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Abstract. We introduce a notion of measure contracting actions and show that Koop-

man representations corresponding to ergodic measure contracting actions are irreducible.

We also show that the actions of Higman–Thompson groups on intervals equipped with

Lebesgue measure and the actions of weakly branch groups on the boundaries of rooted

trees equipped with non-uniform Bernoulli measures are measure contracting. This gives

a new point of view on irreducibility of the corresponding Koopman representations.
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1. Introduction

One of the most natural representations that one can associate to a measure class
preserving action of a group G on a measure space .X; �/, where � is a probabilty
measure, is the Koopman representation � of G in L2.X; �/ defined by

.�.g/f /.x/ D

s

d�.g�1.x//

d�.x/
f .g�1x/:

This representation is important due to the fact that the spectral properties of
� reflect the measure-theoretic and dynamical properties of the action such as
ergodicity and weak-mixing.

It is known that for an ergodic action operators �.g/ together with operators of
multiplication by functions from L1.X; �/ generate the von Neumann algebra of
all bounded operators on L2.X; �/. A natural question is whether the operators
�.g/; g 2 G generate the algebra of all bounded operator by themselves, that
is whether � is irreducible. Below are several examples of group actions with
quasi-invariant measures for which the Koopman representation is known to be
irreducible:
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� actions of free non-commutative groups on their boundaries ([12] and [13]);

� actions of lattices of Lie-groups (or algebraic-groups) on their Poisson-
Furstenberg boundaries ([7] and [3]);

� action of the fundamental group of a compact negatively curved manifold on
its boundary endowed with the Paterson-Sullivan measure class ([2]);

� natural actions of Thompson’s groups F and T on the unit segment ([14]);

� action of the group of compactly supported contactomorphisms of a contact
manifold ([15]);

� actions of weakly branch groups on the boundaries of the corresponding
rooted trees equipped with non-uniform Bernoulli measures ([11]).

However, the general question in what cases the Koopman representation is irre-
ducible remains open.

In the present paper we introduce a notion of a measure contracting action and
show that Koopman representations corresponding to ergodic measure contracting
actions are irreducible. Using the above we show that Koopman representations
corresponding to natural actions of Higman–Thompson groups are irreducible
and reconsider the Koopman representations of weakly branch groups presented
in [11]. We also notice that the measure contracting property applies to other
interesting group actions. For example, Łukasz Garncarek pointed to the author
that the results of the present paper can be used to prove irreducibility of the
Koopman representation of the group of inner automorphims of a foliation.

Definition 1. Let G act on a probability space .X; �/ with a quasi-invariant
measure �. We will call this action measure contracting if for every measurable
subset A � X and any M; � > 0 there exists g 2 G such that

.1/ �.supp.g/ n A/ < �;

.2/ �
�°

x 2 AW
q

d�.g.x//
d�.x/

< M �1
±�

> �.A/ � �.

Here supp.g/ D ¹x 2 X W gx ¤ xº. One of the main results of the present paper is
the following:

Theorem 1. For any ergodic measure contracting action of a group G on a prob-

ability space .X; �/ the associated Koopman representation � of G is irreducible.

Apparently, the most famous group from the family of Higman–Thompson
groups is the Thompson group F2;1 consisting of all piecewise linear continuous
transformations of the unit interval with singularities at the points ¹ p

2q W p; q 2 Nº

and slopes in ¹2qW q 2 Zº. This group satisfies a number of unusual properties
and disproves several important conjectures in group theory. The group F2;1 is
infinite but finitely presented, is not elementary amenable, has exponential growth,
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and does not contain a subgroup isomorphic to the free group of rank 2. An
important open question is whether the group F2;1 is amenable. Further discussion
of historical importance of Higman–Thompson groups and their various algebraic
properties can be found in [6], [8], and [4]. Each of the groups Gn;r and Fn;r acts
canonically on Œ0; r�. Denote by �r the Lebesgue probability measure on Œ0; r�.
Using Theorem 1 we show the following:

Theorem 2. Let G be a group from the Higman–Thompson families ¹Fn;rº,

¹Gn;rº. Then the Koopman representation of G corresponding to the canonical

action of G on .Œ0; r�; �r/ is irreducible.

In [14] Garncarek proved irreducibility of a more general class of Koopman
type representations (with Radon-Nikodym derivative twisted by a cocycle) of
the Thompson groups F D F1;2 and T . In fact, Garncarek’s methods can be
adapted to Koopman representations of Higman–Thompson groups. However,
in the present paper we use a different approach to prove irreducibility of these
representations.

In [10] the author of the present paper jointly with Medynets showed that
Higman–Thompson groups have only discrete set of finite type factor-represen-
tations using the notion of a compressible action. We notice that the notion of
measure contracting actions we introduce in the present paper is loosely related
to the notion of compressible actions.

The second class of representations we consider is Koopman representations of
weakly branch groups. A group acting on a rooted tree T is called weakly branch
if it acts transitively on each level of the tree and for every vertex v of T it has a
nontrivial element g supported on the subtree Tv emerging from v (see e.g. [1] and
[16]). Weakly branch groups posses interesting and often unusual properties. The
class of weakly branch groups contains groups of intermediate growth, amenable
but not elementary amenable groups, groups with finite commutator width etc..
Weakly branch groups also play important role in studies in holomorphic dynam-
ics (see [18]) and in the theory of fractals (see [17]).

For a d -regular rooted tree T its boundary @T can be identified with a space
of sequences ¹xj ºj 2N where xj 2 ¹1; : : : ; dº. For a collection of positive real
numbers p D ¹p1; : : : ; pd º with p1 C � � � C pd D 1 let �p be the corresponding
Bernoulli measure on @T . In [11] the authors showed the following:

Theorem 3. Let G be a subexponentially bounded weakly branch group acting

on a regular rooted tree and p be as above such that pi are pairwise distinct.

Then the Koopman representation associated to the action of G on .@T; �p/ is

irreducible.

Here subexponentially bounded group means a group consisting of subexponen-
tially bounded (in the sense similar to polynomial boundedness of Sidki [19]) au-
tomorphisms of T . In the present paper using the results of [11] we show that
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actions of subexponentially bounded weakly branch groups on .@T; �p/ (with pi

pairwise distinct) are measure contracting. This gives a different view on the proof
of Theorem 3 presented in [11].

Acknowledgements. The author acknowledges Łukazs Garncarek for important
comments and essential references. The author is grateful to Rostislav Grigorchuk
for valuable remarks and useful suggestions. Finally, the author thanks the referee
for careful reading of the paper and useful remarks.

2. Proof of Theorem 1

For a measure space .X; �/ denote byL.X; �/ the von Neumann algebra generated
by operators of multiplication by functions from L1.X; �/ on L2.X; �/. Let
B.X; �/ be the algebra of all bounded linear operators on L2.X; �/. For a set
of operators S � B.X; �/ denote by

S
0 D ¹A 2 B.X; �/W AB D BA for all B 2 Sº

the commutant of S. The following result is folklore.

Theorem 4. Let group G act ergodically by measure class preserving transfor-

mations on a standard Borel space .X; �/. Then the von Neumann algebra zM�

generated by operators from M� and L
1.X; �/ coincides with B.X; �/.

Proof. By von Neumann bicommutant theorem (see e.g. [5], Theorem 2.4.11) it
is sufficient to show that the commutant zM0

� consists only from scalar operators.
Let A 2 zM0

� . Since L.X; �/ is a maximal abelian subalgebra of B.X; �/ (see
e.g. [9], Lemma 8.5.1) we obtain that A 2 L.X; �/. That is, A is the operator of
multiplication by a function m 2 L1.X; �/. Since A commute with �.g/ for all
g 2 G the function m is G-invariant (m.gx/ D m.x/ for all g 2 G for almost all
x 2 X). By ergodicity, m is constant almost everywhere. Therefore, operator A is
scalar. This finishes the proof. �

Proof of Theorem. First, for every measurable subset A � X fix a sequence of
elements gA

m such that

1/ �.supp.gA
m/ n A/ < 1

m
,

2/ �
�°

x 2 AW

q

d�.gA
m.x//

d�.x/
< 1

m

±�

> �.A/ � 1
m

for every m 2 N. For a subset B � X denote by P B the orthogonal projection
onto the subspace

H
B D ¹� 2 L2.X; �/W supp.�/ � X n Bº:
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Let us show that for every measurable subset A � X one has

w � lim
m!1

�.gA
m/ D P A; (2.1)

where w � lim stands for the limit in the weak operator topology.
Fix a measurable subset A � X . Introduce the sets

Am D

²

x 2AW

s

d�.gA
m.x//

d�.x/
<

1

m

³

; Bm Dsupp.gA
m/nA; Cm DBm [.AnAm/:

Notice that

�.A n Am/ <
1

m
and �.Bm/ <

1

m
:

To prove (2.1) it is sufficient to show that for any �1; �2 2 L2.X; �/ one has

.�.gA
m/�1; �2/ �! .P A�1; �2/

when m ! 1. Since the subspace of essentially bounded functions L2.X; �/ \

L1.X; �/ is dense in L2.X; �/ we can assume that �1 and �2 are essentially
bounded. Let Mi D k�ik1; i D 1; 2. We have

j.�..gA
m/�1/�1; �2/ � .P A�1; �2/j

D

ˇ

ˇ

ˇ

ˇ

ˇ

Z

X

s

d�.gA
m.x//

d�.x/
�1.gA

mx/�2.x/dx �

Z

XnA

�1.x/�2.x/dx

ˇ

ˇ

ˇ

ˇ

ˇ

6
1

m

ˇ

ˇ

ˇ

ˇ

ˇ

Z

Am

�1.gA
mx/�2.x/dx

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

Z

Cm

s

d�.gA
m.x//

d�.x/
�1.gA

mx/�2.x/dx

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

Z

Bm

�1.x/�2.x/dx

ˇ

ˇ

ˇ

ˇ

ˇ

6
1

m
M1M2 C j.�..gA

m/�1/�1; P XnCm�2/j C
1

m
M1M2 �! 0

when m ! 1, since k�..gA
m/�1/�1k D k�1k (in the norm on L2.X; �/) and

P Cm=X�2 ! 0 when m ! 1. Observe that for every g 2 G one has
.�.g�1/�1; �2/ D .�.g/�2; �1/. This finishes the proof of (2.1). In particular,
we obtain that P A 2 M� for every measurable subset A � X .

Observe that every function from L1.X; �/ can be approximated arbitrarily
well in L2-norm by finite linear combinations of characteristic functions of open
sets. This implies that for every m 2 L1.X; �/ the operator of multiplication
by m

H �! H; f �! mf
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can be approximated arbitrary well in the strong operator topology by finite linear
combinations of projections PA 2 M� , and thus belongs to the von Neumann
algebra M� generated by operators �.g/; g 2 G. It follows that M� contains the
algebra L.X; �/. Using Theorem 4 we obtain that M� coincides with B.X; �/.
This finishes the proof of Theorem 1. �

Remark 1. Garncarek pointed to the author that the proof of Theorem 1 works
to show irreducibility of a more general class of Koopman type representations.
Namely, representations of the form:

.�
 .g/f /.x/ D 
.g�1; x/

s

d�.g�1.x//

d�.x/
f .g�1x/;

where 
 W G � X ! ¹z 2 CW jzj D 1º is any cocycle.

3. Higman–Thompson groups

Let us briefly recall the definition of Higman–Thompson groups. For details we
refer the reader to [6], [8], and [4].

Definition 2. Fix two positive integers n and r .

(1) The group Fn;r consists of all orientation preserving piecewise linear home-
omorphisms h of Œ0; r� such that all singularities of h are in ZŒ1=n� D
®

p

nk W p; k 2 N
¯

and the derivative of h at any non-singular point is nk for
some k 2 Z.

(2) The group Gn;r is the group of all right continuous piecewise linear bijections
h of Œ0; r/ with finitely many discontinuities and singularities, all in ZŒ1=n�,
such that the derivative of h at any non-singular point is nk for some k 2 Z

and h maps ZŒ1=n� \ Œ0; r/ to itself.

Proposition 1. Let G be a group from the Higman–Thompson families ¹Fn;rº,

¹Gn;rº. Then the canonical action of G on .Œ0; r�; �r/ is ergodic.

Proof. Since Fn;r < Gn;r without loss of generality we can assume that G D Fn;r

for some n; r . Let A be a G-invariant measurable subset of Œ0; r� such that
0 < �r.A/ < 1. Denote by ƒ the set of segments I � .0; r/ of the form
I D

�

.n�1/p
nm ; .n�1/.pC1/

nm

�

; where p; m 2 N. Corollary A5.6 from [4] implies
that for any I1; I2 2 ƒ there exists g 2 G which maps I1 onto I2. Replacing, if
necessary, g on I1 by the linear orientation preserving map sending I1 onto I2 we
may assume that g0.x/ is constant on I1. G-invariance of A implies that

�r.A \ I1/

�r.I1/
D

�r .A \ I2/

�r .I2/
:
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It follows that �r .A\I/
�r .I/

does not depend on I 2 ƒ. Since every measurable subset
B � Œ0; r� can be approximated by measure arbitrarily well by finite unions of
segments from ƒ we obtain that the ratio �r .A\B/

�r .B/
is the same for all measurable

subset B � Œ0; r� with �r.B/ > 0. Taking B D A and B D Œ0; r� we arrive at a
contradiction which finishes the proof. �

Proposition 2. Let G be a group from the Higman–Thompson families ¹Fn;rº,

¹Gn;rº. Then the canonical action of G on .Œ0; r�; �r/ is measure contracting.

Proof. Since Fn;r < Gn;r it is sufficient to consider the case G D Fn;r . Introduce
a sequence gm of elements of G as follows:

gm.x/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

x if 0 6 x <
r

n2m
;

nmx �
r

nm
C

r

n2m
if

r

n2m
6 x <

r

nm
;

r �
r

nm
C

x

nm
if

r

nm
6 x 6 r:

(3.1)

Observe that �r

�°

x 2 Œ0; r�W
q

d�r .gm.x//
d�r .x/

> n�m
±�

D n�m.

For any segment I � Œ0; r� of the form

I D
h

r
p

nm
; r

p C 1

nm

i

; (3.2)

where m 2 N and p 2 ZC, let JI be the unique increasing affine map sending
Œ0; r� onto I . Introduce elements gI

m 2 Fn;r by

gI
m.x/ D

´

JI gmJ �1
I .x/ if x 2 I;

x otherwise.

We will call a set A � Œ0; 1� admissible if it is a finite union of segments of the
form (3.2). For an admissible set A � Œ0; r� and any sufficiently large m 2 N fix
a partition A D I1 [ I2 [ � � � [ Ik, where each of Ij is of the form (3.2) and Ij

intersect Il for l ¤ j by at most one point, and set gA
m D g

I1
m g

I2
m � � � g

Ik
m . Clearly,

one has

supp.gA
m/ � A and �r

�°

x 2 AW

q

d�r .gm.x//
d�r .x/

> n�m
±�

D n�m�r.A/:

Since any measurable subset of Œ0; r� can be approximated by measure arbitrarily
well by admissible sets the latter implies that the action of G on Œ0; r� is measure
contracting. �

As a Corollary of Propositions 1 and 2, and Theorem 1 we obtain Theorem 2.
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4. Weakly branch groups.

First, let us give a brief introduction to weakly branch groups. See e.g. [1] and [16]
for details.

A rooted tree is a tree T with vertex set divided into levels Vn, n 2 ZC, such
that V0 consists of one vertex v0 (called the root of T ), the edges are only between
consecutive levels, and each vertex from Vn, n > 1 (we consider infinite trees), is
connected by an edge to exactly one vertex from Vn�1 (and several vertexes from
VnC1). A rooted tree is called spherically homogeneous if each vertex from Vn

connected to the same number dn of vertexes from VnC1. T is called d�regular,
if dn D d is the same for all levels. For any vertex v removing the edge connecting
v to a vertex of the previous level splits T into two connected components. Denote
by Tv the component containing v. The automorphism group Aut.T / consists of
all automorphisms of T (as a graph) preserving the root.

Definition 3. Let T be a spherically homogeneous tree and G < Aut.T /. Rigid
stabilizer of a vertex v is the subgroup ristv.G/ consisting of element g acting
trivially outside of Tv. Rigid stabilizer of level n is

ristn.G/ D
Y

v2Vn

ristv.G/:

G is called branch if it is transitive on each level and ristn.G/ is a subgroup of
finite index in G for all n. G is called weakly branch if it is transitive on each level
Vn of T and ristv.G/ is nontrivial for each v.

The boundary @T of a d -regular rooted tree is homeomorphic to the space of
infinite sequences ¹1; 2; : : : ; dºN and hence is homeomorphic to a Cantor set. For
a d -tuple p D .p1; : : : ; pd / such that

pi > 0 for all i and p1 C � � � C pd D 1 (4.1)

define a measure �p on ¹1; 2; : : : ; dº by

�p.¹1º/ D p1; �p.¹2º/ D p2; : : : ; �p.¹dº/ D pd :

Let �p D �Np be the corresponding Bernoulli measure on @T . For each level Vn

of a d -regular rooted tree an automorphism g of T can be presented in the form

g D � � .g1; : : : ; gdn/;

where � 2 Sym.Vn/ is a permutation of the vertexes from Vn and gi are the
automorphisms induced by the action of g on the subtrees rooted at the vertexes
from Vn.
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Definition 4. We will call an element g 2 Aut.T / subexponentially bounded (in
the sense similar to polynomial boundedness of Sidki [19]) if the numbers kn.g/

of restrictions gi to the vertexes of level n not equal to identity satisfy

lim
n!1

kn.g/
n D 0 for any 0 < 
 < 1:

A group G < Aut.T / is subexponentially bounded if each g 2 G is subexponen-
tially bounded.

In [11], Proposition 2 the authors showed that for any subexponentially bounded
automorphism g and any p as in (4.1) the measure �p is quasi-invariant with
respect to the action of g. For a subexponentially bounded weakly branch group
G acting on a d -regular rooted tree and p be as in (4.1) denote by �p the Koopman
representation corresponding to the action of G on .@T; �p/. Let �A 2 L2.@T; �p/

stand for the characteristic function of a measurable subset A � @T . From [11]
(Corollary 3 and Lemma 4) we deduce the following:

Proposition 3. Let G be a subexponentially bounded weakly branch group acting

on a d -regular rooted tree and p be as in (4.1) with pairwise distinct pi . Then

for every clopen set A � @T there exists a sequence of elements gn 2 G with

supp.gn/ � A such that

lim
n!1

.�p.gn/�A; �A/ D 0: (4.2)

Using results of [11] we show:

Proposition 4. Let G be a subexponentially bounded weakly branch group acting

on a d -regular rooted tree and p1; p2; : : : ; pd 2 .0; 1/ such that pi are pairwise

distinct and
Pd

iD1 pi D 1. Then the action of G on .@T; �p/ is measure contract-

ing.

Proof. Let A be a measurable subset of .@T; �p/. Since clopen sets approximate
all measurable subsets of .@T; �p/ by measure arbitrarily well to show that Def-
inition 1 is satisfied we may assume that A is clopen. Let gn be a sequence of
elements from Proposition 3. Clearly, for large enough n condition .1/ from Def-
inition 1 is satisfied for gn. Assume that for some �; M > 0 for all n condition .2/

does not hold. Set

Bn D

²

x 2 AW

s

d�p.gn.x//

d�p.x/
> M �1

³

:

Then �p.Bn/ > � for all n and we have

.�p.gn/�A; �A/ D .�p.g�1
n /�A; �A/ >

Z

Bn

q

d�p.gn.x//

d�p.x/
d�p.x/ > M �1�:

This contradicts to (4.2). It follows that for large enough n condition .2/ from
Definition 1 is also satisfied for gn. This finishes the proof. �
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