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Mixing, malnormal subgroups and cohomology in degree one

Antoine Gournay!

Abstract. The aim of the current paper is to explore the implications on the group G
of the non-vanishing of the cohomology in degree one of one of its representation r,
given some mixing conditions on x. For example, harmonic cocycles of weakly mixing
unitary representations factorise by the FC-centre. In that case non-vanishing implies the
FC-centre is trivial or fixes a vector. Next, for any subgroup H < G, H will either be
“small,” almost-malnormal or 7|z also has non-trivial cohomology in degree one (in this
statement, “small,” reduced vs unreduced cohomology and unitary vs generic depend on
the mixing condition). The notion of g-normal subgroups is an important ingredient of
the proof and results on the vanishing of the reduced £#-cohomology in degree one are
obtained as an intermediate step.
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1. Introduction

Representation theory, in particular through cohomology, plays nowadays a cen-
tral rdle in geometric theory as attested by works such as [3], [47], and [57]. The
subject matter of this particular work is to try to deduce from the non-vanishing of
[reduced or unreduced] cohomology, some algebraic properties which have a taste
of hyperbolicity, e.g. small centre and large Abelian subgroups are malnormal.

Let us briefly recall that for a linear representation 7: G — GL(V) of G, a
cocycle is a map b: G — V such that the cocycle relation is satisfied: b(gh) =
b(g) + n(g)b(h). The obvious cocycles (those of the form b(g) = n(g)¢é — &
for some & € V) are called coboundaries, and cohomology is obtained as the usual
quotient. When V and G come with a topology, one can speak of reduced coho-
mology by looking at the closure of the space of coboundaries for the topology of
uniform convergence on compacts.

For unitary representation, Guichardet [30] was the first to notice that the
reduced cohomology can be identified to a natural subspace of cocycles, the
harmonic cocycles. If G is generated by a finite set S and p is some probability
measure on S such that u(s™') = w(s), a u-harmonic cocycle is a cocycle such
that ) " g 1(s)b(s) = 0. See Bekka [2], and [29], Erschler and Ozawa [19] and
Ozawa [47] for recent works where these cocycles play an important part; see
Bekka and Valette [4] for prior results which show their importance.

Recall that the kernel of a cocycle kerb = b~1(0) is a subgroup of G and
that the FC-centre of G, noted Z FC(G), is the characteristic subgroup of elements
with a finite conjugacy class (ZF€(G) contains the centre, Z(G)). The first result
(essentially a concatenation of Theorem 4.4 and Theorem 4.8) shows that non-
trivial reduced cohomology leads to the FC-centre fixing a vector or being trivial.

Theorem 1.1. Let G be a finitely generated group and w a unitary representation.

1. If m is weakly mixing, then, for any harmonic cocycle b, ZFC¢(G) C kerb N
ker 77jim ;

2. if w is ergodic and G is pu-Liouville ( for some symmetric measure i of finite
support), then, for any harmonic cocycle b, Z(G) C ker b N ker i p.

In particular,
3. if w is weakly mixing and there is a non-trivial subgroup H of Z FC(G) such
that m\g is ergodic, then H' (G, ) = 0;

4. if 7 is ergodic, G is p-Liouville and there is a non-trivial subgroup H of
Z(G) such that m|p is ergodic, then H' (G, ) = 0.

The proof of this Theorem may be found at the end of §4.1. Corollary 4.11
gives a very similar result. These results can be used to give a proof that nilpo-
tent groups have property Hr and virtually nilpotent groups have property Hrp
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(in the sense of Shalom [57]). See Corollary 4.9 and Corollary 4.10 (these state-
ments go back to Guichardet [30, Théoréme 7 in §8]). It can be also used to show
that in an amenable group which is torsion either no harmonic cocycle is proper
or the FC-centre is finite (see Corollary 4.15).

Theorem 1.1 and Corollary 4.11 are improvements of [29, Proposition 1.5 and
Lemma 2.7]. See also Bekka, Pillon, and Valette [5, §4.6 and Corollary 4.13]
for similar results. Recently, Brieussel, and Zheng [8, §3] gave an application of
Theorem 1.1 to a question of Shalom.

An important weakening of the normality relation (q-normal and wqg-normal
subgroups, see §2.2) was introduced by Popa [51] while studying cohomology.
Peterson and Thom [50, Remark 5.3] showed that these notions are closely related
to the presence of almost-malnormal (even malnormal if the group is torsion-free)
subgroups. They further used this to show that many groups have trivial reduced
£2-cohomology. The second main result is to show that if G has non-vanishing of
cohomology for a representation 7, then the subgroups of G satisfy a trichotomy:
they are either “small,” almost-malnormal or the restricted representation has non-
vanishing cohomology.

The precise formulation is a concatenation of Theorem 2.12, Corollary 5.1,
Theorem 5.12 and Theorem 5.13. A representation is said to have finite stabilis-
ers, if the stabiliser of any & € V \ {0} is finite (this condition is weaker than
mildly mixing, stronger than ergodic and not comparable to weakly mixing). The
FC-centraliser Z gC(H ) of a subgroup H < G is defined in §4.1 (it contains the
centraliser).

Theorem 1.2. Let G be a finitely generated group.

1. If w is a linear representation with finite stabilisers and there is a subgroup
H < G with H'(H, ) = 0, then either H is contained in an almost-
malnormal strict subgroup of G, H is finite, or H' (G, ) = 0.

2. If w is a unitary representation with finitarily coefficients in £9 and there is a
finitely generated subgroup H < G with H'(H, Agpg) = 0 (where p > q)
orZ gC(H ) infinite, then either H is contained in an almost-malnormal strict
subgroup of G, H has growth bounded by a polynomial of degree d < p, or
HY(G,7) =0.

Recall that, if G is torsion-free, almost-malnormal subgroups are actually
malnormal.

In Theorem 1.2.1, the “smallness” of H also has an equivocal formulation:
since trivial unreduced cohomology implies that the space of coboundaries is
closed, one might be tempted to say that the group is large for the representation
under consideration. Though Theorem 1.2.1 only uses the work of Popa [51, §2]
and Peterson and Thom [50, §5], Theorem 1.2.2 also uses harmonic cocycles.

The first (and shortest) step in the proof of Theorem 1.2.2 (Corollary 5.1) is
to show that harmonic cocycles for such representations gives rise to a harmonic
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function with a gradient in £ which in turn implies that the reduced £”-cohomol-
ogy in degree one is non-trivial (by a result of [25, Theorem 1.2 or Corollary 3.14]).
The second step is to extend the groups for which the £”-cohomology vanishes (see
Remark 5.2 for references). The trichotomy expressed in reduced £”-cohomology
is a combination of Theorem 5.12 and Theorem 5.13.

Corollary 1.3. Assume H' (G, ipg) # 0 and K < G are finitely generated.
Then at least one of the following holds:

o HY(K, Arg) # 0and ZEE(K) is finite,
o K has growth at most polynomial of degree d < p,

o K is contained in a almost-malnormal strict subgroup of G.

Corollary 5.11 also gives a similar statement for unreduced cohomology which
does not require finite generation (it follows from Theorem 1.2.1 and a result of
Martin and Valette [41, Proposition 2.6]).

Corollary 1.3 may also be seen as an algebraic version of the following geo-
metric result from [25, §4.2 and Corollary 4.1]. If G is finitely generated,
H'(G, rg) # 0 and T is a spanning subgraph of some Cayley graph of G
then at least one of the following holds:

e the reduced £”-cohomology of I" is non-trivial,
e [' may not have d-dimensional isoperimetry for any d > 2p,

Theorem 5.12 can be used to show the triviality of reduced ¢” cohomology
in degree one for all p €]1, 00[ (and, as a consequence of Corollary 5.1, the
triviality for any unitary representation with finitarily coefficients in £7) for non-
solvable Baumslag—Solitar groups (see Example 5.14), many solvable groups (see
Example 5.16 and Corollary 5.17) or even hyperabelian groups (see Corollary 5.18).

On the way, it is also shown that the p-Royden boundary of many groups
consists in only one point (see Corollary 5.10).

Organisation of the paper. §2 is mostly concerned with definitions (the vari-
ous conditions of mixing, coefficients and WAP functions are introduced in §2.1;
the various notions of normality and their relations are discussed in §2.2) and
the proof of Theorem 1.2.1 (i.e. Theorem 2.12) as it follows from fairly generic
considerations. §3 splits as follows: the notion of reduced cohomology and har-
monic cocycles are done in §3.1 (and generalised to Banach space in 3.3), fur-
ther mixing conditions (finitarily coefficients in £7”) as well as their implications
on harmonic functions are discussed in §3.2, and the fact that cocycles are “vir-
tual coboundary” is dealt with in §3.4. §4 contains the proof of Theorem 1.1;
it relies on §2.1, §3.1 and (tangentially) §3.2. §5 contains the proof of Theo-
rem 1.2 and Corollary 1.3; it relies on §2.2 and (most of) §3. §5.1 gives a very
short introduction to £”-cohomology and its application to unitary representation,
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§5.2 is dedicated to proving the criterion of triviality in terms of being constant at
infinity (and addresses some questions of p-parabolicity), §5.3 contains the proof
of Corollary 1.3 and §5.4 investigates further examples and corollaries. §6 con-
tains questions and open problems raised by the current investigation.

Acknowledgments. The author would like to thank: A. Thom, for indicating
that q-normality is a very useful tool to prove triviality of cocycles and pointing
to [50, §5]; M. Bourdon, for many interesting comments and explaining to the
author that relatively hyperbolic groups have a non-trivial £”-cohomology for
some p > 1; A. Carderi, for pointing out the existence of intermediate notions of
mixing (mildly mixing) and for explaining how to extend the proof of Theorem 3.8
to the case of a group acting by measure preserving transformations on (X, u);
P. N. Jolissaint, since part of the present work is a natural prolongation of a
question we investigated in [29]; D. Osin, for pointing out that some acylindrically
hyperbolic groups may have trivial £”-cohomology for all p € [1, co[; M. Schmidt,
for explaining the note on uniform transience [39] thus enabling to make a much
more elegant proof of the “trivial in reduced £”-cohomology if and only if one
value at infinity” from [25, §4.2 and Corollary 4.1] (see Corollary 5.8); and
A. Valette, for various comments and references.

The author would also like to thank Y. Cornulier as well as D. Holt and P. de
la Harpe for pointing out to litterature on the FC-centre and malnormal subgroups
(respectively) via the website MathOverflow.

2. Mixing, g-normal subgroups and untwisting

2.1. Mixing and means. Standard references for this subsection are the books
of Glasner [23] (in particular, Chapter 1 §9-10, Chapter 3 §1-2 and Chapter 8 §5)
and Kechris [38] (in particular, Chapter I §2, Chapter II §10 and Appendix H).

Before introducing the mixing conditions that are relevant for the current
purposes, let us briefly recall some things about WAP functions. Recall that a
group G acts on any function f: G — C by translation: y- f(x) = f(y~'x). Upon
restriction to £ G (for any p € [1, 0o]) this action is isometric. It also preserves
coG (the closure in £°°-norm of finitely supported functions). The space of WAP
functions a subspace of {>*°G defined by

WAP(G) ={f €l>*G |G- f weak is compact [in the weak topology]}

where Wweak is the weak closure of the G-orbit of f.

For X a closed subspace of £°°G, a mean on X is an element m € (£*°G)* such
that m(1g) = 1 (where 1 is the function taking constant value 1) and m(f) > 0
whenever f > 0. Using the Ryll-Nardzevsky theorem, one gets the surprising fact
that there is a unique G-invariant mean on WAP(G) (G-invariance is with respect
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to the afore-mentioned action of G on functions). In particular, this implies that,
for an amenable group, all the invariant means on £*°G coincide on WAP(G).
Given an isometric linear representation of G on a Banach space B (i.e. a
homomorphism 7: G — Isjy(B)), the coefficient of n € B* and § € B is the
function ky, ¢: G — C defined by «,, £ (x) = (1 | 7(x)&). When Bis a Hilbert space,
the distinction between B and B* is usually dropped (i.e.  and & are in B). It turns
out that coeflicient of representation on reflexive Banach space are in WAP(G).

Definition 2.1. A set . C G is syndetic if there is a finite S C G tothat SL = G.
L is thick if for all finite F C G, [ rer JL # . L is thickly syndetic, if for any
finite F C G, L' = (¢ F gL is syndetic.

A function is a flight function iff forany ¢ > 0, D, ;= {x € G | | f(x)| < ¢} is
thickly syndetic.

A subgroup is syndetic if and only if it has finite index. A subgroup cannot be
thick (or thickly syndetic) unless it is the whole group.

In the upcoming definitions, m will denote the unique invariant mean on
WAP(G). The notation ligrr_l) io%fF (g) should be understood as nlggo inf{F(g) |

g ¢ By} where B, is some sequence of increasing finite sets with | J B, = G. The
space ¢oG is the closure of finitely supported functions in £>°G, i.e. functions F
with lim sup|F(g)| = 0.

g—>00

Definition 2.2. Let 7: G — Is);(B) be a linear isometric representation of G. =«
is

1. ergodic if its coeflicients k, ¢ have mean 0, i.e. for all n € B* and § € B, one
has m(k, ) = 0;

2. weakly mixing if for all n € B* and £ € B, the coefficient k) ¢ is a “flight
function,” i.e. m(|kp g|) = 0;

3. mildly mixing if liminf|| 7 (g)& — &|| > O for all £ € B;
g—>00
4. strongly mixing if for all n € B* and £ € B the coefficient k,, ¢ belongs to coG.

Note that ergodicity is equivalent to the fact that & does not contain the trivial
representation, i.e. there are no invariant vectors. For unitary representations,
weakly mixing is equivalent to the fact that = does not contain a non-zero finite-
dimensional subrepresentation. Mildly mixing implies that, upon restriction to
any infinite subgroup, the action is ergodic.

These definitions are in a monotone order: strongly mixing implies mildly
mixing implies weakly mixing implies ergodic. For unitary representations, it
is known that these implications are not reversible as soon as the group has an
element of infinite order.
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On some rare occasions, other (possibly inequivalent) definition of mixing will
be used (this will be stressed). These definitions comes from action of groups by
measure preserving transformations.

Definition 2.3. Let (X, ;) be a measure space. Assume G ~, (X, ) by measure
preserving transformations. The action is

1. ergodic if for any G-invariant subset A C X, either u(A4) = 0 or u(A°) = 0;
2. mildly mixing if for all A C X with u(A) ¢ {0, u(X)} one has

liminf u(gAAA) > 0;
g—>00

3. strongly mixing if for all A C X, limg_oo (gA N B) = p(A)(B).

Given such an action, one can associate a isometric (resp. unitary) representa-
tion by looking at L? (X, ) (resp. L>(X, u)) and letting G acton f € L?(X, 1) by
vf(x) = f(y'x). If u(X) < oo, one normally considers restricts the action to
the subspace Lf (X, u) = {f € LP(X, p) | Jx fdu = 0} (to avoid the obvious in-
variant vector given by the constant function). When p(X) = oo, the convention
in the present work is that LY (X, u) = L?(X, ). These representations will here
be called L?-representations. For p = 2, this representation (called a Koopman
representation) has the same mixing properties as the action.

As an example, let us mention what those properties become for a countable X
(with the counting measure).

Definition 2.4. Let X be countable. The action G ~, X is
1. ergodic if there are no fixed points;
2. weakly mixing if all G-orbits are infinite;

3. mildly mixing [equivalently, strongly mixing] if there are no infinite stabilis-
ers.

2.2. Cocycles and g-normality. A nice reference on cocycles of representations
is Bekka, de la Harpe and Valette [3, Chapter 2] contains a complete discussion.

Definition 2.5. Let = be a linear isometric representation of G on a Banach
space B. A cocycle with values in 7 is a map b: G — B satisfying the [cocycle]
relation

b(gh) = n(g)b(h) + b(g) forallg,h eG.

A cocycle of the form g + (7 (g) — 1)v, for some & € B, is called a coboundary.
ZY(G, ) (resp. B1(G, m)) denotes the space of cocycles (resp. coboundaries)
with respect to 7. The first cohomology space of x is defined as the quotient space

HYG,n) = ZY(G,7)/B(G,n).
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For later use, let us introduce the coboundary map d:B — Z'(G, ) defined
by (d&)(g) = (w(g) — 1)&, for any g € G and £ € B. The space of coboundaries,
denoted B!(G, r), corresponds to the image of B via d.

Note that, a map b satisfies the cocycle relation, if and only if, G acts by affine
isometries on B by «(g)v = w(g)v + b(g). Such an affine action « has a fixed
point if and only if » is a coboundary. Furthermore, for real Banach space, the
Mazur-Ulam theorem (see Nica [43] for a very nice proof) can be used to show that
any isometric representation o of G is given by a cocycle b of a linear isometric
representation by the rule o(g)v = 7w (g)v + b(g) (for any v € B).

Here are some simple consequences of the cocycle relation. First, b(e) = 0
(since b(e) = b(e-e) = b(e) + m(e)b(e) = 2b(e)). From there one gets

b(g™") = —m(g7Hb(g).

by applying the cocycle relation to b(g~!g). This can be used to get

b(ghg™") = (1 —m(ghg™")b(g) + m(g)b(h) (2.6)
and then rewritten (with k = ghg™"!) as
b(g) — m(k)b(g) = b(k) — w(g)b(g™"kg). 2.7

Remark 2.8. Recall that when H <1 G, there is an action of G on Z'(H, 7g)
by g - b(h) = n(g)b(g~'hg). Furthermore (using (2.7)), this actions leaves
B'(H,mp) invariant (so passes to H'!(H,mpy)) and H acts trivially on
H'(H, m ). Lastly, if 74 is ergodic, then H'(G, ) ~ H'(H,mg)%H.

Soif H < G, my is ergodic and H'(H,7) = 0 then H'(G, ) = 0. In the
subsequent subsections, other hypothesis which allow to deduce the triviality of
the cohomology of G from that of H will be given. To this end, let us recall some
variations of the notions of normality (see Peterson and Thom [50, §5] and Popa

(51, §2]).

e A subgroup H < G is called g-normal if there is a generating set A of G
such that gHg~! N H is infinite for all g € A.

e A subgroup is ascendant! [resp. wg-normal] if there exists an ordinal number
o, and an increasing chain of subgroups, such that Hy = H, H, = G, and
forany y <, Js., Hp < Hy is normal [resp. g-normal].

e A subgroup K < G is malnormal if K N gKg=! = {e} forany g € G \ K.

e A subgroup K < G is almost-malnormal if K N gKg~! is finite for any
geG\K.

L Also called “w-normal,” but also sometimes called “descendant.”
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According to the previous definition, G is a malnormal and an almost-malnormal
subgroup of G. Since K N gKg~! is also a subgroup of G, the notion of almost-
malnormal and malnormal subgroups are equivalent in torsion-free groups.

Recall that the intersection of two almost-malnormal subgroups is almost-
malnormal. The almost-malnormal hull of a subgroup H < G is the intersection
of all almost-malnormal subgroups? containing H .

Obviously, a g-normal subgroup is always infinite. The generating set (of G)
in the definition of g-normal subgroup may always be assumed symmetric. Indeed
“K N gKg~!is infinite” implies that g~ (K N gKg~!)g = g7 Kg N K is infinite.

The sequences { Hg} coming in the definition of ascendant (resp. wq-normal)
subgroups are called ascending normal (resp. g-normal) sequences.

Definition 2.9. Let K < G be an infinite subgroup. The g-normaliser of K in G
is the largest subgroup in which K is g-normal:

NE(K):= (g € G | gKg™~' N K is infinite).

The g-normalisers are in some respect better behaved than normalisers. Recall
that hypernormalising groups (a group where any subgroup H which is ascendant
with respect to a finite normal sequence sees its sequence of iterated normalisers
converge to the full group) are rather rare; for finite groups see Heineken [34].

Let us define the transfinite sequence of iterated g-normalisers {Ng’ﬁ (H)}
by Ng’O(H) = H and NJ*(H) = Ni(U, <, N&7(H)). Say the sequence

{NZ*(H)} stabilises if there is a « so that Ng’ﬁ(H) = U, <p N&7 (H) for all
B> a.

Lemma 2.10. Let H < G be an infinite subgroup.
1. If K < G is another subgroup, then H < K = NA(H) < N&(K).

2. If M < G is an almost-malnormal subgroup, then H < M = Ng (H) <
M.

3. The sequence {Ng’ﬂ (K)} stabilises at the subgroup M which is the almost-
malnormal hull of H.

4. H is wg-normal if and only if there is an ordinal a with Ng’a (K)=0G.

Compare with Peterson and Thom [50, Lemma 5.2 and Remark 5.3] for a
slightly different argument.

2When H is finite, it is its own almost-malnormal hull.
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Proof. 1 is direct from the definitions. Since gHg ' N H C gKg7'! N K and g
is so that the left side of the inclusion is infinite, then so is the right side.

2 is also easy. Again gHg !N H C gMg~' N M. Forany g ¢ M, right side
is finite, hence the left side is also finite.

3 Since at least one element is added at the ordinals where the sequence is not
stable, the sequence has to stabilise at some point (at the latest when |«| > |G]).
Let K = N2 (H) be the subgroup where the sequence stabilises and M be the
almost-malnormal hull of H. By definition, if N9(K) = K then K is almost-
malnormal; hence M < K. By 2, no element of G \ M can belong to NZ*“(H)
(for any «); hence K < M.

4 is a direct consequence of 3. |

In fact, the sequence Ng’“ (H) is actually the shortest ascending q-normal
sequence making H wq-normal in its almost-malnormal hull M. Indeed, if
Hy < Hy and H; < H, are g-normal inclusions, then H; < N9(Hy) and
H; < Nq’2(H()).

In short, by Lemma 2.10 or Peterson and Thom’s [50, Remark 5.3], every
infinite subgroup H < G is wg-normal in an almost-malnormal subgroup. The
case where G itself is the almost-malnormal subgroup is wg-normality.

Also, if H < K < G and H is g-normal in G then K is also g-normal in G.
However, if H is g-normal in K and K is g-normal in G, it could happen that H is
not g-normal in G. Another weakening of normality (s-normal) is better behaved
in this respect (see Peterson and Thom [50, §5]).

A nice reference on malnormal subgroups in infinite groups is the work of de
la Harpe and Weber [33]. For example, [33, Proposition 2.(vii)] shows that a group
without 2-torsion and with an infinite cyclic normal subgroup has no malnormal
subgroups.

2.3. Untwisting cocycles . The remainder of this section is dedicated to adapt
the proof a result of Peterson and Thom [50, Theorem 5.6] which concerns the
reduced cohomology of Ay, the left-regular representation on £2G (see also
Popa [51, Lemma 2.4] for a prior version of these arguments on another type of
cocycles).

A linear representation 7: G — GL(V) (where V is an infinite dimensional
vector space) is said to have finite stabilisers if for all £ € V \ {0}, the set
{g € G | m(g)é = &} is finite. Finite stabilisers is equivalent to: for any infinite
subgroup H < G, m g is ergodic.

Any mildly mixing representation has finite stabilisers. There are unitary
representations with finite stabilisers which are not weakly mixing (consider
m:7 — U(1) given by z > e?™'?% where @ € R \ Q) and there are weakly
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mixing unitary representations which do not have finite stabilisers (take any mix-
ing representation on G and extend it trivially to G x Z; see the end of §6 for an
interesting example due to Shalom [57, Theorem 5.4.1]).

Finite stabilisers [in infinite groups] implies that the representation has no fi-
nite subrepresentations (i.e. does not contain a subrepresentation which factors
through a finite quotient group) and, consequently, is ergodic. So “finite stabilis-
ers” and “weakly mixing” are two conditions which lie between “mildly mixing”
and “no finite subrepresentations” but are inequivalent. Finite stabilisers is better
behaved in that it is inherited by subrepresentations and infinite subgroups.

Given a representation 7 and a cocycle b € Z1(G, ), let kerb = {g € G |
b(g) = 0}. The following lemma is a straightforward adaptation of a part of the
proof of Peterson and Thom’s [50, Theorem 5.6] or Popa [51, Lemma 2.4].

Lemma 2.11. Assume  has finite stabilisers and let b € Z'(G, 7r) be a cocycle,

then ker b is a subgroup which is [ either finite, equal to G, or] almost-malnormal
inG.

Proof. The cocycle relation shows that K := ker b is a subgroup: h(e) = 0(soe €
K),b(gh) = b(g)+n(g)b(h) = 0+m(g)0 = Oand b(g™") = —n(g™")b(g) = 0.
Assume K # G, K is infinite and K is not almost-malnormal. Then there exists
g € G\ K with gKg~! N K infinite. Now, for all k € gKg~! N K, equation (2.7)
gives b(g) —m(k)b(g) = b(k)—m(g)b(g~'kg) = 0. Since gKg~! N K is infinite,
b(g) = n(k)b(g) for infinitely many k € G. However, 7 has finite stabilisers, so
this implies that b(g) = 0. But then g € K, a contradiction. |

If one is a wee-bit more careful in writing it down, the proof of Lemma 2.11
works even if (V,+) is not Abelian, i.e. it still works in the case (V,+) is a
[generic] group and 7: G — Aut(}') a homomorphism.

That said, the proof of Peterson and Thom [50, Theorem 5.6] goes on without
problems if there are no almost-invariant vectors.

Theorem 2.12. Assume 7 has finite stabilisers and there is a infinite subgroup
H < G sothat H'(H, ) = 0. Let K be the almost-malnormal hull of H. Then
HY (K, m k) =0

In particular, if H is wg-normal in G, then H'(G, ) = 0.

Proof. Assume b € H'(K,m ) is non-trivial. By hypothesis, bjy has trivial
class. Hence thereisaz € B'(H, ) sothath = zon H. Since z(g) = m(g)f—&
for some £ € V, it turns out that z € BY(G, ). Leth’ = h—z, thenkerb’ D H. By
Lemma 2.11 and since H is infinite, ker b’ must be an almost-malnormal subgroup
containing H. This means that kerb’ contains K. Hence » = z on K, ie.
[b] =0€ HY(K, mk).

H is wg-normal in G if and only if almost-malnormal hull of H is G; see
Lemma 2.10 or Peterson and Thom’s [50, Remark 5.3]. O
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Like Popa [51, §2], it is sometimes useful to put the mixing condition on the
subgroup instead. For example,

Lemma 2.13. Let b € Z'(G, ) be a cocycle and let H < ker b be a subgroup of
its kernel. If m g has finite stabilisers and H < G is g-normal, then kerb = G.

The proof is exactly as in Lemma 2.11. One can then use transfinite induction
to obtain Theorem 2.12. However, one then needs to check that g, has finite
stabilisers for any H, in the ascending g-normal sequence starting at Hy = H.
So in the end, the hypothesis is clumsier (though weaker) to formulate than
“m has finite stabilisers.”

3. Reduced cohomology

The aim of this section is to introduce reduced cohomology and to show how to
reduce its study to that of harmonic (or p-harmonic) functions. There are two
possibilities to introduce harmonic functions. The first is by considering cocycles
which are “minimal” for some norm (§3.1 and §3.3) and then project them (§3.2).
The second is by a trick known as virtual coboundary (§3.4). On the way we show
that in the mildly mixing setup virtual coboundaries are actually quite generic.
§3.5 gives an example of virtual coboundaries outside the setup of §3.4.

3.1. Unitary representation and harmonicity. The proofs of this subsection
may be found in Guichardet [30, §3-§5] and [29, §2]. There is a natural topology
and, sometimes, a natural Banach space structure which can be put on Z(G, )
which enables us to study it better. For the rest of this subsection, it will be
assumed that G is a countable group which is generated by some finite subset
S with S™1 = §.

In the next subsection, more general representations will be discussed while
this subsection is devoted to the case of unitary representations (Hilbert spaces).
Thanks to the cocycle relation, a cocycle b is completely determined by the values
{b(h)}pes- Given an measure p with support S, it would be natural to introduce
the following scalar product:

(B 1B =D 1) b(s). b)),

seS

for b, b’ € Z'(G, 7). Since b is identically 0 on G if and only if b is identically 0
on S, this scalar product is be non-degenerate.

To be sure that this scalar product defines a Hilbert space, we need to check
that the space Z!(G, ) is complete for the norm || - ||,. The classical topology
on Z(G, ) is given by the topology of uniform convergence on compact subsets
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of G. Since G is countable and endowed with the discrete topology, it is well-
known that this topology turns Z!(G, ) into a Fréchet space. See Guichardet
[30, §4] or [29, §2] for proofs and discussions that these topologies coincide.

When G is not finitely generated, it is not completely impossible to go further.
It is possible, given any cocycle b to define a p so that ||b]|,, < oo and b is in the
| - || ,-norm closure of Z /i(G, 7). But there is in general no way of picking a
which works for all cocycles.

So let ;« be some fixed measure on the finite generating set S and let d be the
coboundary map. Simple computations give:

dib == u(s)(b(s™") + b(s)).

seS

By generic considerations on Hilbert spaces, Z!(G, ) = ker d; @ (ker d:)J-
and the orthogonal complement of kerd; coincides with Imd. Moreover, this
latter space is just the closure of B'(G, ) with respect to the norm | - ||, (or,
equivalently, with respect to the topology of uniform convergence on compact
sets). It will henceforth be denoted by B'(G, 7). Therefore, one has the following
general orthogonal decomposition.

Proposition 3.1. Let G be finitely generated by S, then
ZY G, m) = kerd; @ BY(G, n).

The space kerd; is the space of u-harmonic cocycles.

A first straightforward consequence is the description of the reduced cohomol-
ogy in terms of harmonic cocycles. Recall that the reduced cohomology group of
G taking value in 7 is defined as the quotient space

HY(G,n)=Z7ZYG,n)/BY (G, ).
Corollary 3.2. There is an isomorphism H'(G, ) = kerd -

7 is said to have no almost invariant vectors when B'(G,n) = BY(G,n)
(equivalently, when d has closed image). Note that when this is the case, then
HY(G,m) =kerd}

3.2. Gradient conditions. It turns out that, when considering the left-regular
representation, both the left- and right-Cayley graphs come up naturally. Assume
S is a symmetric generating set for G. Recall that the left-Cayley graph (resp.
right-) of G with respect to S, denoted Cay,(G, S) (resp. Cay, (G, §)), is the graph
whose vertex setis G and whose edge setis £ = {(x, y) € G xG | there exists s €
S so that sx = y} (resp. so that xs = y}).
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Let V be Banach space (usually R or C). Given a function f:G — V and a
Cayley graph, the gradient of this function is the function V f: E — V defined by
Vix.y)=f) - f(x).

It turns out V:£?(G,V) — £P(E,V) is bounded exactly when S is finite.
There is a natural pairing for finitely supported functions f:X —V and g: X — V*
(where X = G or E) givenby (f | g) = > .cx f(x)g(x). In the case S is finite,
V then has a adjoint V* which associates to g: E — V* the function V*g: G — V
defined by V*g(x) = >, g(y.x) — g(x, y).

Given a subspace X of functions G — V (e.g. £7, WAP, etc..) Say that a
function has X-gradient (on Cay,.(G, S)) if for any s € S, the function x —
g(xs) — g(x) belongs to X.

Note that when S is infinite, V f € £ E implies f has {”-gradient; but the
converse is false.

A representation w has finitarily coefficients® in X if for any n € IN and
€1.....6n € Hthere is a n € H, so that «,¢ belongs to X and for some i,
kng # 0. This holds if there is a dense subspace H' C H so that for any § € H
and n € H"\ {0}, k¢ belongs to X. For example, the left-regular representation
has finitarily coefficients in €2 (let H' C €2G be the space of finitely supported
functions).

Weakly mixing implies finitarily coefficients in X = kerm (where m is the
unique mean on WAP functions) and strongly mixing implies it for X = c¢y.
Having finitarily coefficients in X = £7, is most probably stronger than strongly
mixing.

A function f on a [right-]Cayley graph is called p-harmonic if

Zu(s)Vf(x, xs) = 0.

seS

Lemma 3.3. Assume G is finitely generated, i is symmetric (i.e. ju(s) = u(s™'))
and b € Z'(G, ) is a harmonic cocycle. Then, for any n € H, the function
hy(g) = (b(g) | n) is p-harmonic (on Cay,(G, S)).

If w has finitarily coefficients in X, then there is a choice of n so that hy: G — C
has X-gradient and is not constant.

Proof. Note that
By (x5) = hy(x) = (b(xs) = b(x) | n) = (x(x)b(s) | n).
When p is symmetric

dib=0 < Y u(s)b(s) = 0.

seS

3 For our actual purposes, it is sufficient to assume this works for » equal to the minimal
number of elements required to generate G as a group.
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Since

D () (hy(xs) = hy(x)) = > p(s)(b(xs) — b(x) | n)

= (7)Y 15)b(s) | n)

=0,

hy is p-harmonic.

Next, let & := b(s) for s € S. Since b is not trivial, at least one of the &; is not
trivial. Since 7 has finitarily coefficients in X, there is a choice of 1 (with respect
to {&s}ses) so that /i, has gradient in X and is not trivial. O

3.3. Banach representations. The aim of this section is to show that, if one
is ready to consider some non-linear brethren of harmonicity, there is also an
isomorphism for the reduced cohomology of representations in strictly convex
Banach space.

Let 7: G — Isjjp(B) be a linear isometric representation of G on the strictly
convex Banach space B. Throughout this subsection, G is assumed finitely gener-
ated and p is as before (symmetric and supported on a finite generating set).

Introduce, for some p €]1, oo

o0 = (X o))

The same argument as in the Hilbertian case shows this norms induces the same
topology as the the topology of uniform convergence on compacts.

Recall from Benyamini and Lindenstrauss [7, Proposition 4.8 and Appendix A]
that if B is strictly convex then

{7 y)

where j(x) is the unique element of B* with || j(x)||gx = 1 and {j(x) | x) = ||x]s-
Sometimes, j is called the duality map. Given the norm introduced above, it will
be more convenient to speak of

x4y
_x =
dr th=0

Jp(x) i= X187 (x).

From there, one sees the exponent p essentially only change the homogeneity
of the function j. It is natural to pick p # 2 when B = L} (X,v) and 7 is an
L?-representation of G.

Lemma 3.4. Given b € H'(G, i), then b has minimal || - || ,-norm in its reduced
cohomology class if and only if b is (j,, ;t)-harmonic, that is

> 1(s)jp(b(s) = 0
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Proof. Note that the norm is strictly convex, hence for any b’ € Z 1(G, ) there is
aunique b € b’ + B'(G, ) with minimal norm. Furthermore, by minimality, for
any z € B1(G, n),

d
0=Ib +tz||M‘

t=0

= G (Znome o) |,

0

= %(;u@nb(s) + zz(s>||§)p_l(;u@%nb(s) +1z)15)| _

1 d
= lIb + 121,077 (Y2 @) + 1215 T156) + 12l )|

= (117D " () (i (b(s)) | 2(s)).

Writing z(s) = § — w(s)& where £ € B, one gets
0= @ Upb(s)) | & —m()E) =D () (jp(b(s)) — 7(s)* jp(b(s)) | £),

where 7 (-)* is the adjoint representation on B*. If one knows that

—7(5)* jp(b(s)) = jp(b(s™H),

then the proof is over: for any & € B, one has

23 () (ip(b(s)) | §) =0.

To prove this claim, note that j,(b(s™1)) = j, (=7 (s71)b(s)) = —jp(w(s71)b(s)).
So it remains to prove that j,((s~1)b(s)) = 7 (s)* j»(b(s)). To do so it suffices
to check that the two defining properties of j, are satisfied:

M Gpm | n) = IInllg;
@) ipllex = [nlZ7".

For 1,
()" jp(b(9)) | w(s™HB(s)) = (jp(b(5)) | b(s))
= [6)IIE
= [l (s~Hb(s) -
As for 2,

17 ()* jp (B()lex = Ljp(B(s) e = &L = Ixs™Hb)IE". O
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For a L?-representation and p a uniform measure on S, the (j,, #)-harmonic
cocycles are called p-harmonic cocycles.

3.4. Virtual coboundaries. Although the virtual coboundaries will only pop-
up in the present work for the left-regular representation (on £7G), it is a fairly
common method to make a cocycle with some desirable properties, see e.g. Fernos
and Valette [20] or [26]. As such it is pertinent to ponder on how general this
method is. In this subsection, it will be shown that this a general phenomena at
least for mildly mixing for L?-representations (or more generally, those with finite
stabilisers).

In order to speak of virtual coboundary, the Banach (or Hilbert) space B has to
lie in a vector space W and the unitary representation r has to extend to a linear
group action on W. A cocycle is then a virtual coboundary if b(g) = 7 (g)x — x
for some x € W \ B.

In this section, only L?-representations will be considered. (One could also
consider co(X, ) the closure under L*° of the compactly supported functions.)
The natural choice for the space W is simply the whole set of functions on X, i.e.
W={f:X— C}.

In order to give simple conditions which allow to realise b as a virtual cobound-
ary, it is useful to consider to think of the Schreier graph of the action for some
generating set. The vertices of the [left-]Schreier graphs are the elements of X
and y ~ x if thereisas € S sothat y = s~ x. For the left-regular representation,
the [left-]Schreier graph is the [left-]Cayley graph.

Denote b(g; x) for the function b(g) € LY (X, p) evaluated at x.

Lemma 3.5. Assume b is a cocycle for w the permutation representation on
LY (X, ). Thereis a f: X — C such that b(g) = n(g) f — f if and only if there
is a xg in each orbit (equiv. for all x¢) so that b(k; xo) = 0 for all k € Stab(xy).

Proof. The = direction is straightforward so we will only deal with the <= .
The cocycle relation implies that b(g; x) is completely determined by b(s; x) for
s € S (by writing g as a word).

Hence a first step is to find a f such that b(s;x) = n(s) f(x) — f(x) for
any s € S. This turns out to be equivalent to fixing the gradient of f on the
[left-]Schreier graph. The fact that b(e) = 0 and the cocycle relation imply that
Y sec V() = 0 (where C is a [oriented] cycle) so that the gradient can be
“integrated” into a f: X — C. f is uniquely determined on the [left-]Schreier
graph up to a constant on each G-orbit.

The next step is to make sure that there are no problems coming from the
stabilisers, namely that b(w; x) =0if w € Stab(x) (because 7 (w) f(x)}—f(x) = 0).

Write

1

w = gkg~" where x = gxo and k € Stab(xy).
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Then

b(w) = b(gkg™")
= b(g) + n(g)b(kg™")
= b(g) + n(g)b(k) + n(gk)b(g™")
= [1 — n(gkg™H]b(g) + n(g)b(k)
where we used b(g™') = —m(g~!)b(g) in the last inequality. Notice that we have
[1—m(gkg™1)]h(x) = 0 for any function #: X — R (because gkg~! = w fixes x).

Also 7(g)b(k;x) = b(k; g7 x) = b(k; xo) = 0. Hence, we have b(w;x) = 0 as
desired. O

Remark 3.6. Note that if b is harmonic, then f is harmonic as a function on the
[left-]Schreier graph, i.e. > g f(s7'x) — f(x) = Oforall x € X.

Indeed, the condition ) ¢ b(s;x) = 0 for all x is equivalent to

D (f ) = f(x) =0

seS

(so the two notions of harmonicity coincide).
The same holds for ““p-harmonic” instead of harmonic.

Then K is a compact subgroup of G, it is always possible to add a coboundary
z¢(+) := §—m(-)§ toacocycle b in order to have b x = 0. The coboundary is given
by & = [ b(k). If b vanishes identically on K, one even has that f is constant on
the K-orbits: forall x one has 0 = b(k;x) = f(k~'x) — f(x).

The following lemma is however better suited to our purposes.

Lemma 3.7. Assume G ~ X and K = Stab(xg). If b is a cocycle for the
permutation representation w, then k +— b(k;xg) is a homomorphism K —
L2 (X, ).

In particular, if K is compact, then b(k; xo) = 0 for all k € K.

Proof. By the cocycle relation

b(k'k's xo) = b(k™"; xo) + (k)b (K': x0)
= b(k~":x0) + b(k'; kxo)
= bk~ x0) + b(k'; x0). O

In the following theorem, the author benefited from the help of A. Carderi to
deal with the case of a generic measure space (X, 1t).
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Theorem 3.8. Assume G ~, X countable and the action is mildly mixing, then
any cocycle is a virtual coboundary.

If G ~ (X, u) and the action is mildly mixing (as in 2.3), then, on a full
measure subset X' C X, b is a virtual coboundary.

Actually, it is sufficient to assume that the representation has finite stabilisers
(i.e. if A C X is such that u(A4) > 0 and u(A®) > 0 then there are only finitely
many g € G with g4 = A).

Proof. Let us start with the case where X is countable. Assume b is not a
virtual coboundary. By Lemma 3.5, there is a stabiliser K = Stab(x) so that
b(k;x¢9) # 0. By Lemma 3.7, K must be infinite so the action is not mildly
mixing.

In the case of the action on (X,u), let E = {g € G | b(g;x0) # 0 and
g € Stab(xg)}. If this set is empty, Lemma 3.5 can be used to conclude directly.
By Lemma 3.7, any element of E has an infinite order. Let F; = (J{4 € X |
g-A = Aand u(A°) > 0} be the “largest” fixed set (it contains at least one point).
Then, for g € E, u(Fg) = 0 (otherwise there is a A with u(4) > 0 and u(A°) > 0
so that g” A = A for all n, contradicting mildly mixing). Let X = Nger (X \ Fg).
Since E C G is countable, X has full measure. It could very well happen that X
is not G-invariant, so one needs to consider X' = (¢ g - X.

By construction, X’ has full measure and b|x/ is a virtual coboundary by
Lemma 3.5. O

It seems natural to introduce the space of p-Dirichlet functions associated to
the representation. These function have been of great use to study the cohomology
of the left-regular representation, see [25], Martin and Valette [41, §3], Puls
[52, 53] or §5 below. For S some finite generating set of G, let

DP(G,7) = {f: X — C |foralls € Sg,n(s) f — f € LP(X, j1)}.

By the previous subsection, the space D? (modulo constants on the G-orbits) is
the space of cocycles. Though the above definition depends on S, the important
properties (i.e. those related to cohomology) obviously do not. Note that an
element f of D?(G, 7) might not be a measurable function, but 7 (g) f — f always
is.

Remark 3.9. It is easy to describe the action introduced in Remark 2.8 in terms
of the virtual coboundary. If K <1 G, then G acts on elements f € D?(K, «) by

g - f=nf.

Remark 3.10. Given a cocycle for a L2-representation 7, there are actually two
families of harmonic functions one can associate to it. The first, coming from
projections (see Lemma 3.3), are “naturally” on the right-Cayley graph and the
second, coming from virtual coboundaries (see Remark 3.6), are “naturally” on
the left-Schreier graph.
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For the left-regular representation, the Schreier graph is just the Cayley graph.
The relation between those left- and right-harmonic functions are easily seen for
any 1 € £>G of finite support:

hy(g) = (b(g) | n) = (w(e)f — f I n) = (f | n(e)"'n—n).

For example, when n = § is a Dirac mass, &5, _(g) = f(g~'x) — f(x). Note that
the constant in the definition of f does not matter, so one may set f(x) = 0. Also,
one sees that the choice of x only translates the function / (by an automorphism
of the right-Cayley graph), so one could set x = e. Then /# and f are actually
obtained by the change of variable g — g1, i.e. the most obvious way of passing
from right- to left-Cayley graphs.

3.5. Virtual coboundary for groups acting on trees. There are clearly cases
outside those described in the previous subsection where virtual coboundaries are
useful. In this subsection, the setting is that of [29]; as such the groups may not be
finitely generated. These are groups acting on trees by automorphism. However,
there is a compact subgroup (the stabiliser of some “root” vertex xg) that has only
countably many co-sets. This compact group together with a finite number of
elements generate the group.

The action of interest for such group is the action on the space Kin(E) of
{2-alternating functions on oriented edges (i.e. f(¢) = — f(é*) where &* is the
edge ¢ with reversed orientation). The space Kazlt(E) is obviously contained in
the space of all alternated functions, playing the réle W above. Note that in this

context, there are no constant functions in W'!

Let us now describe a virtual coboundary for the Haagerup cocycle (see [29]
for further background and see [20, §3] for another possible choice). A simple
computations shows that f may be defined as follows:

1@) = {—l— 1/2 if following ¢ increases the distance to x,

—1/2 if following ¢ decreases the distance to xg.

In order to make it harmonic, one looks first at its divergence: it is % at xo

and % at every other vertex. Recall that each [non-trivial] instance b(g) =
w(g)f — f of the cocycle is a function with non-trivial divergence only at two

vertices xo and gxp.

The harmonic cocycle (in the same class as the Haagerup cocycle) is obtained
from the Haagerup cocycle by adding to it a bounded cocycle (hence a cobound-
ary): b(g) = O xxo—gx, Where O = VGV* and G is Green’s kernel. The cocycle
b is the image under the boundary map of f : E — C, the function defined as the
gradient of G.
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It is then apparent that the harmonic cocycle 4’ is also a virtual coboundary:
b'(g) =n(g)f' — f' with f' = f + f. Note that the function f” has divergence
% at every vertex, so that b'(g) = n(g) f' — f’ lies indeed in the kernel of the
divergence.

On a tree all these [alternated] function on the edges can be integrated as
functions on the vertices. For example, f is the gradient of the function x
%d (x,x0). Note that f” being of constant divergence and spherical, its integral
will have constant Laplacian and be spherical. In particular, this means it will

satisfy the recurrence relation described in [29, §3.1] and will be easily computed.

4. Centres and vanishing

In this section, only unitary representations are considered. The aim is to try to
deduce vanishing of reduced cohomology by exploiting some specific properties
of harmonic cocycles. This property is sometimes extremely useful for this
purpose (see Ozawa’s recent proof of Gromov’s polynomial growth theorem [47]).
The proofs of Lemma 4.2 and Lemma 4.7 are inspired from [24, Theorem 3.2] and
[29, Lemma 2.7].

Recall that for some set S C G,

Z(S)={ge G |forallh € S,h"'gh = g} = the centraliser of S
and
ZgC(S) = {ge€G|{h 'gh}pes isfinite} = the FC-centraliser of S.

The centre of G is Z(G) := Zg(G) and the FC-centre of G is ZFC(G) :=
ZgC(G). Much like the FC-centre is not very meaningful in finite groups, the
FC-centraliser of a finite set is also the whole group. Note that having an infinite
FC-centre is not an invariant of quasi-isometry (see Cornulier [15, Remark 2.14]).

Remark 4.1. For an infinite subgroup K < T, note that the FC-centraliser
ZIEC(K) is contained in the q-normaliser Nf(K). Indeed, given g € ZIEC(K),
K acts on {kgk~!}recx by conjugation (and there is, by construction, only one
orbit). Since this set is finite and K is infinite, every orbit has an infinite stabiliser.
So there are infinitely many k € K commuting with g and gKg™! N K is infinite.

Hence, if K < H < I (and K is an infinite subgroup), then ZIEC(H ) <
ZEE(K) < NE(K) < NE(H).

4.1. FC-centre and kernel. G is called u-Liouville if there are no bounded
u-harmonic functions on G, i.e. there are no f € £>°G so that

D uE) fs7x) = f(x).

seS
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Lemma 4.2. Assume 7 is an ergodic unitary representation of the finitely gen-
erated group G, b is a u-harmonic cocycle, G is p-Liouville and G has a finite
conjugacy class C. Then

= 2 bes) = b,

ceC

Proof. Define a transport pattern (see also [25, Definition 3.2] or [24, Defini-
tion 4.1]) from ¢ to & (two finitely supported measures) to be a finitely supported
function on the edges t so that V*t = & — ¢. The proof consists in showing
the equality for any /(-) which is u-harmonic and has “0-mean”-gradient. It will
then follow for b, since for any n, h(-) := hy(-) = (b(-) | n) such a function (see
Definition 2.2 and Lemma 3.3). The proof takes place on the right-Cayley graph.
If i is u-harmonic, then (i | P}) = h(g) where (h | f) = > . cx h(x) f(x) Gf
at least one of /1 or f has finite support) and Pj is the distribution of the random
walk driven by u starting at g at time n. Hence, if C is a finite conjugacy class,

1 1 "
07 2 ke = (@) = (k| 15 3 Pl — i)
ceC ceC

= (h | V'ta)

= (Vh | 1),
where 7, is the transport plan obtained by taking the mass of PJ at g, split in
|C| masses, and take them (along a shortest path) to g’c (for ¢ € C). Each
transport takes at most K := max.ec |c|s steps, hence | z,],1 < K. Notice that

g'C = Cg’, so that this also splits and transports the mass uniformly to Cg’. Let
C = 81,8, ---S|c|,c, then

ﬁ 3 hicg) — h(g)

ceC
= (Vh | 1)

el 1
=33 > (Vh(g's152...5i-1.8'5152...5i) | =PI (g)

ceCi=1g’eG |C|

el

1
= E Z Z Z (ﬁ(g/S1S2 c8i—1)b(s) | ) - P;(g’)

ceCi=1g'eG

el

1
=1 DD lnsrsi—obisa | Pg)

ceCi=1
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Note that the left-hand side does not depend on n. By letting n — oo, measure
Pg in the right-hand side tends to an invariant mean on £>°G (see Kaimanovich
and Vershik [36]). On the other hand, the coefficients are those of an ergodic
representation: their mean for the invariant mean on WAP functions is 0. Since an
invariant mean on £*°G coincides with the unique invariant mean on WAP, each
sum tend to 0. |

Recall that the [closure of the] image of a cocycle is always a subrepresentation.

Lemma 4.3. Assume that there exists z so that b(g) = b(zg) for all g € G. Then
z € ker myymp and b(z) = 0.

Proof. Using the hypothesis and that b(e) = 0, one gets
b(z)=b(z-e) =b(e) =0
But then, using the cocycle relation, one has, for all g,

b(g) = b(zg) = n(2)b(g). 0

For the record let us combine the two previous lemmas:

Theorem 4.4. Assume 7 is ergodic, H' (G, ) # 0, G is finitely generated
and G is p-Liouville. Then, for any non-trivial p-harmonic cocycle b, Z(G) C
ker b N ker mymp.

Proof. Let z € Z(G). Then z has a finite conjugacy class (it consists in the
singleton z itself!). By Lemma 4.2, b(zg) = b(g) for all g € G. By Lemma 4.3,
z € ker mjymp and b(z) = 0. This finishes the proof. |

Here is a small strengthening of Lemma 4.3. Note that the conclusion on the
triviality of the cocycle goes through only for weakly mixing representations.

Lemma 4.5. Assume C C G is a finite subset and that b(g) = ﬁ Y cec blcg)
forall g € G, then C C kermjymp. If further C is a finite conjugacy class,
then {b(c) | ¢ € C} span a finite-dimensional subrepresentation of w ( possibly

b(C) = {0}).
Proof. Note that
0=bh(e) = %| > b(o).

ceC
Using this, one gets

1 1
b®) = i > b(cg) = 0l > w(e)b(g).

ceC ceC
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So ITII Y cec m(c) = Idjimp. For any £ € Imb,

161 = & St 16

ceC

Since (m(c)é | &) € [—|&||Z. I€]IZ], each term of the average on the right-
hand side must be equal to ||£]|?. Using the classical trick that ||§ — w(c)&||> =
2||€|1% — 2(m(c)& | £), one gets that 7(c)é = . Hence C C Ker 7.
Using (2.6) with 4 = ¢ and noting that 7 (gcg™"') is trivial on Im b, one gets
that
b(geg™") = m(g)b(c).

This implies the second claim. O

The previous lemma will be shortly applied to weakly mixing representations.
In order to obtain a stronger result than Theorem 4.4, the Liouville hypothesis
will be dropped. Since the random walk no longer converges to an invariant mean,
some preliminary work on the coeflicients of weakly mixing representations needs
to be done.

Lemma 4.6. Assume 7 is a weakly mixing representation of G. Let k1, ...,k be
coefficient functions of w. For any ¢ > O the set T, = {g € G | foralli, |xi(g)] <
e} is thickly syndetic and will be hit almost surely infinitely many times by a
[irreducible] random walk.

Proof. Forany e > Othesets T; = {g € G | |k;(g)| < ¢} are thickly syndetic (see
Definitions 2.1 and 2.2). The first step is to prove that the intersection of finitely
many thickly syndetic set is thickly syndetic.

This can be obtained by induction using the following claim: if A4 is thickly
syndetic and B is thickly syndetic, then A N B is thickly syndetic. To prove the
claim, consider first the simpler case where A is syndetic. Let S be such that

SA = G, then
ﬂzB:Gm(ﬂzB)

teS teS

- (Usa) ()

seS teS

- an(N19)

seS teS

- Us(an ()1m)

seS teS

c | JsanB).

seS
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Since (),cg t B is also syndetic (it’s even thickly syndetic), A N B is syndetic. If A
is actually thickly syndetic, then, for any finite subset ¥ C G, let A" = (rcp fA
and B" = (\ycp fB. A" and B’ are still thickly syndetic, so in particular A’ is
syndetic. Applying the above argument to A" and B’ (instead of A and B), one
gets that A’ N B" = ("), (4 N B) is syndetic. Since this holds for any ¥, AN B
is thickly syndetic.

This first steps shows that the set T is syndetic (for any ¢ > 0). Note that in
order to keep with the standard definitions, syndetic, thick and thickly syndetic
were defined with left-multiplication. Because the unique left-invariant mean
on WAP functions is also right-invariant, the flight function property is also
true for right multiplication (this follows from reading Glasner’s book [23, 1.51
Theorem and 1.52 Lemma] with right multiplication instead of left multiplication).
Alternatively, just note that the random walk is symmetric: the time » distributions
of the left- and right-multiplications are identical. So if the random walk by left-
multiplication hits the set infinitely often, then so does the random walk by right-
multiplication.

The second step is to show that, if L is a [right]-syndetic set, then a [irre-
ducible] random walk [on the right] hits it almost surely. Indeed, there is a S so
that LS = G. This means that for any g € G thereisas € S anda/ € L so that
g = [s. One can “decorate” the elements of G with all the s € S sothatg = [s for
some [ € L. Since the set of “decorations” S is finite, some decoration will occur
infinitely many times. Because S is finite [and the random walk is irreducible],
the random walk will almost surely produce all elements of S starting from any
decoration which occurs infinitely often. This means that the random walks hits
the set L almost surely infinitely many times. O

This technical preparation being over, here is the analogue of Lemma 4.2.

Lemma 4.7. Assume 7 is weakly mixing, b is a pi-harmonic cocycle, G is finitely
generated and g has a finite conjugacy class C. Then

1
= 2 bleg) = b(g).
C] CGXC:

Proof. Given a function f, let us say that f was obtained by u-firing f if
f = f —af(g)ss + af(g)u where a €]0,1]. If h is pu-harmonic, and v is
obtained by u-firings of §, then i * v = h.

Let F" be a sequence to determine yet, but which was obtained by u firings
of .. Let F, ¢ be the translate of these functions (so that the firing began at Og).

The proof mainly goes on as for Lemma 4.2. If / is u-harmonic, then (h |
Fg) = h(g). Hence, if C is a finite conjugacy class, ﬁ Y cec hlcg) —h(g) =
(Vh | ©) where, again, 7, is the transport plan obtained by taking the mass of Fy
at g/, split in |C| masses, and take them (along a shortest path) to g’c (for ¢ € C).
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For K := max.ec |c|s one has ||t,]l;1 < K and g¢'C = Cg’, so that t,, transports
the mass uniformly to Cg’.
Letc = $1,¢82,c...58c,c, then

0l C| > h(cg) —h(g) = Z Z Ka(s1.si—1)b(s)n | Fa)-

ceC eCi=1

Again the left-hand side does not depend on n.

As in Lemma 4.6, let T, be the set where all the coefficient functions coming
in the above sums are < ¢ Define Fy from F, ;_1 by firing at all the masses which
are notin 7”. Since the set 7"’ is syndetic, a random walker will hit it almost surely.
This implies that the mass of F' supported on 7 tends to 0 as n — oo.

Since the sums are finite and the coefficient functions bounded, the right-hand
side is < K|Cle as n — oo. But this can be done for any ¢ > 0, yielding the
claim. O

Again, a combination of the Lemmas 4.5 and 4.7 yield directly

Theorem 4.8. Assume 7 is weakly mixing, H'(G,7) # 0 and G is finitely
generated. Then, for any non-trivial p-harmonic cocycle b, Z¥¢(G) C kerb N
ker 7|im .

Proof. Letz € ZFC(G). Then z has a finite conjugacy class C (by definition). By
Lemma 4.7, ITII Y cec b(cg) = b(g) forall g € G. By Lemma 4.5, b(C) spans a
finite-dimensional subrepresentation of = and C C ker mjjp. Since 7 is weakly
mixing, this subrepresentation must be {0}. This implies that 5(C) = {0} and
C C kerb. O

Bekka, Pillon, and Valette [5, §4.6 and Corollary 4.13] showed that isometric
action of groups with property (FAD) also quotient through the FC-centre.

Proof of Theorem 1.1. Theorem 4.4 or Theorem 4.8 basically form the statement
of Theorem 1.1 before the “In particular.” So any harmonic cocycle is trivial on
the centre or the FC-centre (according to which point of the Theorem is under
consideration). Assume a subgroup H of the centre or FC-centre is ergodic.
Theorem 4.4 or Theorem 4.8 imply that H C kermjyp. This in turns means
that Imb» = {0}. Since all harmonic cocycles have a trivial image, Corollary 3.2
implies H'(G, ) = 0. O

4.2. Corollaries. The following corollary is a new proof of a result of Guichardet
[30, Théoréme 7 in §8].
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Corollary 4.9. Assume G is nilpotent. If H' (G, ) # 0, then 1 < 7.

Proof. Assume 1 £ 7 (i.e. m is ergodic). Let b be a harmonic cocycle and
restrict, if necessary, to the subrepresentation Im b (which is also ergodic). By
Theorem4.4 (nilpotent groups are p-Liouville for any finitely supported u; see,
for example, [1]), one gets that Z C ker . Hence b gives a harmonic cocycle for

the quotient representation = on G := G/Z(G). Repeat the argument on G;.
Since the upper central series give the whole of G, one gets that b must be trivial,
a contradiction. O

Note that one could make a similar argument by replacing “nilpotent” by
“virtually nilpotent” and “r ergodic => H'(G, ) = 0” by “x weakly mixing
— H'(G,7) = 0.” Indeed, using Theorem 4.8 one gets that the cocycle are
trivial on the largest element of the upper FC-central series. By Duguid and
McLain [17, Theorem 2], finitely generated groups whose FC-central series end
in the full group are exactly the virtually nilpotent groups. This gives

Corollary 4.10. Assume G is virtually nilpotent. If 7 is weakly mixing, then
HY(G,n)=0.

Shalom [57, Corollary 5.1.3 and Lemma 4.2.2] actually showed a stronger
statement: if 7 is not finite (i.e. does not factor through a finite quotient of G)
then H'(G, ) = 0.

Corollary 4.11. Assume G has an infinite FC-centre, then any representation
with finite stabilisers has trivial reduced cohomology.

First proof. Indeed, consider » a harmonic cocycle and let 7’ be the subrepresen-
tation given by restricting to the image of 5. Then n’ has also finite stabilisers.
However, by Lemma 4.7, ZF€(G) C ker . If ZFC(G) is infinite and 7’ has finite
stabilisers, then the image of b must be {0}. |

Second proof. Assume H'(G,m) # 0. For some harmonic cocycle ZF¢(G) ¢
ker b, by Lemma 4.7. By Lemma 2.11, kerb = G (it cannot be finite or almost-
malnormal since it contains an infinite normal subgroup). |

Thanks to Lemma 2.13, the second proof also works under the weaker hypoth-
esis that there is some infinite subgroup H < ZF¢(G) such that 7y has finite
stabilisers.

Definition 4.12. For a finitely generated group G and a finite generating set S,
the compression of a cocycle b € Z(G, ) is the largest increasing function
p—:Z=o — R s0 that [[b(g)[ = p-(Igls)-
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For example, a cocycle is proper if p_ is unbounded. Recall that, when G is an
amenable group, every cocycle for the left-regular representation on £2G is either
bounded or proper by Peterson and Thom [50, Theorem 2.5].

Corollary 4.13. Assume a p-harmonic cocycle b € HY(G, ) is proper, G is
u-Liouville and G has a infinite centre. Then m is not ergodic and G surjects
onto Z.

Proof. By Theorem 4.4, if n is ergodic and Z(G) is infinite, kerb is infinite
and, hence, b cannot be proper. So 7 is not ergodic and the cocycle b is not
trivial when restricted to this non-ergodic subrepresentation. This gives directly a
homomorphism to Z. |

Likewise, one gets

Corollary 4.14. Assume a harmonic cocycle b € H'YW(G,r) is proper, G is
amenable and G has a infinite FC-centre. Then w is not weakly mixing and G
virtually surjects onto Z.

Proof. By Theorem 4.8, if = is weakly mixing and G has a infinite FC-centre,
ker b is infinite and, hence, cannot be proper.

Restricting our attention to the finite dimensional sub-representations does not
change the fact that the cocycle is harmonic. Hence, some finite dimensional
representation of G has a non-trivial reduced cohomology. By Shalom [57,
Theorem 1.11.(1) or Theorem 4.3.1], this implies G virtually surjects onto Z. O

The previous corollaries imply that the compression of Liouville [resp.
amenable] groups with an infinite centre [resp. FC-centre] and which do not sur-
ject [resp. virtually surject] onto Z is never realised by a harmonic cocycle.

Corollary 4.15. Let G be a finitely generated amenable (resp. w-Liouville) group
which is torsion (resp. whose abelianisation is torsion). No harmonic cocycle b
is proper or G has a finite FC-centre (resp. centre).

Proof. If G has an infinite FC-centre (resp. centre), Corollary 4.14 (resp. Corol-
lary 4.13) implies G would virtually surject (resp. surject) onto Z. This contradicts
the fact that G (resp. the abelianisation of G) is torsion. O

Shalom [57, Theorem 1.11.(1) or Theorem 4.3.1] also shows that torsion
amenable groups may not have property Hrp (hence some weakly mixing repre-
sentations 7 has H'(G, ) # 0). The infinite dihedral group Do, = (a,b | a® =
b? = 1) is an interesting example in the context of Corollary 4.15: it is Liouville
(hence amenable), it has an infinite FC-centre (ZFC(Doo) = {(ab)"}nez) but the
centre is trivial, its abelianisation is torsion (C, x C;) and it has a proper harmonic
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cocycle (let 7w be the representation on H = R which send each generator to the
inversion x — —x and z the cocycle defined by z(a) = —z(b) = 1).

The authors does not know if there exists an infinite amenable torsion group
which has an infinite FC-centre.

5. £P-cohomology

The aim of this section is to prove some results on the vanishing of reduced £?
cohomology in degree one. Since most readers are probably unfamiliar with it,
it seems natural to begin not only with definitions, but also with a result which
shows £7-cohomology has implications on Hilbertian representations.

5.1. Preliminaries and applications to unitary representations. For a group
H,let Ay» g denote the left-regular representation on £ H , i.e. the representation
coming from the action of H on X = H. The associated reduced cohomology is
called the reduced {P-cohomology.

A very nice application of reduced £”-cohomology in degree one to questions
of sphere packings may be found in Benjamini and Schramm [6]. Other important
applications include problems of quasi-isometries (see Pansu [49]), the conformal
boundary of hyperbolic spaces (see Bourdon and Pajot [12] and Bourdon and
Kleiner [11]), the critical exponent for some actions (see Bourdon, Martin, and
Valette [13]), nonlinear potential theory (see Puls [55] and Troyanov [59]) and
existence of harmonic functions with gradient conditions (see [25, Theorem 1.2
or Corollary 3.14] or [28]).

For the reader whose interest lies mostly in Hilbert spaces, here is a reason to
consider reduced £”-cohomology. The following result is implicitly mentioned in
[29, §2]. Recall that a function f: G — C is said to be constant at infinity if it
belongs to the linear span of ¢oG and the constant function*.

Corollary 5.1. Assume H'(G,{?G) = 0 for some p > 1 and G is finitely
generated. Then, for any 0 < p" < p and for any unitary representation  with
finitarily coefficients in 7', HY(G, ) = 0.

Proof. By Guichardet [30, Théoreme 7 in §8] (see also Corollary 4.9), one may
assume G is not nilpotent (such groups would otherwise need to be considered, see
Remark 5.2.1). Leth € H'(G, =) be aharmonic cocycle. If b is not trivial, Lemma
3.3 and Remark 3.6 imply there is a non-constant harmonic function 4,: G — C
which has gradient in £7". By [25, Theorem 1.2 or Corollary 3.14], the existence
of such a functions implies that H'(G,£? G) # 0 and this, in turn, implies that
H'(G,£PG) # 0; a contradiction. O

4In other words, there exists a ¢ € C such that for all ¢ > 0 the set G \ f~1(B.(c)) is finite
(where Bo(¢c) ={k € C||c — k| < &}).
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This will allow us to show that, for many groups, representations with finitarily
coefficients in £# have trivial reduced cohomology. Note that the converse of
Corollary 5.1 is false: Zuk [62, Theorem 3 and 4] showed there are hyperbolic
groups (so H_I(G,)Lgpg) # 0 for some p, see e.g. [12]) with property (T) (so
H'(G, ) = 0 for any unitary representation).

Remark 5.2. It is known that the reduced £”-cohomology is trivial in degree 1
for the following groups (1 < p < 00).

1. G has an infinite FC-centre (see Kappos [37, Theorem 6.4], Martin and
Valette [41, Theorem 4.3], Puls [52, Theorem 5.3], Tessera [58, Proposition
3] or [24, Theorem 3.2]).

2. G has a finitely supported measure with the Liouville property, i.e. no
bounded p-harmonic functions (see [25, Theorem 1.2 or Corollary 3.14]).
This includes all polycyclic groups (for such groups, see also Tessera [58])

3. G is a direct product of two infinite finitely generated groups (see [28,
Corollary 3]).

4. G is a wreath product with infinite base group (see [28, Proposition 1] and
Martin and Valette [41, Theorem.(iv)]) unless the base group has infinitely
many ends and the lamp group is amenable. Arguments from Georgakopou-
los [21] show that this also holds for finite lamp groups (even if the base group
has infinitely many ends).

5. G is some specific type of semi-direct product N x H with N not finitely
generated (see [27] for the full hypothesis).

It is also trivial in any amenable group for any 1 < p <2 (see [25]).

On the other hand it is non-trivial (for some p < +o00) in all hyperbolic
groups (see Bourdon [10], Bourdon and Pajot [12], Elek [18], Gromov [31, p.258],
Pansu [48] or Puls [54, Corollary 1.4]), some groups without free subgroups of
rank 2 and some torsion groups of infinite exponent (see Osin [45]).

The reduced £!-cohomology in degree one is non-trivial if and only if the group
has > 2 ends (see [25, Appendix A]).

Before moving on, let us note that in Corollary 5.1, G needs not necessarily
be finitely generated. Indeed, if G is not finitely generated, it suffices to prove the
statement for any finitely generated subgroup. This is due to the following lemma
(this version is taken from Martin and Valette [41, Lemma 2.5]):

Lemma 5.3. Assume G is a countable group given as a union of finitely generated
groups G = |J; Gi. Let b € Z'(G, ) for some representation = of G on the
Banach space B. Then, b, € B'(G;, ) for all i implies b € B(G, ) which in
turn implies that for all G' < G finitely generated, b|g' € BY (G, n).
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Combined with Martin and Valette [41, Proposition 2.6], one gets (G is here
always assumed countable)

Proposition 5.4. The following are equivalent:
e HY (G, pg) =0;
e for any finitely generated H < G, H'(H, Apg) = 0;

e for some increasing sequence of finitely generated subgroups {H;}, G =
\U; Hi and H'(H;, A¢gr ;) = 0.

When one considers the £7-cohomology, the space of virtual coboundaries is
also called the space of p-Dirichlet functions D? G := D? (G, A¢rg), i.e. the space
of functions f: G — Csothat V f € {? E (where E are the edges of Cay,(G, 3)).
The norm of a cocycle (as introduced in §3.3) is the £7-norm of V f. Henceforth,
it will be referred to as the D? G-norm. See Martin and Valette [41, §3] or Puls
[52, 53] for more background.

It is fairly classical that the coboundary map d:¢?G — B'(G,A¢»g) has
closed image if and only if the group is not amenable (see Guichardet [30,
Théoréme 1 and Corollaire 1]). In particular, H'(G, Ay»G) = 0 implies G is non-
amenable.

5.2. Triviality and values at infinity. Let us now present an improvement of
a result of [25, Lemmas 3.1 and 3.9] showing that (under a growth hypothesis)
functions in D? G corresponding to the trivial class are exactly those which are
constant at infinity. The improvement is not major (relaxes the hypothesis on
growth) but it makes for a good opportunity to present this important ingredient
of the upcoming proof. Some concepts from nonlinear potential theory will also
come in handy.

Definition 5.5. Let (X, E) be an infinite connected graph. The inverse p-
capacity’ of a vertex x € X is

icp, (x) := (inf{||V fll¢rg | f: X — Cis finitely supported and f(x) = 1!

The graph is called p-parabolic if icp,(x) = oo for some x € X. A graph is
called p-hyperbolic if it is not p-parabolic.

Recall (see Holopainen [35], Puls [55] or Yamasaki [61]) that if icp, (xo) =0
for some x¢ then icp,(x) = 0 for all x € X. Recall also that 2-parabolicity is
equivalent to recurrence.

5 One might also like to call it the “p-resistance to co.”



1402 A. Gournay

Remark 5.6. 1. If the graph (X, E) is vertex-transitive, icp, (x) = icp,(y) for all
x,y € X. Leticp,(X) := icp,(x) be this constant. It is also easy to see that if
the automorphism group acts co-compactly on the graph, the inverse p-capacity
is bounded from below.

2. Note that in the definition of p-capacity, one may also assume that the
functions take value only in R>. Indeed, looking at | /| instead of f reduces
the norm of the gradient. Likewise, one can even assume f takes value only in
[0, 1] as truncating f at values larger than 1 will again reduce the norm of the
gradient.

The following proposition is an adaptation of a result of Keller, Lenz, Schmidt,
and Wojchiechowski [39, Theorem 2.1].

Proposition 5.7. Assume G is a finitely generated group with growth at least
polynomial of degree d and p < d. If f € DPG represents a trivial class in
reduced £P -cohomology, then f is constant at infinity.

Furthermore, coG C DPG and | f |0 < icp, (G, S)|IV fp for all f € coG.

Proof. A consequence of the Sobolev embedding corresponding to d -dimensional
isoperimetry is that groups of growth of at least polynomial of degree d > p have
p-hyperbolic Cayley graphs. See Troyanov [59, §7] as well as Woess’ book [60,
§4 and §14] and references therein for details.

As Cay(G, S) is p-hyperbolic and by Remark 5.6.2, one has |f(x)| <
icp, (0)[[V f|p for all f of finite support. However, by Remark 5.6.1, there is
no dependence on x on the right-hand side. So | f(x)| < icp, ||V f |, forall x € G
and f of finite support, where icp,, is icp,(Cay,(G, S)) Trivially this implies

1/ loo < icpplIV £l

for all f:G — C of finite support. As a first consequence, assume f;, % f
with f, finitely supported. Then f, also converge to f in £*°G. Since ¢oG is
the closure of finitely supported functions in £>°G, this shows that f € WD”
implies f € ¢oG. In other words, if f represents a trivial class in reduced £7-
cohomology, then f is constant at infinity.

As a second consequence, let us show the “Furthermore.” Pick some f € ¢oG.
Apply the inequality to g. = f — f; where f; is the truncation of f

ef()/[f(x)] if [ f(x)] > e,
f(x) else.

Indeed, g. is finitely supported so it satisfies ||ge[lcc < icp,||Vgellp (recall that

icp, = icp,(Cay|(G. S))). Also [|Vg:ll, < IVfllp and || fllooc < & + lIgellco-
Hence || f|lco < &+icp,||V fl, and the conclusion follows by letting ¢ — 0. [

Je(x) = {
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The above proposition gives the following very nice characterisation of virtual
cocycles corresponding to the trivial class. It improves a result of [25, lemmas 3.1
and 3.9] by requiring only d > p instead of d > 2p.

Corollary 5.8. Assume G is a finitely generated group with growth at least
polynomial of degree d and assume d > p. f € DPG represents a trivial class in
reduced LP -cohomology if and only if f is constant at infinity.

Quick proof. Here is a quick version of the proof (which can be found as [25,
Lemma 3.1]). Without loss of generality the constant at infinity is 0 (because one
may add a constant function to f). Considering again g, = f — f. (where f; is

DP
the truncation of f), one can check that, as ¢ — 0, g¢ — f. Since g, is finitely
supported, it is in £ G (and this concludes the proof). |

As in Keller, Lenz, Schmidt, and Wojchiechowski [39], say that the graph
(X, E) is uniformly p-hyperbolic if icp,(X, E) := sug icp,(x) is finite. Using
xXe€

the arguments from [25], one can show:

Lemma 5.9. If (X, E) is a graph of bounded valency with d-dimensional iso-
perimetry and d > 2p, then (X, E) is uniformly p-hyperbolic.

Proof. First, recall that d-dimensional isoperimetry implies that the Green’s ker-
nel (ko := ), P2 where P} is the random walk distribution at times n starting
at the vertex o) has an ¢4 X -norm (for some ¢ < p’ = ﬁ) which is bounded
independently from o.

Indeed, d-dimensional isoperimetry implies that || P} || < kn (where
k € R comes from the constant in the isoperimetric profile; see Woess’ book [60,
(14.5) Corollary] for details). From there, one gets that | P[4 < || P2 |47 | P2 ||, <
k9~ 1n=4@=D/2 " This implies that ||k,]; < 3 ,.04Y?n~%/24" (a series which
converges if d > 2¢’). -

Second, let f be a finitely supported function with f(0) = 1, then

(VS| Vko) = (f | V*Vko) = (f |85) = flo) = L.

Since ||V £, = [Vkol; (V£ | Vho). [Vkolly < 20lkolly < 20[1kollg = 2vis"
(where v is the maximal valency of a vertex) and there is no dependence in o, this
means that icp, (X, E) < «q/2v.

Noting that, for the above, the conditions ¢ < p’ and 2¢’ < d need to hold,
one gets that the bound holds as long as 2p < d. |

—d/2

Troyanov [59, §7] defines a parabolic and isoperimetric dimensions and shows
the inequality dpsr > disop. Actually, if one defines analogously the “uniform
parabolicity dimension” d, , := inf{p | (X, E) is uniformly p-parabolic},
Lemma 5.9 shows that dy, ,. > %dimp. A more obvious inequality is dpar > dy.p..
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One also gets the following corollary on the p-harmonic boundary and the
p-Royden boundary. For the definitions see Puls [55, §2.1].

Corollary 5.10. Assume

o cither that p < d and T is the Cayley graph of a group G which is finitely
generated and has growth at least polynomial of degree d ;
e orthat p < d/2andT is a graphwith a d-dimensional isoperimetric profile.

Then the p-Royden boundary and the p-harmonic boundary are equal.

The proof is identical to that of the analogous result for p = 2 by Keller, Lenz,
Schmidt, and Wojchiechowski; see [39, Theorem 4.1].

Combined with Puls [55, Theorem 2.5], this shows that many groups have only
one point in the p-Royden boundary (i.e. any group which is not nilpotent and has
trivial reduced £”-cohomology; see Remark 5.2 and the upcoming subsections for
examples).

5.3. Applications to £”-cohomology. A special case of Theorem 2.12 applied
to the left-regular representation on £#G (which is strongly mixing) combined
with a result from Martin, and Valette [41, Proposition 2.6] (see Proposition 5.4
above), one gets a refinement of Bourdon, Martin, and Valette [13, Theorem 1.1)]:

Corollary 5.11. Assume K < G is an infinite subgroup and H' (K, d¢rg) = {0}.
Then either H' (G, Agprg) = 0 or there is an almost-malnormal subgroup H < G
so that K < H. In particular, if K is wg-normal then H' (G, Agpg) = 0

However, using Corollary 5.8, one can prove an essentially finer result. The
following theorem is not only a generalisation of Bourdon, Martin, and Valette
[13, Theorem 1.1)] (if N < G is infinite and N < H < G then H is g-normal),
but also of [25, Theorem 1.4]. Except for the finite generation hypothesis, it is also
stronger than Corollary 5.11.

Theorem 5.12. Let 1 < p < d € R. Assume K is wg-normal in G, both K

and G are finitely generated, K has growth at least degree d polynomial and
HY(K, Arg) = 0. Then H'(G, Agrg) = 0.

Proof. Let S be a finitely generating set of G for which K is g-normal. Without
loss of generality, one may assume S contains a finite generating set for K denoted
Sk. Let b € ZY(G, A¢grg) be a cocycle and write it as a virtual coboundary:
b =mn(g)f— f where f € D?G (i.e. f is afunction on Cay,(G, S) with gradient
in £7). Decompose G = L; Kg; into K-cosets. The graph restricted to any of
these cosets is isomorphic to Cay|(K, Sx) (the map is kg; — k). Furthermore,
via this isomorphism, the function f restricted to any coset is a function in D? K.



Mixing, malnormal subgroups and cohomology in degree one 1405

Using Corollary 5.8 (since HY(K,A¢prg) = 0 and K has growth at least d),
f takes only one value at infinity on each subgraphs Kg;. Since f € D?G, the
following sum is finite:

I f = flfr = D1/ (g kgi) — f kg

=Y |f(g kgg &) — flkgi)l.

8i€K\G,
keK

If g is [non-trivial and] in the set generating the quasi-normaliser of K, N&(K),
there are infinitely many k € gKg~! N K. In particular, there is a sequence k,
so that g7k, gg~'g; tend to infinity in Kg; (where Kg; = Kg~'g;) and k,g;
tens to infinity in Kg;. This implies that the constants at infinity on these cosets
must be the same, otherwise the sum diverges and f ¢ D”G. This shows that
the constant at infinity is the same on each K coset which lie in the same N7 (K)
coset. However, the argument can be reapeated on N72(K) := NA(NZ(K)).

By pursuing this using transfinite induction, one gets that constant is the same
on N9%(K) = G By Corollary 5.8, one sees that the class of f is the trivial
class. |

Note the conclusion also follows from a maximum principle for p-harmonic
functions (see §3.3 and §3.4 or Puls [52, 53] or Martin and Valette [41, §3]).
Bourdon in [9, {4) in §1.6] (see also [13, Example 1 in §3]) has given a very nice
example showing that the hypothesis that H!(K, A¢»g) = 0 cannot be dropped
from Theorem 5.12.

Next, let us show an improvement of Martin and Valette [41, Theorem 4.2].
The main interest in the following proof is that the vanishing of the cohomology
for the subgroup is no longer necessary. This comes at the cost of an hypothesis
on the FC-centraliser.

Two functions f1, f>: G — C will be said to have the same value at infinity® if
f1 — f> belongs to ¢y G.

Theorem 5.13. Assume G is finitely generated. Let K < G be a finitely generated
wq-normal subgroup with growth at least polynomial of degree d. Assume its
FC-centraliser ZgC(K) is infinite and that p < d. Then H' (G, A¢rg) = 0.

Proof. 1f ZEC(K) N K = ZEC(K) is infinite, then K has an infinite FC-centre.
Remark 5.2.1 and Theorem 5.12 give the claim.

6 In other words, for any sequence g, — oo (i.e. g, exits any finite set), | f1(g,)—/f>(gn)|—0.
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So assume ZIF<C(K ) is finite and Z gC(K ) is infinite. Many elements of the rest
of this proof resembles the proof of Theorem 5.12. Let f € DPG be a virtual
coboundary for a cocycle b and let G = U; Kg;. Consider further z; € Z gC(K )
so that g; = z;g;(). A first useful claim is that, since K N ZgC(K ) is finite and
ZgC(K) is infinite, given i1, there are infinitely many i, with j(iz) = j(i1).

To prove this claim, recall that given two subgroups K, L < G, [L : LN K] =
[KL : K] (KL is not necessarily a subgroup, but it can nevertheless be split into
K-(left)-cosets). This follows from the orbit-stabiliser theorem: L acts transitively
(on the right) on the K-cosets in KL and the element K has stabiliser K N L.
Taking here L = ZEC(K), this means that there are also infinitely many K-cosets
in KL because K N L is finite and L is infinite,

Asin Theorem 5.12, let f; be the restriction of f to the coset Kg; = Kzig); fi
is identified to an element of D? K. If for all i, f; is trivial in reduced cohomology,
then the proof is identical to that of Theorem 5.12 (the hypothesis H1(K, A¢rg) =
0 was used to this effect). This means one can assume that for some iy, f;, is not
constant at infinity.

To f;, one can associate a p-harmonic function 4, which is the element of
D? K with minimal norm which takes the same values at infinity as f;, (again,
see Martin and Valette [41, §3], Puls [52, 53] or §3.3 and §3.4). Let i’ be
such that j(i") = j(io) =: jo. The distance from kz; g;, = kzirk kg, to
kzigj, = kzik~'kgj, is bounded by MaX |kz;1z;/k~!| . Because the gradient of
f isin €7, this implies that, for any i’ with j(i") = j(io), fi, and f;’ take the same
values at infinity.

The D? K-norm of the f;/ is however uniformly bounded from below by the
D? K-norm of & (as h has the smallest D” among all functions which take the
same value at infinity as f;,). But there are infinitely many such restrictions, and
the D? G-norm of f includes the sum of all these D” K-norms. So f has infinite
D? G-norm, a contradiction.

Thus for any i, f; is constant at infinity. This means that f takes only one value
at infinity on each subgraph K g;. From there on, the proof is identical to that of
Theorem 5.12 (the hypothesis H! (K, A¢»x) = 0 was used to this effect). O

The proof in the case where ZIF<C(K ) is finite can be shortened significantly
if Zg(K) contains an infinite finitely generated subgroup Z’ (i.e. Zg(K) is not
locally finite). Indeed, the subgroup generated by K and Z’ is then isomorphic to
a direct product (and is still g-normal). The claim then follows by Remark 5.2.3
and Theorem 5.12.

5.4. Further corollaries. Before moving on to a larger class of groups, let us
make a simple example.

Example 5.14. LetG = (a,b | ba?b™! = a?) (with p,q € Z)be the Baumslag—
Solitar group. Let K = (a,bab™'). Then K ~ (a,y | y? = a¥) (by the
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isomorphism y := bab~!) has exponential growth as soon as |p| # 1 # |q|
(because it surjects on (a,y | y? = a? = 1) ~ Cp, x Cy) and is g-normal in G for
the generating set {a, b}. On the other hand K has an infinite centre (the subgroup
generated by a?), hence I-_II(K, A¢rg) = 0 (see Remark 5.2.1). By Theorem 5.12,
H' (G, Arg) = 0.

Note that if | p| = |¢|, G has an infinite centre so that the conclusion follows di-
rectly from Remark 5.2.1. Also, the solvable Baumslag—Solitar (i.e. when |p| = 1
or |¢| = 1) groups are already known to have H'(G, A¢»g) = 0 by Remark 5.2.2.

Example 5.15. Let G = (a;.i € Z/4Z | aiy1a;a;7}, = a?) be the Higman
4-generator 4-relator group. Let H3 be the subgroup generated by the ag, a; and
a, and let H; be the one generated by ag and a;. H; is isomorphic to a Baumslag—
Solitar group (with p = 1 and ¢ = 2). In particular, H'(Ha, A¢» H,) = 0 (by the
previous example). Hy is g-normal in H3: ax Hyay ' N Hy D {a?"},ez. Hj is also
g-normal in G: a3 H3a3' N H3 D {a3" }pez. By Theorem 5.12, H'(G, A¢rg) = 0.

Indeed, as H, is not amenable, H'(Hy, A¢» H,) = 0. Next note that any group
L (except G) which contains H; is not almost-malnormal. Indeed, if K does not
contain a,, then a; Ka;' D a» Hyay!' (which is infinite, as above). K contains a,
then asKa3' D azHzaz ' (which is infinite, as above). H'(G, A¢rg) = 0.

The previous examples illustrates an important gain made by considering g-
normality. There are finitely generated groups (such as Z ? Z) where the [non-
trivial] normal subgroups are not finitely generated. In such a group [25, Theorem
1.4] cannot be applied. However, any infinite finitely generated subgroup Ko
of H gives rise to a g-normal subgroup: look at K the subgroup generated by
U 2eSe gKog™! where Sg is a generating set of G. This means there are lots of
candidates to apply Theorem 5.12.

Solvable groups have “few” malnormal subgroups (and usually “many” sub-
normal subgroups) so they make natural examples for the application of The-
orem 5.12. Recall that derived series of a group H is defined by H(+D =
[H® H®] with H® = H. The derived length of a solvable group G (i.e. a
group for which the derived series stabilises at {1} after finitely many steps) is the
smallest k such that G® is trivial. The Hirsch length (the number of infinite cycle
factors in the quotients GU*1 /G @) may be infinite even if the derived length is
finite.

Example 5.16. The free solvable group of derived length k and rank n, ie.
G ~ F,/ F,,(k) (where F, is the free group on n generators), are groups to

which Theorem 5.12 applies. Indeed, for any d, F&D / F® contains subgroups
isomorphic to Z¢ which are g-normal.
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More generally,

Corollary 5.17. Assume G is a finitely generated solvable group of derived length
k and rankz,G*=V > d, then, for p <d, H (G, Aipg) = 0.

[The case p = 1 is slightly singular and need not be addressed here (see
Remark 5.2).]

Proof. The characteristic subgroup G*~1 is Abelian. Take a subgroup K’ <
G %=1 isomorphic to Z?. Let S be a generating set for G, S’ a finite generating
set for K’ and K be the group generated by (J, 5 £5'¢™". K now satisfies all the

hypothesis of Theorem 5.12 (K < G*~ being Abelian, its reduced cohomology
vanishes; K grows faster than K’; K is a finitely generated g-normal subgroup
of G) and the conclusion follows. O

It could, of course, happen that G*~1 is locally finite, in which case one could
try to apply Theorem 5.12 on G %~ or any subgroup containing G*—1_ If G*—1
is finitely generated, then the finitely generated subgroups of G%*~2) are prime
candidates (at worse they are nilpotent and at best polycyclic; see Remark 5.2.1-2)

The hypothesis of finite generation from Theorems 5.12 and 5.13 may be
dropped if one requires more normality in the ascending sequence.

Corollary 5.18. Let I' be such that

1. there is a subgroup H which is wg-normal with respect to the sequence
{Htx}txﬁﬂ’

2. there is a subgroup K of H which is finitely generated and has growth at
least polynomial of degree d > p,

3. the inclusion H, < Hgyy1 is g-normal when H, is finitely generated and
normal otherwise,

4. either H'(H, A¢p ) = {0} or ZEICI(H) is infinite.
Then H'(T, A¢rr) = {0}.

Proof. If Hy := H is finitely generated, either Theorem 5.12 or Theorem 5.13
apply directly. So, by hypothesis, it may be assumed that Hy <1 H;.

Let S be a finite generating set for K. For any finitely generated subgroup
K, < H; with generating set Sy, let K’ be the group generated by [ J ges; 85 g L
Since Hy <@ Hy, K' < Hy. If H'(H, Aypp) = {0}, then, by Corollary 5.4,
any finitely generated K’ < Ho will satisfy H'(K’,Agpx) = {0}. Hence
Theorem 5.12 can be applied to K’ (it is g-normal in K; and grows faster than
K). If ZjF(H) is infinite, then so is Zi~(K') (as Z-(K') D Zpy (H)). Apply

Theorem 5.13 to K’ to conclude that H'(K’, A¢») = 0.
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This shows any finitely generated K; < H, satisfies H' (K, A¢» k;) = {0}.
The conclusion passes to H; by Corollary 5.4. Transfinite induction (using
Corollary 5.4 again at the inaccessible ordinals) gives the conclusion. |

The methods of the previous corollary could be use to cover many other groups,
but these do not seem to fit in any nicely described class. Many hyperabelian
groups are covered by this corollary. For example, there are finitely generated
hyperabelian non-solvable groups (see Hall [32, 2 of p.539 in §1.7]) to which
Corollary 5.18 applies.

6. Questions

Here is a conjecture motivated by Osin [46, Problem 3.3] (does H (T, Ap2p) #
0 and finite presentation implies acylindrically hyperbolic) and Gromov [31,
§8.41.(A3), p.226] (does I' amenable implies H (T, Agrr) = 0).

Conjecture 6.1. Assume T is a torsion-free finitely presented group. If, for some
p €]1,00[, HY(T, Agrr) # O then T contains a free subgroup.

One could also strengthen the hypothesis to “finite K(I", 1).” It would be nice
to construct the free subgroup by using the ping-pong Lemma on some ideal
completion (e.g. the p-Royden boundary, see Corollary 5.10).

Question 6.2. If G is a finitely generated solvable group, does H' (G, Agpg) = 0
Jorany 1 < p < 00?

Already the metabelian (derived length 2) case is not clear. Some 2-generator
metabelian groups of these are known to have malnormal subgroups (see de
la Harpe and Weber [33, §3]), but the from the possible tools to conclude the
vanishing there is always [at least] one which applies. The case (locally nilpotent
not finitely generated)-by-Abelian would probably suffice to answer the question.
In fact, for such groups, the difficulty comes in when there is a uniform growth
bound on the locally nilpotent group (e.g. it is locally finite or ;_, Z[pli] where
pi € IN), otherwise Corollary 5.18 can be applied.

The sharpness of Corollary 5.11, Theorem 5.12 and Theorem 5.13 are not so
easy to check. M. Bourdon told the author that amalgamated products (see [10])
give a first family of examples. Another prevailing source of malnormal groups is
hyperbolicity (see [33, §3, in particular Example 9] for more examples). In fact, G
is hyperbolic relative to the family { H; } 1, then the H, are malnormal in G (see
Osin’s book [44, Corollary 2.37]; it is a consequence of the “fine” property in the
sense of Bowditch [14, Proposition 2.1 and §4]). M. Bourdon also indicated to the
author that combining [a careful reading of the] construction of Gerasimov [22]
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with a result of Puls [54, Theorem 1.3] shows that relatively hyperbolic groups have
a non-trivial cohomology for some p. Currently, there are no written reference
relating this p to the conformal dimension of the Bowditch boundary [14].

D. Osin pointed out to the author that some acylindrically hyperbolic groups
have a trivial £7-cohomology for all p € [1,00[. A result of Lohoué [40] (see
also [25, Theorem 1.2 or Corollary 3.14]) shows that, for non-amenable groups,
HY(G, Aipg) # 0 implies the existence of a harmonic function with gradient in
£ . Hence, a weaker condition than “trivial [reduced] £”-cohomology” as p — oo
is to ask whether there is a harmonic function with gradientin c¢o. Atthe moment, it
is unclear whether or not acylindrically hyperbolic groups always have a harmonic
function with gradient in c¢o. Harmonic function with gradient in ¢ are produced
from the harmonic cocycles of strongly mixing unitary representations (see [29,
§2.5 and Corollary 2.6] or Lemma 3.3).

Question 6.3. Assume a finitely generated group G has a harmonic function with
gradient in cy. Is there a strongly mixing linear isometric representation of G on
a strictly convex Banach space with non-trivial reduced cohomology?

Note that the representation may not (in general) be unitary (there are hyper-
bolic groups with property (T), see e.g. Zuk [62, Theorem 3 and 4]).

For p € ]1,00][, the triviality of the reduced ¢”-cohomology in groups is
monotone (if it non-trivial for p then it is non-trivial for all ¢ > p). The
infimal p where the £”-cohomology is non-trivial is sometimes denoted p.(G).
Corollary 5.1 seems to relate p.(G) to the quantity p(G) introduced by Shalom in
[56, §1.8 and §4]. Note that the conditions on the coefficients are not the same
and are there differences in reduced/unreduced cohomology, nevertheless this
raises the question: when is there an inequality p.(G) < p(G)? Links between
£? -cohomology and p(G) are also hinted at in Bourdon, Martin, and Valette [13].

Let G be a torsion-free group, 7: G — GL(V') a representation with finite
stabilisers and b € Z'(G,n). If b(g) = 0 for some g € G, then Lemma 2.11
implies that » = 0 on the malnormal hull of (g) (because (g) is infinite and
contained in ker b). This looks like a first step to extend a result from Peterson and
Thom [50, Theorem 4.1] to other representation. The crucial point that “b(g) =
0 = b(h)=0forallb € Z'(G, )" implies “b(g) = 0 < b(h) = 0 for all
b € ZY(G, )" seems out of reach.

The following question is motivated by [29, §2.5 and Corollary 1.4] (see
Definition 4.12 for compression).

Question 6.4. Assume b € Z'(G, rr) is a harmonic cocycle for a unitary repre-
sentation w and fix a generating set S for G. Let b, be the number of elements
in a ball of radius n of Cay,(G, S) and s, = by, — bp—1 (forn > 0 and 5o = 1).
If p—(n) is the compression function of b, is it true that there is a K > 0 so that
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The main motivation is the following. If true this would mean that

o) < n(=v/2 if b, ~ exp(n®),
p=t = n/~Inn if b, ~ n™™",
where p_ is the compression function of a harmonic cocycle. Note that this
estimate fails for an element of B!(G, ). Nevertheless, it would be enough to
settle [16, Conjecture 1] for discrete amenable groups. Actually, thanks to Naor
and Peres [42, Theorem 1.1], the only amenable groups for which the conjecture
is open are those with a diffusive behaviour (the expected distance to the identity
of a random walk at time n is ~ cst- \/n).

Virtual cocycles are very useful in some aspects and it would be nice to be able
to use them for a wider range of representations. The following question seems
like a natural place to start.

Question 6.5. Assume G ~, (X, i) is mildly mixing and let w be the associ-
ated LP-representation. If K < G and f € DP(K,n) is constant on K-orbits
(that is, associated to the trivial cocycle),

e what are the choices (depending on g € G \ Ng(K)) of the constants so that
n(g)f € DP(K,m)?

e if there is a choice of the constants so that f € DP (G, i), does it imply that
K is not wg-normal in G?

For the first question, note that if g € Ng(K) any choice would work. Any
answer for a different mixing condition would be of interest too.

It seems difficult to pass the arguments of §2.3 to reduced cohomology. Here
is a list of possible improvements.

Question 6.6. 1. If 7 is mildly mixing and there is an infinite finitely generated
H < G which is g-normal and H'(H, 7)) = 0, does H' (G, ) = 0?

2. If w is mildly mixing and there is an infinite H < G with H'(H, mua) =0,
does H'(G, ) = 0?

3. If w is mildly mixing and there is a finitely generated subgroup H < G with
ZgC(H ) infinite, is H contained in the kernel of the harmonic cocycles?

_ 4. If m is weakly mixing and there is an infinite H <1 G with G/H cyclic and
H'(H,mg) =0, does H'(G, ) = 0?
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Question 6.6.4 has been answered in the negative by Brieussel and Zheng [8,
Remark 4.6]. In Question 6.6.1-3, it would be reasonable to add hypothesis such as
G = (H, go) or H'(G, ) = H'(G, ) or strongly mixing. Note also that mildly
mixing is the close to being the most optimistic mixing hypothesis (one could also
put the hypothesis on the subgroups, compare with Lemma 2.13). Indeed, Z ? Z
has Z¢ (for any d > 1) as g-normal subgroup. All ergodic representations of Z¢
have trivial reduced cohomology (see e.g. Theorem 4.4). However, Shalom [57,
Theorem 15 or Theorem 5.4.1] showed that Z ¢ Z does not have property Hrp,
i.e. there is a weakly mixing representation of Z ¢ Z which has non trivial reduced
cohomology. These representations are however not mildly mixing nor do they
have finite stabilisers (they factor through an infinite subgroup, see [57, Proof of
Theorem 5.4.1]).

Let us briefly discuss this construction. Let G = Z H 1= (@peg Z) x H
be a wreath product (with H the “base” group and Z the “lamp state” group) and
write its elements as (/, #) where / is a finitely supported function from H to Z.
Let 7 be a representation of H and look at the representation 7: G — U(H) be
defined by (I, h) = 7 (h). For any vector § € H\{0}, bg(I, h) = deH l(g)m(g)&
defines a cocycle. It is easy to check that this cocycle is harmonic: for Sy some
generating set of H,

be(—8e.€) + bs(Se.€) + Y be(0.5) = —E+£+0=0.

seSy

Hence b is non-trivial in cohomology (in fact, bg —b;, = bg_, soeach § € H\ {0}
gives a different class).

The interesting point (for the current subject matter) is that kerb = H is a
malnormal subgroup of G (see de la Harpe and Weber [33, Proposition 1 and
subsequent paragraph]). The kernel of = (in G) contains the infinite normal
subgroup N = @,y Z, so it does not have finite stabilisers (and is not mildly
mixing). In fact, |y acts by the trivial representation and, hence, H YN’ T N) # O
for any subgroup N’ < N. So this example is not contradictory with positive
answers to Question 6.6.
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