
Groups Geom. Dyn. 12 (2018), 1461–1483

DOI 10.4171/GGD/475

Groups, Geometry, and Dynamics

© European Mathematical Society

Games orbits play and obstructions to Borel reducibility

Martino Lupini and Aristotelis Panagiotopoulos1
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1. Introduction

Borel complexity theory provides a framework for studying the relative complex-

ity of classification problems in mathematics. In this context, a classification prob-

lem is regarded as an equivalence relation on a standard Borel space and Borel

reductions provide the main notion of comparison between equivalence relations.

Two distinguished classes of equivalence relations that are often used as bench-

marks to measure the complexity of other equivalence relations are equality on a

Polish space and isomorphism of countable structures. An equivalence relation E

is called concretely classifiable if E is Borel reducible to equality on some Polish

space Y . More generously, an equivalence relation is called classifiable by count-

able structures if it is Borel reducible to the relation ŠL of isomorphism within

the class of countably infinite structures in some first order language L.

1 This work was initiated during a visit of Aristotelis Panagiotopoulos at the California
Institute of Technology in the Spring 2016. The authors gratefully acknowledge the hospitality
and the financial support of the Institute. M. Lupini was partially supported by the NSF Grant
DMS-1600186.
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Many naturally arising equivalence relations are given as orbit equivalence

relations EX
G associated with a continuous action of a Polish group G on a Polish

space X . For instance, the relation ŠL is induced by the canonical logic action

of the group S1 of permutations of ! on the space Mod.L/ of L-structures with

universe !. Similarly, the equality relation on a Polish space is induced by the

action of the trivial group.

In the process of determining the exact complexity of an equivalence relation

one often has to establish both positive and negative results. For the later, it is

important to isolate criteria that imply nonclassifiability by certain invariants.

The well-known criterion of generic ergodicity (having meager orbits and a dense

orbit) provides a dynamical condition on a continuous action of a Polish group on

a Polish space ensuring that the corresponding orbit equivalence relation is not

concretely classifiable. Hjorth’s notion of turbulent action is a strengthening of

generic ergodicity, ensuring that the associated orbit equivalence relation is not

classifiable by countable structures. Both these results can actually be seen as

addressing the following general problem.

Problem 1.1. Given a class of Polish groups C, which dynamical conditions on a

Polish G-space X ensure that the corresponding orbit equivalence relation is not

Borel reducible to EY
H for some Borel action of a Polish group H in C on a Polish

space Y ?

Indeed, generic ergodicity provides such a criterion for the class C of compact

Polish groups [11, Proposition 6.1.10]. Hjorth’s turbulence theorem [15] addresses

this problem in the case when C is the class of non-Archimedean Polish groups.

Turbulence has played a key role in Borel complexity theory in the last two decades

and it is to this day essentially the only known method to prove unclassifiability

by countable structures; see [13, 7, 8, 27, 25, 24, 1, 2, 33, 34, 35, 12, 37, 18, 20, 23,

11, 15, 22, 6]. There has been so far little progress into obtaining similar criteria

for other interesting classes of Polish groups.

The purpose of this paper is two-fold. Our first goal is to introduce a game-

theoretic approach to Problem 1.1. This approach consists in endowing the space

X=G of orbits of a Polish G-space X with different graph structures, and then

showing that a Baire measurable .EX
G ; EY

H /-homomorphism f W X ! Y induces

a graph homomorphism X=G ! Y=G after restricting to an invariant dense

Gı set. This perspective allows us to give a short conceptual proof of Hjorth’s

turbulence theorem, avoiding the substantial amount of bookkeeping of Hjorth’s

original argument [15]; see also [11, Chapter 10].

The second goal of this paper is to use the above-mentioned game-theoretic ap-

proach to address Problem 1.1 for the class of CLI groups. Recall that a CLI group

is a Polish group that admits a compatible complete left-invariant metric. Every

locally compact group, as well as every solvable Polish group—in particular, ev-

ery abelian Polish group—is CLI [17, Corollary 3.7]. This class of groups has
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been considered in several papers so far. For instance, [3, Corollary 5.C.6] settled

the topological Vaught conjecture for CLI groups. It is also proved in [3, Theo-

rem 5.B.2] that CLI groups satisfy an analog of the Glimm-Effros dichotomy. In

[10, Theorem 1.1] it is shown that the non-Archimedean CLI groups are precisely

the automorphism groups of countable structures whose Scott sentence does not

have an uncountable model. The class of CLI groups has been further studied

in [28], where it is shown that it forms a coanalytic non-Borel subset of the class

of Polish groups.

A fundamental tool in the study of dichotomies for orbit equivalence relations

from [3] is the notion of left embeddability, or l-embeddability, for points in a

Polish G-space. We work here with the right variant of left embeddability which

we call Becker embeddability. We prove that a Baire-measurable homomorphism

between orbit equivalence relations necessarily preserves Becker embeddability

on an invariant dense Gı set. From this we extract in Theorem 2.9 a dynamical

condition which answers Problem 1.1 for the class of CLI groups. We then apply

it to show that the Friedman–Stanley jump of equality DC is not Borel reducible

to the orbit equivalence relation induced by a Borel action of a CLI group. The

only proof of this fact that we are aware of relies on meta-mathematical reasoning

and involves the theory of pinned equivalence relations; see [19]. A natural

reduction from this relation to the relations of unitary equivalence of bounded

unitary or selfajdoint operators on an infinite-dimensional Hilbert space, shows

that the latter relations are also not classifiable by the orbits of a CLI group

actions. We note that it is still an open question if an action of the unitary group

can induce an orbit equivalence relation which is universal for orbit equivalence

relations induced by Polish group actions. Our results show that the complexity of

possible orbit equivalence relations of U.H/-actions is not bounded from above

by the complexity of orbit equivalence relations induced by continuous CLI group

actions.

We conclude by discussing how all the results of the present paper admit

natural generalizations from Polish group actions to Polish groupoids. Turbulence

theory for Polish groupoids has been developed in [12]. Applications of this more

general framework to classification problems in operator algebras have also been

presented in [12].

Besides this introduction, the present paper is divided into three sections. In

Section 2 we present the results about Becker-embeddability and CLI groups.

In Section 3 we present the short and conceptual proof of Hjorth’s turbulence

theorem mentioned above. Finally in Section 4 we recall the fundamental notions

about Polish groupoids, and explain how the main results of this paper can be

adapted to this more general setting. In the rest of the paper, we will use the

category quantifier 8�x 2 U for the statement “for a comeager set of x 2 U ”; see

[11, Section 3.2].
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2. Nonreducibility to CLI group actions

2.1. The Becker-embedding game. Recall that a CLI group is a Polish group

that admits a compatible complete left-invariant metric. It is easy to see that a

Polish group is CLI if and only if it admits a compatible complete right-invariant

metric; see [3, 3.A.2. Proposition]. Throughout this section, we will let G be

a Polish group, and X be a Polish G-space. The main goal of this section is to

provide a dynamical criterion for a Polish G-space ensuring that the corresponding

orbit equivalence relation is not Borel reducible to the orbit equivalence relation

induced by a Borel action of a CLI group. A characterization of CLI groups

in terms of tameness of the corresponding orbit equivalence relations has been

obtained in [36].

The notion of l-embeddability for points of X has been introduced in [3,

Definition 3.D.1]. Recall that a sequence .gn/ in G is Cauchy with respect to

some left-invariant metric on G if and only if it is Cauchy with respect to every

left-invariant metric on G [3, Proposition 3.B.1]. If this holds, we say that .gn/ is

left Cauchy. We define when .gn/ is right Cauchy in a similar way, by replacing

left-invariant metrics with right-invariant metrics.

Definition 2.1. Fix x; y 2 X . We say that x is l-embeddable into y if there

exists a left Cauchy sequence .hn/n2! in G such that hnx ! y. We say that x is

r-embeddable into y if there exists a right Cauchy sequence .hn/n2! in G such

that hny ! x.

In the rest of the paper, we will focus on the notion of r-embeddability. Similar

results can be proved for l-embeddability. It is easy to see as in the proof of [3,

Proposition 3.D.4] that the relation of r-embeddability is a preorder. Furthermore,

if x is r-embeddable into y, x0 belongs to the G-orbit of x, and y0 belongs to the

G-orbit of y, then x0 is r-embeddable into y0.

We now consider a natural game between two players, and show that it captures

the notion of r-embeddability from Definition 2.1. A natural variation of the same

game captures the notion of l-embeddability.

Definition 2.2. Suppose that X is a Polish G-space, and x; y 2 X . We consider

the Becker-embedding game Emb.x; y/ played between two players as follows.

Set U0 D X and V0 D G.
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(1) In the first turn, Player I plays an open neighborhood U1 of x, and an open

neighborhood V1 of the identity of G. Player II replies with an element g0 in

V0.

(2) In the second turn, Player I then plays an open neighborhood U2 of x, and

an open neighborhood V2 of the identity of G, and Player II replies with an

element g1 in V1.

(n) At the n-th turn, Player I plays an open neighborhood Un of x, and an open

neighborhood Vn of the identity of G, and Player II responds with an element

gn�1 in Vn�1.

The game proceed in this way, producing a sequence .gn/ of elements of

G, a sequence .Un/ of open neighborhoods of x in X , and a sequence .Vn/ of

open neighborhoods of the identity in G. Player II wins the game if for every

n > 0, gn�1 : : : g0y 2 Un. We say that x is Becker embeddable into y—and write

x 4B y—if Player II has a winning strategy for the game Emb.x; y/.

Lemma 2.3. If Player II has a winning strategy for the Becker-embedding game as

described in Definition 2.2, then it also has a winning strategy for the same game

with the additional winning conditions that gn belongs to some given comeager

subset V �
n of Vn, and gn�1 : : : g0y belongs to some given comeager subset X0 of

X , provided that the set of g 2 G such that gy 2 X0 is comeager.

Proof. Suppose that Player II has a winning strategy for the Becker-embedding

game Emb.x; y/. The strategy consists of one function gn.U1; : : : ; UnC1; V1; : : : ;

VnC1/ for every n � 0, where U0; : : : ; UnC1 are open neighborhoods of x and

V1; : : : ; Vn are open neighborhoods of the identity in G. Since the strategy is

winning, one has that gn�1 : : : g0y 2 Un and gn 2 Vn for every n � 0.

Let us consider now a run of the game Emb.x; y/. Suppose that Player I at

turn 1 plays open sets U1; V1. Consider an open neighborhood zV1 of 1 such that
zV1

zV1 � V1. Let g0

0 WD g0.U1; zV1/ obtained by applying the given winning strategy

of Player II. Using the assumption in the statement of the lemma we can find

"0 2 G such that the following conditions are satisfied:

� "�1
0 2 zV1;

� "0g0

0 2 V �

0 ;

� "0g0

0y 2 X0 \ U1.

We can then define Qg0 WD "0g0

0. Observe that Qg0 2 V �

0 and Qg0y 2 X0 \ U1.

Suppose inductively that in the first n turns of the game Player I has played open

sets U1; V1; : : : ; Un; Vn. Consider the elements g0

i WD gi .U1; : : : ; UiC1; zV1; : : : ;
zViC1/ of G for i 2 ¹0; 1; : : : ; n � 1º produced by applying the original strategy

for Player II, where zVi is an open neighborhood of the identity in G such that
zVi

zVi � Vi for i 2 ¹1; 2; : : : ; nº. We suppose furthermore that we have defined
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"0; : : : ; "n�1; Qg0; : : : ; Qgn�1 2 G are such that the following conditions are satisfied

for every i 2 ¹0; 1; : : : ; n � 1º:

� "�1
i 2 zViC1;

� "ig
0

i 2 V �

i ;

� "ig
0

i g
0

i�1 : : : g0

0y 2 X0 \ UiC1;

� Qgi D "igi "
�1
i�1 where "�1 D 1.

Suppose that Player I plays open sets UnC1; VnC1 at turn n. Consider then

g0
n WD gn.U1; : : : ; UnC1; zV1; : : : ; zVnC1/ obtained by applying the original winning

strategy of Player II. Thus we have that g0
n : : : g0

0y 2 X0 \UnC1 and that g0
n"�1

n�1 2
zVn

zVn � VnC1. By applying the assumption in the statement of the lemma we can

find "n 2 G such that the following conditions are satisfied:

� "�1
n 2 zVnC1;

� "ng0
n"�1

n�1 2 V �
n ;

� "ng0
n : : : g0

0y 2 X0 \ UnC1.

We then set Qgn WD "ng0
n. Observe that Qgn 2 V �

n and Qgn Qgn�1 : : : Qg0y D
"ngn : : : g0y 2 X0 \ UnC1.

It is clear from the construction that setting Qgn WD gn.U1; : : : ; Un; V1; : : : ; Vn/

gives a new winning strategy for Player II which satisfies the required additional

conditions. �

We now show that the notion of Becker-embeddability from Definition 2.2 is

actually equivalent to the notion of r-embeddability from Definition 2.1.

Lemma 2.4. Let X be a Polish G-space. If x; y are points of X , then the following

statements are equivalent:

(1) x 4B y;

(2) x is r-embeddable in y.

Proof. We fix a right-invariant metric d on G. For a subset A of G we let diam.A/

be the diameter of A with respect to d .

(1) H) (2) Suppose that Player II has a winning strategy for the Becker-

embedding game Emb.x; y/. Let Player I play a sequence .Un/ which forms a

basis of open neighborhoods of x and a sequence .Vn/ which forms a basis of

symmetric open neighborhoods of the identity of G with diam.Vn/ < 2�n. Let

.gn/n2! be the sequence of elements of G given by a winning strategy for Player II.

Then the sequence .hn/n2! obtained by setting hn WD gn : : : g0 is d -Cauchy, and

hny ! x.
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(2) H) (1) Suppose that there exists a d -Cauchy sequence .hn/n2! in G such

that hny ! x. We describe a winning strategy for Player II. Set h�1 WD 1. Suppose

that in the first turn Player I plays an open neighborhood U1 of x and an open

neighborhood V1 of the identity of G. Player II replies with g0 WD hk0
, where

k0 2 ! is such so that:

(1) hkh�1
k0

2 V1 for all k � k0, and

(2) hk0
y 2 U1.

The first condition is satisfied by a large enough k0 2 ! because .hn/n2! is

d -Cauchy. The second condition is satisfied by a large enough k0 2 ! because

hnx ! y. Suppose that in the n-turn Player I plays an open neighborhood Un of

x and an open neighborhood Vn of the identity in G. Inductively, assume also that

gn�2 is of the form hkn�2
h�1

kn�3
for some kn�2 2 ! such that hkh�1

kn�2
2 Vn�1 for

all k � kn�2. Player II replies with gn�1 WD hkn�1
h�1

kn�2
, where kn�1 2 ! is such

that:

(1) hkh�1
kn�1

2 Vn for all k � kn�1, and

(2) hkn�1
y 2 Un.

Again, our assumptions on the sequence .hn/n2! guarantee that a large enough

kn�1 2 ! satisfies both these conditions. Then we have that gn�1 2 Vn�1 by

the inductive assumption on kn�2. Therefore this procedure describes a winning

strategy for Player II in the Becker-embedding game Emb.x; y/. �

We let X=G be the space of G-orbits of points of X . The Becker-embeddability

preorder defines a directed graph structure on X=G obtained by declaring that

there is an arrow from the orbit Œx� of x to the orbit Œy� of y if and only if

x 4B y. We will call this the Becker digraph B.X=G/ of the Polish G-space X .

Similarly, for a G-invariant subset X0 of X we let B.X0=G/ the induced subgraph

of B.X=G/ only containing vertices corresponding to orbits from X0. Suppose

that G; H are Polish groups, X is a Polish G-space, and Y is a Polish H -space.

Any .EX
G ; EY

H /-homomorphism f W X ! Y induces a function Œf �W X=G ! Y=H ,

Œx� 7! Œf .x/�. We will show below that, when f is Baire-measurable, such

a function is generically a digraph homomorphism with respect to the Becker

digraph structures on X=G and Y=H .

We now describe the notion of Becker-embedding in case of Polish G-spaces

arising from classes of countable models. Suppose that L D .Ri /i2I is a count-

able first order relational language, where Ri is a relation symbol with arity ni .

Let Mod.L/ be the space of countable L-structures having N as support, F be

a countable fragment of L!1;! , and S1 be the group of permutations of N. As

usual, one can regard Mod.L/ as the product
Q

i2I 2.Nni /. Any L!1;! formula

'.x1; : : : ; xn/ defines a function Œ'�W Mod.L/ ! ¹0; 1ºN
n

given by its interpre-

tation. A set F of L!1;! formulas defines a topology tF on Mod.L/, which is
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the weakest topology that makes the functions Œ'� for ' 2 F continuous. The

canonical action S1 Õ Mod.L/ turns .Mod.L/; tF / into a Polish G-space. If

x; y 2 Mod.L/, then we have that x 4B y if and only if there exists an injective

function f WN ! N that represents an F -embedding from x to y, in the sense that

f preserves the value of formulas ' in F with parameters. In the particular case

when F is the collection of atomic first-order formulas, the topology tF coincides

with the product topology, and an F -embedding is the same as an embedding as

L-structure. When F is the collection of all first-order formulas, an F -embedding

is an elementary embedding. It is shown in [3, Proposition 2.D.2], in the case

when F is a fragment in the sense define therein, that the same conclusions holds

for l-embeddability.

2.2. The orbit continuity lemma. Recall that if E; F are equivalence relations

on Polish spaces X; Y respectively, then a .E; F /-homomorphism is a function

f W X ! Y mapping E-classes to F -classes. In this subsection we isolate a lemma

to be used in the rest of the paper. It states that a Baire-measurable homomorphism

between orbit equivalence relations admits a restriction to a dense Gı set which is

continuous at the level of orbits, in a suitable sense. Variations of such a lemma

are well known. The starting point is essentially [15, Lemma 3.17] modified as in

the beginning of the proof of [15, Theorem 3.18]; see also [11, Lemma 10.1.4 and

Theorem 10.4.2].

Lemma 2.5. Suppose that G; H are Polish groups, X is a Polish G-space, and

Y is a Polish H -space. Let f W X ! Y be a Baire-measurable .EX
G ; EY

H /-

homomorphism. Then there exists a dense Gı subset C of X such that

� the restriction of f to C is continuous;

� for any x 2 C , ¹g 2 GW gx 2 C º is a comeager subset of G;

� for any x0 2 C and for any open neighborhood W of the identity in H there

exists an open neighborhood U of x0 and an open neighborhood V of the

identity of G such that for any x 2 U \ C and for a comeager set of g 2 V ,

one has that f .gx/ 2 Wf .x/ and gx 2 C .

Proof. Fix a neighborhood W0 of the identity in H . We first prove the following

claim: for all x0 2 X 8�g0 2 G, there is an open neighborhood V of the identity

in G such that 8�g1 2 V , f .g1g0x0/ 2 W0f .g0x0/.

Fix a neighborhood W of the identity of H such that W W �1 � W0. Let .hn/

be a sequence in H such that ¹W hnW n 2 Nº is a cover of H . Since W hnf .x0/ is

analytic, the set of elements x of the orbit of x0 such that f .x/ 2 W hnf .x0/ has

the Baire property. Therefore we can find a sequence .On/ of open subsets of G

with dense union O and a comeager subset D of O such that for all g 2 D \ On,

f .gx0/ 2 W hnf .x0/. Suppose now that g0 2 D. Let n 2 N be such that g0 2 On.

Then there exists a neighborhood V of the identity of G such that Vg0 � On.
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Observe that .D\On/g�1
0 \V is a comeager subset of V . If g1 2 .D\On/g�1

0 \V ,

then we have

f .g1g0x0/ 2 W hnf .x0/ and f .g0x0/ 2 W hnf .x0/.

Therefore

f .g1g0x0/ 2 W W �1f .g0x0/ � W0f .g0x0/.

This concludes the proof of the claim.

From the claim and the Kuratowski–Ulam theorem, one deduces that there

exists a dense Gı subset C0 of X such that for every x 2 C0 there exists an open

neighborhood V of the identity of G such that for all 8�g 2 V , f .gx/ 2 Wf .x/.

Since f is Baire-measurable, we can furthermore assume that the restriction of f

to C0 is continuous.

Fix now a countable basis .Wk/ of open neighborhoods of the identity of

H and a countable basis .Vn/ of open neighborhoods of the identity in G. Let

N W X � N ! N [ ¹1º be the function that assigns to .x; k/ the least n 2 N such

that 8�g 2 Vn, f .gx/ 2 Wkf .x/ if such an n exists and x 2 C0, and 1 otherwise.

Then N is an analytic function, and hence one can find a dense Gı subset C1 of

X contained in C0 such that N jC1�N is continuous. By [11, Proposition 3.2.5 and

Theorem 3.2.7] the set C WD ¹x 2 C1W 8�g 2 G; gx 2 C1º is a dense Gı subset of

X such that for all x 2 C and 8�g 2 G, gx 2 C . Therefore C satisfies the desired

conclusions. �

2.3. Generic homomorphisms between Becker graphs. In this section we use

the Becker-embedding game and the orbit continuity lemma to address Problem 1.1

for the class of CLI groups.

Definition 2.6. An equivalence relation E on a Polish space X is CLI-classifiable

if it is Borel reducible to EY
H for some CLI group H and Polish H -space Y .

We will obtain below an obstruction to CLI-classifiability in terms of the

Becker digraph. This will be based upon the following properties of the Becker

digraph:

(1) the Becker digraph contains only loops in the case of CLI group actions

(Lemma 2.7), and

(2) a Baire-measurable homomorphism between orbit equivalence relations in-

duces, after restricting to an invariant dense Gı set, a homomorphism at the

level of Becker digraphs (Proposition 2.8).

Lemma 2.7. If Y is a Polish H -space and H is a CLI group, then the Becker

digraph B.Y=H/ contains only loops.
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Proof. Fix a compatible complete right-invariant metric d on H . For a subset A

of H we let diam.A/ be the diameter of A with respect to d . Let x; y be elements

of Y with different H -orbits. We show that Player I has a winning strategy in

Emb.x; y/. In the n-th round Player I plays some symmetric open neighborhood

VnC1 of the identity of H with diam.VnC1/ < 2�n and an open neighborhood

Un of x such that the sequence .Un/ forms a decreasing basis of neighborhoods

of x. Let .gn/ be the sequence of group elements chosen by Player II, and set

hn WD gn : : : g0. We claim that such a sequence does not satisfy the winning

condition for Player II in the Becker-embedding game. Suppose by contradiction

that this is the case, and hence limn hny D x. For every n > m we have by right

invariance of d that

d.hn; hm/ D d.gn : : : gmC1; 1/ � d.gn; 1/Cd.gn�1; 1/C� � �Cd.gmC1; 1/ < 2�m.

Therefore hn is a d -Cauchy sequence with respect to d . Since by assumption d is

complete, hn converges to some h 2 H . From limn hny D x and continuity of the

action, we deduce that hy D x. This contradicts the assumption that the H -orbits

of x and y are different. �

Using the orbit continuity lemma (Lemma 2.5) one can then show that a Baire-

measurable homomorphism preserves Becker embeddability on a comeager set.

This is the content of the following proposition.

Proposition 2.8. Suppose that G; H are Polish groups, X is a Polish G-space,

and Y is a Polish H -space. Let f W X ! Y be a Baire-measurable .EX
G ; EY

H /-

homomorphism. Then there exists a G-invariant dense Gı subset X0 of X such

that the function Œf �W X0=G ! Y=H , Œx� 7! Œf .x/� is a digraph homomorphism

from the Becker digraph B.X0=G/ to the Becker digraph B.Y=G/.

Proof. Let C be a dense Gı subsets of X obtained from f as in Lemma 2.5. Set

X0 WD ¹x 2 X W 8�g 2 G; gx 2 C º, which is a G-invariant dense Gı set by

[11, Proposition 3.2.5 and Theorem 3.2.7]. We claim that Œf �W X0=G ! Y=H ,

Œx� 7! Œf .x/� is a digraph homomorphism from the Becker digraph B.X0=G/ to

the Becker digraph B.Y=G/.

Fix x0; y0 2 X0 such that x0 4B y0. We want to prove that f .x0/ 4B f .y0/.

Observe that 8�g 2 G, gx0 2 C \ X0. Therefore after replacing x0 with gx0

for a suitable g 2 G we can assume that x0 2 C \ X0. Let us consider the

Becker-embedding game Emb.f .x0/; f .y0//. At the same time we consider the

Becker-embedding game Emb.x0; y0/ and use the fact that Player II has a winning

strategy for such a game.

In the first turn of Emb.f .x0/; f .y0//, Player I plays an open neighborhood
yU1 of f .x0/ and an open neighborhood yV1 of the identity of H . Consider an

open neighborhood U1 of x0 and an open neighborhood V1 of the identity of G

such that for any x 2 U1 \ C \ X0 and a comeager set of g 2 V1 one has that
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f .gx/ 2 yV1f .x/. Consider now the round of the game Emb.x0; y0/ where, in

the first turn, Player I plays the neighborhood U1 of x0 and the neighborhood

V1 of the identity of G. Since by assumption Player II has a winning strategy

for Emb.x0; y0/, we can consider an element g0 of V1 which is obtained from

such a winning strategy. By Lemma 2.3, we can also insist that g0 belongs to the

comeager set of g 2 V1 such that gy0 2 U1 \ C \ X0 and f .gy0/ 2 yV1f .x/.

We can then let Player II play, in the first turn of the game Emb.f .x0/; f .y0//, an

element h0 of yV1 such that f .g0y0/ D h0f .y0/.

At the n-th turn of Emb.f .x0/; f .y0//, Player I plays an open neighborhood
yUn of f .x0/ and an open neighborhood yVn of the identity of H . Consider now

an open neighborhood Un of x0 and an open neighborhood Vn of the identity of

G such that for any x 2 Un \ C \ X0 and a comeager set of g 2 Vn one has

that f .gx/ 2 yVnf .x/. Let Player I play, in the n-turn of Emb.x0; y0/, the open

neighborhoods Un of x0 and Vn of the identity of G. Let gn�1 2 Vn be obtained

from a winning strategy for Player II. By Lemma 2.3 we can insist that gn�1

belongs to the comeager set of g 2 Vn such that ggn�2 : : : g1g0y 2 Un \ C \ X0

and f .gx/ 2 yV1f .x/. Therefore we can let Player II play, in the n-th turn of the

game Emb.f .x0/; f .y0//, an element hn�1 2 yVn�1 such that f .gn�1 : : : g0y/ D

hn�1f .gn�1 : : : g0y/ D hn�1 : : : h0y 2 yUn. Such a construction witness that

Player II has a winning strategy for the game Emb.f .x0/; f .y0//. �

From Lemma 2.7 and Proposition 2.8 one can immediately deduce the follow-

ing criterion to show that the orbit equivalence relation of a Polish group action

is not Borel reducible to the orbit equivalence relation of CLI group action.

Theorem 2.9. Suppose that X is a Polish G-space. If for any G-invariant dense

Gı subset C of X there exist x; y 2 C with different G-orbits such that x 4B y,

then for any G-invariant dense Gı subset C of X the relation EX
C is not CLI-

classifiable.

Proof. Suppose that H is a CLI group, and Y is a Polish H -space. Suppose that

D is a G-invariant dense Gı subset of X , and f W D ! Y is a Borel .ED
G ; EY

H /-

homomorphism. Then by Proposition 2.8 there exists a G-invariant dense Gı

subset C of D such that Œf �W C=G ! Y=H is a digraph homomorphisms for the

Becker digraphs B.C=G/ and B.Y=H/. By assumption there exist elements x; y

of C with different G-orbits such that x 4B y. Therefore f .x/ 4B f .y/. Since

H is CLI we have by Lemma 2.7 that f .x/ and f .y/ belong to the same H -orbit.

Therefore f is not a reduction from ED
G to EY

H . �

2.4. Applications. Suppose that E is an equivalence relation on a Polish space

X . Recall that the Friedman–Stanley jump EC of E [11, Definition 8.3.1]—see

also [9]—is the equivalence relation on the standard Borel space XN of sequences
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of elements of X defined by .xn/EC.yn/ if and only if ¹Œxn�E W n 2 Nº D ¹Œyn�E W

n 2 Nº.

In particular one can start with the relation D of equality on a perfect Polish

space X . The corresponding Friedman–Stanley jump is the relation DC on X!

defined by .xn/ DC .yn/ if and only if the sequences .xn/ and .yn/ have the same

range. With respect to Borel reducibility, DC is the most complicated (essentially)

…
0
3 equivalence relation [11, Theorem 12.5.5]; see also [16].

Hjorth has proven in [14, Theorem 5.19] that DC is not Borel reducible to the

orbit equivalence relation of a continuous action of an abelian Polish group. As

remarked in [14, page 663], Hjorth’s proof uses a metamathematical argument

involving forcing and Stern’s absoluteness principle . Similar methods are used in

[19, Theorem 17.1.3] to prove that DC is not Borel reducible to the orbit equivalence

relation of a Borel action of a CLI group. This is obtained as a consequence of a

general result concerning pinned equivalence relations; see [19, Definition 17.1.2].

To our knowledge, the argument below provides the first entirely classical proof

of this result.

Let � W XN ! XN be the unilateral shift .x1; x2; : : :/ 7! .x2; x3; : : :/. We

consider the restriction of DC to the dense Gı subset Y of XN that consists of

injective sequences. Observe that this is the orbit equivalence relation of the

canonical action of S1 on XN obtained by permuting the indices.

Theorem 2.10. Let Z � Y be a nonempty S1-invariant Gı set such that �ŒZ� D
Z. The restriction of DC to any S1-invariant dense Gı subset of Z is not Borel

reducible to a Borel action of a CLI group on a standard Borel space.

Proof. Let E be the restriction of DC to Z. As observed before, E is the orbit

equivalence relation of the canonical action S1 Õ Z � Y � XN given by

permuting the coordinates. We apply Proposition 2.9. Let C be an S1-invariant

dense Gı subset of Z. We need to prove that there exist x; y 2 C with different

orbits such that x 4B y. For x D .xn/ 2 Y we let Ran.x/ be the set ¹xnW n 2 Nº.

It is not difficult to see that, for x; y 2 Y , x 4B y if and only if Ran.x/ � Ran.y/.

Observe that � W Z ! Z is continuous, open, and surjective. Therefore, since C

is a dense Gı subset of Z, we have that there exists a comeager subset C0 of C

such that, for every x 2 C0, ��1.x/ \ C is a comeager subset of ��1.x/; see [29,

Theorem A.1]. Pick now x 2 C0 and y 2 ��1.x/ \ C . It is clear that x 4B y and

x; y lie in different S1-orbits. This concludes the proof. �

We now apply Theorem 2.10 to obtain information about the orbit equivalence

relation of some canonical actions of the unitary group U.H/. Let H be the

separable infinite-dimensional Hilbert space, and let U.H/ be the group of unitary

operators on H. This is a Polish group when endowed with the weak operator

topology; see [5, Proposition I.3.2.9]. The group U.H/ admits an action by

conjugation on itself and on the space B.H/sa of selfadjoint operators.
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Theorem 2.11. The following relations are not Borel reducible to a Borel action

of a CLI group on a standard Borel space:

(1) unitary equivalence of unitary operators;

(2) unitary equivalence of selfadjoint operators.

Proof. As in Theorem 2.10 we consider the equivalence relation DC on the set

XN of sequences of elements of a perfect Polish space X . Fix an orthonormal

basis .en/ of H. Let X be the circle group T, and Y � T
N be the set of injective

sequences. The map f W Y ! U.H/ which sends an element .�n/ 2 Y to the

unitary operator

.en/ 7�! .�nen/

is a Borel reduction from DC jY to unitary equivalence of unitary operators. The

proof of selfadjoint operators is the same, where one replaces T with Œ0; 1�. �

3. A game-theoretic approach to turbulence

3.1. Hjorth’s turbulence theory. Suppose that L D .Ri /i2I is a countable first

order relational language, where Ri is a relation symbol with arity ni . We denote

as above by Mod.L/ the Polish S1-space of L-structures with support N. Recall

that a Polish group G is called non-Archimedean if it admits a neighborhood basis

of the identity of open subgroups or, equivalently, it is isomorphic to a closed

subgroup of S1; see [4, Theorem 1.5.1]. A relation E is classifiable by countable

structures if it is Borel reducible to the isomorphism relation in Mod.L/ for some

countable first order relational language L. This is equivalent to the assertion that

E is Borel reducible to the orbit equivalence relation of a Borel action of a non-

Archimedean Polish group G on a standard Borel space by [4, Theorem 5.1.11] and

[11, Theorem 3.5.2, Theorem 11.3.8].

Turbulence is a dynamical condition on a Polish G-space X which is an

obstruction of classifiability of EX
G by countable structures. We now recall here

the fundamental notions of the theory of turbulence, developed by Hjorth in [15].

Suppose that X is a Polish G-space, x 2 X , U is a neighborhood of x, and V

is a neighborhood of the identity in G. The local orbit O.x; U; V / is the smallest

subset of U with the property that x 2 O.x; U; V /, and if g 2 V , x 2 O.x; U; V /,

and gx 2 U , then gx 2 O.x; U; V /. A point x 2 X is called turbulent if it has

dense orbit and, for any neighborhood U of x and neighborhood V of the identity

in G, the closure of O.x; U; V / is a neighborhood of x. A Polish G-space X is

preturbulent if every point x 2 X is turbulent, and turbulent if every point x 2 X

is turbulent and has meager orbit.

An equivalence relation E on a Polish space X is generically S1-ergodic

if, for any Polish S1-space Y and Baire-measurable .E; EY
S1

/-homomorphism,

there exists a comeager subset of X that is mapped by f to a single S1-orbit.
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By [11, Theorem 3.5.2, Theorem 11.3.8], this is equivalent to the assertion that, for

any non-Archimedean Polish group H , Polish H -space Y , and Baire measurable

.E; EY
H /-homomorphisms, there exists a comeager subset of X that is mapped by

f to a single H -orbit. The following is the main result in Hjorth’s turbulence

theory, providing a dichotomy for preturbulent Polish G-spaces.

Theorem 3.1 (Hjorth). Suppose that X is a preturbulent Polish G-space. Then

the associated orbit equivalence relation EX
G is generically S1-ergodic. In par-

ticular, either X has a dense Gı orbit, or the restriction of EX
G to any comeager

subset of X is not classifiable by countable structure.

In this section, for each Polish G-space X , we define a graph structureH.X=G/

with domain the quotient X=G D ¹Œx�W x 2 Xº of X via the action of G. We call

this the Hjorth graph associated with the G-space X . An (induced) subgraph of

H.X=G/ is of the form H.C=G/, where C is an invariant subset of X . We view

Hjorth’s turbulence theorem as a corollary of the following facts:

(1) H.X=G/ contains only loops if G is non-Archimedean;

(2) H.X=G/ is a clique if the action of G on X is preturbulent;

(3) given a Polish G-space X and a Polish H -space Y , a Baire measurable

.EX
G ; EY

H /-homomorphism f induces, after restricting to an invariant dense

Gı set, a graph homomorphism between the corresponding Hjorth graphs.

3.2. The Hjorth-isomorphism game. We start by defining a game associated

with points of a given Polish G-space, which captures isomorphism in the case of

Polish S1-spaces.

Definition 3.2. Suppose that X is a Polish G-space, and x; y 2 X . We consider

the Hjorth-isomorphism game Iso.x; y/ played between two players as follows.

Set x0 WD x, y0 WD y, U
y
0 WD X , and V

y
0 D G.

.1/ In the first turn, Player I plays an open neighborhood U x
0 of x0 and an

open neighborhood V x
0 of the identity in G. Player II replies with an

element g
y
0 in G.

.2/ In the second turn, Player I then plays an open neighborhood U
y
1 of

y1 WD g
y
0 y0 and an open neighborhood V

y
1 of the identity of G, and

Player II replies with an element gx
0 in G.

.2n C 1/ At the .2n C 1/-st turn, Player I plays an open neighborhood U x
n of

xn WD gx
n�1xn�1 and an open neighborhood V x

n of the identity of G,

and Player II responds with an element g
y
n of G.

.2n C 2/ At the .2n C 2/-nd turn, Player I plays an open neighborhood U
y
nC1 of

ynC1 WD g
y
n yn and an open neighborhood V

y
nC1 of the identity of G, and

Player II responds with an element gx
n of G.
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The game proceed in this way, producing sequences .xn/ and .yn/ of elements

of X , sequences .gx
n/ and .g

y
n / of elements of G, sequences .U x

n / and .U
y
n / of

open subsets of X , and sequences .V x
n / and .V

y
n / of open neighborhoods of the

identity in G. Player II wins the game if, for every n � 0,

� ynC1 2 U x
n and xn 2 U

y
n ,

� g
y
n D hk : : : h0 for some k � 0 and h0; : : : ; hk 2 V

y
n such that hi : : : h0yn 2

U
y
n for i � k,

� gx
n D hk : : : h0 for some k � 0 and h0; : : : ; hk 2 V x

n such that hi : : : h0xn 2

U x
n for i � k.

We write x �H y and we say that x; y are Hjorth-isomorphic if Player II has

a winning strategy for the Hjorth game H.x; y/.

Remark 3.3. If Player II has a winning strategy for the Hjorth game as described

above, then it also has a winning strategy for the same game with the additional

winning conditions that gx
n D hk : : : h0 for some h0; : : : ; hk from a given comeager

subset of V x
n such that hi : : : h0xn belongs to a given comeager subset X0 of X for

i D 0; : : : ; k, provided that the set of h 2 G such that hx 2 X0 is comeager.

Similarly one can add the winning conditions that g
y
n D hk : : : h0 for some

h0; : : : ; hk from a given comeager subset of V
y

n such that hi : : : h0yn belongs to a

given comeager subset X0 of X , provided that the set of h 2 G such that hy 2 X0

is comeager. This can be proved similarly to Lemma 2.3 using the following

version of the Kuratowski–Ulam theorem: suppose that X; Y are Polish spaces

and f W X ! Y is a continuous open map. Then a Baire-measurable subset A of

X is comeager if and only if the set ¹y 2 Y W A \ f �1¹yº is comeager in f �1¹yºº
is comeager; see [29, Theorem A.1]. One can then apply this fact to the continuous

and open map G � X ! X , .g; x/ 7! gx.

The relation �H is an equivalence relation on X which we call Hjorth isomor-

phism. It is clear that Hjorth isomorphism is a coarsening of the orbit equivalence

relation EG on G. Furthermore if x �H y, x0 belongs to the G-orbit of x, and y0

belongs to the G-orbit of y, then x0 �H y0. Let as before X=G be the space of

G-orbits of elements of X . The Hjorth-graph H.X=G/ associated with the Polish

G-space X is symmetric, reflexive graph on X=G given by declaring that there ex-

ists an edge between the orbit Œx� of x and the orbit Œy� of y if and only if x �H y.

We call H.X=G/ the Hjorth graph associated with the Polish G-space X . One

can similarly define the Hjorth graph H.C=G/ for any invariant subset C of X .

A comeager subgraph G of H.X=G/ is a graph of the form H.C=G/, for some

invariant comeager subset C of X .

3.3. Generic homomorphisms between Hjorth graphs. We now proceed to

the proof of the properties of Hjorth graphs stated at the end of Subsection 3.1.
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In the following, for a subset V of G and k 2 N let V k be the set of elements of

G that can be written as the product of k elements from V .

Lemma 3.4. Suppose that H is a non-Archimedean Polish group, and Y is a

Polish H -space. Then the Hjorth graph H.Y=H/ contains only loops.

Proof. Suppose that G is a non-Archimedean Polish group. Fix a compatible

complete metric d on X , and a compatible complete metric dG on G. We denote

by diam.A/ the diameter of a subset A of X with respect to the metric d , and

by cl.A/ the closure of A. Suppose that Player II has a winning strategy for the

Hjorth-isomorphism game Iso.x; y/. We want to show that x and y belong to the

same orbit. This can be seen by letting Player I play open subsets U x
n and U

y
n of X

such that cl.U
y
nC1/ � U x

n , cl.U x
n / � U

y
n , diam.U x

n / � 2�n, diam.U
y
nC1/ � 2�n,

and open subgroups V x
n and V

y
n of G such that

V x
n � ¹g 2 GW dG.ggx

n�1 : : : gx
0 ; gx

n�1 : : : gx
0 / < 2�nº;

V y
n � ¹g 2 GW dG.gg

y
n�1 : : : g

y
0 ; g

y
n�1 : : : g

y
0 / < 2�nº.

Let then .xn/ and .yn/ be the sequences of elements of X and .gx
n / and .g

y
n / be the

sequences of elements of G obtained from the corresponding round of the Hjorth

game. Then the assumptions on U x
n and U

y
n guarantee that the sequences .xn/ and

.yn/ converge to the same point z of X . The assumptions on V x
n and V

y
n guarantee

that the sequences .gx
ngx

n�1 : : : gx
0 /n2! and .g

y
ng

y
n�1 : : : g

y
0 /n2! converge in H to

elements gx
1

and g
y
1 such that gx

1
x D z and g

y
1y D z. This shows that x and y

belong to the same orbit. �

Lemma 3.5. Suppose that X is a preturbulent Polish G-space. Then the Hjorth

graph H.X=G/ is a clique.

Proof. Suppose that X is a preturbulent Polish G-space. Fix x; y 2 X . We want to

prove that Player II has a winning strategy for the Hjorth game H.x; y/. We begin

with a preliminary observation. Suppose that z 2 X , U is an open neighborhood

of z, and V is an open neighborhood of the identity in G. Let I.z; U; V / be the

interior of the closure of the local orbit O.z; U; V /. Since z is turbulent, I.z; U; V /

contains z. It is not difficult to see that, for any w 2 I.z; U; V /, the local orbit

O.w; I.z; U; V /; V / is dense in I.z; U; V /. We use this observation to conclude that

Player II has a winning strategy, which we proceed to define. As in the definition of

the Hjorth game, we let x0 D x, y0 D y, U
y
0 D X , and V

y
0 D G. At the .2n C 1/-

st turn Player II plays an element g
y
n D hk : : : h0 2 .V

y
n /k for some k � 1 such

that ynC1 D g
y
n yn 2 I.xn; U x

n ; V x
n / and hi : : : h0yn 2 U

y
n for i � k, while at the

.2nC2/-nd turn Player II plays an element gx
n D hk : : : h0 2 .V x

n /k for some k � 1

such that xnC1 D gx
nxn 2 I.ynC1; U

y
nC1; V

y
nC1/ and hi : : : h0xn 2 U x

n for i � k.

Such a choice is possible at the 1-st turn since y has dense orbit. It is possible
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at the .2n C 2/-nd turn (n � 0) since ynC1 2 I.xn; U x
n ; V x

n / and for every w 2

I.xn; U x
n ; V x

n / the local orbit O.w; I.xn; U x
n ; V x

n /; V x
n / is dense in I.xn; U x

n ; V x
n /.

It is possible at the .2n C 1/-st turn (n � 1) since xn 2 I.yn; U
y
n ; V

y
n / and

for any w 2 I.yn; U
y
n ; V

y
n / the local orbit O.w; I.yn; U

y
n ; V

y
n /; V

y
n / is dense in

I.yn; U
y
n ; V

y
n /. This concludes the proof that Player II has a winning strategy for

the Hjorth game H.x; y/. �

Proposition 3.6. Suppose that G; H are Polish groups, X is a Polish G-space,

and Y is a Polish H -space. If f is a Baire-measurable .EX
G ; EY

H /-homomorphism,

then there exists a G-invariant dense Gı subset X0 of X such that the function

X0=G ! Y=H , Œx� 7! Œf .x/� is a homomorphism from the Hjorth graph

H.X0=G/ to the Hjorth graph H.Y=H/.

Proof. We proceed as in the proof of Proposition 2.8. Let C be dense Gı subsets

of X obtained from f as in Lemma 2.5. Set X0 WD ¹x 2 X W 8�g 2 G; gx 2 C º,

which is a G-invariant dense Gı set by [11, Proposition 3.2.5 and Theorem 3.2.7].

We claim that X0=G ! Y=H , Œx� 7! Œf .x/� is a graph homomorphism from the

Hjorth graph H.X0=G/ to the Hjorth graph H.Y=H/.

Fix x0; y0 2 X0 such that x0 �H y0. We want to prove that f .x0/ �H f .y0/.

Observe that 8�g 2 G, gx0 2 C \ X0. Therefore after replacing x0 with gx0

for a suitable g 2 G we can assume that x0 2 C \ X0. In this case one can

define, similarly as in the proof of Proposition 2.8, a winning strategy for Player

II for Iso.f .x0/; f .y0// from a winning strategy for Player II for Iso.x0; y0/ using

Remark 3.3 and the choice of C . �

It is now easy to see that Theorem 3.1 is an immediate consequence of

Lemma 3.4 and Lemma 3.5 together with Proposition 3.6.

4. Groupoids

4.1. Polish groupoids. The goal of this section is to observe that the proofs above

apply equally well in the setting of Polish groupoids as introduced in [32, 31, 26].

A groupoid G is a small category where every morphism (also called arrow) is

invertible. By identifying any object with the corresponding identity arrow, one

can regard the set G0 of objects of G as a subset of G. The source and range maps

s; r W G ! G0 assign to every arrow in G its domain (or source) and codomain (or

range). The set G2 of composable arrows is the set of pairs .
; �/ of arrows from G

such that s.
/ D r.�/. Composition of arrows is a function G2 ! G, .
; �/ ! 
�.

If A; B � G, then we denote by AB the set ¹
�W .
; �/ 2 G2 \ .A � B/º. If

x 2 G0 and A � G, then we let Ax WD A¹xº D ¹
 2 GW s.
/ D xº and

xA WD ¹xºA D ¹
 2 GW r.
/ D xº.
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A Polish groupoid is a groupoid G endowed with a topology such that

(1) there exists a countable basis B of Polish open sets,

(2) composition and inversion of arrows are continuous and open,

(3) the sets Gx and xG are Polish subspaces for every x 2 G0, and

(4) the set of objects G0 is a Polish subspace.

A Polish groupoid is not required to be globally Hausdorff. Many Polish

groupoids arising in the applications, such as the locally compact groupoids

associated with foliations of manifolds, are not Hausdorff; see [30, Chapter 2].

Suppose that H is a Polish group. One can associate with any Polish H -space

X a Polish groupoid H Ë X—the action groupoid—that completely encodes the

action. Such a groupoid has the Cartesian product H �X as set of arrows (endowed

with the product topology), and ¹.1H ; x/W x 2 Xº as set of objects. Source and

range maps are defined by s.h; x/ D .1H ; x/ and r.h; x/ D .1H ; hx/. Composition

is given by .h; x/.h0; y/ D .hh0; y/ whenever x D h0y. In this way one can regard

continuous actions of Polish groups on Polish spaces as a particular instance of

Polish groupoids. One can also consider continuous actions of Polish groupoids on

Polish spaces, but these can be in turn regarded as Polish groupoids via a similar

construction as the one described above. The class of Polish groupoids is also

closed under taking restrictions. If X is a Gı subset of the set of objects of a

Polish groupoid G, then the restriction GjX is the collection of arrows of G with

source and range in X , endowed with the induced Polish groupoid structure. More

information about Polish groupoids can be found in [26].

Given a Polish groupoid G, the orbit equivalence relation EG is the equiva-

lence relation on G0 defined by setting xEGy if and only if x; y are source and

range of an arrow from G. The orbit of an object in G is the EG-class of x.

4.2. Turbulence for Polish groupoids. The notion of (pre)turbulence for Polish

groupoid has been considered in [12, Section 4]. Suppose that G is a Polish

groupoid, x is an object of G, and U is a neighborhood of x in G. The local

orbit O.x; U / is the smallest subset of U \G0 with the property that x 2 O.x; U /,

and if 
 2 U is such that s.
/ 2 O.x; U /, then r.
/ 2 O.x; U /. An object x is

called turbulent if it has orbit dense in G0 and, for any neighborhood U of x, the

closure ofO.x; U / is a neighborhood of x in G0. A Polish groupoid is preturbulent

if every object is turbulent, and turbulent if every object is turbulent and has orbit

meager in G0. It is not difficult to see that these definitions are consistent with

the ones for Polish group actions, when a Polish group action is identified with its

associated action groupoid.

Suppose that G is a Polish groupoid, and x; y 2 G0 are two objects of G. The

Hjorth-isomorphism game Iso.x; y/ can be defined similarly as in Definition 3.2.

Set x0 WD x, y0 WD y, U
y
0 D G, and V

y
0 D G. In this case, in the first turn

Player I plays an open neighborhood U x
0 of x0 in G and Player II replies with an
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element 

y
0 of G with s.


y
0 / D y0. In the second turn, Player I plays an open

neighborhood U
y
1 of y1 WD r.


y
0 / in G and an element 
x

0 of G with s.
x
0 / D x0.

At the .2n C 1/-st turn, Player I plays an open neighborhood U x
n of xn WD r.
x

n�1/

in G, and Player II responds with an element 

y
n of G with s.


y
n / D yn. At the

.2n C 2/-nd turn, Player I plays an open neighborhood U
y
nC1 of ynC1 WD r.


y
n / in

G, and Player II responds with an element 
x
n of G.

The game then produces sequences .xn/; .yn/ of objects of G, sequences

.
x
n /; .


y
n / of arrows in G, and sequences .U x

n /; .U
y
n / of open subsets of G. Player

II wins the game if, for every n � 0,

� ynC1 2 U x
n and xn 2 U

y
n ,

� 

y
n D �

y
1 �

y
2 : : : �

y

k
for some k � 1 and �

y
i 2 V x

n for i D 1; 2; : : : ; k, and


x
n D �x

1 : : : �x
k

for some k � 1 and �x
i 2 V

y
n for i D 1; 2; : : : ; k.

As in the case of Polish group actions, this defines an equivalence relation

�H (Hjorth-isomorphism) on the set of objects of G, by letting x �H y when-

ever Player II has a winning strategy for the Hjorth-isomorphism game Iso.x; y/.

Adding to the winning conditions in the Hjorth-isomorphism game the require-

ment that r.
x
n / belongs to a given comeager subset X of G0 and that 
x

n belongs

to a given comeager subset of Gxn yields an equivalent game, provided that the

set of 
 2 Gx such that r.
/ 2 X is comeager. The same applies to y. The

Hjorth-isomorphism relation on G0 defines a graph structure H.G/ on the space

of G-orbits, which we call the Hjorth graph of G. The same proof as Lemma 3.5

shows that if G is a preturbulent Polish groupoid, then the Hjorth graph H.G/ is

a clique. The analogue of Lemma 2.5 for Polish groupoids has been proved in

[12, Lemma 4.5]. Using this one can then prove the analog of Proposition 3.6 and

deduce the following result.

Theorem 4.1. Suppose that G is a preturbulent Polish groupoid. Then the asso-

ciated orbit equivalence relation EG is generically S1-ergodic.

Theorem 4.1 recovers [12, Theorem 4.3], and can be seen as the groupoid

version of Theorem 3.1 for Polish groupoids.

Since the operations in the groupoid G are continuous and open, one can

reformulate the Hjorth-isomorphism game Iso.x; y/ as presented above by letting

Player II play open sets rather than groupoid elements. Fix a countable basis B of

Polish open subsets of G. In this formulation of the game, Player I plays elements

U x
n ; U

y
nC1 of B for n � 0 and player II plays elements W x

n ; W
y

n of B for n � 0.

The winning conditions are then, setting U
y
0 D G,

� rŒW
y

nC1� � U x
n and rŒW x

n � � U
y
n ,

� W
y

n � .U
y
n /k for some k � 1 and W x

n � .U
y
n /k for some k � 1,

� y 2 sŒW
y

n : : : W
y

0 � and x 2 sŒW x
n : : : W x

0 �.
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Such a version of the Hjorth-isomorphism game fits in the framework of Borel

games as described in [21, Section 2.A]. In fact, this is an open game for Player

I and closed for Player II, which allows one to define an !1-valued rank for

strategies of Player I [21, Exercise 20.2]. Insisting that Player I only has winning

strategies of rank at least ˛ 2 !1 (or no winning strategy at all) gives a hierarchy

of equivalence relations �˛ indexed by countable ordinals, whose intersection is

the Hjorth isomorphism relation.

4.3. Becker-embeddings for Polish groupoids. Similarly as for the Hjorth-

isomorphism game, the Becker-embedding game Emb.x; y/ can be defined when-

ever x; y are objects in a Polish groupoid G. This gives a notion of Becker em-

bedding for objects G, by letting x 4B y if and only if Player II has a winning

strategy for Emb.x; y/. In turn this induces a digraph structure B.G/ on the space

of G-orbits.

One can prove the groupoid analog of Proposition 2.8 in a similar fashion, by

replacing Lemma 2.5 with [12, Lemma 4.5]. One can then deduce the following

generalization of Theorem 2.9 to Polish groupoids.

Theorem 4.2. Suppose that G is a Polish groupoid. If for any invariant dense Gı

subset C of G0 there exist x; y 2 C with different orbits such that x 4B y, then

the orbit equivalence relation EG is not CLI-classifiable.

As for the case of the Hjorth-isomorphism game, one can also describe the

Becker-embedding game Emb.x; y/ for objects x; y in a Polish groupoid G as

an open game for Player I and closed for Player II. This allows one to define an

!1-valued rank for strategies for Player I. Again, insisting that Player I only has

winning stategies of rank at least ˛ 2 !1 gives a hierarchy or preorder relations

4˛ indexed by countable ordinals, whose intersection is the Becker-embeddability

preorder.

References

[1] H. Ando and Y. Matsuzawa, On Borel equivalence relations related to self-adjoint

operators. J. Operator Theory 74 (2015), no. 1, 183–194. Zbl 06537823 MR 3383620

[2] H. Ando and Y. Matsuzawa, The Weyl-von Neumann theorem and Borel complexity

of unitary equivalence modulo compacts of self-adjoint operators. Proc. Roy. Soc.

Edinburgh Sect. A 145 (2015), no. 6, 1115–1144. Zbl 1353.47042 MR 3427601

[3] H. Becker, Polish group actions: Dichotomies and generalized elementary embed-

dings. J. Amer. Math. Soc. 11 (1998), no. 2, 397–449. Zbl 0894.03027 MR 1478843

[4] H. Becker and A. S. Kechris, The descriptive set theory of Polish group actions.

London Mathematical Society Lecture Note Series, 232. Cambridge University Press,

Cambridge, 1996. Zbl 0949.54052 MR 1425877

http://zbmath.org/?q=an:06537823
http://www.ams.org/mathscinet-getitem?mr=3383620
http://zbmath.org/?q=an:1353.47042
http://www.ams.org/mathscinet-getitem?mr=3427601
http://zbmath.org/?q=an:0894.03027
http://www.ams.org/mathscinet-getitem?mr=1478843
http://zbmath.org/?q=an:0949.54052
http://www.ams.org/mathscinet-getitem?mr=1425877


Games orbits play and obstructions to Borel reducibility 1481

[5] B. Blackadar, Operator algebras. heory of C �-algebras and von Neumann al-

gebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and

Non-commutative Geometry, III. Springer-Verlag, Berlin, 2006. Zbl 1092.46003

MR 2188261

[6] I. Farah, A dichotomy for the Mackey Borel structure. T. Arai, Q. Feng, B. Kim,

G. Wu and Y. Yang (eds.), Proceedings of the 11 th Asian Logic Conference. (Sin-

gapore, 2009.) World Scientific, Hackensack, N.J., 2012, 86–93. Zbl 1284.03228

MR 2868507

[7] I. Farah, A. S. Toms, and A. Törnquist, Turbulence, orbit equivalence, and the

classification of nuclear C �-algebras. J. Reine Angew. Math. 688 (2014), 101–146.

Zbl 1296.46053 MR 3176617

[8] M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure

preserving transformations. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 3, 277–292.

Zbl 1063.37004 MR 2060477

[9] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable

structures. J. Symbolic Logic 54 (1989), no. 3, 894–914. Zbl 0692.03022 MR 1011177

[10] S. Gao, On automorphism groups of countable structures. J. Symbolic Logic 63

(1998), no. 3, 891–896. Zbl 0922.03045 MR 1649067

[11] S. Gao, Invariant descriptive set theory. Pure and Applied Mathematics (Boca Raton),

293. CRC Press, Boca Raton, FL, 2009. Zbl 1154.03025 MR 2455198

[12] M. Hartz and M. Lupini, The classification problem for operator algebraic varieties

and their multiplier algebras. Trans. Amer. Math. Soc. 370 (2018), no. 3, 2161–2180.

Zbl 06823261 MR 3739205

[13] G. Hjorth, Non-smooth infinite-dimensional group representations. Unpublished

note, 1997.

[14] G. Hjorth, An absoluteness principle for Borel sets. J. Symbolic Logic 63 (1998),

no. 2, 663–693. Zbl 0909.03042 MR 1625891

[15] G. Hjorth, Classification and orbit equivalence relations. Mathematical Surveys

and Monographs, 75. American Mathematical Society, Providence, R.I., 2000.

Zbl 0942.03056 MR 1725642

[16] G. Hjorth, A. S. Kechris, and A. Louveau, Borel equivalence relations induced by

actions of the symmetric group. Ann. Pure Appl. Logic 92 (1998), no. 1, 63–112.

Zbl 0930.03058 MR 1624736

[17] G. Hjorth and S. Solecki, Vaught’s conjecture and the Glimm–Effros property for

Polish transformation groups. Trans. Amer. Math. Soc. 351 (1999), no. 7, 2623–2641.

Zbl 0921.03049 MR 1467467

[18] A. Ioana, A. S. Kechris, and T. Tsankov, Subequivalence relations and positive-

definite functions. Groups Geom. Dyn. 3 (2009), no. 4, 579–625. Zbl 1186.37011

MR 2529949

[19] V. Kanovei, Borel equivalence relations. Structure and classification. Univer-

sity Lecture Series, 44. American Mathematical Society, Providence, R.I., 2008.

Zbl 1155.03035 MR 2441635

http://zbmath.org/?q=an:1092.46003
http://www.ams.org/mathscinet-getitem?mr=2188261
http://zbmath.org/?q=an:1284.03228
http://www.ams.org/mathscinet-getitem?mr=2868507
http://zbmath.org/?q=an:1296.46053
http://www.ams.org/mathscinet-getitem?mr=3176617
http://zbmath.org/?q=an:1063.37004
http://www.ams.org/mathscinet-getitem?mr=2060477
http://zbmath.org/?q=an:0692.03022
http://www.ams.org/mathscinet-getitem?mr=1011177
http://zbmath.org/?q=an:0922.03045
http://www.ams.org/mathscinet-getitem?mr=1649067
http://zbmath.org/?q=an:1154.03025
http://www.ams.org/mathscinet-getitem?mr=2455198
http://zbmath.org/?q=an:06823261
http://www.ams.org/mathscinet-getitem?mr=3739205
http://zbmath.org/?q=an:0909.03042
http://www.ams.org/mathscinet-getitem?mr=1625891
http://zbmath.org/?q=an:0942.03056
http://www.ams.org/mathscinet-getitem?mr=1725642
http://zbmath.org/?q=an:0930.03058
http://www.ams.org/mathscinet-getitem?mr=1624736
http://zbmath.org/?q=an:0921.03049
http://www.ams.org/mathscinet-getitem?mr=1467467
http://zbmath.org/?q=an:1186.37011
http://www.ams.org/mathscinet-getitem?mr=2529949
http://zbmath.org/?q=an:1155.03035
http://www.ams.org/mathscinet-getitem?mr=2441635


1482 M. Lupini and A. Panagiotopoulos

[20] A. S. Kechris and R. Tucker-Drob, The complexity of classification problems in er-

godic theory. In J. Cummings and E. Schimmerling (eds.), Appalachian Set Theory

2006–2012. London Mathematical Society Lecture Note Series 406. Cambridge Uni-

versity Press, Cambridge, 2012, 265–299. Zbl 1367.03082

[21] A. S. Kechris, Classical descriptive set theory. Graduate Texts in Mathematics, 156.

Springer-Verlag, New York, 1995. Zbl 0819.04002 MR 1321597

[22] A. S. Kechris, Actions of Polish groups and classification problems. In C. Finet and

Ch. Michaux (eds.), Analysis and logic. (Mons, 1997.) London Mathematical Society

Lecture Note Series, 262. Cambridge University Press, Cambridge, 2002, 115–187.

Zbl 1022.22003 MR 1967835

[23] A. S. Kechris, Global aspects of ergodic group actions. Mathematical Surveys

and Monographs, 160. American Mathematical Society, Providence, RI, 2010.

Zbl 1189.37001 MR 2583950

[24] D. Kerr, H. Li, and M. Pichot, Turbulence, representations, and trace-preserving

actions. Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 459–484. Zbl 1192.46063

MR 2595746

[25] D. Kerr, M. Lupini, and N. Christopher Phillips, Borel complexity and au-

tomorphisms of C �-algebras. J. Funct. Anal. 268 (2015), no. 12, 3767–3789.

Zbl 1327.46059 MR 3341964

[26] M. Lupini, Polish groupoids and functorial complexity. With an appendix by

A. Tserunyan. Trans. Amer. Math. Soc. 369 (2017), no. 9, 6683–6723. Zbl 06730702

MR 3660238

[27] M. Lupini, Unitary equivalence of automorphisms of separable C �-algebras. Adv.

Math. 262 (2014), 1002–1034. Zbl 1291.03088 MR 3228448

[28] M, Malicki, On Polish groups admitting a compatible complete left-invariant metric.

J. Symbolic Logic 76 (2011), no. 2, 437–447. Zbl 1221.03045 MR 2830410

[29] J. Melleray and T. Tsankov, Generic representations of abelian groups and extreme

amenability. Israel J. Math. 198 (2013), no. 1, 129–167. Zbl 1279.43002 MR 3096634

[30] Alan L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras.

Progress in Mathematics, 170. Birkhäuser Boston, Boston, MA, 1999. Zbl 0913.22001

MR 1724106

[31] A. B. Ramsay, The Mackey–Glimm dichotomy for foliations and other Polish

groupoids. J. Funct. Anal. 94 (1990), no. 2, 358–374. Zbl 0717.57016 MR 1081649

[32] A. B. Ramsay, Polish groupoids. In M. Foreman, A. S. Kechris, A. Louveau, and

B. Weiss (eds.), Descriptive set theory and dynamical systems. (Marseille–Luminy,

1996.) London Mathematical Society Lecture Note Series, 277. Cambridge University

Press, Cambridge, 2000, 259–271. Zbl 0958.22003 MR 1774429

[33] R. Sasyk and A. Törnquist, Borel reducibility and classification of von Neumann al-

gebras. Bull. Symbolic Logic 15 (2009), no. 2, 169–183. Zbl 1171.03026 MR 2535428

[34] R. Sasyk and A. Törnquist, The classification problem for von Neumann factors.

J. Funct. Anal. 256 (2009), no. 8, 2710–2724. Zbl 1173.46042 MR 2503171

http://zbmath.org/?q=an:1367.03082
http://zbmath.org/?q=an:0819.04002
http://www.ams.org/mathscinet-getitem?mr=1321597
http://zbmath.org/?q=an:1022.22003
http://www.ams.org/mathscinet-getitem?mr=1967835
http://zbmath.org/?q=an:1189.37001
http://www.ams.org/mathscinet-getitem?mr=2583950
http://zbmath.org/?q=an:1192.46063
http://www.ams.org/mathscinet-getitem?mr=2595746
http://zbmath.org/?q=an:1327.46059
http://www.ams.org/mathscinet-getitem?mr=3341964
http://zbmath.org/?q=an:06730702
http://www.ams.org/mathscinet-getitem?mr=3660238
http://zbmath.org/?q=an:1291.03088
http://www.ams.org/mathscinet-getitem?mr=3228448
http://zbmath.org/?q=an:1221.03045
http://www.ams.org/mathscinet-getitem?mr=2830410
http://zbmath.org/?q=an:1279.43002
http://www.ams.org/mathscinet-getitem?mr=3096634
http://zbmath.org/?q=an:0913.22001
http://www.ams.org/mathscinet-getitem?mr=1724106
http://zbmath.org/?q=an:0717.57016
http://www.ams.org/mathscinet-getitem?mr=1081649
http://zbmath.org/?q=an:0958.22003
http://www.ams.org/mathscinet-getitem?mr=1774429
http://zbmath.org/?q=an:1171.03026
http://www.ams.org/mathscinet-getitem?mr=2535428
http://zbmath.org/?q=an:1173.46042
http://www.ams.org/mathscinet-getitem?mr=2503171


Games orbits play and obstructions to Borel reducibility 1483

[35] R. Sasyk and A. Törnquist, Turbulence and Araki–Woods factors. J. Funct. Anal. 259

(2010), no. 9, 2238–2252. Zbl 1208.46059 MR 2674113

[36] A. Thompson, A metamathematical condition equivalent to the existence of a com-

plete left invariant metric for a Polish group. J. Symbolic Logic 71 (2006), no. 4,

1108–1124. Zbl 1105.03041 MR 2275851

[37] A. Törnquist and M. Lupini, Set theory and von Neumann algebras. In J. Cummings

and E. Schimmerling (eds.), Appalachian Set Theory 2006–2012. London Mathemat-

ical Society Lecture Note Series 406. Cambridge University Press, Cambridge, 2012,

363–396.

Received February 4, 2017

Martino Lupini, Mathematics Department, Caltech, 1200 E. California Blvd,

MC 253-37 Pasadena, CA 91125, USA

home page: http://www.lupini.org/

e-mail: lupini@caltech.edu

Aristotelis Panagiotopoulos, Department of Mathematics, 1409 W. Green St.,

University of Illinois, Urbana, IL 61801, USA

Current address: Mathematics Department, Caltech, 1200 E. California Blvd,

MC 253-37 Pasadena, CA 91125, USA

home page: http://www.its.caltech.edu/~panagio/

e-mail: panagio@caltech.edu

http://zbmath.org/?q=an:1208.46059
http://www.ams.org/mathscinet-getitem?mr=2674113
http://zbmath.org/?q=an:1105.03041
http://www.ams.org/mathscinet-getitem?mr=2275851
http://www.lupini.org/
mailto:lupini@caltech.edu
http://www.its.caltech.edu/~panagio/
mailto:panagio@caltech.edu

	Introduction
	Acknowledgments
	Nonreducibility to CLI group actions
	A game-theoretic approach to turbulence
	Groupoids
	References

