are exactly those

carried by the subgroup system A of that lemma.
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We consider several cases, each of which can be checked by inspection of Gu

and the elements of P . If every circuit in† is contained in Gu then A D ŒGu� and

HN is reduced by Lemma 4.7(3).

As a second case, suppose that there is a non-trivial path� � G with endpoints

x; y 2 Gu such that � is homotopic rel endpoints to a concatenation of elements

of P and so is a Nielsen path of height N . Let ŒB� be the conjugacy class of

the subgroup of Fn represented by closed paths based at x that decompose as a

concatenation of subpaths, each of which is either �;��1 or a path in Gu with

endpoints in ¹x; yº. Then ŒB� is �-invariant, has rank � 2, and each conjugacy

class in ŒB� is represented by a circuit � 2 †. By Lemma 4.7(3) there is a proper

free factor system that carries ŒGu� and the conjugacy class of each element of B .

It follows that Fu;B is proper. Since both ŒGu� and ŒB� are �-invariant, Fu;B is

�-invariant by [BFH00, Corollary 2.6.5] and we have found a reduction of HN .

The final case is that there are no paths� � G as in the second case and there is

at least one element � 2 † that is not contained in Gu. Each such � is homotopic

to a concatenation of elements of P . In particular, the conjugacy class determined

by � is �-invariant and so Fu;� is �-invariant. Choose one such � and check if

Fu;� is proper. If it is then we have found a reduction of HN and we are done

so suppose that it is not. Lemma 4.7(3) implies that Œ�� is carried by a rank one

component ŒA� of A and that A D F
0[ ŒA� for some �-invariant free factor system

F
0. If there exists an element � 0 2 † that is not carried by ŒGu� and such that �

and � 0 are not multiples of the same root-free circuit then Œ� 0� is not carried by ŒA�

so Fu;� 0 is a reduction. Otherwise, F0 D ŒGu� and Hr is reduced. This completes

the second step in the algorithm and so also the proof of the proposition. �

4.2. The NEG case. We now consider reducibility for NEG strata, beginning

with a pair of examples.

Example 4.10. Suppose that f WG ! G is a homotopy equivalence with filtration

; D G0 � G1 � � � � � GN D G representing � 2 Out.Fn/ and that

GrC2 D Gr [ ErC1 [ ErC2 where Gr is a connected core subgraph and where

HrC1 D ErC1 and HrC2 D ErC2 are oriented edges with a common initial

vertex not in Gr and a common terminal endpoint in Gr . Suppose also that

f .ErC1/ D ErC1u and f .ErC2/ D ErC2u for some closed non-trivial path

u � Gr and that f
ˇ

ˇ Gr is a CT. Then the (NEG Nielsen paths) property of

f
ˇ

ˇ GrC2 fails. The CT algorithm corrects this (see Section 8.1) by discovering

that ErC2
xErC1 is a Nielsen path and then sliding the terminal endpoint of ErC2

along xErC1. In other words, ErC2 is replaced by a fixed loop E 0
rC2 based at the

initial endpoint of ErC1. Note that while establishing (NEG Nielsen paths) for

f
ˇ

ˇ Gr , we have discovered a reduction of ŒGr � @ ŒGrC2�. Namely, the �-invariant

free factor system ¹ŒGr �; ŒE
0
rC2�º is properly contained between ŒGrC1� D ŒGr � and

ŒGrC2�.
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Example 4.11. Suppose that f WG ! G is a homotopy equivalence with filtration

; D G0 � G1 � � � � � GN D G representing � 2 Out.Fn/, that GrC1 D
Gr [ ErC1 where Gr is a connected core subgraph such that f

ˇ

ˇ Gr is a CT

and where HrC1 D ErC1 is a fixed edge whose initial and terminal endpoints, x

and y, belong to the same Nielsen class of f
ˇ

ˇ Gr . Then f
ˇ

ˇ GrC1 satisfies all the

properties of a CT except that ŒGr � @ ŒGrC1� is not reduced. The CT algorithm

corrects this in stages. First, a Nielsen path � � Gr connecting y to x is found.

Then the terminal end ofErC1 is slid along � so that its new terminal endpoint is x.

ThusErC1 is replaced by a fixed edgeE 0
rC1 with both endpoints at x. Finally, x is

blown up to a fixed edge E 0
rC2 with E 0

rC1 attached at the ‘new’ endpoint of E 0
rC2

and the remaining edges in the link of x still attached at x. Both ŒGr � @ ŒGrC1�

and ŒGrC1� @ ŒGrC2� are reduced.

Lemma 4.12. Suppose that f WG ! G and ; D G0 � G1 � � � � � GN D G are a

relative train track map and filtration satisfying the conclusions of Theorem 2.12

and representing a rotationless � 2 Out.Fn/. Suppose further thatGs is core, that

Hs D ¹Esº is an NEG stratum, thatC is the component ofGs that containsHs and

that f
ˇ

ˇ C satisfies (NEG Nielsen paths). If ŒC n Es � @ ŒC � is reducible then Es

is fixed and its terminal endpoint is connected to its initial endpoint by a Nielsen

path ˇ � C n Es. In particular, Esˇ is a basis element and ¹ŒGs�1�; ŒEsˇ�º is a

�-invariant free factor system that is properly contained between ŒGs�1� and ŒGs�.

Proof. By restricting to C , we may assume that G D C D Gs and hence that

Gs�1 has either a single component of rank n� 1 or two components whose ranks

add to n. If ŒC n Es � @ ŒC � is reducible, there is a marked graph K with distinct

proper core subgraphs K1 � K2 � K such that ŒK1� D ŒGs�1� and such that ŒK2�

is �-invariant. From

��.K1/ � ��.K2/ < ��.K/ D ��.K1/C 1

it follows thatK2 is obtained from K1 by adding a disjoint loop ˛ and thatK nK2

is an edge E. In particular, K1 is connected.

We claim that the circuit � � G representing Œ˛� crossesEs exactly once. The

marked graph K 0 obtained from K by collapsing the components of a maximal

forest is a rose with ˛ as one of its edges. The marked graph G0 obtained from G

by collapsing the components of a maximal forest in Gs�1 is a rose with Es as one

of its edges. Moreover ŒK 0 n ˛� D ŒK1� D ŒGs�1� D ŒG
0 n Es�. Let hWK 0 ! G0 be

a homotopy equivalence that respects markings and that restricts to an immersion

on each edge. Then h.K 0 n ˛/ D G0 nEs and it suffices to show that h.˛/ crosses

Es exactly once. This follows from [BFH00, Corollary 3.2.2].

Having verified the claim, we can now complete the proof of the lemma.

Since ŒK2� is �-invariant and ˛ is a component of K2, ˛ determines a �-invariant

conjugacy class. It follows that � decomposes as a concatenation of indivisible

Nielsen paths and fixed edges. Since � crossesEs exactly once, the (NEG Nielsen

paths) property of f WG ! G implies that Es is a fixed edge. Thus � decomposes

as a circuit into Esˇ where ˇ is a Nielsen path in Gs�1. �
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5. Definition of a CT

The definition of a CT evolved over many years, growing out of improved relative

trains [BFH00] which grew out of relative train tracks [BH92]. In addition to

the nine items that make up the formal definition, there are numerous auxiliary

consequences of these definitions that are used repeatedly. We have included the

complete definition here for the reader’s convenience but recommend consulting

[FH11] (see also [HM, Part I Section 1.5]) for discussion and elaboration.

We have already discussed some of the technical terms in the definition of CT.

� For basics of relative train track theory, including the definitions of relative

train track maps, filtrations, EG and NEG strata, linear edges and Nielsen

paths see Section 2.1.

� For zero strata enveloped by EG strata see Notation 2.11.

� For principal vertices and rotationless f WG ! G see Definition 3.3.

� For the definition of a filtration being reduced see the beginning of Section 4.

There are a few more terms that need defining.

Definition 5.1 (Definition 4.1 in [FH11]). If w is a closed root-free Nielsen path

and Ei ; Ej are linear edges satisfying f .Ei / D Eiw
di and f .Ej / D Eiw

dj for

distinct di ; dj > 0 then a path of the form Eiw
� xEj is called an exceptional path.

Definition 5.2 (Definition 4.3 in [FH11]). If Hr is EG and ˛ � Gr�1 is a non-

trivial path with endpoints in Hr \ Gr�1 then we say that ˛ is a connecting path

for Hr . If E is an edge in an irreducible stratum Hr and k > 0 then a maximal

subpath � of f k
#
.E/ in a zero stratum Hi is said to be r-taken or just taken if r

is irrelevant. A non-trivial path or circuit � is completely split if it has a splitting,

called a complete splitting, into subpaths, each of which is either a single edge

in an irreducible stratum, an indivisible Nielsen path, an exceptional path or a

connecting path in a zero stratum Hi that is both maximal (meaning that it is not

contained in a larger subpath of � in Hi ) and taken. Note that the endpoints, if

any, of a completely split path are at vertices.

Definition 5.3 (Definition 4.4 in [FH11]). A relative train track map is completely

split if

(1) f .E/ is completely split for each edge E in each irreducible stratum;

(2) if � is a taken connecting path in a zero stratum then f#.�/ is completely

split.
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Proper extended folds, which are referred to in the (EG Nielsen paths) property

of a CT are defined in [BFH00, Definition 5.3.2]. We will not review that here, in

part because the actual definition is never used in this paper and in part because

in applications one almost always refers to a consequence of this property (for

example [FH11, Corollary 4.19]) rather than to the property itself.

Definition 5.4. A relative train track map f WG ! G and filtration F given by

; D G0 � G1 � � � � � GN D G is said to be a CT (for completely split improved

relative train track map) if it satisfies the following properties.

1. (Rotationless) f WG ! G is rotationless.(Definition 3.3)

2. (Completely split) f WG ! G is completely split.

3. (Filtration) F is reduced. (Section 4) The core of each filtration element is a

filtration element.

4. (Vertices) The endpoints of all indivisible periodic (necessarily fixed) Nielsen

paths are (necessarily principal) vertices. The terminal endpoint of each non-

fixed NEG edge is principal (and hence fixed).

5. (Periodic edges) Each periodic edge is fixed and each endpoint of a fixed edge

is principal. If the unique edge Er in a fixed stratum Hr is not a loop then

Gr�1 is a core graph and both ends of Er are contained in Gr�1.

6. (Zero strata) If Hi is a zero stratum, then Hi is enveloped by an EG stratum

Hr , each edge in Hi is r-taken and each vertex in Hi is contained in Hr and

has link contained in Hi [Hr .

7. (Linear edges) For each linear Ei there is a closed root-free Nielsen path wi

such that f .Ei / D Eiw
di

i for some di ¤ 0. If Ei and Ej are distinct linear

edges with the same axes then wi D wj and di ¤ dj .

8. NEG (Nielsen paths) If the highest edges in an indivisible Nielsen path �

belong to an NEG stratum then there is a linear edgeEi with wi as in (Linear

edges) and there exists k ¤ 0 such that � D Eiw
k
i
xEi .

9. EG (Nielsen paths) IfHr is EG and � is an indivisible Nielsen path of height r ,

then f jGr D � ı fr�1 ı fr where

(a) fr WGr ! G1 is a composition of proper extended folds defined by

iteratively folding �;

(b) fr�1WG
1 ! G2 is a composition of folds involving edges in Gr�1;

(c) � WG2 ! Gr is a homeomorphism.

We include the following for future reference.

Lemma 5.5. If f WG ! G is a CT then f k WG ! G is a CT for all k � 1.



1192 M. Feighn and M. Handel

Proof. By [FH11, Lemma 4.13], every periodic Nielsen path for f has period

one. With this in hand, the first eight CT properties for f k are easy to check.

The remaining property (EG Nielsen paths) for f k follows from [FH11, Corol-

lary 4.33]. �

The following example shows that the restriction of a CT f to a component of

a core filtration element need not be a CT.

Example 5.6. We refer to Figure 1 for notation. The map f WG ! G given by

e 7! e, b 7! be, c 7! c, and d 7! de2 is a CT with the filtration

; � ¹eº � ¹e; bº � ¹e; b; cº � G

and the restriction of f to each filtration element is a CT. If we however consider

the new filtration

; � ¹eº � ¹e; cº � ¹e; c; dº � G

then f is still a CT with the new filtration but f j¹e; c; dº is not a CT because it

does not satisfy (Vertices).

G

e bd

c

Figure 1. Example 5.6.

6. Sliding NEG edges

The key step for arranging that an NEG edge has good properties under iteration

is to slide the terminal endpoint of the edge into an optimal position in the lower

filtration element that contains it. This is carried out in [BFH00, Proposition

5.4.3]. In this section we make the algorithmic arguments needed to replace the

non-algorithmic parts of the original proof.
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6.1. Completely split rays. Recall from [FH11, Definition 4.4] that a splitting

� D �1 � �2 : : : is a complete splitting if each �i is either a single edge in an

irreducible stratum, an indivisible Nielsen path, an exceptional path or a maximal

subpath in a zero stratum (with some additional features that we will not recall

here.) A finite path or circuit has at most one complete splitting by [FH11,

Lemma 4.11]. The first item of our next lemma states that the same is true for

rays.

Recall from Section 2.1 that a ray � with initial point a vertex is thought of as

an edge path � D E0E1 : : : . The initial and terminal endpoints, wi and wiC1 of

Ei are the vertices of � . We view the set W of vertices of a path as being ordered

by their subscripts. A decomposition of � into subpaths is specified by a subset of

W; if wi and wj are consecutive elements of the subset then Ei : : :Ej �1 is a term

in the decomposition. If the decomposition is a splitting then we refer to these

vertices as splitting vertices. A similar definition holds for circuits.

Lemma 6.1. Suppose that f WG ! G is a CT, that R � G is a completely split

ray and that R0 is a subray of R that has a complete splitting.

(1) The complete splitting of R is unique.

(2) Let v be the first splitting vertex for R that is contained in R0 (when the edge

pathR0 is viewed as a subpath of the edge pathR). Then each splitting vertex

w for R0 that comes after v (in the ordering of splitting vertices of R0) is a

splitting vertex for R.

Proof. The second item implies the first by taking R0 D R so we need only prove

the second. Let �0 be the term in the complete splitting ofR0 whose initial vertex

is w. If �0 is either an indivisible Nielsen path or an exceptional path then the

interior of �0 is an increasing union of pre-trivial paths by [FH11, Remark 4.2 and

Lemma 2.11(2)] and so by [FH11, Lemma 4.11(2)] is contained in a single term� of

the complete splitting of R. Obviously � is not a single edge and is not contained

in a zero stratum so it must be either an indivisible Nielsen path or an exceptional

path. Since v is the initial endpoint of some term in the complete splitting of R

and w comes after v, it follows that v is not contained in the interior of � and so

� � R0. The symmetric argument therefore applies to show that � is contained

in a term of the complete splitting of R0 and hence that � D �0 as desired. If

�0 is either a single edge or is a maximal subpath in a zero stratum and �0 is not

a term in the complete splitting of R then �0 is properly contained in a term �

of R that is an indivisible Nielsen path or an exceptional path. But this violates

the hard splitting property [FH11, Lemma 4.11(2)] for the complete splitting of R0

(applied to its finite completely split subpaths) and the fact that the interior of �

is the increasing union of pre-trivial paths. Thus �0 is a term in the complete

splitting of R and we are done. �
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Definitions 6.2. Suppose that f WG ! G is a CT, that x 2 G, that � � G is a

non-trivial completely split path connecting x to f .x/ and that the turn at f .x/

determined by N� and f#.�/ is legal. The ray R D � � f#.�/ � f
2

#
.�/ � : : : satisfies

f#.R/ � R and the given splitting ofR has a refinement that is a complete splitting

by [FH11, Lemma 4.11]; we say that R is generated by � .

IfE is a non-fixed edge ofG whose initial direction is fixed then f .E/ D E ��
for some � as above. The ray RE D E � � � f#.�/ � f

2
#
.�/ � : : : is the eigenray

determined by E. Note that we are not requiring that the initial vertex of E be

principal (as we did in Section 3.3) or that E is non-linear and NEG so we are

using the term eigenray a little more generally than is sometimes the case. We

will need this inclusiveness in the proof of Lemma 6.4. For the same reason we

assume that each isolated fixed point for f is a vertex.

Lemma 6.3. Suppose that f WG ! G is a CT and that � and � 0 are completely

split non-Nielsen paths generating rays R and R0 respectively. Then there is an

algorithm to decide if the rays R and R0 have a common terminal subray and if

so to find initial subpaths � � R and � 0 � R0 that terminate at splitting vertices

of R and R0 respectively and whose complementary terminal subrays are equal.

Equivalently we find splitting vertices v 2 R and v0 2 R0 such that terminal

subrays of R and R0 initiating at v and v0 are equal (as edge paths).

Proof. Let V D ¹v0; v1; : : :º be the set of splitting vertices for R ordered so

that vi�1 and vi are the endpoints of the i th term in the complete splitting. By

construction, f .V/ � V. For each i � 0, let �i � R be the path connecting vi to

f .vi / and let `i D j�i j be the number of edges in �i ; in particular, � D �0. Note

that �i generates the terminal subray of R that begins with vi . Define V 0; � 0
j and

`0
j similarly using � 0 and R0 in place of � and R. It is obvious that R and R0 have

a common terminal subray if �i D � 0
j for some i and j . (Namely, the subrays of

R and R0 initiating at vi 2 V
0 and v0

j 2 V
0 respectively.) The converse follows

from Lemma 6.1. Our goal then is to either find i and j such that �i D � 0
j or to

conclude that no such i and j exist.

Let r [resp r 0� be the maximal height of a term in the complete splitting of �

[resp. � 0] that is not a Nielsen path. Since f .�/ and � have a common endpoint,

� is not entirely contained in a zero stratum. Thus any term � in the complete

splitting of � that is contained in a zero stratum is adjacent to a term that intersects

the EG stratum that envelops � (Notation 2.11). Since this adjacent edge has at least

one non-fixed endpoint, it is neither an exceptional path nor a Nielsen path so must

be a single edge in that EG stratum. We conclude that Hr is not a zero stratum.

It follows that if � is any height r term in the complete splitting of � and if � is

not a Nielsen path then the length of f i
#
.�/ goes to infinity with i ; we say that �

is growing. Note that r is the maximal height of a growing term in the complete

splitting of any �i and similarly for r 0 and � 0
j . Note also that for any given L > 0

one can find, by inspection, M > 0 such that `i ; `
0
j > L for all i; j �M .
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The first step in the algorithm is to check if r D r 0. If yes, then move on to

step two. If not then there do not exist i and j such that �i D �
0
j so the algorithm

stops and outputs no.

We may now assume that r D r 0. If Hr is NEG define K D 1. Otherwise Hr

is EG and we choose K so that for each edge E of Hr , f K
#
.E/ contains at least

C edges of Hr where C is the constant of Lemma 4.4. Now define I to be the

number of terms in the complete splitting of � �f#.�/ � � � � �f
K

#
.�/ or equivalently

so that i � I if and only if Qvi 2 Q� � Qf#. Q�/ � � � � � Qf
K

#
. Q�/. Define J to be the number

of terms in the complete splitting of � 0 �f#.�
0/ � � � � �f K

#
.� 0/ or equivalently so that

j � J if and only if Qv0
j 2 Q�

0 � Qf#. Q�
0/ � � � � � Qf K

#
. Q� 0/.

Fix j . To check if � 0
j D �i for some i we need only consider i < M where

`i > `0
j for all i � M . The symmetric argument implies that for any fixed i we

can check if �i D �
0
j for some j . The second and final step of the algorithm is to

decide if there exists i � I such that �i D �
0
j for some j or if there exists j � J

such that �i D �
0
j for some i . If not then the algorithm outputs no. If yes then the

algorithm outputs yes and vi ; v
0
j .

It remains to prove that if R and R0 have a common subray then the algorithm

outputs yes in the second step. Suppose that R D �R00 and R0 D �0R00 where

� � R and �0 � R0 are finite and R00 is a maximal common subray. Lift

R D �R00 � G to zR D Q� zR00 � zG and the initial segment � � R to an initial

segment Q� � zR. Let Qf W zG ! zG be the lift of f that takes the initial endpoint of Q�

to the terminal endpoint of Q� and note that zR D Q� � Qf#. Q�/� Qf
2

#
. Q�/� � � � . Since � is not

a Nielsen path, jf k
#
.�/j ! 1. It follows that the terminal endpoint P 2 @Fn of zR

is an attractor for the action of @ Qf and so is not fixed by any covering translation

[GJLL98, Proposition I.1]. In particular, Qf is the only lift of f that fixes P . Lift

R0 D �0R00 to zR0 D Q�0 zR00 and � 0 to an initial segment Q� 0 of zR0. The uniqueness

of Qf implies that zR0 D Q� 0 � Qf#. Q�
0/ � Qf 2

#
. Q� 0/ � � � � . Let zE 00 be the first height r edge

crossed by zR00. There exist unique k; k0 � 0 such that zE 00 is crossed by Qf k
#
. Q�/ and

by Qf k0

#
. Q� 0/. We may assume without loss that k0 � k. By Lemma 6.1, it suffices

to show that k � K or equivalently that � � Q� � Qf#. Q�/ � � � � � Qf
K. Q�/.

If Hr is NEG then by the basic splitting property of NEG edges [BFH00,

Lemma 4.1.4] there is a unique height r edge whose image under Qf k crosses zE 00.

Since both Q� and Qf k0�k
#

. Q� 0/ cross such an edge, their intersection is non-empty.

It follows that Q� � Q�1 so we are done.

If Hr is EG then there exist Qx 2 Q� and Qx0 2 Qf k0�k
#

. Q� 0/ such that Qf k. Qx/ D
Qf k. Qx0/. The path Q� from Qx to Qx0 decomposes as a concatenation of subpaths Q̨ Q̌�1

where Q̨ � Q� and Q̌ � Q�0. By construction Qf k
#
. Q�/ is trivial so in particular � is

not weakly attracted to ƒC. Lemma 4.4 implies that Q̨ does not cross C edges

that project to Hr and so does not contain Qf K
#
. zE/ for any edge zE that projects

to Hr . Since Q� crosses such an zE it follows that Q̨ and hence Q� is contained in

Q� � Qf#. Q�/ � � � � � Qf
K. Q�/ as desired. �
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6.2. Finding a Fixed Point. The proof of Theorem 1.1 begins with an arbitrary

relative train track map f WG ! G and filtration and modifies f WG ! G and

the filtration so that it satisfies more and more of the CT properties. Certain steps

in this process are inductive and involve consideration of a, not necessarily core,

component of a filtration element. Lemma 6.4 below is applied in that context.

The reader will note that essentially all of the arguments take place in a core

filtration element.

We state our next result in terms of a lift Qf W zG ! zG of f WG ! G and fixed

points for Qf . We could just as easily have stated it in terms of finite paths � � G
as described in Section 3.1 but it seems more natural to work with lifts.

Following Definition 6.2 we say that a completely split path Q� � zG generates

a completely split ray zR if zR D Q� � Qf#. Q�/ � Qf
2

#
. Q�/ � � � � . As we have seen, Qf#. zR/ � zR

and Qf maps the set of splitting vertices for zR into itself.

Lemma 6.4. Suppose that f WG ! G is a homotopy equivalence of a connected

finite graph, that ; D G0 � G1 � � � � � GK D G is an f -invariant filtration

and that there is a connected core filtration element Gr such that f
ˇ

ˇ Gr is a CT

and such that for each r < s � K, Hs is a single non-fixed edge Es satisfying the

following properties.

(1) The terminal endpoint of Es is contained in Gr and the initial vertex of Es

has valence one in G.

(2) f .Es/ D Es � us where us is a completely split closed path whose endpoint

is principal for f
ˇ

ˇ Gr .

(3) f WG ! G satisfies (Linear edges) and (NEG Nielsen paths).

Then there is an algorithm that takes a lift Qf W zG ! zG of f WG ! G as input

and determines if Fix. Qf / is non-empty. If it is non-empty then the output of the

algorithm is an element of Fix. Qf /. If it is empty then the output of the algorithm

is a completely split path Q� � zGr that generates a completely split ray zR � zGr .

Moreover, if Fix. Qf / D ; and if the projection � � Gr of Q� is not a Nielsen path

then FixN .@ Qf / D FixN .@. Qf
ˇ

ˇ zGr // D ¹P º where P is the endpoint of zR and P

is not the endpoint of an axis of a covering translation.

Proof. We dispense with the moreover statement first. Suppose that Fix. Qf / D ;
and that � is not a Nielsen path. Then jf k

#
.�/j ! 1 and [GJLL98, Proposition I.1]

implies that the terminal endpoint of zR D Q� � Qf#. Q�/ � Qf
2

#
. Q�/ � � � � , which is evidently

fixed by @ Qf , is an attractor for the action of @ Qf , is contained in FixN .@ Qf / and is

not the endpoint of an axis of a covering translation. Since Fix. Qf / D ;, [FH11,

Corollary 3.16] implies that P is the only attractor in FixN .@ Qf /. If there were

another point in FixN .@ Qf / then it would be the endpoint of the axis of a covering

translation that commuted with Qf and the translates of P would be additional

attractors in FixN .@ Qf /. Thus FixN .@ Qf / D ¹P º.
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We now turn to the algorithm. Following the proof of [BFH00, Proposi-

tion 5.4.3], we say that for each non-fixed vertex Qv 2 zGr , the initial edge of the path

from Qv to Qf . Qv/ is preferred by Qv. If both zE and zE�1 are preferred by their initial

vertices then some sub-interval of zE is mapped over itself by Qf and so contains a

fixed point.

Consider the following (possibly infinite) method for finding either a fixed

point in zG or a ray whose terminal endpoint is an element of FixN .@ Qf /. Choose

any vertex Qv0 2 zGr . If Qv0 is not fixed, let zE0 be the edge preferred by Qv. If zE�1
0 is

preferred by the terminal vertex of zE0 then zE0 contains a fixed point that we can

find by inspection (Section 3.4). Otherwise, let zE1 be the edge preferred by the

terminal vertex of zE0. Repeat this to either find a fixed point in zE1 or define zE2

and so on. If this process does not terminate by finding a fixed point then the ray
zRQv0
D zE1

zE2 : : : that it produces converges to a point in @ zFn that is evidently fixed

and not repelling so is contained in FixN .@ Qf /. For eachm � 0, let Q�m be the path

connecting the initial endpoint of zEm to its Qf -image.

Step 1 of the algorithm. Modify the above process by stopping not only if zEm

contains a fixed point but also if Q�m is completely split and the turn between Q�m

and Qf#. Q�m/ is legal.

To see that this modified process stops in finite time, it suffices to show that if

the original process produces a ray zRQv0
then at least one of the Q�m’s has the desired

properties. We verify this by following (and tweaking) the proof of [BFH00,

Proposition 5.4.3].

Consider the subsequence ¹ Qviº of the set of vertices of zRQv0
starting with Qv0

and inductively defined by letting p � i be the largest integer such that the closest

point to Qf . Qvi / in zE0
zE1 : : : zEp is the terminal endpoint of zEp and then taking QviC1

to be the terminal endpoint of zEp . Equivalently, QviC1 is the nearest point in QRQv0

to Qf . Qvi/.

Letting Œ Qvi ; QviC1� be the path connecting Qvi to QviC1, the key property of the Qvi ’s

is
Qf#.Œ Qvi ; QviC1�/ � Œ QviC1; QviC2�:

For m � 1, define

zYm D ¹ Qy 2 Œ Qv0; Qv1�W Qf
i . Qy/ 2 Œ Qvi ; QviC1� for all 1 � i � mº:

The obvious induction argument shows that Qf . zYm/ D Œ Qvm; QvmC1� and in particular

that zYm is non-empty. The Ym’s are a nested sequence of closed non-empty subsets

of Œ Qv0; Qv1� and so their intersection
T1

mD0
zYm is non-empty. Each element of

T1
mD0
zYm is contained in

zX D ¹ QxW ¹ Qx; Qf . Qx/; Qf 2. Qx/; : : :º is an ordered sequence of zRQv0
º:
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In the first two paragraphs on p. 68 of [BFH00] it is shown that zX � zRQv0

contains a vertex Qv that is the initial vertex of an irreducible edge. For sufficiently

large k, the paths Q� WD Œ Qf k. Qv/; Qf kC1. Qv/� and Q� WD Œ Qf kC1. Qv/; Qf kC2. Qv/� are

completely split by [FH11, Lemma 4.25]. It follows, after increasing k if necessary,

that the initial directions of ��1 and � are periodic by Df . Since Qv 2 zX , these

directions are distinct and so the turn they define is legal. Letting Em be the

edge in zRQv0
that begins with Qf k. Qv/, we have found the desired Q�m. (The proof of

[BFH00, Proposition 5.4.3] allows the possibility of subdividing at an endpoint

of a periodic Nielsen path; in our context, these points are already fixed vertices

so no subdivision is required.) This completes the proof that the first part of our

algorithm stops in finite time.

If the first step of the algorithm produces a fixed point we are done and the

algorithm stops. Suppose then that the first step produces a path Q� D Q�m as

above. Let P 2 FixN .@ Qf / be the terminal endpoint of the ray zR D Q� � Qf#. Q�/ � � � �
generated by Q� . The hard splitting property [FH11, Lemma 4.11(2)] implies that
zR is fixed point free. If Fix. Qf / ¤ ; then there exists a ray zR0 with initial

endpoint Qz 2 Fix. Qf /, terminal endpoint P and with interior disjoint from Fix. Qf /.

The initial edge zE of zR0 determines a fixed direction; this follows from [FH11,

Lemma 3.16] if E � Gr and by hypothesis if E � G nGr . LetRE be the eigenray

determined by E (Definition 6.2), let zR zE be the lift of RE with initial edge zE

and let P 0 2 FixN .@ Qf / be the terminal endpoint of zR zE . If P ¤ P 0 then the

line connecting P to P 0 would be a fixed point free line in zGr with endpoints in

FixN . Qf / in contradiction to [FH11, Lemma 3.16]. Thus P 0 D P and the rays zR
and zR zE D

zR0 have a common terminal subray.

If � is a Nielsen path then E is a linear edge, f .E/ D Ewd for some root-

free Nielsen path w that forms a circuit, RE D Ew1 and zR is a ray in a line zL
that projects to w. It follows that that the terminal endpoint of zE is contained in
zL. The root-free covering translation that preserves L commutes with Qf . After

translating by some iterate of this covering translation we may assume that the

terminal endpoint of zE is contained in any chosen lift Qw of w in zR. This analysis

justifies the next two steps of the algorithm.

Step 2 of the algorithm. Check if � is a Nielsen path. If it is not, go to Step 3.

If it is, then the algorithm ends as follows. Consider the finite set of points that

are the initial vertex of a linear edge zE with terminal endpoint in Q� . If an element

of this set is contained in Fix. Qf / then that point is the output of the algorithm.

Otherwise conclude that Fix. Qf / D ;.

We may now assume that � is not a Nielsen path and hence that P is not fixed

by any covering translation. It follows that Qf is the only lift of f that fixes P and

hence that Qf fixes the initial endpoint of any eigenray that converges to P .
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Step 3 of the algorithm. Apply Lemma 6.3 to the set of eigenrays (Defini-

tion 6.2) for f , one by one, to decide if there is an eigenray RE that shares a

terminal end with R. If there is no such eigenray, then Fix. Qf / D ;. Otherwise,

we have an edgeE, its eigenrayRE and decompositionsR D �R00 andRE D �
0R00

for some ray R00. Let � be the lift of � that begins with Q� and let Q� 0 be the lift of � 0

that shares a terminal endpoint with Q� . Equivalently, zR D Q� zR00 and zR zE D Q�
0 zR00.

Then the initial endpoint of Q� 0 is fixed by Qf . �

7. Upward induction and extension

The original construction of relative train track maps is by downward induction

through the strata, making it difficult to prove extension statements. In this paper,

we construct CTs using upward induction.

Notation 7.1. Let F D ¹ŒF i �º be a free factor system in Fn. A core graph

K D
F

i Ki is F-marked if each Ki is marked by F i , i.e. there is a rose R.F i /

whose fundamental group is identified with F i and a homotopy equivalence

R.F i /! Ki .

Suppose � 2 Out.Fn/, K is F-marked, F is �-invariant and hWK ! K is a

homotopy equivalence that preserves components. We say that h is a topological

representative of �jF if each induced map h
ˇ

ˇ Ki WKi ! Ki is a topological

representative of �
ˇ

ˇ F i . If each h
ˇ

ˇ Ki is a CT [and satisfying (Inheritance)] then

we say that hWK ! K is a CT representing �
ˇ

ˇ F [and satisfying (Inheritance)].

See Section 1 for the definition of (Inheritance).

A topological representative f WG ! G of � is an extension of hWK ! K

if there is an embedding K ! G respecting markings such that the following

diagram commutes.
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In this situation we also say that f extends h and that h extends to Fn.

Interpreted in this language, the proof of Lemma 2.6.7 of [BFH00] shows that

every restriction extends.

Lemma 7.2. Every topological representative for �
ˇ

ˇ F extends to Fn.

Remark 7.3. The proof of Lemma 2.6.7 assumes the property that each h
ˇ

ˇ Ki

fixes a point. This assumption is not necessary. However, we will only use

Lemma 7.2 when hjK is a CT and so this property holds.



1200 M. Feighn and M. Handel

As mentioned, we want a construction of CTs that proceeds by upward induc-

tion. Our main tool will be a relative version of Theorem 1.1.

Theorem 7.4 ( Extension). Suppose that � 2 Out.Fn/ is rotationless, that C is a

nested sequence .F D F0/ @ F1 @ F2 @ � � � @ .Fm D ¹ŒFn�º/ of �-invariant free

factor systems and that hWK ! K is a CT representing �
ˇ

ˇ F. Then there is an

algorithm that produces a CT f WG ! G and filtration that represents �, extends

hWK ! K and such that each element of C is realized by a core filtration element;

if hWK ! K satisfies (Inheritance) then f WG ! G satisfies (Inheritance).

Theorem 1.1 is the special case of Theorem 7.4 in which F D ;.

The filtration we start with might not be reduced so our algorithm will have to

discover reductions, if they exist, as it proceeds.

Theorem 7.5 (extend or reduce). Suppose that � 2 Out.Fn/ is rotationless, that F

is a �-invariant free factor system and that hWK ! K is a CT that represents �
ˇ

ˇ F

[and satisfies (Inheritance)]. Then there is an algorithm that either produces a

CT f WG ! G that represents � [satisfies (Inheritance)] and extends hWK ! K

or finds a �-invariant proper free factor system F
0 that properly contains F.

Proof of Theorem 7.4 given Theorem 7.5. The proper length of C is the number

of inclusions that are proper. If C0 is a sequence of inclusions of �-invariant

free factor systems and if each element of C is an element of C
0 then we say

that C0 is an extension of C. Define L.C/ � 0 to be the maximal proper length

of some C
0 extending C. The proof is an induction on L.C/. If L.C/ D 0 then

F D ¹ŒFn�º and the statement is vacuous. If L.C/ D 1 the statement follows from

Theorem 7.5. Assume then that L.C/ � 2. We may assume that the inclusions

F @ Fm�1 @ ¹ŒFn�º are proper.

Step 1. Extend h to Fm�1. Each component ŒF � of Fm�1 induces the �
ˇ

ˇ F -

invariant nested sequence CjF of free factor systems in F given by

.FjF D F0jF / @ F1jF @ F2jF @ � � � @ .Fm�1jF D ¹ŒF �º/

where Fi jF is the union of the components of Fi that conjugate into F . Clearly

L.CjF / < L.C/. Let K.F / be the union of the components C of K such that ŒC �

is conjugate into F and so ŒK.F /� D FjF . By induction we can algorithmically

produce a CT and filtration that represents �
ˇ

ˇ F , extends the restriction of h to

K.F / and such that each element of CjF is realized by a core filtration element; if

hWK ! K satisfies (Inheritance) then so does this CT. The disjoint union of these

CTs is a CT [satisfying (Inheritance) if h does] representing �
ˇ

ˇ Fm�1 such that

each element of F @ F1 @ � � � @ Fm�1 is represented by a core filtration element.
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Step 2. Further extend to Fn. The sequence Fm�1 @ ¹ŒFn�º also has proper

length less than L.C/. Hence by induction we can algorithmically produce a CT

that represents � and extends the restriction of � to Fm�1 found in Step 1; if

hWK ! K satisfies (Inheritance) then so does this CT. �

To prove Theorem 1.1, it remains to prove Theorem 7.5. The proof of Theo-

rem 7.5 is given in Section 8.

8. Proof of Theorem 7.5

The proof of Theorem 7.5 is carried out in Sections 8.1 and 8.2. In both cases, �;F

and hWK ! K are as in the statement of the theorem.

8.1. The one-edge extension case. In this section we assume that F @ ¹ŒFn�º is

a one-edge extension, meaning that either F D ¹ŒF1�º where F1 has rank n � 1
or F D ¹ŒF1�; ŒF2�º where the ranks of F1 and F2 add to n. In this case, there

is a marked graph G obtained from K by adding a single topological edge E

and there is a topological representative gWG ! G of � that agrees with h on

K and satisfies g.E/ D NuEv or g.E/ D Nu xEv for some possibly trivial paths

u; v � K by [BFH00, Corollary 3.2.2]. We first complete the proof assuming that

g.E/ D NuEv and then apply CT theory to show that the g.E/ D Nu xEv case does

not happen.

If u and v are both trivial then g.E/ D E and g satisfies all the properties of a

CT except thatK � G might not be reduced. Check (using Lemma 4.5 and (NEG

Nielsen paths)) if there is a Nielsen path ˇ � K connecting the terminal endpoint

of E to the initial endpoint of E. If not, then K � G is reduced by Lemma 4.12

and g is a CT. If yes, then Eˇ is a closed Nielsen path and the free factor system

¹ŒK�; ŒEˇ�º is properly contained between ŒK� and ŒG�.

Suppose next one of u and v is trivial and that the other is not. The cases

are symmetric so we assume that u is trivial and v is non-trivial. Let C be the

component of K that contains v. If C has rank one then C has a single fixed

edge e and single vertex w and g.E/ D Eed for some d ¤ 0. There are two

subcases. If w is also the initial vertex of E then n D 2 and G has only two

edges, E and e. (NEG Nielsen paths) follows from the basic splitting property

for NEG edges [BFH00, Lemma 4.1.4]. Lemma 4.12 implies that ŒK� @ Fn is

reduced and so (Filtration) is satisfied. The remaining CT properties are clear so

g is a CT. If w is not the initial vertex of e then g is not a CT because w is not

principal. In this case we redefine g so that it fixes E and is unchanged on K.

The resulting homotopy equivalence f WG ! G is homotopic to g and so is still

a topological representative of �. We are now back in the case that u and v are

trivial. Lemma 4.12 implies that K � G is reduced so f WG ! G is a CT.
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We assume now that C has rank at least two and we apply [FH11, Step 5,

pp. 91–93]. Choose a lift zE of E, let QgW zG ! zG be the lift of g that fixes the

initial endpoint of zE, let � � zG be the component of the full pre-image of C

that contains the terminal endpoint of zE and let Qh D Qg
ˇ

ˇ �W� ! �. To make

this step algorithmic, we apply Lemma 6.4 to either find a fixed point for Qh or to

conclude that Qh is fixed point free and find a completely split path Q� that generates

a completely split ray zR. No algorithm for this was given in the original proof.

The remainder of [FH11, Step 5, pp. 91–93] can be applied as written in [FH11].

This is a sliding operation that changes the way that E is attached to C . It may

be that E becomes a fixed edge for the new modified gWG ! G. In this case,

we go back to the fixed edge case described above and proceed from there. If E

is not fixed after the sliding operation then all of the CT properties are satisfied

except that K � G might not be reduced. The proof now concludes by applying

Lemma 4.12 and [FH11, Step 5, p. 91] to conclude that K � G is reduced.

The final case is that both u and v are non-trivial. SubdivideE D xE1E2 where

g.E1/ D E1u and g.E2/ D E2v. Let Ci be the component of K that contains the

terminal endpoint of Ei . If C1 D C2 has rank one, then C1 D C2 has a single

fixed edge e and single vertex w and g.Ei / D Eie
di for some d1; d2 ¤ 0. Define

f by f .e/ D e and f .E/ D Eed2�d1 and note that f is homotopic to g and so is

still a topological representative of �. If d1 ¤ d2 then f is a CT. If d1 D d2 then

¹Œe�; ŒE�º is a �-invariant free factor system that is properly contained between ŒK�

and ŒFn D F2�.

If C1 ¤ C2 both have rank one then the identity map of G is homotopic to g

and is a CT. We may now assume, after interchangingE1 andE2 if necessary that

C2 has rank at least two. If C1 has rank one then g is homotopic to g0 that agrees

with h on K and that satisfies g0.E/ D Ev so we are reduced to a previous case.

The remaining case is that bothC1 andC2 have rank at least two. The edgesE1

and E2 are modified in the same way that E was modified in the case that C had

rank at least two. Namely, follow [FH11, Step 5, pp. 91–93] and apply Lemma 6.4

to make the construction algorithmic. The edgesE1 and E2 are considered one at

a time so whenE2 is considered the subgraph it is being attached to isK[E1 and

not K (This accounts for the hypotheses of Lemma 6.4 being what they are.) It

may be that after sliding E2, both of its endpoints are attached to the initial vertex

of E1; see Example 4.10.

This completes the proof in the case that g.E/ D NuEv. Suppose now that

g.E/ D Nu xEv. Applying the previous case to h D g2 representing � D �2, we

see that there is a CT representing � and extending h2WK ! K. As shown in

the first two paragraphs of [FH11, Section 5.1], there is a line 
 � G whose edge

path contains one copy of E and zero copies of xE and such that some (and hence

every) lift Q
 has endpoints in FixN .‚/ for some‚ 2 P.�/. Since � is rotationless,

there existsˆ 2 P.�/ such that FixN .ˆ/ D FixN .‚/. Thus 
 is �-invariant which

contradicts the fact that the edge path for h.
/ crosses xE once and E zero times.
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We conclude that this case does not happen.

8.2. The multi-edge extension case. We assume in this section that F @ ¹Fnº
is not a one-edge extension. If f WG ! G represents � and extends hWK ! K

then the core filtration element that is identified with K will be denoted Gr . In

particular, ŒGr � D F.

Step 1. There is an algorithm that either produces a relative train track map

extending hWK ! K or finds a proper �-invariant free factor system F
0 that

properly contains F. Moreover, in the former case, either there are no EG strata

above the core filtration element Gr that is identified with K or the top stratum

HN of G is the only EG stratum above Gr .

We can not simply apply the relative train track map algorithm of Theorem 2.2.

That algorithm was by downward induction through the filtration and so made no

effort to leave lower filtration elements untouched. We say that an algorithm is

K-safe if it preserves the property of extending hWK ! K.

Lemma 8.1. The algorithms of Lemma 2.6 and Lemma 2.8 are K-safe.

Proof. The algorithms use only subdivision, folding, valence one homotopies and

valence two homotopies applied to edges above K and so are K-safe. �

The algorithm of Lemma 2.9 (which is really [BH92, Lemma 5.14]) is not

entirely K-safe. In order to isolate the part that is K-safe we introduce some

notation and recall the steps in the algorithm.

If Hs is an EG stratum of a topological representative then a non-trivial path

� � Gs�1 with endpoints in Hs \ Gs�1 is called an inessential connecting path

for Hs if f#.�/ is trivial. If the EG stratum Hs satisfies (RTT-i) then it satisfies

(RTT-ii) if and only if there are no inessential connecting paths for Hs.

An inessential connecting path � for Hs is ‘collapsed’ as follows. Choose a

turn in � whose two directions have the same image underDf . This exists because

f#.�/ is trivial. Then fold initial segments of these edges and tighten the new map

if necessary to ‘shorten’ � . After finitely many such moves � is completely folded

away and the endpoints of � are identified to a single vertex thereby reducing the

cardinality of Hs \ Gs�1.

If � � Gs�1 is disjoint from Gr , for example if � is contained in a contractible

component of Gs�1, then collapsing � is K-safe. We record this fragment of

Lemma 2.9 as Lemma 8.3 after adding one more piece of notation.

Notation 8.2. An EG stratum Hs satisfies “(partial RTT-ii)” if the contractible

components of Gs�1 do not contain any inessential connecting paths.
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Lemma 8.3. Suppose that f WG ! G is a bounded topological representative of�

that extends hWK ! K and thatHs is an EG stratum that does not satisfy (partial

RTT-ii). Then there is a K-safe algorithm to construct a bounded topological

representative f 0WG0 ! G0 of � such that

(1) ƒ.f / D ƒ.f 0/ and

(2) there is a bijection Hj $ H 0
j 0 between the EG strata of f and the EG strata

of f 0 such that

(a) relative height is preserved; i.e. j < k if and only if j 0 < k0;

(b) jH 0
s0 \G

0
s0�1j < jHs \Gs�1j;

(c) if Hs satisfies (RTT-i) then H 0
s0 satisfies (RTT-i).

Remark 8.4. Note that Lemma 8.3 is not exactly parallel to Lemma 2.9. We will

only apply Lemma 8.3 with Hs being the first EG stratum above K and we will

not be concerned with preserving properties of higher EG strata.

The following corollary takes us as far as we can go using just the techniques

of Theorem 2.2.

Corollary 8.5. Given a bounded topological representative f WG ! G of � that

extends hWK ! K, there is an algorithm that constructs a bounded topological

representative f 0WG0 ! G0 of � that extends hWK ! K such that ƒ.f 0/ � ƒ.f /
and such that either there are no EG strata aboveK or the first EG stratum above

K satisfies (RTT-i), (RTT-iii), and (partial RTT-ii).

Proof. If there are no EG strata above K then we are done. Otherwise, apply

Lemma 2.6 and Lemma 8.1 to produce a bounded topological representative (still

called f WG ! G) of � that extends hWK ! K whose first EG stratum above

K satisfies (RTT-i). If that stratum does not also satisfy (partial RTT-ii), apply

Lemma 8.3 to produce a new bounded topological representative (still called

f WG ! G) of � whose first EG stratum above K still satisfies (RTT-i). Item (b)

of Lemma 8.3 guarantees that after finitely many applications of Lemma 8.3, we

arrive at f WG ! G whose first EG stratum aboveK satisfies (RTT-i) and (partial

RTT-ii). Apply Lemma 2.4 to check if the first EG stratum above K satisfies

(RTT-iii). If yes, we are done. Otherwise apply Lemma 2.8 and Lemma 8.1 to

produce a bounded topological representative f 0WG0 ! G0 of � that extends

hWK ! K withƒ.f 0/ < ƒ.f /. Then start over again with f 0WG0 ! G0 replacing

the original f WG ! G. Since every decreasing sequence ƒ.f / > ƒ.f 0/ > � � �
is finite (Definition 2.3), this process produces the desired f WG ! G in finite

time. �

Before introducing the new move necessary to achieve (RTT-ii) in a K-safe

manner, we prove a lemma that will simplify the situation in which the new move

is needed.
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Lemma 8.6. Suppose that f WG ! G is a bounded topological representative

of � that extends K and that Hs, s > r , is an EG stratum that satisfies (RTT-i),

(RTT-iii), and (partial RTT-ii). Then ŒGr � D F is properly contained in ŒGs�. In

particular, if Gs ¤ G then ŒGs� is a proper �-invariant free factor system that

properly contains F.

Proof. It suffices to show that there is a line in Gs that crosses an edge in Hs

and for this it suffices to show that if a vertex v 2 Hs is either disjoint from

Gs�1 or is contained in a contractible component of Gs�1 then there is path

� D xE1�E2 � Gs where E1; E2 are edges in Hs and � is a possibly trivial

path that contains v and does not contain an edge in Hs. Since Hs is an EG

stratum, the cardinality of f �p.v/ \ Hs goes to infinity with p. Choose p � 1
and a point x in the interior of an edge E � Hs such that f p.x/ D v. We

may assume without loss that either f .x/ 2 Gs�1 or that f .x/ is a vertex in Hs.

Subdivide E into ‘edgelets’ that are mapped by f to single edges in G. There

is an edgelet subpath e1 : : : et such that f .ej / is an edge in Hs if and only if

j D 1 or j D t and such that either t > 2 and x 2 e2 : : : et�1 or t D 2 and

x is the common endpoint of e1 and e2. If t D 2 then .f . Ne1/; f .e2// is a legal

turn in Hs by (RTT-iii) and so Df p�1.f . Ne1// and Df p�1.f .e2// are distinct

edges in Hs based at v and we are done (with � being trivial). If t > 2 then

� 0 D f .e2/ : : : f .et�1/ is a non-trivial path in Gs�1 with endpoints in Hs \Gs�1.

In particular, f .x/ 2 Gs�1. It follows that v D f p.x/ 2 Gs�1 and hence

(by hypothesis) v is contained in a contractible component of Gs�1. This in

turn implies that each of � 0; f#.�
0/; : : : ; f

p�1
#

.� 0/ is contained in a contractible

component of Gs�1. Since � 0 is a non-trivial path in Gs�1 with endpoints in

Hs \ Gs�1, the same is true for f#.�
0/; : : : ; f

p�1

#
.� 0/ by (RTT-i) and the (partial

RTT-ii) property. Property (RTT-i) implies thatDf p�1.f . Ne1// andDf p�1.f .et //

are directions in Hs and again we are done. This completes the proof of the

lemma. �

Notation 8.7. Let R be the set of bounded topological representatives f WG ! G

of � that extend hWK ! K and such that the top stratum HN

� is the only EG stratum above K;

� satisfies (RTT-i), (RTT-iii) and (partial RTT-ii).

The failure of f WG ! G in R to be a relative train track map is measured by

the number ı.f / of directions in HN that are based at non-periodic vertices in

non-contractible components of GN �1.

We will only define the new move in this context.
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Lemma 8.8. Suppose that f WG ! G is an element of R and that ı.f / > 0. Then

there is an algorithm to construct an element Of W yG ! yG of R such that either

(1) ƒ. Of / < ƒ.f / or

(2) ƒ. Of / D ƒ.f / and ı. Of / < ı.f /

Proof. Let Ap [resp. Anp] be the set of periodic [resp. non-periodic] vertices

of HN that are contained in non-contractible components of GN �1. Thus f

permutes the elements of Ap and each element of Anp is mapped by an iterate

of f into Ap. By hypothesis, Anp ¤ ;. Choose an element x 2 Anp such that

f .x/ 2 Ap. There is a unique y 2 Ap such that f .x/ D f .y/ and there is a

unique inessential connecting path � connecting x to y. Choose an edgeE � HN

with initial endpoint x and slide its initial endpoint along � to y to produce a

new topological representative f 0WG0 ! G0. The marked graph G0 is obtained

from G by replacing E with an edge E 0 with terminal endpoint equal to that

of E and with initial endpoint y. Thus G n E can be viewed as a subgraph of

both G and G0. For each edge e � G n E, the edge path f 0.e/ is obtained from

the edge path f .e/ by replacing each copy of E with �E 0 and each copy of xE

with xE 0 N� and then tightening. The edge path f 0.E 0/ is obtained from the edge

path f#. N�E/ D f#. N�/f .E/ D f .E/ by making the same replacements as in the

previous case and then tightening. It is clear that f
ˇ

ˇ GN �1 D f
0
ˇ

ˇ GN �1 and that

no edges in HN are cancelled during the tightening operation. It follows that f 0

extends hWK ! K, that the top stratum H 0
N of G0 is the only EG stratum above

K, that ƒ.f / D ƒ.f 0/ and that f 0 satisfies (partial RTT-ii). By construction,

ı.f 0/ D ı.f /�1. If the initial direction determined byE is not in the image ofDf

thenH 0
N satisfies (RTT-i). IfH 0

N also satisfies (RTT-iii) then Of D f 0 satisfies (2).

Otherwise, we apply Lemma 2.8 and Lemma 8.1 to produce Of satisfying (1).

If the initial direction determined by E is in the image of Df then H 0
N does

not satisfy (RTT-i). (For example, if Df.e/ D E then f 0.e/ begins with �E 0.)

In this case, we perform a core subdivision producing a new map f 00WG00 ! G00.

(Continuing with the example, e D e1e2 where f 00.e1/ D � and f 00.e2/ begins

with E 0.) There is one subdivision point for each direction in HN that is mapped

by some iterate of Df to E. If an edge e is subdivided into e1e2 then e1 is a

zero stratum for f 00 and e2 replaces e as an edge in the top EG stratum. (It may

be that the initial and terminal directions of e are both eventually mapped to E

and so e is ultimately subdivided into two zero strata and one edge in the top EG

stratum.) The contribution of e2 to ı.f 00/ balances the contribution of e to ı.f 0/

so ı.f 00/ D ı.f 0/ < ı.f /. If (RTT-iii) is satisfied then Of D f 00 satisfies (2).

Otherwise, we apply Lemma 2.8 and Lemma 8.1 to produce Of satisfying (1). �

Step 1 can now be completed as follows. Start with any bounded topological

representation of � that extends hWK ! K (Lemma 7.2). Apply Corollary 8.5

to produce a bounded topological representative f 0WG0 ! G0 of � that extends
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hWK ! K such that ƒ.f 0/ � ƒ.f / and such that either there are no EG strata

above K or the first EG stratum H 0
s0 above K satisfies (RTT-i), (RTT-iii) and

(partial RTT-ii). In the former case, f 0 is a relative train track map and we are done

so assume the latter holds. IfH 0
s0 is not the top stratum then (Lemma 8.6) we have

found a proper �-invariant free factor system that properly contains F and we are

done. We may therefore assume that f 0WG0 ! G0 is an element of R. If ı.f 0/ D 0
then f 0WG0 ! G0 is a relative train track map and we are done. Otherwise, apply

Lemma 8.8 to produce f 00WG00 ! G0 with either ƒ.f 00/ < ƒ.f 0/ � ƒ.f / or

ı.f 00/ < ı.f 0/. In the former case, we start all over. This can only happen a finite

number of times so we may assume that we are in the case that ı.f 00/ < ı.f 0/.

After applying Lemma 8.8 finitely many times, we arrive a relative train track map

and are done.

Step 2. Modify f WG ! G from Step 1 so that the conclusions of Theorem 2.12

are satisfied.

The algorithm for Step 2 is explicitly described in Subsection 3.4 and in [FH11,

pp. 18–23]. Each move effects only strata above Gr and so is K-safe. For future

reference we note that the number of edges in each EG stratum and the number

of indivisible Nielsen paths of EG height are not increased in Step 2. This ends

Step 2.

Going forward, we may now also assume (with justification below) that

(i) f WG ! G is rotationless;

(ii) F � ¹ŒFn�º is irreducible;

(iii) there are no periodic strata above Gr ;

(iv) every indivisible periodic Nielsen path � of EG height has period one;

(v) HN is EG and aperiodic, meaning that some iterate of its transition matrix is

positive.

Let f WG ! G be as in Step 2. Item (i) follows from [FH11, Proposition 3.29].

Applying the algorithm of Proposition 4.9, we can either find a reduction of

F � ¹ŒFn�º, in which case we are done, or conclude that F � ¹ŒFn�º is irreducible.

We may therefore assume that (ii) is satisfied. Item (iii) follows from (ii) and

property (P) of Theorem 2.12.

If there are no EG strata above Gr then each stratum Hj above Gr is non-

periodic NEG by (iii) and property (Z) of Theorem 2.12. Item (i) and property

(NEG) of Theorem 2.12 then imply that each Hj is a single edge Ej with termi-

nal endpoint in a core filtration element of height less than j . By property (F)

of Theorem 2.12, the core of each filtration element is a filtration element. Let-

ting Gt be the first core filtration element above Gr , it follows that ŒGr � @ ŒGt � is

a one-edge extension. By hypothesis, ŒGr � @ ŒGN � is not a one-edge extension.
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We have therefore found a reduction in contradiction to (ii). We conclude thatHN

is EG and is the only irreducible stratum above Gr (recall the output of Step 1).

We need only check (iv) for an indivisible periodic Nielsen path � of heightN .

Any such � begins and ends with edges inHN by [BH92, Lemma 5.11]. It follows

that the endpoints of � are incident to at least one periodic direction in HN and

so are principal by Definition 3.5. Item (iv) therefore follows from (i) and [FH11,

Proposition 3.29]. Item (i) and [FH11, Lemma 3.19] imply that there are fixed

directions in HN which in turn implies that HN is aperiodic so (v) is satisfied.

Step 3. Modify f WG ! G from Step 2 to produce a relative train track map

that satisfies (EG Nielsen paths).

An algorithm for Step 3 is given in [FH11, pp. 87–89] but it is not entirely K-

safe because it makes use of the ‘collapsing inessential connecting paths’ move in

the relative train track map algorithm. If we carry out this collapse as described in

Step 1 above rather than as described in [BH92] then the algorithm becomesK-safe

and we can use it to complete Step 3. For the readers convenience, we summarize

this algorithm and point out the one place where the K-safe modification occurs.

Remark 8.9. The algorithm of [FH11] applies results from [BH92, Sections 3

and 5] and [BFH00, Sections 5.2 and 5.3]. Section 5.3 of [BFH00] has the global

hypothesis that HN is a geometric stratum. That hypothesis is not used in any

of the results cited so our conclusions also hold in the non-geometric case. Most

of the results cited ultimately derive from Section 5 of [BH92] where there is no

assumption that HN is geometric.

By [BH92, Lemma 5.11], every indivisible Nielsen path of height N has the

form � D N̨ˇ where .˛; ˇ/ is the only illegal turn of height N in �. Let E1 and

E2 be the first edges of ˛ and ˇ respectively. Depending on the edge paths f .E1/

and f .E2/, there are three ways in which f WG ! G and � can be modified to

produce a new relative train track map f 0WG0 ! G0 and indivisible Nielsen path

�0 � G0. In all three cases, the number of edges in EG strata and the number

of indivisible Nielsen paths of EG height do not increase. The first and third are

K-safe as described in [BH92] and [BFH00]. To make the secondK-safe we use

Lemma 8.8 instead of Lemma 2.9.

If one of f .E1/ and f .E2/, say f .E2/, is properly contained in the other then

the fold is said to be proper. There is a maximal path ı � GN �1 such that E2ı is

an initial segment of ˇ. In this case, f 0WG0 ! G0 is defined by folding an initial

segment of E1 with E2ı; see [BFH00, Definition 5.3.2 and Lemma 5.3.3]. The

indivisible Nielsen path �0 is the tightened image of � inG0 under the folding map.

In the improper case, f .E1/ D f .E2/ and one begins the process [BFH00,

Definition 5.3.4] by folding E1 and E2 to form a single new edge. If the edge

following E1 in ˛ or the edge following E2 in ˇ belongs to HN then both of
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those edges belong to HN and nothing more is required. Otherwise, the resulting

map is not a relative train track map and one must perform core subdivisions and

collapses of inessential connecting paths to restore the relative train track map

properties. These should be done as in Step 1 so as to be K-safe. In this case, the

the number of edges in the EG stratum decreases. See [BFH00, Lemma 5.3.5].

The third possibility, a partial fold, is that the maximal common subpath of

f .E1/ and f .E2/ is proper in both edge paths. It follows [BH92, p. 25] that

˛ D E1 and ˇ D E2. Items (ii) and (v) and [BFH00, Lemma 5.1.7] imply that the

endpoints of � are distinct and that if both endpoints are contained in GN �1 then

at least one of them is contained in a contractible component of GN �1 [BFH00,

Lemma 5.1.7]. Item (iii) above implies that there are no invariant contractible

components of GN �1 and we conclude that at least one of the endpoints of � is

disjoint fromGN �1. In this case, do not perform a standard fold but rather entirely

identify E1 and E2 to form a new graph G0 with an induced map f 0WG0 ! G0.

Since the turn .˛; ˇ/ is not taken by f .E/ for any edgeE, the image inG0 of f .E/

is already tight and f 0WG0 ! G0 is a topological representative. It is immediate

from the construction that (RTT-i) is preserved. Since at least one of the endpoints

of � is disjoint from GN �1, (RTT-ii) is also preserved. As argued in the proof

of [BFH00, Lemma 5.2.4], ƒ0 D ƒ so Lemma 2.8 and Lemma 8.1 imply that

(RTT-iii) is satisfied and f 0WG0 ! G0 is a relative train track map. By construction

(see also the proof of [BFH00, Lemma 5.2.4]) the number of indivisible Nielsen

paths with EG height has been decreased.

Since each of these operations begins and ends with a relative train track map

and an indivisible Nielsen path, we can iteratively fold to produce a sequence

of relative train track maps and indivisible Nielsen paths. Let C.f / be the sum

of the entries in the transition matrix for f . This gives an upper bound for the

number of elementary folds in a Stallings factorization of f WG ! G. If the

first C.f / folds encountered are proper then f satisfies (EG Nielsen paths); see

[FH11, Lemma 4.33 and Remark 4.34] and the proof of [BFH00, Lemma 5.3.6].

Otherwise, one encounters either a partial or an improper fold in which case either

the number of edges in EG strata or the number of indivisible Nielsen paths of

EG height decreases and we start over. Since these numbers never increase, this

algorithm terminates in finite time.

At the end of Step 3, f WG ! G satisfies (EG Nielsen paths). If the relative

train track map that was the input to Step 3 did not satisfy (EG Nielsen paths) then

either the number of edges in an EG stratum decreased or the number of indivisible

Nielsen paths of EG height decreased during Step 3. Throughout the remaining

steps, the number of edges in each EG stratum and the number of indivisible

Nielsen paths of EG height are never increased. As a result, we need not verify

the (EG Nielsen paths) after each step. If it fails at some point, go back to Step 3

and start again. This can only happen finitely many times so does not prevent the

process from terminating.
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Step 4. If the relative train track map produced by Step 3 does not satisfy the

conclusions of Theorem 2.12 return to Step 2. As just noted, changes are required

in Step 3 only a finite number of times so Step 4 is a finite process.

Step 5. (Rotationless), (Filtration), (Zero strata), and (Periodic edges). The

first two properties follow from [FH11, Proposition 3.29] and Theorem 2.12 respec-

tively. (Zero strata) is arranged by the K-safe tree replacement moves described

in [FH11, Step 3]. (Periodic edges) follows from the assumption that f
ˇ

ˇ Gr is a

CT and item (c) above.

Step 6. Modify f WG ! G from Step 5 so that it satisfies (Vertices), (Linear

edges) and (NEG Nielsen paths). Additionally, the modified f WG ! G satisfies

(Completely split) on all NEG edges.

By property (Z) of Theorem 2.12 there is an irreducible stratum Hp such

that each stratum between Hp and HN is a zero stratum that is a component of

GN �1. The edges E1; : : : ; Ep of Gp nGr are non-fixed NEG edges with terminal

endpoints in Gr and initial endpoints that have valence one in GN �1. The proof

of this assertion is essentially the same as the proof of (v) and is left to the reader.

The three conditions to be achieved depend only on the NEG edges Ei . Since

f WG ! G is rotationless and satisfies Theorem 2.12, f .Ei / D Eiui for some

ui � Gr . By item (c) above, ui is non-trivial.

Suppose that C is a rank one component ofGr and that the unique vertex w of

C is the terminal endpoint of E1; : : : ; Eq � ¹E1; : : : ; Epº. Then C has a single

edge e and f .Ej / D Ej edj for some dj ¤ 0. If w is not the endpoint of an edge

in HN then redefine f on the Ej ’s by f .Ej / D Ej edj �d1 . The new map still

represents � and none of our established properties are lost. The edge E1 is now

fixed and so can be collapsed. After these moves, w is the endpoint of at least one

edge in HN and so is principal for f . We assume now that the unique vertex of

each rank one component of Gr is the endpoint of an edge in HN .

With that special case out of the way, one just applies [FH11, Step 5 pp. 91–93],

applying Lemma 6.4 as described in Section 8.1.

Step 7. Modify f WG ! G from Step 6 so that it satisfies (Completely split).

We can apply [FH11, Step 6] without change.

This completes the proof of Theorem 7.5.

9. Finding Fix.ˆ/

The goal of this section is to give another proof of the result of Bogopolski-

Maslakova [BM16] that there is an algorithm that, given ˆ 2 Aut.Fn/, computes

Fix.ˆ/.
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9.1. The periodic case. In this section, we examine the special case that ˆ is

periodic. The analysis in this section will parallel that of the general case.

Recall from Section 3.1 that if G is a marked graph and Qv 2 zG is a lift to

the universal cover of v 2 G then there is an isomorphism JQvW�1.G; v/! T. zG/
given by mapping Œ
� to the covering translation T of zG that takes Qv to the terminal

endpoint of the lift Q
 of 
 with initial endpoint Qv.

Lemma 9.1. Suppose that hWG ! G is a periodic homeomorphism of a marked

graph G and that QhW zG ! zG is a periodic lift of h to the universal cover zG. Then

(1) Fix. Qh/ ¤ ; and a point Qv 2 Fix. Qf / can be found algorithmically;

(2) if Qv 2 Fix. Qh/ projects to v 2 G then JQv.�1.Fix.h/; v// D ZT. Qh/. (See

Definition 3.1.)

Proof. After subdividing if necessary we may assume that h, and hence Qh, point-

wise fixes each edge that it preserves. We are now in the setting of Bass-Serre

theory and we use its language. Note that Qh is not hyperbolic, for otherwise Qh has

infinite order. Hence Qh is elliptic; equivalently Fix. Qh/ ¤ ;. It is algorithmic to

find a fixed point Qv. Indeed, if Qx 2 zG then the midpoint of Œ Qx; Qh. Qx/� is fixed. This

completes the proof of (1).

For (2), let Fix. Qh/ denote the subtree of zG consisting of Qh-fixed edges. Given

Œ
� 2 �1.Fix.h/; v/, let Q
 be the lift of 
 that begins at Qv and let Qw be the terminal

endpoint of Q
 . Then T D JQv.
/ is the covering translation that carries Qv to Qw.

Since Qh fixes Qv and 
 � Fix.h/, Qh fixes Qw. In particular, T ı Qh. Qv/ D T . Qv/ D

Qw D Qh. Qw/ D Qh ı T . Qv/ and so T and Qh commute. We see that JQv.�1.Fix.h/; v//

is contained in ZT. Qh/. To see surjectivity, let T 2 ZT. Qh/. Then T . Qv/ 2 Fix. Qh/.
Since Fix. Qh/ is a tree, Œ Qv; T . Qv/� descends to a closed path in Fix.h/ based at v. �

We could not find a reference for the following result so we have included a

proof.

Lemma 9.2. There is an algorithm that, given periodic ˆ 2 Aut.Fn/, computes

Fix.ˆ/.

Proof. Let � 2 Out.Fn/ be represented by ˆ. Since the only periodic automor-

phisms of Z are the identity and x 7! �x, we may assume that n � 2. The relative

train track algorithm of [BH92] (see Theorem 2.2) finds a periodic homeomor-

phism hWG ! G of a marked graph representing �.

We recall some notation from Section 3.1. The marking homotopy equiva-

lence is �W .Rn; �/ ! .G; ?/. Via a lift of ? to Q? 2 zG we have an identification

of T. zG/ with Fn, an isomorphism JQ?W�1.G; ?/ ! T. zG/ and a lift QhW zG ! zG
that can be found algorithmically and that corresponds to ˆ in a sense made pre-

cise in Section 3.1. The key points for us are that Qh is periodic and (Lemma 3.2)

that ZT. Qh/ and Fix.ˆ/ are equal when viewed as subgroups of T. zG/. Since Fn

has been identified via�# with �1.G; ?/, our goal is to find J�1
Q?
ZT. Qh/ < �1.G; ?/.
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By Lemma 9.1 we can algorithmically find an element Qv 2 Fix. Qh/. Moreover,

letting v 2 G be the projection of Qv and H WD �1.Fix.h/; v/ < �1.G; v/, we have

JQv.H/ D ZT. Qh/. Let Q� be the path in zG from Q? to Qv and let � � G be its projection.

A quick chase through the definitions shows that J�1
Q?
JQvW�1.G; v/! �1.G; ?/ is

defined by Œ
�! Œ�
��1�. Thus Fix.ˆ/ is identified with H � < �1.G; ?/.

To recap, the algorithm is

ˆ Qh Qv 2 Fix. Qh/ H D �1.Fix.h/; v/ < �1.G; v/ H � < �1.G; ?/

�

9.2. A G -graph of Nielsen paths. For the remainder of Section 9 we assume

that f WG ! G is a CT representing (a necessarily rotationless) � 2 Out.Fn/.

Let † be a (not necessarily connected) graph. It is often useful to work in the

Stallings category of graphs labeled by † or†-graphs, i.e. an object is a graphH

with a cellular immersion H ! † and a morphism from H ! † to H 0 ! † is

a cellular immersion H ! H 0 making the following diagram commute:

†

H H 0
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The map to † is often suppressed. In this section we assume that H is finite but

in Section 12 we allow H to be infinite. If we give H the CW -structure whose

vertex set is the preimage of the vertex set of †, then the resulting edges of H

(often called edgelets) are labeled by their image edges in † and we refer to the

oriented edges of † as the set of labels. An edge-path is labeled by its sequence

of oriented edges. The core of H is the †-graph that is the union of all immersed

circles in H . H is core if it is its own core.

†-graphs are useful because, on each component ofH , the immersionH ! †

induces an injection on the level of �1 and so H is a geometric realization

of a collection of conjugacy classes �1.†/ of subgroups of Fn indexed by the

components of H . Our goal in this section is to construct a G-graph that is the

geometric realization of the collection of conjugacy classes ŒFix.ˆ/� as Œˆ� varies

over isogredience classes P.�/= � of principal automorphisms representing �.

Review 9.3. We precede the construction with a quick review of Nielsen paths

in a CT. Since Nielsen paths with endpoints at vertices split as products of fixed

edges and indivisible Nielsen paths, we focus on indivisible Nielsen paths. There

are only two sources of indivisible Nielsen paths�. By the (Vertices) property of a

CT, the endpoints of indivisible Nielsen paths are always vertices. If E 2 Lin.f /,

the set of linear edges in G, then f .E/ D Ewd
E for some twist path wE and some

d ¤ 0 and Ewk
E
xE is an indivisible Nielsen path for k 6D 0. By the (NEG Nielsen

paths) property of a CT, all indivisible Nielsen paths of NEG-height have this

form. To E we associate a G-graph Y�E
which is a lollipop. Specifically, Y�E

is
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the union of an edge labeled E and a circle labeled wE attached to the terminal

end of E. Note that each Ewk
E
xE � G lifts to a path in Y�E

with both endpoints

at the initial vertex of the edge labeled E. The other possibility is an indivisible

Nielsen path � of EG-height, say r . In this case, � and N� are the only indivisible

Nielsen paths of height r and the initial edges of � and N� are distinct edges of

Hr [FH11, Lemma 4.19]. Further, � D ˛ Ň where ˛ and ˇ are r-legal and the turn

. N̨ ; Ň/ is illegal of height r [FH11, Lemma 2.11]. See [FH11, Section 4] for details

on Nielsen paths in CTs.

Definition 9.4. We construct a G-graph yS.f / as follows. If n D 1, then G D R1

(a rank 1 rose) and yS.f / WD G. Otherwise, start with the subgraph yS1.f / of G

consisting of all vertices in Fix.f / and all fixed edges. For each E 2 Lin.f /,

attach the lollipop Y�E
to yS1.f / at the initial vertex of E thought of as a vertex

in yS1.f /. For each EG stratum with an indivisible Nielsen path of that height,

choose one � of that height (there are only two and they differ by orientation) and

attach an edge, say E�, labeled by � to yS1.f / with initial and terminal endpoints

equal to those of �. This completes the construction of the graph yS.f /. There

is a natural map hW yS.f / ! G given by inclusion on yS1.f / and by the G-graph

structures on each Y�E
andE�. By construction, h is an immersion away from the

attaching points in yS1.f / and is a local homeomorphism at each vertex in yS1.f /.

Thus yS.f / is a G-graph.

Let v 2 Fix.f /. We abuse notation slightly by also denoting the unique lift

of v in yS1.f / by v. Define yS.f; v/ to be the component of yS.f / that contains v.

It is possible that yS.f; v/ is not core.

a b

Figure 2. A CT f WG ! G given by a 7! ab; b 7! bab and the graph yS.f /. yS1.f / is the

unique vertex of G. yS.f / is the closed Nielsen path � D ab Na Nb.

a

c
b d

b

a

a

a
c

Figure 3. A CT hWH ! H given by a 7! a; b 7! ba2; c 7! ca; d 7! db and the graph yS.h/.
yS1.h/ is the loop a and the common initial vertex of c and d . Add the lollipop associated

to b to the former component and the lollipop associated to c to the latter to make yS.h/.
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Remark 9.5. Since the construction of f WG ! G is algorithmic, finding the set

of indivisible Nielsen paths of EG height, and finding Fix.f / are all algorithmic,

it follows that the constructions of yS.f / and yS.f; v/ are algorithmic.

Lemma 9.6. (1) A path � � G with endpoints at vertices lifts to a (necessarily

unique) path O� � yS.f / with endpoints in yS1.f / if and only if � is a Nielsen path.

Moreover, � is closed if and only if O� is closed.

(2) If f represents � 2 Out.Fn/ then non-trivial �-periodic (equivalently �-

fixed) conjugacy classes in Fn are characterized as those classes represented by

circuits in yS.f /.

Proof. (1) The main statement is an immediate consequence of the construction

of yS1.f / and the fact that a Nielsen path in a CT is the concatenation of fixed

edges and indivisible Nielsen paths with endpoints at vertices. The moreover part

follows from the fact that each vertex in G has a unique lift into yS1.f /.

(2) Suppose that the circuit � � G represents a �-fixed conjugacy class. [FH11,

Lemmas 4.11 and 4.25] imply that f k
#
.�/ has a unique complete splitting for all

sufficiently large k and hence � has a unique complete splitting. It follows that

each term in the splitting is a periodic, and hence fixed, Nielsen path. Viewing �

as a closed path with endpoint at one of the splitting vertices, we can lift � to a

path O� � yS.f / with endpoints in yS1.f /. Since each vertex in G has a unique lift

into yS1.f /, O� is a closed path and hence a circuit (because it projects to a circuit).

Conversely, every circuit in yS.f / projects in G to a concatenation of fixed edges

and indivisible Nielsen paths. �

Definition 9.7. We will also have need of the subgraph S.f / WD
S

v S.f; v/

of yS.f / where the union is over principal vertices v of G. Equivalently (see

Lemma 3.8), S.f / is obtained from yS.f / by removing components consisting

of a single non-principal vertex. The construction of S.f / goes exactly as in

Definition 9.4 except we start with the subgraph S1.f / consisting of all principal

vertices and fixed edges in Fix.f /.

9.3. Fix.ˆ/ for rotationless �. In this section we compute Fix.ˆ/ for (not

necessarily principal) ˆ 2 Aut.Fn/ representing rotationless � 2 Out.Fn/. We

begin with the analog of Lemma 9.1(2). Recall that the unique lift of v 2 Fix.f /

in yS1.f; v/ is denoted v.

Lemma 9.8. For each vertex v 2 Fix.f / and lift Qv 2 zG let

yJQv D JQvh#W�1. yS.f; v/; v/ �! T. zG/;

where

h#W�1. yS.f; v/; v/ �! �1.G; v/
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is induced by the immersion hW yS.f; v/! G. Let

Qf W zG �! zG

be the lift of f that fixes Qv. Then yJQv is injective and has image equal to ZT. Qf /.

Proof. yJQv is injective because h# is injective and JQv is an isomorphism.

If O
 � yS.f; v/ is a closed path based at v then 
 WD h. O
/ � G is a closed

Nielsen path based at v by Lemma 9.6. Lift 
 to a Nielsen path Q
 � zG for Qf

with initial endpoint Qv. By definition, T WD yJQv.Œ
�/ is the covering translation

that maps Qv to the terminal endpoint Qw of Q
 . Since Qw 2 Fix. Qf /, we have
Qf ı T . Qv/ D Qf . Qw/ D Qw D T . Qv/ D T ı Qf . Qv/ and so Qf ı T D T ı Qf , i.e.

T 2 ZT. Qf /.

To see that yJQv is surjective, let T 2 ZT. Qf /. Then T . Qv/ is fixed by Qf and the

path Q
 from Qv to Qw is a Nielsen path for Qf and so projects to a closed Nielsen path


 � G based at v that lifts to a closed Nielsen path O
 � yS.f / based at Ov. By

construction, yJQvŒ O
� D T . �

Lemma 9.9. There is an algorithm that, given rotationless � 2 Out.Fn/, com-

putes Fix.ˆ/ for ˆ 2 �.

Proof. Let f WG ! G be a CT representing the element � 2 Out.Fn/ determined

by ˆ. Subdivide if necessary so that every isolated fixed point of f is a vertex.

The setup is similar to that of Lemma 9.2. The marking homotopy equivalence

is �W .Rn; �/ ! .G; ?/. Via a lift of ? to Q? 2 zG we have an identification of

T. zG/ with Fn, an isomorphism JQ?W�1.G; ?/ ! T. zG/ and a lift Qf W zG ! zG that

can be found algorithmically and that corresponds to ˆ in a sense made precise

in Section 3.1. The key point for us is Lemma 3.2 which states that ZT. Qf / and

Fix.ˆ/ are equal when viewed as subgroups of T. zG/.
Apply Lemma 6.4 to decide if Fix. Qf / D ;.

If Fix. Qf / ¤ ; then Lemma 6.4 finds Qv 2 Fix. Qf /. Since isolated fixed points

of f are vertices, we may assume that Qv is a vertex. Indeed, by Convention 2.1

non-isolated fixed points only occur in fixed edges.

Let v 2 G be the projection of Qv, let � � G be the projection of the path

Q� � zG from Q? to Qv, and let hW yS.f; v/ ! G be the immersion given by the G-

structure. Define H D h#.�1. yS.f; v/; v// < �1.G; v/. Arguing as in Lemma 9.2,

with Lemma 9.1(2) replaced by Lemma 9.8 we conclude that Fix.ˆ/ is identified

with H � < �1.G; ?/. Since Fn has been identified via �# with �1.G; ?/, we are

done. In summary,

ˆ Qf  Qv 2 Fix. Qf / H D h#.�1. yS.f; v/; v//

< �1.G; v/ H � < �1.G; ?/:
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If Fix. Qf / D ; then Qf is not principal [FH11, Corollary 3.17] and so we have

rank.Fix.ˆ// � 1 [FH11, Remark 3.3] and FixN .@ Qf / D FixN .@ˆ/ has at most

two points. Lemma 6.4 finds a completely split path Q� that generates a ray zR.

There are two subcases. If the projected image � � G is not a Nielsen path then

jf k
#
.�/j ! 1 and [GJLL98, Proposition I.1] implies that the terminal endpoint

P of zR D Q� � Qf#. Q�/ � Qf
2

#
. Q�/ � � � � , which is evidently fixed by @ Qf , is an attractor

for the action of @ Qf , is contained in FixN .@ Qf / and is not the endpoint of an axis

of a covering translation. If ZT. Qf / contains a non-trivial element T then the T -

orbit of P would be an infinite set in FixN .@ Qf /. This contradiction shows that

ZT. Qf /, and hence Fix.ˆ/, is trivial. The remaining subcase is that � is a Nielsen

path. Let Qv and Qw be the initial and terminal endpoints of Q� respectively and let

T be the covering translation that carries Qv to Qw. Since Qf#. Q�/ is the unique lift of

� with initial endpoint at Qw, we have Qf . Qv/ D T . Qv/ D Qw and Qf . Qw/ D T . Qw/.
Thus Qf T . Qv/ D T Qf . Qv/ and T 2 ZT. Qf /. Equivalently JQv.Œ��/ 2 ZT. Qf /.
Letting H < �1.G; v/ be the maximal cyclic subgroup that contains Œ��, we have

JQv.H/ D ZT. Qf / and the usual argument shows that Fix.ˆ/ is identified with

H � < �1.G; ?/. In summary,

ˆ Qf  Q�  hŒ��i < H < �1.G; v/ H � < �1.G; ?/: �

9.4. The general case

Proposition 9.10 (Bolgopolski-Maslakova [BM16]). There is an algorithm that,

given ˆ 2 Aut.Fn/, computes Fix.ˆ/.

Proof. The case of ˆ 2 � with � rotationless was handled in Lemma 9.9.

Suppose then that � is not rotationless. In Corollary 3.14 we computed M so

that �M is rotationless. So quoting Lemma 9.9 again, Fix.ˆM / can be computed

algorithmically. We are reduced to finding the fixed subgroup of the periodic

action of ˆ on Fix.ˆM /. More generally, we are reduced to finding Fix.ˆ/ for a

finite order ˆ 2 Aut.Fn/, and this is the content of Lemma 9.2. �

10. S.f / and Fix.�/

Let f WG ! G be a CT representing � 2 Out.Fn/. In this section we characterize

the components of S.f / and show that S.f / is the geometric realization of Fix.�/

defined as follows.

Definition 10.1. For � 2 Out.Fn/, Fix.�/ is defined to be the collection of ŒFix.ˆ/�

indexed by isogredience classes Œˆ� 2 P.�/= �.
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Recall two facts from the review in Section 3.2.

� If Qf is a principal lift of f then Fix. Qf / is non-empty.

� If Qf1; Qf2 are principal lifts of f then Qf1 and Qf2 are isogredient if and only if

Fix. Qf1/ and Fix. Qf2/ have equal projections in G.

By the definition of a CT, endpoints of indivisible Nielsen paths are vertices

and so Lemma 3.8(1) implies that, for principal Qf , Fix. Qf / consists of vertices and

edges. It follows that there are only finitely many equivalence classes of principal

lifts of f and that there is a 1–1 correspondence between isogredience classes Œ Qf �

of principal lifts Qf of f and Nielsen classes Œv� of principal vertices v in G given

by Œ Qf �$ Œv�if and only if Qf fixes some lift of v. It is algorithmic to tell if a vertex

of G is principal and to find its Nielsen class (Lemmas 3.8(1) and 9.6).

By construction, for principal vertices v and v0, S.f; v/ D S.f; v0/if and only

if Œv� D Œv0�. We write S.f; v/ D S.f; Œv�/ D S.Œ Qf �/ where Œv� $ Œ Qf � and see

that S.f / D
F

Œv� S.f; Œv�/ D
F

Œ Qf �
S.Œ Qf �/ where Œv� runs over Nielsen classes

of principal vertices in G and Œ Qf � runs over isogredience classes of principal lifts

of f .

If Qf $ ˆ and Qf 0 $ ˆ0 are isogredient then Fix.ˆ/ and Fix.ˆ0/ are conjugate

and ZT. Qf / and ZT. Qf
0/ are conjugate. Hence, the isogredience classes of ˆ and

Qf determine a conjugacy class Fix.Œˆ�/ of subgroup of Fn and a conjugacy class

ZT.Œ Qf �/ of subgroup of T. zG/. The sets Fix.Œˆ�/ and ZT.Œ Qf �/ correspond under

the identifications of Section 3.1; we denote this by Fix.Œˆ�/ $ ZT.Œ Qf �/. If

Œ Qf � $ Œv� and Qf $ ˆ then S.f; Œv�/ is the geometric realization of Fix.Œˆ�/

and S.f / is the geometric realization of Fix.�/.

11. Possibilites for ŒFix.ˆ/�

In this section we algorithmically find the possibilities for ŒFix.ˆ/� D Fix.Œˆ�/ for

ˆ 2 � with � rotationless (Corollary 11.1).

Corollary 11.1. Let � 2 Out.Fn/ be rotationless.

(1) There are finitely many Fn-conjugacy classes in

¹Fix.ˆ/ j ˆ 2 Aut.Fn/ is principal and represents �º

These conjugacy classes are represented by the components of S.f / where

f WG ! G is a CT for �. In particular, they can be computed algorithmically.

(2) For all ˆ 2 �, Fix.ˆ/ is root-free. Conversely, if w 6D 1 2 Fn is root-free

and Œw� is �-invariant then

(a) there is ˆ 2 P.�/ such that w 2 Fix.ˆ/ and

(b) there is non-principal ˆ0 2 � such that Fix.ˆ0/ D hwi.
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Proof. (1) This is the content of Section 10.

(2) Fix.ˆ/ is always root-free. The existence ofˆ as in (a) follows from [FH11,

Lemma 3.30 (1)]. The automorphism ˆm WD imw ı ˆ fixes w for all m and is

principal for only finitely many m 2 Z; see [FH11, Lemma 4.40]. Take ˆ0 to be a

non-principal ˆm. Since ˆ0 is non-principal, rank.Fix.ˆ0// < 2 and we see that

Fix.ˆ0/ D hwi. �

Lemma 11.3 below seems obvious but we could not find a reference for it in the

literature so we are including it here with a proof for completeness. The following

lemma is used in its proof.

Lemma 11.2. For all non-trivial � there exists a filling conjugacy class that is not

fixed by �.

Proof. After replacing � by an iterate, we may assume that � is rotationless.

Let f WG ! G be a topological representative of � and let ˇ � G be a circuit

representing a conjugacy class Œc� that is not �-invariant. Since � is rotationless,

Œc� is not fixed by any iterate of �. We may therefore choose k so that the edge

length of f k
#
.ˇ/ is greater than the edge length of ˇ. Choose a path ˛ � G such

that any circuit containing ˛ is filling (any path ˛whose Whitehead graph does not

have a cut-point will do [Mar95]; see also [BF14, Proof of Lemma 3.2]). Choose

a circuit � that contains both ˛ and ˇ as disjoint subpaths. Decompose � as a

concatenation of subpaths � D �ˇ and let �N D �ˇ
N . The bounded cancellation

lemma implies that the edge length of f k
#
.�N / is greater than the edge length

of �N for all sufficiently large N . Each such �N satisfies the conclusions of the

lemma. �

Lemma 11.3. Each infinite order � 2 Out.Fn/ is represented by ˆ 2 Aut.Fn/

with trivial fixed subgroup.

Proof. Choose (Lemma 11.2) a filling conjugacy class Œa� that is not fixed by

 D �l where l is chosen so that both  and  �1 are rotationless. Let ¹a˙º �
@Fn denote the endpoints of the axis of a. Choose ˆ representing � such that

@ˆ.¹a˙º/\¹a˙º D ; and let ˆm D i
m
a ıˆ. We will prove that Fix.ˆm/ is trivial

for all sufficiently large m.

Assuming that ˆm fixes some non-trivial bm for arbitrarily large m, we will

argue to a contradiction. For notational convenience we pass to a subsequence

and assume that for all m � 1, bm is fixed by ˆm. After passing to a further

subsequence we may assume that bC
m ! P and b�

m ! Q for some P;Q 2 @Fn.

From @ˆm.b
C
m/ D b

C
m we see that @ˆ.bC

m/ D @i
�m
a .bC

m/ and hence that P is either

aC or @ˆ�1.a�/. Similarly, Q is either aC or @ˆ�1.a�/.
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Let f WG!G be a CT representing and let Qfm be the lift of f WG!G corre-

sponding to ‰m WD ˆ
l
m. Let T and Sm be the covering translations corresponding

to a and bm respectively. Thus T˙ D a˙ and S˙
m D b˙

m . If P ¤ Q then the

line connecting aC to @ˆ�1.a�/ is a weak limit of the axes for Sm. It follows that

the axis of T is a weak limit of a sequence of Nielsen axes for Qfm and hence that

the axis of T is an increasing union of arcs each lifting to S.f /. The axis of T

therefore lifts to S.f / and so represents a  -fixed conjugacy class by Lemma 9.6,

contradiction.

Suppose then that P D Q D ˆ�1.T �/. (The case that P D Q D TC is

argued symmetrically.) For all sufficiently large m, there is a neighborhood UC
m

of TC in @Fn such that @ˆm.U
C
m / � U

C
m . By [LL08, Theorem I], UC

m contains a

non-repelling periodic point for the action of @ˆm. Thus ‰m is a principal lift of

 and UC
m contains an element Bm of FixN .‰m/. As m ! 1 we may assume

that Bm ! TC.

By Lemma 3.10, there exists a lift zEm of some Em 2 E such that the lift zREm

of the eigenray generated by Em terminates at Bm. We may assume without loss

that E D Em is independent of m. The ray from the initial endpoint Qxm of zEm

to bC
m factors as a concatenation of Nielsen paths and so lifts into S.f /. After

passing to yet another subsequence we may assume that Qxm converges to a point

X . If X D TC then the axis of T is a weak limit of paths that lift into S.f / and

so lifts to S.f /. As above, this gives the desired contradiction. We may therefore

assume that X ¤ TC. In this case the axis of T is a weak limit of lifts of RE and

so the periodic line that it projects to is a weak limit of RE . We will complete the

proof by showing that each such periodic line L is carried by Gr�1 where Hr is

the top stratum of G. There is no loss in assuming that E is an edge inHr . If E is

NEG then [FH11, Lemma 3.26(3)] completes the proof. IfE � Hr is EG thenL is

leaf in the attracting lamination ƒr associated to Hr by [FH11, Lemma 3.26(2)].

But every leaf is either contained in Gr�1 or is dense in ƒr by [BFH00, Lemma

3.1.15] and the latter is impossible for a periodic line. �

12. A Stallings graph for FixN .@ˆ/

As usual, throughout Section 12 f WG ! G will denote a CT for �. The goal

of this section is to generalize Section 10 by describing a (not necessarily finite)

G-graph SN .f / with core S.f / that in a sense described below represents the

collection of FixN .@ˆ/ (Definition 3.3) indexed by ˆ 2 P.�/. This collection

plays an important role in the main theorem of [FH11]. We will first define the

graph SN .f / and then relate it to the collection of FixN .@ˆ/. FixN .@ˆ/ has been

of considerable interest; see for example [Nie86, Nie29, IKT90, Coo87, GJLL98,

BFH97].
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12.1. Definition of SN .f /. The idea of the construction of SN .f / is to start

with S.f / and add a copy of RE for each E 2 Ef . This does not quite work since

it is possible that @RE D @RE 0 for E 6D E 0. In the next paragraph we describe the

ways that this can happen.

Suppose that E ¤ E 0 2 Ef and that @RE D @RE 0 . Choose a lift zE of E

to zG, let zRE be the lift of RE that begins at the initial endpoint Qv of zE and let

P be the terminal endpoint of zRE . By hypothesis, there is a lift zRE 0 of RE 0 that

terminates at P . Let zE 0 be the initial edge of zRE 0 and let Qw be the initial vertex

of zE 0. If Qf is the lift that fixes Qv then @ Qf fixes P . Since Qf is the only lift of f

that fixes P (Remark 3.11), it follows that Qf also fixes Qw. The path Q� connecting

Qv to Qw is therefore a Nielsen path for Qf and its image � � G is a Nielsen path

for f . The edgesE andE 0 are of the same EG height, say r , since the height of E

(resp. E 0) is the height of RE (resp. RE 0) and edges of this height occur infinitely

often in RE (resp. RE 0) and RE and R0
E have a common tail. It follows from the

facts in Review 9.3 that � is a concatenation of subpaths that are fixed edges or

indivisible Nielsen paths, that E (resp. E 0) must be contained in an indivisible

Nielsen subpath of height r , and that each of these indivisible Nielsen subpaths of

height r contributes an illegal turn of height r . By construction, � has at most one

illegal turn of height r and so we conclude that � is indivisible. Note that zRE and
zRE 0 have a common terminal ray zRE;E 0 and that Q� D Q̨ Q̌�1 where zRE D Q̨ zRE;E 0

and zRE 0 D Q̌ zRE;E 0 giving � the form ˛ˇ�1 as in Review 9.3.

Definition 12.1. We use the notation from the Definitions 9.4 and 9.7. Let SN .f /

be the graph obtained from S.f / as follows. For each NEG E 2 Ef and for each

EG E 2 Ef that is not the initial edge of an indivisible Nielsen path, attach RE

to S.f / by identifying the initial endpoint of RE with the initial endpoint of E

thought of as a vertex in S1.f /. If E 2 Ef belongs to an EG stratumHr and E is

the initial edge of an indivisible Nielsen path � of height r then the initial edgeE 0

of ��1 is also an edge of Ef \Hr . Subdivide the edge labeled � that was added

to S.f / during stage two so that it is now two edges, one labeled ˛ and the other

ˇ�1. Attach RE;E 0 to S.f / at the newly created vertex.

Remark 12.2. Given that the construction of S.f / is algorithmic and that any

initial segment of a ray RE of prescribed length can be explicitly computed, it

follows that there is an algorithm that, given d > 0, constructs the d -neighborhood

(in the graph metric) of S.f / in SN .f /.

... ...

Figure 4. SN .f / for f as in Figure 2. SN .f / is obtained from S.f / by adding the rays

Ra;b D babbab : : : and RB D BABBABAB : : : .
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a

a

dbbabaabaaa : : :
a

c
b

Figure 5. SN .h/ for h as in Figure 3. SN .h/ is obtained from S.h/ by adding the eigenray

dbb : : : .

By construction of SN .f /, its components are in a 1-1 correspondence with the

components of S.f /. That is, components of SN .f / are in a bijective correspon-

dence with Nielsen classes Œv� of principal vertices v in G. Let SN .f; Œv�/ denote

the component of SN .f / containing v. We have SN .f / D
F

Œv� SN .f; Œv�/ where

Œv� runs over Nielsen classes of principal vertices in G. We continue to identify

the principal vertices of G with the vertices of S1.f /. We call these vertices the

principal vertices of SN .f /.

12.2. Properties of SN .f /. In this section we record some properties ofSN .f /.

We defined the term core of a †-graph H in Section 9.2. The weak core of H is

the union of all properly immersed lines in H . H is weakly core if it is its own

weak core. We say that H has finite type if it is the union of a finite graph and

finitely many rays.

Lemma 12.3. SN .f / is aG-graph of finite type and all vertices have valence� 2.

In particular, SN .f / is weakly core.

Proof. By construction, the labeling map SN .f / ! G is an immersion and

SN .f / has finite type and its non-principal vertices have valence either two or

three. By [FH11, Lemma 4.14], a principal vertex v has at least two fixed directions

in G, each corresponding to a fixed edge, an edge in Lin.f /, or an edge in Ef . By

construction, each of these edges contributes a direction at v in SN .f /. Thus all

principal vertices, and hence all vertices, have valence at least two. �

Lemma 12.4. Let Qf W zG ! zG be principal and fix the vertex Qv 2 zG. The labelling

map SN .f; v/ ! G induces an embedding zS ! zG of universal covers. The

induced map @ zS ! @ zG has image FixN .@ Qf /.

Proof. The first conclusion follows since the labelling map is an immersion. To

prove the second, note that every ray R with initial vertex v is either contained in

S.f; v/ in which case the corresponding lift zR has endpoint in @.Fix. Qf // or else
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is the concatenation of a Nielsen path and a ray RE in which case zR has endpoint

in FixC.@ Qf /. Conversely, if P 2 FixN .@ Qf / then the ray Œ Qv; P / is a concatenation

of a Nielsen path and the lift of some RE by [FH11, Lemma 4.36(2)]. �

Corollary 12.5. In the notation of Lemma 12.4, zS is the convex hull of FixN .@ Qf /,

i.e. the union of all lines connected distinct points in FixN .@ Qf /. In particular, if

n > 1 then no component of SN .f / is a circle, an axis in zG, or a generic leaf of

an attracting lamination of f .

Remark 12.6. In the main theorem of [FH11], a rotationless outer automorphism �

is characterized in terms of two invariants: one qualitative and the other quantita-

tive. The collection of FixN .@ˆ/ indexed by ˆ 2 P.�/ is the qualitative invariant.

From the results of this section, we see that SN .f / represents this qualitative in-

variant in the following sense. If X is a component of SN .f / and zX ! zG is a lift

of the natural immersion X ! G, then the image of the induced map @ zX ! @Fn

is FixN .@ˆ/ for some ˆ 2 P.�/. Conversely, if ˆ 2 P.�/ then FixN .@ˆ/ is the

image of @ zX ! @Fn for some component X of SN .f / and some lift zX ! zG.

13. Moving up through the filtration

Several of our applications are verified by working up through the filtration of a

CT f WG ! G. In this section we establish notation by recalling some notation

and a lemma from [FH09, Notation 8.2 and Lemma 8.3]. The negative of the Euler

characteristic will be important to us; we write �� for ��.

Notation 13.1. Recall from (Filtration) that the core of each filtration element is

a filtration element. The core filtration

; D G0 D Gl0
� Gl1

� Gl2
� � � � � GlK D GN D G

is defined to be the coarsening of the full filtration obtained by restricting to those

elements that are their own cores or equivalently have no valence one vertices.

Note that l1 D 1 by (Periodic edges). For each Gli
, let H c

li
be the i-th stratum of

the core filtration. Namely

H c
li
D

Sli

j Dli�1C1
Hj :

The change in negative Euler characteristic is denoted

�i�
� WD ��.Gli

/ � ��.Gli�1
/:

Referring to Notation 2.11, if Hli
is EG then Hui

denotes the highest irreducible

stratum in Gli �1.
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Lemma 13.2 ([FH09, Lemma 8.3]). (1) If H c
li

does not contain any EG strata

then one of the following holds.

(a) li D li�1 C 1 and the unique edge in H c
li

is a fixed loop that is disjoint from

Gli�1
.

(b) li D li�1 C 1 and both endpoints of the unique edge in H c
li

are contained in

Gli�1
.

(c) li D li1C 2 and the two edges inH c
li

are nonfixed and have a common initial

endpoint that is not in Hli�1
and terminal endpoints in Gli�1

.

In case (a), �i�
� D 0; in cases (b) and (c),�i�

� D 1.

(2) If H c
li

contains an EG stratum then Hli
is the unique EG stratum in H c

li

and there exists li�1 � ui < li such that both of the following hold.

(a) For li1 < j � ui , Hj is a single nonfixed edge Ej whose terminal vertex is

in Gli�1
and whose initial vertex has valence one in Gui

. In particular, Gui

deformation retracts to Gli�1
and �.Gui

/ D �.Gli�1
/.

(b) For ui < j < li ,Hj is a zero stratum. In other words, the closure ofGli
nGui

is the extended EG stratum H z
li

.

If some component of H c
li

is disjoint from Gui
then H c

li
D Hli

is a component of

Gli
and �i�

� � 1; otherwise �i�
� � 2.

14. Primitively atoroidal outer automorphisms

In this section we exhibit an algorithm to determine whether or not a � 2 Out.Fn/

is primitively atoroidal (Corollary 14.4).

Definition 14.1. A conjugacy class in Fn is primitive if it is represented by an

element in some basis of Fn. An outer automorphism � is primitively atoroidal if

there does not exist a periodic conjugacy class for � which is primitive.

Lemma 14.2. Let f WG ! G be a CT. Either some stratum is a fixed loop or all

closed Nielsen paths are trivial in H1.GIZ=2Z/.

Proof. We use the notation of Section 13. Suppose the statement holds for Glli �1
.

To get a contradiction, suppose the statement fails for Gli
, that is suppose thatH c

li

is not a fixed loop and that some closed Nielsen path � of height li is non-trivial

in H1.Gli
IZ=2Z/. We go through the cases of Lemma 13.2.

Recall that Nielsen paths are completely split and their complete splitting

consists of fixed edges and indivisible Nielsen paths.

In (1a), Hli
is a fixed loop and we are assuming this is not the case.
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In (1b), by the (NEG Nielsen paths) property of a CT Eli
WD Hli

is either fixed

or linear and if Eli
is linear then � or ��1 has a term of the form Eli

wk
li

xEli
with

notation as in (NEG Nielsen paths).

Suppose first that Eli
is fixed.

� If � has only one occurrence of Eli
and no occurrences of its inverse (or

the symmetric case) then � is primitive. In this case, the union F of the

free factor system ŒGli�1
� with the conjugacy class of the cyclic subgroup

generated by � is a �-invariant free factor system properly containing ŒGli�1
�

and contained in ŒGli
�; see Example 4.11. The (Filtration) property of a CT

implies that F D ŒGli
� contradicting our assumption that H c

li
is not a fixed

loop.

� Consider the (cyclic) sequence of E˙1
li

’s that occurs in � and suppose

there are consecutive occurrences with the same orientation, say � D
: : :Eli

xEli
: : : . Then �0 D Eli

x is a closed Nielsen path as in the preceding

bullet, contradiction.

� The remaining case is that� or��1 has the formEli
x1E

�1
li
x2El1

: : : E�1
li
xN ,

i.e. the orientations of the Eli
’s alternate. Each xi is a closed Nielsen path

and by induction is trivial inH1.GIZ=2Z/. If follows that � is also trivial in

H1.GIZ=2Z/

Next suppose that Eli
is linear and f .Eli

/ D Eli
� w

dli

li
(with notation as in

(Linear edges)). In particular, wli
is a closed Nielsen path of height < li and so

is trivial in H1.GIZ=2Z/. By (NEG Nielsen paths), � a product of paths of the

form Eli
ukE�1

lk
and closed Nielsen paths of height < li . In particular, � is trivial

in H1.GIZ=2Z/, contradiction. This completes the proof of (1b).

In (1c), by (NEG Nielsen paths) H c
li

consists of two linear edges. This case is

similar to the case that H c
li

consists of one linear edge. We conclude � is trivial

in H1.GIZ=2Z/, again a contradiction.

In (2), by [FH11, Corollary 4.19 and Remark 4.20] either there are no closed

Nielsen paths of height li or there is a Nielsen loop �li
of height li such that

every Nielsen loop of this height is a power of �li
and further �li

is trivial in

H1.GIZ=2Z/. This is a contradiction. �

Corollary 14.3. Let � be rotationless. Either

� for some ˆ 2 P.�/, there is an element of Fix.ˆ/ that is primitive in Fn; or

� for all ˆ 2 P.�/, every element of Fix.ˆ/ is trivial in H1.FnIZ=2Z/.

There are more general purpose algorithms that check whether a finitely gen-

erated subgroup of Fn contains a primitive element; see [CG10, Dic14]. We thank

the referee for pointing out these references to us.
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Corollary 14.4. There is an algorithm to tell whether or not a given � 2 Out.Fn/

is primitively atoroidal.

Proof. Compute a CT f WG ! G for a rotationless power of �. According to

Lemma 14.2, � is primitively atoroidal if and only if some stratum of G is a fixed

circle. �

15. The index of an outer automorphism

Definition 15.1 ([GJLL98]). For ˆ 2 Aut.Fn/,

i.ˆ/ WD max
°

0; rank.Fix.ˆ//C
1

2
a.ˆ/ � 1

±

where a.ˆ/ is the number of Fix.ˆ/-orbits of attracting fixed points of @ˆ. For

� 2 Out.Fn/, i.�/ WD
P

i.ˆ/ where the sum ranges over representatives of

isogredience classes of �.

It is clear that i.ˆ/ > 0 implies ˆ is principal. In particular

i.�/ WD
X

�

rank.Fix.ˆ//C
1

2
a.ˆ/ � 1

�

where the sum
P

i.ˆ/ is over principal representatives ˆ of � only.

Proposition 15.2. There is an algorithm to compute the index of rotationless

� 2 Out.Fn/.

See also [GJLL98, Section 6.1].

Proof. Using Theorem 1.1, construct a CT f WG ! G for �. Let SN .f / D
F

Œv� SN .f; Œv�/ be the graphs constructed from f in Section 12. If ˆ is in the

isogredience class of the principal representative of � determined by the principal

vertex v 2 G then i.ˆ/ D i.SN .f; Œv�// where the the index i of a finite type

connected graph � is

i.�/ WD max
°

0; rank.�/C
1

2
a.�/ � 1

±

where a.�/ is the number of ends of �. �

The index satisfies the following well-known inequality.

Theorem 15.3 ([GJLL98]). For � 2 Out.Fn/, i.�/ � n � 1.
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We take this opportunity to use CTs to somewhat strengthen this inequality;

see Proposition 15.14. See Section 3.3 to recall notation. Also see Lemma 3.10.

From the CT point of view, the set of attracting fixed points of @ˆ can be parti-

tioned into those coming from EG strata and those coming from NEG strata. The

following lemma states that this is independent of the choice of CT representing �.

Lemma 15.4. [HM, Part I Definitions 2.9 and 2.10 and Lemma 2.11] Suppose that

� is rotationless, that ˆ 2 P.�/ and that P 2 FixC.@ˆ/. Then the following are

equivalent.

(1) For some CT f WG ! G representing � there is a non-linear NEG edge E

with a lift zE to zG so that zR zE converges to P .

(2) For every CT f WG ! G representing � there is a non-linear NEG edge E

with a lift zE to zG so that zR zE converges to P .

Following Lemma 15.4 we make the following definition, with justification

given in Remark 15.6.

Definition 15.5. Let ˆ 2 P.�/ with � 2 Out.Fn/ and P 2 FixC.@ˆ/. If � is

rotationless thenP is an NEG-ray forˆ if the equivalent conditions of Lemma 15.4

are satisfied. If � is not necessarily rotationless then P is an NEG-ray for ˆ if

P is an NEG-ray for ˆK where �K is a rotationless iterate of �. Let RNEG.ˆ/

denote ¹R j R is an NEG-ray for ˆº, let RNEG.�/ denote
S

ˆ2P.�/ RNEG.ˆ/ and

let R.�/ denote
S

ˆ2P.�/ FixC.ˆ/.

Remark 15.6. To see that Definition 15.5 is well defined (i.e. independent of the

choice ofK), note that if � is rotationless and f is a CT representing � then f k is

a CT representing �k for all k � 1 (Lemma 5.5). It follows that P is an NEG-ray

for ˆ if and only if it is a NEG-ray for each ˆk . If � is not rotationless but has

rotationless iterates �K and �L then P is an NEG-ray for �K if and only if it is an

NEG-ray for �KL if and only if it is an NEG-ray for �L.

Definition 15.7. Suppose � 2 Out.Fn/ and ˆ 2 P.�/. Define

j.ˆ/ WD i.ˆ/C
1

2
b.ˆ/;

where b.ˆ/ is the number of Fix.ˆ/-orbits of NEG-rays of ˆ and define j.�/ WD
P

j.ˆ/where the sum is over representatives of isogredience classes of principal

representatives of �.
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Lemma 15.8. Let ˆ;‰ 2 P.�/.

(1) If FixC.ˆ/ \ FixC.‰/ 6D ; then ˆ D ‰. In particular,

R.�/ D
F

ˆ2P.�/ FixC.ˆ/

and

RNEG.�/ D
F

ˆ2P.�/ RNEG.ˆ/:

(2) The stabilizer of FixC.ˆ/ [resp. RNEG.ˆ/] under the action of Fn on R.�/

[resp. RNEG.�/] is Fix.ˆ/.

(3) The natural maps

FN
iD1 FixC.ˆi /=Fix.ˆi / �! R.�/=Fn

and
FN

iD1 RNEG.ˆi /=Fix.ˆi / �! RNEG.�/=Fn

are bijective where ¹ˆi j i D 1; : : : ; N º is a set of representatives of isogre-

dience classes in P.�/.

Proof. (1) Since ˆ and ‰ both represent �, ˆ‰�1 D ia for some a 2 Fn. If

R 2 FixC.ˆ/ \ FixC.‰/ then aR D R. Since R is not an endpoint of the axis of

a, a D 1. (Here we are using the shorthand notation aR for @ia.R/.)

(2) Suppose a 2 Fix.ˆ/ and R 2 RNEG.ˆ/. Then @ˆ.aR/ D ˆ.a/@ˆ.R/ D

aR and so aR 2 RNEG.ˆ/. Conversely, if a 2 Fn, R 2 RNEG.ˆ/, and @ˆ.aR/ D
aR then aR D @ˆ.aR/ D ˆ.a/@ˆ.R/ D ˆ.a/R. We conclude a D ˆ.a/ as in

the proof of (1). The same argument applies with RNEG.ˆ/ replaced by FixC.ˆ/.

(3) This is a consequence of (1), (2), and the observation that Fn acts on

FixC.ˆ/ [resp. RNEG.�/] by permuting the FixC.ˆ/’s [resp. RNEG.ˆ/’s]. �

Lemma 15.9. (1) For k > 0 and � 2 Out.Fn/, b.�
k/ � b.�/.

(2) For k > 0 and � 2 Out.Fn/, a.�
k/ � a.�/.

Proof. (1) By definition of b.�/ and Lemma 15.8(3),

b.�/ D
ˇ

ˇ

FN
iD1 RNEG.ˆi /=Fix.ˆi /

ˇ

ˇ D jRNEG.�/=Fnj

Also by definition, if R is an NEG-ray for ‰ 2 P.�/ then R is an NEG-ray for

‰k 2 P.�k/ and so RNEG.�
k/ � RNEG.�/. Hence

b.�k/ D jRNEG.�
k/=Fnj � jRNEG.�/=Fnj D b.�/:

(2) The proof is the same as that of (1), replacing RNEG.ˆ/ with FixC.ˆ/ and

RNEG.�/ with R.�/. �
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Notation 15.10. For H < Fn, Or.H/ WD max.0; rank.H/ � 1/. For ˆ 2 Aut.Fn/,

Or.ˆ/ WD Or.Fix.ˆ//. For � 2 Out.Fn/, Or.�/ WD
P

Or.ˆ/ where the sum is over

representatives of P.�/= �.

Lemma 15.11. Let � 2 Out.Fn/ and k > 0 such that  WD �k is rotationless.

Then Or. / � Or.�/.

Proof. Assuming without loss that Or.�/ > 0, letˆ1; : : : ; ˆs; : : : ; ˆm be represen-

tatives of P.�/= � where Fix.ˆi / � 2 if and only if i � s. Let ¹‰j º be represen-

tatives of P. /= �. For each 1 � i � s there exists j D p.i/ such that ˆk
i � ‰j .

If j D p.i/ then there exists a 2 Fn such that ‰j D iaˆ
k
i ia�1 . Replacing ˆi by

iaˆia�1 , we have ˆk
i D ‰j . Thus

ˆk
i D ‰p.i/

for 1 � i � s. We may assume the ‰j ’s are ordered so that the function p, whose

domain is ¹1; : : : ; sº, has image ¹1; : : : ; tº.

It suffices to show that

t
X

j D1

Or.‰j / �

s
X

iD1

Or.ˆi /

and so it also suffices to show that

Or.‰j / �
X

i2p�1.j /

Or.ˆi /

for each 1 � j � t .

Fix j and let F D Fix.‰j /. For each i 2 p�1.j /, ˆk
i D ‰j and so

F D Fix.ˆk
i /. Thus, ˆi preserves F, Fix.ˆi / � F and the restriction ˆi jF is

a finite order automorphism of F. Since F is its own normalizer (see the second

bullet in the proof of Lemma 3.12) the restriction �jF 2 Out.F/ is well-defined

and has finite order.

We claim that if i 0 2 p�1.j / and i 0 ¤ i then the subgroups Fix.ˆi / and

Fix.ˆi 0/ are not conjugate in Fn and hence not conjugate in F. Indeed, if

Fix.ˆi / D hFix.ˆi 0/h�1 for some h 2 Fn then Fix.ˆi / D Fix.ihˆi 0 ih�1/.

Since these groups have rank at least two and both ˆi and ihˆi 0ih�1 represent

�, ˆi D ihˆi 0ih�1 , in contradiction to the assumption that ˆi and ˆi 0 represent

distinct isogredience classes.

By Culler’s Theorem 3.1 of [Cul84], applied to �jF, the conjugacy classes in

F determined by the subgroups ¹Fix.ˆi /W i 2 p
�1.j /º form a free factor system

of F. Since Or.‰j / D rank.F/ � 1 and Or.ˆi / D rank.Fix.ˆi // � 1, the desired

displayed inequality holds. �
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Lemma 15.12. Suppose � 2 Out.Fn/ and k > 0 such that �k is rotationless. Then

j.�k/ � j.�/.

Proof. By definition of j.�/, the lemma is a direct consequence of Lemmas 15.9

and 15.11. �

Proposition 15.13. There is an algorithm to compute j.�/ for rotationless � 2
Out.Fn/.

Proof. This follows from Proposition 15.2 and the fact that j.�/ is the sum of i.�/

and one half the number of non-linear NEG edges in any CT representing �. �

Proposition 15.14. For � 2 Out.Fn/, j.�/ � n � 1.

Example 15.15. Start with the usual linear 2-rose a1 7! a1 and a2 7! a2a1.

Further attach edges ai , 2 < i � n, with ai 7! a2i
2 aia

2iC1
2 . If we subdivide each

ai , 2 < i � n then the result f WG ! G is a CT for a � 2 Out.Fn/. Here SN .f / is

the disjoint union of a pair of eyeglasses and n� 2 lines each with two NEG-rays.

Hence j.�/ D n � 1 and i.�/ D 1.

Proof of Proposition 15.14. By Lemma 15.12, we may assume that � is rotation-

less. Let f WG ! G be a CT for �. We use the terminology of Section 13. In

particular,

; D G0 D Gl0
� Gl1

� Gl2
� � � � � GlK D GN D G

is the core filtration and �i�
� WD ��.Gli

/ � ��.Gli�1
/.

Recall that SN .f / is built up in three stages: starting with principal vertices

and fixed edges, lollipops corresponding to linear edges, edges corresponding

to EG Nielsen paths, and then rays corresponding (perhaps not bijectively) to

oriented edges in E are added. For each 1 � 1 � K, define SN .k/ to be the

subgraph of SN .f / corresponding to Glk
. More precisely, start with principal

vertices in Glk
and fixed edges in Glk

, then add lollipops corresponding to linear

edges in Glk
and edges corresponding to EG Nielsen paths in Glk

and then add

rays corresponding to oriented edges in E \ Glk
.

For each component � of SN .k/ define

j.�/ WD rank.�/C
1

2
a.�/C

1

2
b.�/ � 1

where a.�/ is the number of ends of � and b.�/ is the number of NEG-rays of �.

Then define

j.k/ D
X

�

j.�/



1230 M. Feighn and M. Handel

where the sum is taken over all components � of SN .k/. Using Remark 12.6,

j.SN .f // D j.�/ D j.K/. Proposition 15.14 therefore follows from the more

general inequality

j.k/ � ��.Glk
/ (�k)

for 0 � k � K, which we will prove by induction on k.

The k D 0 case holds because j.;/ D ��.;/ D 0.

Suppose that (�k�1) holds for some k 2 ¹1; : : : ; Kº. Define �kj WD j.k/ �
j.k� 1/. We check that, in each of the cases of Lemma 13.2,�kj � �k�

�. Once

this has been done, (�k) holds and the proposition is proven.

We use the following formula to compute �� of a finite graph:

�� D †v

�val.v/

2
� 1

�

where the sum is over the vertices v and val.v/ is the number of directions at v.

Thus,�k�
� is the half number of “new” directions (two for each new edge) minus

the number of “new” vertices. As we proceed through the process of verifying

�kj � �k�
�, we refer to vertices, directions, or rays of Glk

or SN .k/ previously

considered as old; others are new.

Lemma 3.8 implies that in cases (1a), (1b) and (1c) the endpoints of all new

edges are principal.

Case 1a. SN .k/ is obtained from SN .k�1/ by attaching a circle component and

hence �kj D �k�
� D 0.

Case 1b. If the edge H WD Hlk
is fixed then SN .k/ [resp. Glk

] is obtained

from SN .k � 1/ [resp. Glk�1
] by adding a new edge to old vertices. Hence

�kj D �k�
� D 1. We may therefore assume that the edgeH is not fixed and so

f .H/ D H �uwith u non-trivial. In this case, SN .k/ is obtained from SN .k�1/ by

attaching to an old vertex either a lollipop (if u is a Nielsen path) or the NEG-ray

H � u � f .u/ � f 2.u/ : : : (otherwise). In each case, �kj D �k�
� D 1.

Case 1c. There are three subcases depending on whether or not the added edges

are linear. Their shared initial vertex is a new principal vertex inGlk
and so SN .k/

is obtained from SN .k � 1/ by adding a new component. The new component is

a pair of eyeglasses if both edges are linear. It is a one point union of an NEG-ray

and a lollipop if only one edge is linear, and it is a line with two NEG-rays if

neither edge is linear. In all cases,�kj D ��
� D 1.

Case 2. In Case 2, we will break the verification that �kj � �k�
� into two

steps: first passing from Glk�1
to Guk

and then passing from Guk
to Glk

.
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Step 1. For the edge Hj with j as in Case (2a), the contribution to SN .k/ is a

new NEG-ray [or lollipop] with new initial vertex. (The terminal direction in Hj

is not fixed and so does not contribute.) Thus, the contribution to �kj is 0 (1
2

to

the a-count since the ray is new, another 1
2

to the b-count since it is NEG [or 1 to

rank] and -1 for the new component). This is balanced with the contribution ofHj

to �k�
�, namely 1

2
for each of its directions and -1 for the new vertex.

Step 2. For each vertex v 2 Hlk
, let �kj.v/ and �k�

�.v/ be the contributions

to �kj and �k�
� coming from v and the Hlk

-directions that are incident to v.

For each principal vertex v 2 Hlk
let �.v/ be the number of Hlk

-directions that

are incident to v and not fixed. If v 2 Hlk
is not principal let �.v/ D val.v/ � 2.

Since each direction we encounter in this step is contained in Hlk
, and is hence

EG, the b-count does not change.

As a first case assume that there are no indivisible Nielsen paths of height lk.

If v is not principal then �kj.v/ D 0. By Lemma 3.8, v is new so the directions

incident to v are all in Hlk
and �k�

�.v/ D 1
2
.val.v/ � 2/ D 1

2
�.v/. Thus

�k�
�.v/��kj.v/ D

1
2
�.v/ � 0.

We next consider principal v, letting L.v/ be the number of fixed Hlk
-

directions that are based at v. Thus L.v/C �.v/ is the number of Hlk
-directions

that are based at v. If v is old then �kj.v/ D
1
2
L.v/ and �k�

�.v/ D
1
2
.L.v/ C �.v//. If v is new then �kj.v/ D

1
2
L.v/ � 1 and �k�

�.v/ D
1
2
.L.v/C �.v// � 1. As in the previous case,�k�

�.v/��kj.v/ D
1
2
�.v/ � 0.

The second and final case is that there is an indivisible Nielsen path � of height

lk . By [FH11, Lemma 4.24], lk D ukC1. From [BFH00, Lemma 5.1.7] and [FH11,

Corollary 4.19] it follows that if the endpoints w;w0 of � are distinct then at least

one of w;w0 is new and if w D w0 then w is new. Let d and d 0 be the directions

determined by � at w and w0 respectively.

Let V be the set of vertices of Hlk
that are not endpoints of �. Each v 2 V is

handled as in the no Nielsen path case. The conclusion is that

X

v2V

�k�
�.v/�

X

v2V

�kj.v/ D
X

v2V

1

2
�.v/ � 0:

Let�kj.�/ and�k�
�.�/ be the contributions to�kj and�k�

� coming from

the endpoints of � and the Hlk
-directions that are incident to the endpoints of �.

The remaining analysis breaks up into subcases as follows.

� Suppose that � is a closed path based at a new vertex w. The change in

CSN .k/ corresponding to w is the addition of a new vertex w, an edge

representing � with both endpoints at w, one ray for each fixedHlk
-direction

based at w other than d and d 0 and then one ray corresponding to d and d 0.
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(See Section 12.) We therefore have

�kj.�/ D 1C
1

2
.L.w/ � 1/ � 1 D

1

2
L.w/�

1

2
and

�k�
�.�/ D

1

2
.L.w/C �.w// � 1:

Thus

�k�
�.�/��kj.�/ D

1

2
.�.w/� 1/:

Since there is always at least one illegal turn between Hlk
-directions (for

example, the one in �/ there must be at least one vertex v 2 V [ ¹wº with

�.v/ ¤ 0. We conclude that �kj � �k�
� as desired with equality if and

only if
P

�.v/ D 1 where the sum is taken over all vertices in Hik .

� Suppose that w is new and w0 is old. The change in CS.k/ corresponding to

w andw0 is the addition of a new vertexw, an edge representing � connecting

w to w0, one ray for each fixed Hlk
-direction based at w or w0 other than d

and d 0 and then one ray corresponding to d and d 0. This yields

�kj.�/ D
1

2
.L.w/C L.w0// �

1

2
;

�k�
�.�/ D

1

2
.L.w/C L.w0/C �.w/C �.w0// � 1

and the proof concludes as in the previous case.

� Suppose that w and w0 are distinct and both new. The change in CS.k/

corresponding to w and w0 is the addition of two new vertices, an edge

representing � connecting them, one ray for each fixed Hlk
-direction based

at w or w0 other than d and d 0 and then one ray corresponding to d and d 0.

The calculation is the same as in the previous case. �

We have the following two corollaries to the proof of Proposition 15.14.

Corollary 15.16. If G has no EG-strata then j.�/ D n � 1. If G has an EG-

stratum without Nielsen paths, then j.�/ < n� 1.

For the next corollary, recall (Sections 3.2 and 12.1) that there are bijections

between Nielsen classes of principal vertices of G and isogredience classes in

P.�/ and the set of components of SN .f /.

Corollary 15.17. (1) Suppose that SN .f; Œv�/ is a line L. Then one of its rays is

NEG.

(2) Each SN .f; Œv�/ contributes at least 1=2 to j.�/.

(3) jŒP.�/�j � 2j.�/, i.e. SN .f / has at most 2j.�/ components.
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Proof. (3) follows from (2) We will prove (1) and (2) simultaneously.

Since SN .f; Œv�/ is a weakly core graph we may assume that each vertex of

SN .f; Œv�/ has valence two. In particularly, if Œw� D Œv� then w is not the endpoint

of an indivisible Nielsen path (see Section 12) and w has only two gates in G.

We view SN .f / as being built up as in the proof of Proposition 15.14. Let w be

the lowest principal vertex satisfying Œw� D Œv� and let Glk
be the lowest core

filtration element that contains w. We consider the cases enumerated in the proof

of Proposition 15.14. Case (1a) is ruled out because w is principal and so would

have at least three gates. Since w is new in Hlk
we are not in case (1b). If we

are in case (1c) then both edges must be non-linear and j.�/ � 1. It remains to

rule out case (2). Since w is a new vertex in the EG strata Hlk
there are at least

two gates in Hlk
based at w. Since w is principal but is is not the endpoint of an

indivisible Nielsen path, there must be at least three gates at w. This completes

the proof of (1) and (2). �

Corollary 15.18.
ˇ

ˇ

�
S

ˆ2P.�/ FixC.@ˆ/
�

=Fn

ˇ

ˇ � 6.n� 1/.

Proof.

j.�/ D
X

Œv�

j.SN .f; Œv�//

�
X

Œv�

�a.SN .f; Œv�//

2
� 1

�

D
jends of SN .f /j

2
� jcomponents of SN .f /j

�
1

2
�
ˇ

ˇ

�
S

ˆ2P.�/ FixC.@ˆ/
�

=Fnº
ˇ

ˇ � 2j.�/

Thus
ˇ

ˇ

�
S

ˆ2P.�/ FixC.@ˆ/
�

=Fn

ˇ

ˇ � 6j.�/ � 6.n�1/ by Proposition 15.14. �

Remark 15.19. We commented in Remark 3.15 how Proposition 15.14 could be

used to improve the bound in Lemma 3.13 and hence also Corollary 3.14. With

more care, Proposition 15.14 could be used to further improve this bound.

16. Appendix: Hyperbolic and atoroidal automorphisms

In this appendix we reprove a result of Brinkmann (Lemma 16.2) and a result of

Kapovich (Corollary 16.4).

Definition 16.1. An outer automorphism � 2 Out.Fn/ is hyperbolic if for some

N > 0 and � > 1,

�k˛k � max¹k�N .˛/k; k��N .˛/kº
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for all non-trivial conjugacy classes ˛ in Fn. We say � is atoroidal if � has no

non-trivial periodic conjugacy classes. ˆ 2 Aut.Fn/ is hyperbolic if for some

N > 0 and � > 1,

�jaj � max¹jˆN .a/j; jˆ�N .a/jº

for all non-trivial a in Fn. Here k � k and j � j denote respectively reduced word

length and word length with respect to a fixed basis for Fn. The mapping torus

Mˆ of ˆ 2 Aut.Fn/ is the group with presentation

hFn; t j tat
�1 D ˆ.a/ for each a 2 Fni:

Lemma 16.2 ([Bri00]). Suppose that no conjugacy class in Fn is fixed by an

iterate of �. Then � is hyperbolic.

Proof. Suppose that ƒ˙
1 ; : : : ; ƒ

˙
m are the lamination pairs for �. After replacing

� by an iterate, we may assume that � and ��1 are rotationless. Since � does

not fix any conjugacy classes, each ƒ˙
i is non-geometric, and so ([HM, Part III

Theorem F]; see also [BFH00, Definition 5.1.4 and Theorem 6.0.1]) there is a �-

invariant free factor system Ai for which the following are equivalent for each

conjugacy class Œa� in Fn:

� Œa� is not weakly attracted to ƒC
i under iteration by �;

� Œa� is not weakly attracted to ƒ�
i under iteration by ��1;

� Œa� is carried by Ai .

In particular, Ai does not carry ƒ˙
i .

We claim that no line is carried by every Ai . If this failed, then one could

choose free factors Ai such that ŒAi � is a component of Ai and such that A WD
A1\ � � �\Am is non-trivial. Thus A is a non-trivial free factor that does not carry

any ƒ˙
i . There is a CT representing � in which ŒA� is represented by a filtration

element. The lowest stratum cannot be EG and so must be a fixed loop. But that

contradicts the assumption that there are no �-invariant conjugacy classes and so

completes the proof of the claim.

Choose CTs f WG ! G representing � and f 0WG0 ! G0 representing ��1.

Let �i the expansion factor ([BFH00, Definition 3.3.2]) for � with respect to ƒC
i ,

�i the expansion factor for ��1 with respect to ƒ�
i and � D min¹�i ; �iº > 1.

Let Hi � G be the stratum corresponding to ƒC
i . By [BFH00, Lemma 4.2.2]

there exists a subpath ıi � G of ƒC
i (any subpath of ƒC

i that crosses sufficiently

many edges of Hi will do) with the following property: if � � G is a circuit or

path and �0 � � is a copy of ıi or its inverse Nıi , then there is a splitting of �

in which one of the terms is an edge of Hi contained in �0. Let BC.�/ be the

maximum number of disjoint subpaths of � that are copies of some ıi or Nıi . Then

� has a splitting in which BC.�/ terms are single edges in EG strata. It follows

that

jf k
#
.�/j > CBC.�/�k

for all k � 1 where C is a positive constant and j � j denotes length.
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Define ı0
i � G

0 and B�.� 0/ symmetrically replacing ƒC
i and f WG ! G with

ƒ�
i with f 0WG0 ! G0. Each path or circuit � 0 � G0 has a splitting in which

B�.� 0/ terms are single edges in EG strata of f 0WG0 ! G0. After decreasing C if

necessary, we have

j.f 0/k
#
.� 0/j > CB�.� 0/�k

for all k � 1.

Let hWG ! G0 be a homotopy equivalence that preserves markings. After

replacing � (and hence f and f 0) by an iterate, we may assume that for each

i the neighborhood V.ıi/ of ƒC
i consisting of lines that contain either ıi or Nıi

as a subpath is mapped into itself by � and that the neighborhood V.ı0
i ) of ƒ�

i

determined by ı0
i is mapped into itself by ��1. By [HM, Part III Theorem H]

there is a positive integer Ni so that if ˇ � G is a line that is not carried by Ai

then either h#.ˇ/ contains a copy of ı0
i or Nı0

i or f
Ni

#
.ˇ/ contains a copy of ıi or

Nıi . Let N WD max¹Niº. Since f# maps each V.ıi / into itself and since no line is

carried by Ai for all i , we have

BC.f N
#
.ˇ//C B�.h#.ˇ// � 1

for all lines ˇ.

Recall (see [HM, Part I Section 1.1.6]) that for all paths ˛ � G there is a path

h##.˛/ � G0 obtained from h#.�/ by removing initial and terminal segments of

length at most the bounded cancellation constant of h and satisfying h##.V .˛// �

V.h#.˛//. We claim that there exists a positive integer L so that if � � G has

length at least L then

BC.f N
#
.�//C B�.h##.�// � 1:

Indeed, if this fails then there exists Lj !1 and paths �j � G with length � Lj

such that for all 1 � i � m

� h##.�j / does not contain ı0
i or Nı0

i as a subpath.

� f N
#
.�j / does not contain ıi or Nıi as a subpath.

By focusing on the ‘middle’ of each �j and passing to a subsequence we may

assume that there are subpaths ǰ � �j such that ˇ1 � ˇ2 � � � � is an increasing

sequence of paths whose union is a line ˇ � G. As verified above, there exists

1 � i � m such that Ai does not carry ˇ. By [HM, Part I Lemma 1.6(3)]

h##. ǰ / � h##. ǰ C1/\ h##.�j / and h#.ˇ/ is the union of the h##. ǰ /’s. It follows

that h#.ˇ/ does not contain ı0
i or Nı0

i as a subpath and so f N
#
.ˇ/ must contain a

copy of ıi or Nıi . But then f N
##
. ǰ / contains a copy of ıi or Nıi for all sufficiently

large j and hence f N
#
.�j / contains a copy of ıi or Nıi for all sufficiently large j .

This contradiction completes the proof of the claim.
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We are now ready to complete the proof. After replacing � with �N , we may

assume that N D 1. Given a circuit � � G with j� j � 2L divide it into Œ j�j
L
�

subpaths �l of length at leastLwhere Œ�� is the greatest integer function. Applying

the preceding claim and the fact that the f##.�l/’s are disjoint subpaths of f#.�/

we have

max¹BC.f#.�//; B
�.� 0/º �

h j� j

2L

i

In conjunction with the above displayed inequalities this completes the proof of

the lemma if j O� j � 2L. As there are only finitely many remaining O� and none of

these is fixed by an iterate of � we are done. �

Proposition 16.3. Let ˆ 2 Aut.Fn/ represent � 2 Out.Fn/. The following are

equivalent:

(1) � is atoroidal;

(2) � is hyperbolic;

(3) ˆ is hyperbolic;

(4) Mˆ is hyperbolic.

Proof. .1/ H) .2/ is Lemma 16.2. .2/ H) .3/ follows from the proof of The-

orem 5.1 of [BFH97]. .3/ H) .4/ is a consequence of the first corollary of Sec-

tion 5 of [BF92]. .4/ H) .1/ since otherwise Mˆ contains Z2. �

Corollary 16.4 ([Kap00]; see also [Dah16, p. 2]). There is an algorithm with input

� 2 Out.Fn/ that outputs yes or no depending on whether or not � is hyperbolic.

Proof. Construct a CT f WG ! G for a �M with M as in Corollary 3.14. By

Proposition 16.3, � is hyperbolic if and only if � is atoroidal. By Lemma 9.6(2),

� is atoroidal if and only if S.f / has no circuits and this can be checked algorith-

mically; see Remark 9.5. �
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