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Abstract. We study counting functions on the free groups Fn and free monoids Mn for

n � 2, which we introduce for combinatorial approach to famous Brooks quasimorphisms

on free groups. Two counting functions are considered equivalent if they differ by a

bounded function. We find the complete set of linear relations between equivalence classes

of counting functions and apply this result to construct an explicit basis for the vector

space of such equivalence classes. Moreover, we provide a simple graphical algorithm

to determine whether two given counting functions are equivalent. In particular, this yields

an algorithm to decide whether two linear combinations of Brooks quasimorphisms on Fn

represent the same class in bounded cohomology.
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1. Introduction

1.1. Counting functions on free groups and free monoids. Let S D¹a1; : : : ; anº
be a finite set of cardinality n � 2. We denote by Mn the free monoid on S , i.e. the

collection of all words over S (including the empty word e), and by Fn the free

group on S , i.e. the collection of all reduced words over the extended alphabet
xS WD ¹a1; : : : ; an; a�1

1 ; : : : ; a�1
n º.

Formally, a non-trivial element v D s1 � � � sl 2 Mn is called a subword of

w D r1 � � � rm 2 Mn if there exists j 2 ¹1; : : : ; m � lº such that

si D rj Ci for all i D 1; : : : ; l: (1.1)

Similarly, an element v 2 Fn is called a reduced subword of an element w 2 Fn

if the reduced word over xS representing v is a subword (in the above sense) of the

the reduced word representing w. These subword relations are among the most

basic relations in combinatorial (semi-)group theory.

In this article we are interested in the following quantitative refinement of the

subword relation. Given v D s1 � � � sl 2 Mn n ¹eº and w D r1 � � � rm 2 Mn, we

denote by �v.w/ the number of j 2 ¹1; : : : ; m � l C 1º such that (1.1) holds.

This then defines a function �vW Mn ! N0 called the elementary v-counting
function.1 For example, �a1a2a1

.a1a2a1a2a1/ D 2. Restricting to reduced words,

we similarly obtain an elementary counting function �vW Fn ! N0 for every

v 2 Fn n ¹eº. It is convenient to extend the definitions to the empty word by

defining �e.w/ to be the word length jwjS of w with respect to S .

In the sequel we refer to a finite linear combination of elementary counting

functions with R-coefficients simply as a counting function. We denote by C.Mn/

respectively C.Fn/ the spaces of counting functions on Mn respectively Fn. Our

starting point is the following simple observation which goes back (at least) to [4].

Proposition 1.1. The elementary counting functions ¹�v j v 2 Mn n ¹eºº form a
basis for C.Mn/, and similarly the counting functions ¹�v j v 2 Fn n ¹eºº form a
basis for C.Fn/.

Proof. By definition, the elementary counting functions span the space of count-

ing functions, and we can remove �e from this generating set since

�e D
X

jwjSD1

�w :

Concerning linear independence, let ˛ D
P

w2W n¹eº ˛w�w be a finite sum and let

v be an element of minimal length in W with ˛v ¤ 0. Then ˛.v/ D ˛v , hence

it is possible to compute the coefficients ˛v inductively, and the desired linear

independence follows. �

1 Since we allow the occurrences of v in w to overlap, the function �v is sometimes called
the overlapping v-counting function or the big v-counting function, cf. [6].
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From now on we call elements f; g 2 C.Mn/ equivalent if they differ by

a bounded function, and similarly for elements of C.Fn/. We then denote by
yC.Mn/ respectively yC.Fn/ the corresponding spaces of equivalence classes. These

quotient spaces appear naturally in a number of applications, e.g. in bounded

cohomology. They also admit natural interpretations as function spaces spanned

by certain “cyclic counting functions”, see Theorem A.6 in the appendix. In

analogy with Proposition 1.1 we are going to study the following problem.

Problem 1.2. Find explicit bases for the quotient spaces yC.Mn/ and yC.Fn/.

We present a complete solution to the problem in Theorem 1.5 below. Initially,

our interest in this problem was motivated from a specific problem concerning

the second bounded cohomology of free groups, which we describe in the next

subsection. However, we believe that the problem is also of independent interest

within the theory of combinatorics of words.

1.2. Motivation from bounded cohomology. Historically, the need to under-

stand the quotient space yC.Fn/ first arose from the study of the second bounded

group cohomology of Fn in the sense of [12, 18]. We briefly recall this motivation

here. A function 'W Fn ! R is called a quasimorphism2 if

sup
g;h2Fn

j'.gh/ � '.g/ � '.h/j < 1:

Now if Q.Fn/ denotes the space of all quasimorphisms on Fn and H 2
b

.FnIR/

denotes the second bounded cohomology of Fn with trivial real coefficients, then

there is an isomorphism (see e.g. [6])

H 2
b .FnIR/ Š Q.Fn/=.Hom.Fn;R/ ˚ `1.Fn//: (1.2)

In his famous paper [4], Brooks pointed out that the symmetrized elementary

counting functions on the free group

'w WD �w � �w�1 W Fn ! Z

are quasimorphisms. (Similar ideas, albeit in a different language, appeared

already in earlier work of Rhemtulla [22].) It thus follows from (1.2) that if we

denote by yB.Fn/ the subspace of yC.Fn/ spanned by the equivalence classes of the

Brooks quasimorphisms 'w , then the quotient yB.Fn/=Hom.Fn;R/ embeds into

H 2
b

.FnIR/. In particular,

dim H 2
b .FnIR/ � dim yB.Fn/ � n:

2 In the Russian literature such functions are sometimes called quasi-characters (see [9],[11]),
apparently following a suggestion by Shtern [24]. Also, as pointed out in [5], the notion of a
quasimorphism is closely related to Ulam’s notion of a ı-homomorphism [25, Chapter 6.1].
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Brooks claimed in [4] that (by an argument similar to the proof of Proposition 1.1)

the classes Œ'w � 2 yC.Fn/ were linearly independent except for the obvious anti-

symmetry relations

'w D �'w�1 ; (1.3)

and deduced that dim H 2
b

.FnIR/ D 1, thereby providing the first example of

a group with infinite-dimensional second bounded cohomology. However, as

Grigorchuk pointed out in [11, p.139], the linear combination

'a1a2
C 'a�1

1
a2

C 'a1a�1
2

C 'a�1
1

a�1
2

is bounded in absolute value by 1, hence yields a counterexample to the claim

of Brooks. Nevertheless it is true that dim H 2
b

.FnIR/ D 1. Historically, the

first complete proof was given by Mitsumatsu [20] who proved linear indepen-

dence of an infinite collection of equivalence classes of Brooks quasimorphisms

(see e.g. [21] for a modern treatment). Mitsumatsu’s result was later extended by

Faiziev [9] and Grigorchuk [11] who exhibited larger collection of linearly inde-

pendent elements. Despite these efforts, the problem of finding a basis of yB.Fn/

remained open ever since.

It turns out that a basis for yB.Fn/ can be constructed quite easily from a suitable

basis of yC.Fn/. This motivated us to study the space yC.Fn/ and, by analogy,
yC.Mn/.

1.3. Relations between counting functions. To state our results, we introduce

the following notation. Denote by RŒMn� the space of finitely supported real-

valued functions on Mn, and note that every element of RŒMn� can be written

uniquely as a sum X

g2Mn

�gıg ;

where ıg is the function taking value 1 at g and 0 elsewhere and �g D 0 for all

but finitely many g 2 Mn. We thus have a canonical linear surjection

qWRŒMn� �! yC.Mn/; q

� X

g2Mn

�gıg

�
D

h X

g2Mn

�g�g

i
;

and we can think of the kernel K.Mn/ of q as the space of relations in the quotient

space yC.Mn/. By the same formula we also define a map qWRŒFn� ! yC.Fn/,

whose kernel K.Fn/ describes the relations satisfied by elementary counting

functions in yC.Fn/. Finally, there is also a symmetrized version of this map, which

parameterizes the Brooks space yB.Mn/ and is given by

qsymWRŒFn� �! yB.Fn/; qsym

� X

g2G

�gıg

�
D

h X

g2G

�g'g

i
:
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Its kernel Ksym.Fn/ parametrises the relations between Brooks quasimorphisms.

Our first result describes the relation spaces K.Mn/, K.Fn/ and Ksym.Fn/ explic-

itly.

Theorem 1.3 (Linear relations between elementary counting functions). Given a
word w 2 Mn, define ¹lw ; rwº � RŒMn� by

lw WD ıw �
X

s2S

ısw and rw WD ıw �
X

s2S

ıws: (1.4)

Given a reduced word w 2 Fn with initial letter w1 and final letter wfin, define

lw WD ıw �
X

s2 xSn¹w�1
1

º

ısw ; rw WD ıw �
X

s2 xSn¹w�1
fin

º

ıws; sw WD ıw C ıw�1 : (1.5)

Then the relation spaces K.Mn/, K.Fn/ and Ksym.Fn/ defined above admit the
following spanning sets:3

(i) the space K.Mn/ D ker.q/ is spanned by the set
S

w2Mn
¹lw ; rwº;

(ii) the space K.Fn/ D ker.q/ is spanned by the set
S

w2Fn
¹lw ; rwº;

(iii) the space Ksym.Fn/ D ker.qsym/ is spanned by the set
S

w2Fn
¹lw ; rw ; swº.

Theorem 1.3 will be proved in Section 2 below.

Remark 1.4. (1) For w D e the definitions of rw , sw and lw have to be understood

as follows. In the monoid case we define

le WD re WD ıe �
X

s2S

ıs :

In the group case we define

le WD re WD ıe �
X

s2 xS

ıs

and se WD 2ıe .

(2) Relations similar to the relations lw , rw and sw appear under many dif-

ferent names in the literature. We prefer the terms left-extension relation, right-
extensions relations and symmetry relations respectively. In different contexts, the

left- and right-extension relations are sometimes called (left- and right-) Kirchhoff
laws or laws of total probability.

3 When we reported this result to Danny Calegari, he kindly pointed out to us that Part (iii)
of the Theorem can also be deduced from results presented in the preprint version (but not in the
published version) of his joint article with Alden Walker [7].
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(3) All of these relations are essentially obvious.4 The theorem can thus be

stated informally by saying that “there are no other relations than those following

from the obvious ones.”

(4) The statement of (iii) contains some redundancy. Namely, since the right-

extension relations follow from the left-extension relations and the symmetry

relations, the space Ksym.Fn/ is already spanned by the set
S

w2W ¹lw ; swº (or,

equivalently,
S

w2W ¹rw ; swº). We stated (iii) in the above redundant form to stress

the analogy with (i) and (ii).

1.4. Explicit bases. Using the description of the space of relations provided in

the last subsection we are able to provide an explicit basis for each of the spaces
yC.Mn/, yC.Fn/ and yB.Fn/. The final result is as follows:

Theorem 1.5 (basis theorem). (i) Denote by W the set of all words in Mn which do
not start or end with a1 (including the empty word). Then the classes represented
by the elementary counting functions ¹�w j w 2 W º form a basis for the space
yC.Mn/.

(ii) Denote by W 0 the set of all reduced words in Fn which do not start with
a1 or a2a�1

1 and do not end with a�1
1 or a1a�1

2 (including the empty word), and
let W WD W 0 [ ¹a�1

1 º. Then the classes represented by the elementary counting
functions ¹�w j w 2 W º form a basis for the space yC.Fn/.

(iii) Let W as in (ii) and let W0 WD W [ ¹a1º n ¹eº. Let WC be a subset of
W0 which intersects each pair ¹w; w�1º � W in precisely one element. Then the
classes represented by the Brooks quasimorphisms ¹'w j w 2 W º form a basis
for the space yB.Fn/.

We will establish Theorem 1.5 in Section 3 below. Parts (i) and (ii) solve

Problem 1.2, and Part (iii) solves the long-standing problem of finding an explicit

basis for the Brooks space yB.Fn/. There are of course many possible choices for

W C. Concretely, one can choose an order on xS and order Fn lexicographically.

For any such choice, the classes represented by the counting functions associated

with the words

W C D ¹w 2 W0 j w < w�1º

form a basis.

1.5. Algorithms for comparing counting functions. For efficient computations

in yC.Mn/ and yC.Fn/ (and its subspace yB.Fn/) it is crucial to be able to decide

efficiently whether two given counting functions are equivalent. Since subtraction

4 For the convenience of the reader we establish them in Subsection 2.1 below.
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of counting functions can be done efficiently, this problem amounts to deciding

efficiently whether a counting function of the form

f D
X

˛w�w (1.6)

represents the zero class in yC.Mn/ or yC.Fn/.

In Section 5 we provide a visualization of counting functions of the form (1.6)

by vertex-labelled finite weighted trees and then describe a simple graphical

procedure to decide whether the counting function represented by a given tree

represents the zero class. It turns out that for many trees one can see immediately

from the picture that they do not represent the zero class (see Theorem 4.2 below).

Moreover, we describe several basic moves to replace a weighted tree by an

equivalent one and show that every tree can be transformed by finitely many such

moves into a tree which either obviously represents a non-zero class or obviously

represents the zero class. This leads to a “pen-and-paper algorithm” to decide

triviality of a given class of counting functions.

It is possible to implement our pen-and-paper algorithm on a computer. To for-

mally describe such a computer algorithm one has to discuss how to store counting

functions of the form (1.6) in a computer, and how precisely to implement the ba-

sic moves on the given data structures. Once such a formalization of our algorithm

is given, one can analyze its runtime. This requires some technical arguments in

complexity theory and is beyond the scope of the present article.

In the companion article [15] we describe a modification of the present algo-

rithm, which is more intricate (and hence less comprehensible), but it is “very

efficient”, when one runs it on a computer. To give a sample result, we show that

if the coefficients of f are integers (stored as binary expansions), then triviality

of the class represented by f can be decided in linear time in the size of the input

(except the monoid case with n D 2, where we can give only a quadratic estimate).

For details and statements involving more general coefficients, see [15].

1.6. Outlook and open problems. The present article is a first major step to-

wards efficient computation with counting functions, and in particular, towards

efficient computations in the Brooks space yB.Fn/. We would like to mention that

while there are many good reasons why one would want to carry out computations

in yB.Fn/, the present work is motivated by some specific problems arising from

work of the first author with P. Schweitzer [14] concerning the Out.Fn/-action on

bounded cohomology of free groups. Namely, the automorphism group of Fn acts

naturally on the space Q.Fn/=`1.Fn/, and this action factors through Out.Fn/.

There is a natural Out.Fn/-invariant locally-convex (non-complete) topology on

Q.Fn/=`1.Fn/ given by pointwise convergence of homogeneous representatives.

The following equivariant version of a classical result of Grigorchuk [11] was es-

tablished in [14, Section 2].
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Theorem 1.6 (Grigorchuk, Hartnick–Schweitzer). The Brooks space yB.Fn/ is
a dense subspace of Q.Fn/=`1.Fn/ and invariant under the action of Out.Fn/.
In particular, yB.Fn/ is independent of the free generating set used to define it,
and the action of Out.Fn/ on Q.Fn/=`1.Fn/ (and thus also the Out.Fn/-action
on H 2

b
.FnIR/) is uniquely determined by its restriction to yB.Fn/.

This motivates a closer study of the action of Out.Fn/ on yB.Fn/. For example,

one would like to know whether a given class Œf � 2 yB.Fn/ is stabilized by some

g 2 Out.Fn/, i.e. whether g:f � f is bounded. By means of the algorithm

developed in this article, it is now possible to decide this efficiently, and this

has been applied recently by Hase to study the dynamics of Out.Fn/ on yB.Fn/,

see [16].

All this is just the tip of a much larger iceberg. Analogues of Brooks quasi-

morphisms have been defined for Gromov-hyperbolic groups [8], various classes

of groups acting on hyperbolic spaces [10, 13], mapping class groups [2] and most

recently for general acylindrically hyperbolic groups [17, 1], comprising all pre-

vious constructions. In all these situations it is known that there is an infinite-

dimensional subspace of the second bounded cohomology which is analogous to

the Brooks space. The combinatorial fine-structure of these generalized Brooks

spaces is not at all understood at this point. Even for relatively simple examples

such as surface groups, we have currently no idea how a basis for the generalized

Brooks space should look like.

1.7. Organization of the article. This article is organized as follows. In Sec-

tion 2 we establish Theorem 1.3, and in Section 3 we establish Theorem 1.5. In

both cases, we first consider the monoid case, and then deal with the additional

complications in the group case. In Section 4 we explain how sums of counting

functions can be represented graphically as finite weighted trees. Here the main

result is Theorem 4.2 which singles out a large class of such trees which represent

non-trivial elements in yC.Mn/ and yC.Fn/. Based on this result, we present in Sec-

tion 5 an algorithm to decide whether a given counting function is bounded. The

appendix collects some basic facts about homogenizations of counting functions

used throughout the body of the text.

2. Relations between elementary counting functions

2.1. Basic relations between elementary counting functions. The goal of this

section is to establish Theorem 1.3, i.e. to determine all relations between ele-

mentary counting functions and counting quasimorphisms. Parts (i), (ii), and (iii)

of the theorem will be established in Subsections 2.3, 2.4, and 2.5 respectively.

Informally, the theorem states that every relation between elementary counting
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functions is a consequence of certain basic relations. In this subsection we briefly

explain these basic relations. We start with the case of monoids.

Lemma 2.1. For every w 2 Mn the left-extension relation lw and the right-
extension relation rw as defined in (1.4) are contained in the relation space
K.Mn/.

Proof. For w D e 2 Mn we have q.lw/ D q.rw/ D 0, since adding the counts of

letters of a word yields the word length. If w 2 Mn with jwjS � 1 then for every

v 2 Mn the difference

�w.v/ �
X

s2S

�sw.v/

takes value 1 or 0 depending on whether v starts with w or not. Similarly,

�w.v/ �
X

s2S

�ws.v/

takes value 1 or 0 depending on whether v ends with w or not. Since these are

bounded functions we deduce that q.lw/ D q.rw/ D 0. �

In the group case we have the following similar result.

Lemma 2.2. For every w 2 Fn the left-extension relation lw and the right-
extension relation rw as defined in (1.5) are contained in the relation space K.Fn/.
Moreover, the relations lw , rw and the relation sw defined in (1.5) are contained
in Ksym.Fn/.

Proof. The first statement is proved exactly as in the monoid case. We have

q.le/ D q.re/ D 0 since the word length can be obtained by adding up the counts

for all possible letter, and if jwjS � 1, then q.lw/ and q.rw/ can be represented by

a function taking only values 0 and 1.

Concerning Ksym.Fn/ we can argue as follows. Since 'w D �w � �w�1 we

have

qsym.lw/ D q.lw/ � q.rw�1/ D 0

by the result about K.Fn/. Symmetrically we obtain qsym.rw/ D 0. Finally,

qsym.sw/ is represented by the function

'w C 'w�1 D �w � �w�1 C �w�1 � �w D 0: �

From now on we denote by B.Mn/ � K.Mn/ and B.Fn/ � K.Fn/ the

respective subspaces spanned by corresponding left- and right-extension relations

¹lw ; rwº. We also denote by Bsym.Mn/ � Ksym.Fn/ the subspace generated by

the relations ¹lw ; rw ; swº. In this notation our goal is to establish the equalities

B.Mn/ D K.Mn/, B.Fn/ D K.Fn/ and Bsym.Fn/ D Ksym.Fn/.
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2.2. Pure elements. From now on we fix an integer n � 2 and a set S D

¹a1; : : : ; anº of cardinality n. We then denote by Mn, respectively Fn, the free

monoid, respectively free group, on S . Given an integer L � 0, an element

f 2 RŒMn� will be called pure of length L if jwj D L for all w 2 supp.f /.

Thus for example ıa1a2
� 3ıa2a1

is pure of length 2. Similarly, RŒFn�L denotes

the space of all finitely supported real-valued functions on Fn which are pure of

length L. We also introduce the notations

KL.Mn/ WD K.Mn/ \ RŒMn�L; BL.Mn/ WD B.Mn/ \ KL.Mn/;

KL.Fn/ WD K.Fn/ \ RŒFn�L; BL.Fn/ WD B.Fn/ \ KL.Fn/;

where the basic relation spaces B.Mn/ and B.Fn/ are defined as in the previous

subsection. When the monoid or group in question is clear from the context we

simply write K, B , KL, BL. Note that the spaces KL and BL are finite-dimensional

for each L � 0.

Lemma 2.3. If dim BL � dim KL for all L � 0, then B D K.

Proof. Since BL � KL, the assumption implies BL D KL for all L. Now if r 2 K

is any function, then by adding elements of B we can always achieve that r is pure.

Thus if BL D KL for all L � 0, then

K=B �
� X

L

KL

�
=B D

X

L

KL=.B \ KL/ D
X

L

KL=BL D 0: �

This reduces the proof of the first two parts of Theorem 1.3 to an estimate

of the dimensions of the finite-dimensional vector spaces BL and KL. We now

carry out the necessary estimates, first in Subsection 2.3 for Mn and then in

Subsection 2.4 for Fn. The argument is basically the same in both cases, but in the

case of Fn some additional care has to be taken because of potential cancellations.

Once the relations between counting functions are determined, it is easy to also

determine the relations between counting quasimorphisms. This will be carried

out in Subsection 2.5.

2.3. Relations between counting functions on free monoids. The goal of this

subsection is to establish Part (i) of Theorem 1.3 concerning the space of relations

between counting functions on monoids. We fix n � 2 and consider the free

monoid Mn with generating set S D ¹a1; : : : ; anº. We also use the notation

introduced in Subsection 2.2 and write K, B , KL and BL for K.Mn/, B.Mn/,

KL.Mn/ and BL.Mn/. By Lemma 2.3 it suffices to establish dim BL � dim KL.

For L D 0 we have dim KL D 0, so there is nothing to show. For L � 1 we are

going to show that

dim BL � nL�1 � 1 � dim KL (2.1)

by first establishing a lower bound for dim BL, and then establishing an upper

bound for dim KL.
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Step 1: lower bound for dim BL . We now establish the first inequality

in (2.1) for all L � 1. For L D 1 there is nothing to show, thus we will assume

L � 2. Given any word w of length L � 1 we have

bw WD rw � lw 2 BL:

This defines nL�1 elements in BL, and we claim that their span B0
L has dimension

precisely nL�1 � 1. If we write each of the elements bw as

bw D
X

jvjDL

�w;vıv;

then this amounts to showing that the nL�1 � nL-matrix

AL.Mn/ D .�w;v/ (2.2)

has rank nL�1 � 1.

Example 2.4. The matrix A3.M2/ has the form

a1a1a1 a1a1a2 a1a2a1 a1a2a2 a2a1a1 a2a1a2 a2a2a1 a2a2a2

a1a1 0 �1 0 0 1 0 0 0

a1a2 0 1 �1 �1 0 1 0 0

a2a1 0 0 1 0 �1 �1 1 0

a2a2 0 0 0 1 0 0 �1 0

As is apparent in the example, the structure of the matrix AL is very special:

observe that �w;v ¤ 0 only if w is a maximal proper subword of v. Thus each

column contains either one C1 and one �1 (if deleting the first and the last letter

lead to different words), or no non-zero entry at all (if deleting the first and last

letter lead to the same word). The latter actually happens only if v D w is a power

of some aj . As a first consequence of this special structure, we see that the sum

of the rows is 0, whence rank.AL.Mn// � nL�1 � 1. The converse inequality can

be reformulated in graph theoretic terms.

Lemma 2.5. Let �L.Mn/ be the (non-oriented) graph whose vertices are words
w of length L � 1, and in which two different words w and w0 are joined by an
edge iff there exists a column of the matrix AL.Mn/ with non-zero entries in the
rows corresponding to both w and w0. Then rank.AL.Mn// D nL�1 � 1 if and
only if the graph �L.Mn/ is connected.

Proof. Assume that the graph �L.Mn/ is connected and that some linear combi-

nation of rows involving the w-th row is 0. Then every non-zero entry of the w-th

row of the matrix AL.Mn/ has to be cancelled. However, since for each of these

entries there is only one other row containing it, this row has to be involved in
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the linear combination. The upshot is that if v and w are connected by an edge

in �L.Mn/, then every linear combination of rows involving w which adds up to

0-row must also involve v, and the coefficients for v and w in this sum have to be

the same. We deduce that if �L.Mn/ is connected then no proper subset of rows

is linearly dependent, whence rank.AL.Mn// D nL�1 � 1. Conversely, if � 0 is a

connected component of �L.Mn/, then adding up the rows corresponding to the

vertices of � 0 yields 0. In particular rank.AL.Mn// D nL�1 � 1 implies that there

is only one connected component. �

The following picture shows the graph �3.M2/ corresponding to the matrix

A3.M2/ above:

a2a2

a1a2

a2a1

a1a1

The graphs �L.Mn/ are closely related to a family of classical examples in finite

graph theory called De Bruijn graphs [3].5 Recall that the L-th De Bruijn graph
over S is the graph �L.S/ whose vertices are words of length L � 1 and whose

edges are words of length L connecting the subwords obtained by deleting the

first, respectively last letter. We claim that the graph �L.Mn/ can be obtained from

�L.S/ by erasing all loops. Indeed, vertices w and w0 of �L.Mn/ are connected

by an edge if and only if there exist s1; s2 2 S such that either ws1 D s2w0 or

s1w D w0s2, but not both. Then the claim follows from the fact that the latter

case can only happen if if w D w0 is a power of some letter aj . We thus refer to

�L.Mn/ as a loop-erased De Bruijn graph.

Since erasing loops does not change connectivity of a graph, it remains only

to show connectedness of the De Bruijn graphs. This is a folklore fact from finite

graph theory. Explicitly, two words w D s1 � � � sL�1 and w0 D r1 � � � rL�1 can be

connected through the path

s1 � � � sL�1 � rL�1s1 � � � sL�2 � rL�2rL�1s1 � � � sL�3 � � � � � r1 � � � rL�1:

We thus deduce from Lemma 2.5 that

dim BL � dim B0
L D rank.AL.Mn// D nL�1 � 1:

This finishes Step 1.

5 All graphs in this paper are non-oriented graphs, and what we call De Bruijn graphs are
sometimes call non-oriented De Bruijn graphs to distinguish them from a similarly defined
oriented version.
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Step 2: upper bound for dim KL . We are now going to establish the

second inequality in (2.1) for all L � 1. Rather than showing directly that

dim KL � nL�1 � 1 we will show that the codimension of KL in RŒMn�L is

bounded below by

codim KL � dimRŒMn�L � .nL�1 � 1/ D .n � 1/ � nL�1 C 1: (2.3)

In order to establish (2.3) we will construct .n�1/ �nL�1 C1 linearly independent

linear functionals on RŒMn�L, which vanish on KL. Such a linear functional will

be called a certificate.

We now describe a way to construct certificates using homogenization. Recall

from the appendix that a function f W Mn ! R is called homogenizable if the limit

Of .x/ WD lim
n!1

f .xn/

n
(2.4)

exists for every x 2 Mn, and in this case the function Of W Mn ! R defined by (2.4)

is called the homogenization of f . By Corollary A.5 every function f 2 C.Mn/

is homogenizable. Given c 2 Mn we may thus define a linear functional

hciLWRŒMn�L �! R;
X

�gıg 7�!
X

�g b�g.c/ (2.5)

by evaluation of the homogenization at c.

Lemma 2.6. For every c 2 Mn and L � 1 the functional hciL 2 .RŒMn�L/� is a
certificate, i.e. it vanishes on KL.

Proof. Let f0 D
P

�gıg 2 KL. By definition, this means that the function

f WD
X

�g�g 2 C.Mn/

is bounded. Consequently, the homogenization Of satisfies Of � 0. We deduce

that, for every c 2 Mn,

0 D Of .c/ D
X

�g b�g.c/ D hciL

� X
�gıg

�
D hciL.f0/;

which shows that f0 2 ker.hciL/ and finishes the proof. �

In view of the lemma we refer to hciL as the L-certificate of c. It remains to

show that there exists .n � 1/ � nL�1 C 1 elements of Mn whose corresponding

L-certificates are linearly independent. For this we start from the set

WL WD ¹aiw j i ¤ 1; jwj D L � 1º [ ¹aL
1 º
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of special words and define the associated set of certificates to be

CL WD ¹hcaL
1 iL j c 2 WLº:

Note that jCLj D jWLj D .n � 1/ � nL�1 C 1. We will show that the certificates

in CL are linearly independent, thereby finishing the proof. For our computations

in the dual space RŒMn��L we will denote by ¹Œw� j w 2 SLº the dual basis to the

basis ¹ıw j w 2 SLº, i.e.

Œw�.ıv/ D

´
1 if v D w;

0 otherwise.

As an immediate consequence of Lemma A.2, we can write our certificates in

terms of this dual basis as follows.

Lemma 2.7. Let c 2 Mn. Then

hciL D
X

Œw�;

where w runs through all cyclic subwords of c of length L with multiplicity.

For example,

ha1a2a2
1a2

2i3 D Œa1a2a1�C Œa2a1a1�C Œa1a1a2�C Œa1a2a2�C Œa2a2a1�C Œa2a1a2�:

Now we can finish the proof by the following lemma.

Lemma 2.8. The set CL � .RŒMn�L/� is linearly independent.

Proof. Using again our set WL of special words we introduce a test space TL �
RŒMn�L as

TL WD span¹ıw j w 2 WLº:

We will show that already the restrictions of the certificates in CL to TL are linearly

independent. For this we observe that if w D ais1 � � � sL�1 2 WLn¹aL
1 º, then i ¤ 1

and by Lemma 2.7

hwaL
1 iL D Œai s1 � � � sL�1� C Œs1 � � � sL�1a1� C � � � C ŒsL�1aL�1

1 � C ŒaL
1 �

C ŒaL�1
1 ai � C ŒaL�2

1 ai s1� C � � � C Œa1ais1 � � � sL�2�;

Now, by definition, the words aL�1
1 ai , aL�2

1 ai s1, . . . , a1ais1 � � � sL�2 appearing in

the second row are not contained in WL. It follows that

hwaL
1 iLjTL

D .Œais1 � � � sL�1� C Œs1 � � � sL�1a1� C � � � C ŒsL�1aL�1
1 � C ŒaL

1 �/jTL
:
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Concerning the final certificate we have

ha2L
1 iL D ha2L

1 iLjTL
D 2L � ŒaL

1 �:

Now we introduce a total order on M2 as follows. We first order S by declaring

that

a1 < a2 < � � � < an

and then extend to Mn in a right-lexicographic way. Given w; w0 2 M2 and

s; s0 2 S we set ws < w0s0 if and only s < s0 or s D s0 and w < w0. Note in

particular that w1 > w2 if and only if w1aL
1 > w2aL

1 . With this order understood

the largest element in the support of hwaL
1 iLjTL

is precisely w; indeed this follows

from

ais1 � � � sL�1 � s1 � � � sL�1a1 � � � � � sL�1aL�1
1 � aL

1

and the above computation of supports. We deduce that the matrix obtained by

evaluating the certificates from CL on the basis ¹ıw j w 2 WLº of TL is of lower

triangular form for the given order with non-trivial diagonal entries. It therefore

has full rank, and the lemma follows. �

This finishes Step 2 and thereby the proof of Theorem 1.3.(i).

Remark 2.9. Note that as a by-product of the proof we also see that BL D B0
L.

2.4. Relations between counting functions on free groups. We are now going

to extend the results of the previous subsection to the group case, thereby estab-

lishing Part (ii) of Theorem 1.3. The proof is in close analogy with the monoid

case and we will only highlight the necessary modifications. Throughout we fix

n � 2 and write K, B , KL and BL as short hands for the spaces K.Fn/, B.Fn/,

KL.Fn/ and BL.Fn/ as introduced in Section 2.2. By Lemma 2.3 it suffices again

to establish dim BL � dim KL.

Assume first that L � 1. We claim that in this case dim KL D 0, whence

the desired inequality hold automatically. For L D 0 the claim follows from the

fact that the function �e is unbounded. Now let L D 1. We have to show that

the functions ¹�a1
; �a�1

1
; : : : ; �an

; �a�1
n

º are linearly independent modulo bounded

functions. For this it suffices to observe that

� nX

iD1

�i�ai
C

nX

iD1

�i�a�1
i

�
.an

j / D

´
n � �j if n > 0;

�n � �j ; if n < 0:

We have thus established the desired inequality for L � 1. Next we are going to

show that

dim BL � 2n.2n � 1/L�2 � 1 � dim KL: (2.6)

for all L � 2.
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Step 1. Concerning the lower bound on dim BL we observe that, as in the case

of monoids, every reduced word w of length L � 1 gives rise to a basic relation

bw D rw � lw of length L, and there are 2n.2n � 1/L�2 such words. Again we

write each of the elements bw as

bw D
X

jvjDL

�w;vıv;

and obtain a matrix AL.Fn/ D .�w;v/ of size 2n.2n � 1/L�2 � 2n.2n � 1/L�1.

We then have to show that the matrix AL.Fn/ has rank 2n.2n � 1/L�2 � 1. This

amounts again to showing connectedness of a certain graph.

More precisely, let xS WD ¹a1; a�1
1 ; : : : ; an; a�1

n º be the symmetrization of the

free generating set of Fn. Then the L-th De Bruijn–Martin graph6 over xS is the

graph �L. xS/ with vertices given by reduced words of length L � 1 over xS and

edges given by reduced words of length L over xS , where the edge labelled by

some word w connects the two vertices labelled by the words which are obtained

by cancelling the first, respectively last, letter of w. Then Lemma 2.5 and its proof

carry over to the present setting in the following form:

Lemma 2.10. Let �L.Fn/ be the loop-erased De Bruijn–Martin graph �L. xS/.
Then rank.AL.Fn// D 2n.2n � 1/L�2 � 1 if and only if the graph �L.Fn/

(or, equivalently, �L. xS/) is connected.

Connectedness of the De Bruijn–Martin graph �L. xS/ is again well-known and

easy to see as follows. If w D s1 � � � sL�1 and w0 D r1 � � � rL�1 with rL�1 ¤ s�1
1 ,

then as in the monoid case,

s1 � � � sL�1 � rL�1s1 � � � sL�2 � rL�2rL�1s1 � � � sL�3 � � � � � r1 � � � rL�1:

Thus in this case, w and w0 are in the same connected component of the graph.

If, however, rL�1 D s�1
1 , then we can choose aj with a˙1

j ¤ rL�1, and by the

previous case, both w and w0 are in the same connected component as aL�1
j .

This shows connectedness of the De Bruijn–Martin graph and thereby finishes

Step 1.

Step 2. In analogy with the monoid case we have to construct dimRŒFn�L �
2n.2n � 1/L�2 C 1 linearly independent certificates for KL. By Lemma A.3 the

counting functions �w 2 C.Fn/ are homogenizable. We can thus define, as in

the monoid case, for every c 2 Fn a certificate hciL for KL by the same formula

as in (2.5). If we assume in addition that c is cyclically reduced, then we have

the following analogue of Lemma 2.7, which is again a direct consequence of

Lemma A.3.

6 These graphs were popularized through the PhD of Martin [19], who pointed out that they
are Eulerian and that this can be used to show that integral measured currents on Fn can be
written as sums of counting currents.
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Lemma 2.11. Let c 2 Fn. If c is cyclically reduced, then

hciL D
X

Œw�;

where w runs through all cyclic subwords of c of length L with multiplicity.

In order to establish the second inequality in (2.6) along the same lines as in the

monoid case we will thus have to find dimRŒFn�L � 2n.2n � 1/L�2 C 1 cyclically
reduced words with linearly independent L-certificates. For this we choose our

set of special words as follows. Denote by xS .L/ � xSL the set of all reduced words

of length L, by A
.1/
L the set of all such words starting with a1 and by A

.2/
L the set

of all such words starting with a2a�1
1 . Then we define

WL WD . xS .L/ n .A
.1/
L [ A

.2/
L // [ ¹aL

1 º:

Note that

jWLj D j xS .L/j � jA
.1/
L j � jA

.2/
L j C 1

D dimRŒFn�L � .2n � 1/L�1 � .2n � 1/L�2 C 1

D dimRŒFn�L � 2n.2n � 1/L�2 C 1:

We are now going to define a certificate for every w 2 WL. Since we want to avoid

cyclic cancellation, the definition of the set of certificates CL is more complicated

than in the monoid case. Given w 2 WL we define a reduced word s.w/ 2 xS .L/

as follows:

(i) if w does not start with a�1
1 and does not end with a�1

1 , then s.w/ WD aL
1 ;

(ii) if w does not start with a�1
1 but ends with a�1

1 , then s.w/ WD a2aL
1 ;

(iii) if w starts with a�1
1 but does not end with a�1

1 , then s.w/ WD aL
1 a2;

(iv) if w starts and ends with a�1
1 , then s.w/ WD a2aL

1 a2.

This definition is made in such a way that for every w 2 WL the word ws.w/ is

cyclically reduced, and we define

CL WD ¹hws.w/iL j w 2 WLº:

It remains to show only that the set CL is linearly independent. We will in fact

show that the certificates in CL are linearly independent when restricted to the test

space TL WD span¹ıw j w 2 WLº. We order the words in WL as follows. First we

order the letters according to

a1 < a2 < � � � < an < a�1
1 < a�1

2 < : : : < a�1
n

and extend this to a total ordering on WL in the right-lexicographic way. We now

claim that the matrix NL formed by the evaluations of the certificates in CL on the
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canonical basis of the test space TL is a lower triangular matrix with respect to the

given order on WL with non-zero diagonal entries. Indeed, this follows from the

following two basic observations.

(i) Consider the cyclic L-subwords of ws.w/ with initial letter in w. These form

a strictly decreasing sequence, so w is the biggest of them.

(ii) It remains to deal with those cyclic L-subwords v of ws.w/ whose initial

letter is contained in s.w/. Here there are several cases: If w is among the

words of Type (i) or (iii), then v is not in WL, so we can ignore it. In cases

(ii) and (iv), v is either not in WL or v D a2aL�1
1 . Since w is not of type (i)

we have w ¤ aL
1 . But v is the second smallest element of WL after aL

1 , so

w � v also in this case.

This shows that the matrix is indeed lower triangular with non-zero coefficients

on the diagonal, which finishes Step 2 and thereby the proof of Theorem 1.3.(ii).

2.5. Relations between counting quasimorphisms. In this subsection we finish

the proof of Theorem 1.3 by deducing Part (iii) of the theorem from Part (ii).

Throughout we fix n � 2 and, using the notation introduced in Subsection 2.2,

write B , K, yC, Ksym and yB for B.Fn/, K.Fn/, yC.Fn/, Ksym.Fn/ and yB.Fn/

respectively. We also denote by Bsym � Ksym the space spanned by the symmetry

relations ¹sw j w 2 Fnº. We have already seen in Subsection 2.1 that B C Bsym �

Ksym, and we would like to show the opposite inclusion Ksym � B C Bsym.

For this we first define a linear involution

� WRŒFn� �! RŒFn�; f 7�! f �

by demanding that ı�
w WD �ıw�1 . Then the natural inclusion map �W yB ! yC, which

sends the class Œ'w � to the class Œ�w � �w�1�, lifts to a map

i WRŒFn� �! RŒFn�; f 7�! f C f �;

i.e. we get a commutative diagram

0 // Ksym
// RŒFn�

q0
//

i

��

yB

�

��

// 0

0 // B // RŒFn�
q

// yC // 0:

Note that the top row is exact by definition, whereas the bottom row is exact by

Theorem 1.3.(ii). We deduce that i restricts to a linear map j W Ksym ! B .
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Now in order to show the desired inclusion Ksym � B C Bsym it suffices to

show that j.Ksym/ � j.B/ C j.Bsym/ and that ker.j / � ker.j jBCBsym/. We will

actually establish the stronger inclusions j.Ksym/ � j.B/ and ker.j / � Bsym.

The latter inclusion is actually immediate from the description of ker.j / as

ker.j / D ¹f 2 Ksym j j.f / D f C f � D 0º:

It thus remains to show only that j.Ksym/ � j.B/. We claim that

j.B/ D ¹b 2 B j b� D bº: (2.7)

The inclusion � follows from .f C f �/� D f C f �. Conversely, if b� D b 2

B � Ksym, then j.b=2/ D b=2 C b�=2 D b, which shows the opposite inclusion

and proves (2.7).

Now if f 2 Ksym, then j.f / 2 B and j.f /� D .f Cf �/� D f Cf � D j.f /.

We then deduce from (2.7) that j.f / 2 j.B/. This proves the remaining inclusion

j.Ksym/ � j.B/.

We have thus shown that Part (ii) of Theorem 1.3 implies Part (iii). This

concludes the proof of Theorem 1.3.

3. Bases for yC.Mn/, yC.Fn/ and yB.Fn/

3.1. Pure bases and compatible bases. The purpose of this section is to con-

struct bases for each for the spaces yC.Mn/, yC.Fn/ and yB.Fn/ and thereby to estab-

lish Theorem 1.5. Given L � 0 we will denote by yC.Mn/L the image of RŒMn�L
in yC.Mn/. The spaces yC.Fn/L and yB.Fn/L will be defined similarly. We are going

to relate bases of the spaces yC.Mn/L to bases of yC.Mn/, and similarly for yC.Fn/.

Concerning bases of yC.Mn/L we adapt the following language. A basis of
yC.Mn/L is called pure if its elements are of the form Œ�w � for some w 2 SL.

Note that there are only finitely many pure bases for a given L. If BL is a

basis for yC.Mn/L, then the sequence of bases .BL/L�0 is called compatible if

BL \ yC.Mn/L�1 D BL�1. Pure bases of yC.Fn/ and compatible sequences of bases

of yC.Fn/ are defined similarly.

It follows from the left- and right-extension relations that every Œ�w � with

jwj D L can be written as a linear combination of Œ�v� for some v of length LC 1.

This implies that

yC.Mn/0 � yC.Mn/1 � � � � � yC.Mn/L � � � � ;

whence yC.Mn/ is the ascending union

yC.Mn/ D
[

L�0

yC.Mn/L:
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Consequently, if .BL/L�0 is a compatible sequence of bases of yC.Mn/L, then

B WD
S

BL defines a basis of yC.Mn/. Similarly, compatible sequences of bases

for yC.Fn/L give rise to bases of yC.Fn/.

It turns out that pure bases of yC.Mn/L can be classified in graph theoretic

terms. Given pure bases for each yC.Mn/L one can then easily modify them to

obtain a compatible sequence of bases, and thereby a basis for yC.Mn/. This will

be carried out in Subsection 3.2, leading to a proof of Part (i) of Theorem 1.5. The

analogous constructions in the group case and in particular the proof of Part (ii) of

Theorem 1.5 will be given in Subsection 3.3. Deducing Part (iii) of Theorem 1.5

from Part (ii) is essentially a triviality, since our basis for yC.Fn/ can easily be

modified as to possess the necessary symmetries. We will give the details in

Subsection 3.4.

3.2. A basis for yC.Mn/. Our first task is to classify pure bases for yC.Mn/L. The

only pure basis for yC.Mn/0 is given by B0 D ¹�eº. We will now parametrize

pure bases for yC.Mn/L for L � 1. Recall from Subsection 2.3 that the L-th

De Bruijn graph �L.S/ over S D ¹a1; : : : ; anº has vertices labelled by SL�1 and

edges labelled by SL where the edge labelled w connects the two vertices by the

subwords obtained from w by deleting the first respectively last letter. The graph

�L.Mn/ is obtained from this graph by erasing all loops. We observe:

Proposition 3.1. Let L � 1 and let W be a set of words of length L in Mn of
cardinality jW j D .n � 1/nL�1 C 1. Then the following are equivalent:

(i) the set B.W / WD ¹�w j w 2 W º is a pure basis of yC.Mn/L;

(ii) the subgraph of �L.S/ (or equivalently of �L.Mn/) with vertices SL�1 and
edges labelled by SL n W is connected;

(iii) the subgraph of �L.S/ with vertices SL�1 and edges labelled by SL n W is
a spanning tree of �L.S/.

In particular, dim yC.Mn/L D .n � 1/nL�1 C 1 and pure bases of yC.Mn/L are in
bijection with spanning trees of the De Bruijn graph �L.S/.

Proof. For L D 1 the only pure basis of yC.Mn/L is B.W / with W D S . This

is in accordance with (ii) and (iii), since �1.S/ has a single vertex. We may thus

assume from now on that L � 2. By Remark 2.9 any relations between the �w

are consequences of the basic relations bw . This can be expressed in terms of the

matrix AL.Mn/ given by (2.2) as follows. Let us enumerate the words of length L
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by ¹w1; : : : ; wnLº and the words of length L � 1 by ¹v1; : : : ; vnL�1º. Then

nLX

iD1

˛i Œ�wi
� D 0 () for all j D 1; : : : ; nL�1 there exist �j such that

˛i D

nL�1X

j D1

�j aj i for all i; : : : ; nL;

where aj i is the entry of AL.Mn/ corresponding to the row vi and the column

wj . It follows that the set ¹�w j w 2 W º is linearly independent if and only if the

nL�1�.nL�1�1/ submatrix AW of AL.Mn/ formed by the columns corresponding

to words in SLnW has full rank nL�1�1. The matrix AW has the same structure as

A, i.e. every column contains at most two non-zero entries which are contained in

in ˙1 and sum up to 0. Thus we can argue as in Step 1 of Subsection 2.3 to conclude

that AW has full rank if and only if the subgraph of �L.Mn/ � �L.S/ with edges

in SL nW is connected. This shows the equivalence (i) () (ii) and also implies

that dim yC.Mn/L D .n � 1/nL�1 C 1. Then the equivalence (ii) () (iii) is an

immediate consequence of the fact that a graph with k vertices and k � 1 edges is

connected if and only if it is a tree. �

For example let S D ¹a1; a2º and consider the subset

W WD ¹a3
1; a2a2

1; a2a1a2; a2
2a1; a3

2º � S3:

Then S3 n W D ¹a2
1a2; a1a2a1; a1a2

2º corresponds to the following spanning tree

of �3.S/:

a2a2

a1a2

a2a1

a1a1

It follows that B.W / is a pure basis of yC.M2/3. This example generalizes as

follows.

Corollary 3.2. Given L � 0 define W.a1I L/ as follows. If L D 0, then
W.a1I L/ WD ¹eº. If L > 0, then

W.a1I L/ WD .SL n ¹w 2 SL j w 2 a1SL�1º/ [ ¹aL
1 º:

Then B.W.a1I L// WD ¹�w j w 2 W.a1I L/º is a pure basis of yC.Mn/L.

Proof. Let w 2 SL�1. We show that w can be connected in �L.S/ to aL�1
1 by a

path using only edges from SL nW.a1I L/. For this we write w D ak
1 s1 : : : sL�k�1
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with s1 ¤ a1. Then

w D ak
1 s1 : : : sL�k�1 � akC1

1 s1 : : : sL�k�2 � � � � � aL�2
1 s1 � aL�1

1

is an admissible path. �

We can now modify these pure bases to obtain a family of compatible bases as

follows.

Corollary 3.3. Let j 2 ¹1; : : : ; nº and let WL denote the set of (possibly empty)
words of length � L not starting or ending in aj . Then B.WL/ WD ¹�w j w 2 WLº

is a basis of yC.Wn/L, and these bases are compatible.

Proof. By symmetry we may assume without loss of generality that j D 1.

Observe first that jWLj D dim yC.Mn/L. For L D 0 this is obvious, and for L � 1

it follows from the formula dim yC.Mn/L D .n � 1/nL�1 C 1. In view of this

observation it suffices to show that each element of the basis B.W.a1I L// can be

expressed as a linear combination of elements in B WD B.WL/. The case L D 0

is again obvious, so we may assume L � 1. In this case the set W.a1I L/ can be

written as the disjoint union

W.a1I L/ D W1 [ W2 [ ¹aL
1 º;

where W1 is the set of words of length L neither starting nor ending with a1, and

W2 is the set of words of length L ending but not starting in a1. If w 2 W1, then

�w 2 B . If w 2 W2 then w D vak
1 , where v does not end in a1. If k D 1, then

�w D �v �
X

s…¹w�1
fin

;a1º

�vs

is contained in the span of B . For k � 1 we obtain w 2 B by induction on

k, applying again the righ-extension relations. Finally, using again the right-

extension relation and induction on k one shows that �ak
1

is contained in the span

of B for all k � L. This shows that every element of B.W.a1I L// is contained in

the span of B and finishes the proof. �

We deduce that the ascending union
S

B.WL/ is a basis for yC.Mn/. This

finishes the proof of Theorem 1.5.(i).

3.3. A basis for yC.Fn/. We now modify the argument of the last subsection so

that it works also for free groups instead of free monoids. Let Fn be the free

group with basis S D ¹a1; : : : ; anº and let xS D ¹a1; : : : ; an; a�1
1 ; : : : ; a�1

n º. We

write xS .L/ � xSL for the subset of reduced words of length L. With this notation,

the De Bruijn–Martin graph �L. xS/ has vertex set xS .L�1/ and edge set xS .L/, where

each edges connects the two vertices obtained by deleting the first respectively last

letter. In complete analogy with Proposition 3.1 one proves:
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Proposition 3.4. Let W be a set of reduced words of length L � 2 in Fn of
cardinality jW j D 2n.2n � 1/L�2.2n � 2/ C 1. Then the following are equivalent:

(i) the set B.W / WD ¹�w j w 2 W º is a pure basis of yC.Fn/L;

(ii) the subgraph of �L. xS/ with vertices xS .L�1/ and edges labelled by xS .L/ n W

is connected;

(iii) the subgraph of �L. xS/ with vertices xS .L�1/ and edges labelled by xS .L/ n W

is a spanning tree of �L. xS/.

In particular, dim yC.Fn/L D 2n.2n�1/L�2.2n�2/C1 and pure bases of yC.Fn/L

are in bijection with spanning trees of the De Bruijn–Martin graph �L.S/.

There are two exceptional cases L D 0 and L D 1. The unique pure basis

of yC.Fn/0 is given by ¹ıeº, and the unique pure basis of yC.Fn/1 is given by

B. xS/. Both statements are immediate from our earlier computation dim K.Fn/0 D
dim K.Fn/1 D 0. In general we can choose the following pure basis.

Corollary 3.5. Given L � 0 define W.a1I L/ as follows. If L D 0, then
W.a1I 0/ WD ¹eº, if L D 1, then W.a1I 1/ WD xS and if L � 2, then

W.a1I L/ WD . xS .L/ n ¹w 2 xS .L/ j w starts with a1 or a2a�1
1 º/ [ ¹aL

1 º:

Then B.W.a1I L// WD ¹�w j w 2 W.a1I L/º is a pure basis of yC.Fn/L.

Proof. For L � 1 there is nothing to show. For L � 2 we have to show that every

vertex w 2 xS .L�1/ can be connected to aL�1
1 using only edges starting with a1

(but not equal to aL
1 ) and a2a�1

1 . If w does not start with a�1
1 we can argue as in

the monoid case, using only edges of the first kind. If w D a�1
1 s2 : : : sL�1 then an

admissible path to aL�1
1 is given by

a�1
1 s2 : : : sL�1 � a2a�1

1 s2 : : : sL�2 � a1a2a�1
1 s2 : : : sL�3 � : : :

� aL�3
1 a2a�1

1 � aL�2
1 a�1

2 � aL�1
1 : �

Again it is easy to pass from a family of pure bases to a family of compatible

bases:

Corollary 3.6. Given L � 1 let W 0
L denote the set of words of length � L

(including the empty word) not starting in a1 or a2a�1
1 and not ending in a�1

1

or a1a�1
2 . Let WL WD W 0

L [ ¹a�1
1 º. Then B.WL/ WD ¹�w j w 2 WLº is a basis of

yC.Wn/L, and these bases are compatible.

Proof. Again we have to produce every element �w in B.a1I L/ as a linear com-

bination of elements in B WD B.WL/. If w does not end in a�1
1 or a1a�1

2 then

�w 2 B . Otherwise we can apply right-extension relations and argue inductively

just as in the proof of Proposition 3.3. �

Now Theorem 1.5.(ii) follows.
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3.4. A basis for B.Fn/. We conclude this section by pointing out that Part (iii)

of Theorem 1.5 follows from Part (ii). The proof is based on the following simple

observation:

Lemma 3.7. Let W � Fn be any set of reduced words such that B.W / WD
¹�w j w 2 W º is a basis of yC.Fn/ and such that w�1 2 W for all w 2 W . Let W C

be a subset of W which intersects each of the sets ¹w; w�1º in a single element.
Then B.W C/ WD ¹'w j w 2 W Cº is a basis of yB.Fn/.

Proof. This is immediate from the fact that yB.Fn/ � yC.Fn/ is the fixed point set

of the linear involution mapping �w to ��w�1. �

The basis of yC.Fn/ constructed in Corollary 3.6 does not satisfy the assump-

tions of the lemma. However, we can modify it as follows. Let W0 WD
S

WL,

where WL is defined as in Corollary 3.5 and let W WD .W0 n ¹eº/
S

¹a1º. Then

B.W / is another basis for yC.Fn/ and W satisfies the assumptions of Lemma 3.7.

This shows that Part (iii) of Theorem 1.5 follows indeed from Part (ii), and thereby

finishes the proof of the theorem.

4. Counting functions and weighted trees

4.1. Representing counting functions by weighted trees. The goal of this

subsection is to provide a graphical representation counting functions on free

groups and monoids. This will help us to visualize certain operations on counting

functions and allow us to decide whether a given counting function is bounded,

i.e. represents the trivial element in yC.Mn/ or yC.Fn/. We start by discussing the

case of monoids.

Denote by T .Mn/, or Tn for short, the right-Cayley tree of Mn with respect to

S , i.e. the vertex set V.Tn/ of Tn is given by V.Tn/ D Mn and w 2 Mn is connected

by an edge to waj for each j D 1; : : : ; n. We think of Tn as a coloured rooted tree

with root e, where edges are coloured by the generating set S . We define the depth
of a vertex w as the word length of w or, equivalently, the distance of the vertex

from the root. By a weight on Tn we mean a finitely supported real-valued function

˛W V.Tn/ ! R. We can visualize the pair .Tn; ˛/ by drawing the finite subtree of

Tn spanned by the union of the support of ˛ together with the root and labelling

every vertex w by ˛.w/. The depth of the weighted tree .Tn; ˛/ is defined as �1
if ˛ D 0, and as

L.Tn; ˛/ WD max¹jwj j ˛.w/ ¤ 0º (4.1)

otherwise. The following picture shows an example of a weighted tree of depth 2

for n D 3:
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17

9 6 1

4 2 1

Given such a weighted tree .Tn; ˛/ we define the associated counting function by

c.Tn; ˛/ WD
X

w2Mn

˛.w/ � �w 2 C.Mn/:

We then say that the weighted trees .Tn; ˛/ and .Tn; ˛0/ are equivalent, denoted

.Tn; ˛/ � .Tn; ˛0/, if Œc.Tn; ˛/� D Œc.Tn; ˛/0� 2 yC.Mn/. Our goal is to understand

geometrically what it means for two weighted trees to be equivalent. Since there

is an obvious geometric way to subtract weighted trees, it suffices to understand

geometrically whether Œc.Tn; ˛/� D Œ0� for a given weighted tree .Tn; ˛/. To this

end it is convenient to define the depth of an equivalence class ŒT � of weighted

trees by

L.Œ.Tn; ˛/�/ WD min¹L.Tn; ˛0/ j .Tn; ˛0/ � .Tn; ˛/º:

We then say that a weighted tree .Tn; ˛/ is minimal if

L..Tn; ˛// D L.Œ.Tn; ˛/�/;

i.e. if it is not equivalent to a shorter tree. Note that Œc.Tn; ˛/� D Œ0� if and only if

L.Œ.Tn; ˛/�/ D �1. In particular, if .Tn; ˛/ is equivalent to a minimal tree .Tn; ˛0/

with ˛0 6� 0, then it is not equivalent to the trivial weighted tree.

Everything we said so far carries over verbatim to the case of a free group Fn, if

we replace the tree T .Mn/ by the right-Cayley tree Tn WD T .Fn/ of Fn with respect

to the generating set S . As in the monoid case, we also would like to understand

in the group case the geometric meaning of the condition Œc.Tn; ˛/� D Œ0�.

4.2. Operations on weighted trees. Throughout this subsection let Tn be either

T .Mn/ or T .Fn/. We describe some operations which transform a weighted tree

.Tn; ˛/ into an equivalent weighted tree .Tn; ˛0/.

Let V.Tn/ be the vertex set of Tn. Given w 2 V.Tn/ of depth � 1, we refer

to the vertices on the geodesic between e in w (including e, but excluding w) as

the ancestors of w. The unique ancestor v D Fa.w/ of w adjacent to w is called

its father and the vertices with the same father as w are called its brothers. Their

collection is called the brotherhood of w and denoted by Br.w/. We say that a

brotherhood B is a constant brotherhood with respect to ˛ if ˛jB is constant, and
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a non-constant brotherhood otherwise. We also define the depth of a brotherhood
B as the depth of any of its members and denote by Fa.B/ the common father of

the brotherhood. Note that by definition the depth of a brotherhood is � 1.

If two vertices u; v 2 Mn have the same depth juj D jvj D L � 1 and differ

only by the first letter, then we say that they are related and write u ^ v. In this

case we also say that the brotherhood B1 WD Br.u/ and B2 WD Br.v/ are related

and write B1 ^ B2. If B1 ^ B2, then there is a unique bijection �B1;B2
W B1 ! B2

with the property that �B1;B2
.w/ ^ w.

In the monoid case, each brotherhood has exactly n elements, and every

brotherhood of depth � 2 has exactly n related brotherhoods including itself. In

the group case, every brotherhood of depth � 2 has 2n � 1 elements, and there is

a unique exceptional brotherhood of depth 1 containing 2n elements. In this case,

every brotherhood of depth � 2 has 2n � 1 related brotherhoods including itself.

We now introduce the following two types of operations.

Firstly, let B be a brotherhood of depth � 1 with father w. In the monoid

case, let s 2 S , and in the group case let s 2 xS n ¹w�1
fin º, where wfin denotes

the last letter of w. Then the partial reduction of B along s is the operation

.Tn; ˛/ 7! RedB;s.Tn; ˛/ WD .Tn; ˛0/, where ˛0 2 RŒMn� is given as follows. Let

v0 2 B be the unique element with final letter s. Then ˛0.w/ WD ˛.w/ C ˛.v0/,

˛0.v/ WD ˛.v/ � ˛.v0/ for all v 2 B and ˛0.v/ WD ˛.v/ in all other cases. Then, by

the right extension relations rw , the operation RedB;s, transforms every weighted

tree into an equivalent weighted tree. Note that ˛0 differs from ˛ only along the

brotherhood B and its father.

A special case appears if B is a constant family with respect to ˛. In this case

all the partial reductions RedB;aj
have the same effect on .Tn; ˛/, and we have

RedB;aj
˛jB � 0. In this case we refer to RedB;aj

.Tn; ˛/ as the pruning of .Tn; ˛/

along B . The following pictures show an effect of two subsequent prunings:

1

0 6 1

4 4 4 1 1 1

1

4 6

We now define a second operation called transfer which corresponds to the

left-extension relation. Since we chose to work with right-Cayley graphs, the

geometric meaning of this operation is less natural.
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To define transfer, let B be a brotherhood of depth L � 2. Then the transfer of
B is the operation .Tn; ˛/ 7! TrB.Tn; ˛/ WD .Tn; ˛0/, where ˛0 is given as follows:

If v 2 B and v0 is obtained from v by deleting the first letter, then ˛0.v/ D 0 and

˛0.v0/ D ˛.v0/ C ˛.v/. Moreover, if w is contained in a brotherhood B 0 related

to B , then ˛0.w/ WD ˛.w/ � ˛.�B0;B.w//. Finally, ˛0.w/ WD ˛.w/ for all other

vertices w.

The following picture shows the effect of transfer applied to the brotherhood

labelled 1; 2; 3.

6

4 5 4

1 2 3 4 5 4 5 4 5

6

4 C 1 5 C 2 4 C 3

4 1 5 2 4 3 5 1 4 2 5 3

By definition, transfer has the following properties: TrB maps every weighted tree

to an equivalent one. If changes the values of ˛ only on (certain) elements of

depth L � 1 and on those elements of depth L which are related to a member of

B . Moreover, TrB˛jB � 0. We emphasize that we will only apply transfer to

brotherhoods of depth at least 2.

4.3. Unbalanced weighted trees. We now define a special class of weighted

trees; as in the last subsection Tn denotes either T .Mn/ or T .Fn/.

Definition 4.1. A weighted tree .Tn; ˛/ of depth L � 2 is called unbalanced if

there exist two related brotherhoods B1 ^ B2 of depth L such that ˛jB1
� 0 and

B2 is non-constant with respect to ˛.
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It is easy to see from the picture, whether a given weighted tree is unbalanced.

For example, the weighted tree given in Subsection 4.1 is unbalanced. Note that

in order to decide whether a given weighted tree of depth L � 2 is unbalanced,

we only need to inspect its bottom level (i.e. the vertices of depth L).

Theorem 4.2. Every unbalanced weighted tree is minimal, hence represents a
non-trivial element in yC.Mn/ or yC.Fn/.

To prove Theorem 4.2, it actually suffices to show the (a priori weaker) state-

ment, that every unbalanced weighted tree represents a non-trivial element in
yC.Mn/ or yC.Fn/. Indeed, assume this statement and let .Tn; ˛/ be unbalanced. If

.Tn; ˛/ was equivalent to a weighted tree .Tn; ˛0/ of smaller depth, then .Tn; ˛�˛0/

would represent 0 in yC.Mn/ or yC.Fn/. But .Tn; ˛ � ˛0/ has the same bottom level

as .Tn; ˛/, hence is also unbalanced by the previous remark. We thus obtain a

contradiction, and it remains to prove only the weaker statement that unbalanced

weighted trees represent non-trivial elements. We discuss the proof of this Theo-

rem separately in the monoid case and in the group case.

Proof of Theorem 4.2 in the monoid case. Using the operations defined in Sub-

section 4.2 we will transform .Tn; ˛/ into an equivalent weighted tree, which

is non-trivial for obvious reasons. Let B1 ^ B2 be brotherhoods of depth

L WD depth.Tn; ˛/ such that ˛jB1
� 0 and B2 is non-constant with respect to

˛, and let ai , respectively aj be the first letters of Fa.B1/ and Fa.B2/.

Firstly, we transfer all brotherhoods of depth L in the subtree ai Mn except

for the brotherhood B1. The weights of B2 remain the same, because only the

transfer of B1 could affect B2, but B1 was not transferred. After these transfers,

all coefficients in the level L in aiMn are equal to 0. Secondly, we perform a partial

reduction of all brotherhoods in the level L with respect to the ending ai . Since B2

was non-constant, it remains non-constant under these partial reductions. Since

all the brotherhoods in aiMn had coefficients 0, they also remain 0.

Now we repeat the same procedure in the levels l D L � 1; L � 2; : : : ; 2.

Namely, first we transfer all brotherhoods having depth l from the subtree aiMn.

This affects values in levels � l and makes all coefficients in the subtree ai Mn in

the levels l; : : : ; L equal to 0. Secondly, we apply partial reduction with respect

to the letter ai in all brotherhoods (except those of the subtree aiMn) of level l .

This affects level l � 1 and makes all coefficients in level l of words ending with

ai equal to 0. The brotherhood B2 remains non-constant throughout.

Finally we reach a weighted tree .Tn; ˛0/ equivalent to .Tn; ˛/ with the follow-

ing properties. If w is any word of depth � 2 which starts or ends in ai , then

˛0.w/ D 0. Moreover, B2 is non-constant with respect to ˛0. We now do one

final reduction of the brotherhood Br.a1/ with respect to ai to obtain yet another

equivalent weighted tree .Tn; ˛00/. Now ˛00 vanishes on all words w starting or

ending in ai , but is not equal to 0 (since B2 is non-constant). It then follows from

Corollary 3.3 that Œ˛� D Œ˛00� ¤ 0. �
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The strategy of the proof can be described as clearing out all coefficients of

vertices starting or ending in ai . This strategy works because of Corollary 3.3. In

the group case we have to replace Corollary 3.3 by Corollary 3.6. We therefore

have to clear out all coefficients of vertices starting in a1 or a2a�1
1 or ending in a�1

1

or a1a�1
2 , except for a�1

1 . This is slightly more complicated than in the monoid

case, but ultimately works the same way.

Proof of Theorem 4.2 in the group case. By assumption we have two brother-

hoods B1 ^ B2 of depth L WD depth.Tn; ˛/ such that ˛jB1
� 0 and B2 is

non-constant with respect to ˛. Without loss of generality we may assume that

the first letters of Fa.B1/ and Fa.B2/ respectively are a1 and a2. Note that the

second letter of Fa.B1/, and hence also of Fa.B2/ canot be a�1
1 .

Let ˛0 be obtained from ˛ by applying the following operations. Firstly, apply

transfer to all brotherhoods of depth L in the subtree of reduced words starting

from a1. Secondly, apply transfer to all brotherhoods of depth L in the subtree

of reduced words starting from a2a�1
1 . Finally, apply a partial reduction RedB;s

for every non-zero brotherhood of depth L, where s depends on the last letter of

Fa.B/. If this last letter happens to be a1, then we choose s WD a�1
2 , otherwise we

choose s WD a�1
1 .

We now consider the values of ˛0 on words w of depth L. Assume first that

w starts with a1. Then ˛0.w/ D 0 after the first transfer step. The second transfer

step only transfers into words whose second letter is a�1
1 , hence does not change

˛0.w/. Since also the partial reductions do not influence the family of w, we

get ˛0.w/ D 0. Similarly, if w starts with a2a�1
1 , then ˛0.w/ D 0. Finally, if

w ends with a�1
1 or with a1a�1

2 , then ˛0.w/ D 0, since w gets cleared in the

partial reduction steps. On the other hand, we claim that the brotherhood B2 does

not get cleared completely and in fact remains non-constant for ˛0. The unique

brotherhood with initial letter a1 related to B2 is B1, and this one does not transfer

anything over in the first step, since ˛jB1
� 0. Since the second letter of Fa.B2/

is not a�1
1 , the values of ˛0 on B2 also do not change in the second transfer step.

In the partial reduction step, the value of ˛0 on B2 is changed, however, a partial

reduction cannot turn a non-constant family into a non-constant family.

We can now repeat the same procedure on levels l D L � 1; L � 2; : : : ; 2.

Ultimately we end up with a weighted tree .Tn; ˛0/ equivalent to .Tn; ˛/ with the

following properties. If w is any word of depth � 2 which starts with a1 or a2a�1
1

or end with a�1
1 or a1a�1

2 , then ˛0.w/ D 0. Moreover, there exists w0 2 B2 with

˛.w0/ ¤ 0.

Now ˛0 is equivalent to ˛00 as given by ˛00.s/ WD ˛0.s/ � ˛0.a1/ for all s 2 xS ,

˛00.e/ WD ˛0.e/ C ˛0.a1/ and ˛00.w/ D ˛0.w/ for all words w of length � 2.

Moreover, if WL is defined as in Corollary 3.6, then ˛00.w/ D 0 for all w 62
S

WL

and ˛00.w0/ ¤ 0. It then follows from Corollary 3.6 that ˛00 and hence ˛ does not

represent the 0 function. �
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5. Deciding boundedness for counting functions

We now present a pen-and-paper algorithm7 to decide whether a given count-

ing function is bounded (hence represents the trivial class), which is based on

Theorem 4.2. The basic strategy is as follows. Represent the given function by

a weighted tree, and try to transform this weighted tree either into the empty

weighted tree or an unbalanced weighted tree using the operations discussed in

Subsection 4.2. If you reach the empty tree, then the initial function was bounded,

and if you reach an unbalanced weighted tree, then the function was unbounded.

To obtain an actual algorithm, we have to ensure that we either reach an unbal-

anced tree or the empty tree within a finite number of operations.

In the monoid case, the algorithm looks as follows:

Algorithm decide triviality in yC.Mn/

Input: Weighted tree .Tn; ˛/.

Output: Trivial or Non-trivial according to whether Œc.Tn; ˛/� D Œ0� or not.

Step 1. Let ˛0 WD ˛, and let l be the depth of ˛0.

Step 2. While l � 2 repeat the following steps to the tree ˛0:

(a) Transfer all brotherhoods which start with a1 and have depth l .

(b) Reduce all constant brotherhoods of depth l .

(c) If the depth of ˛0 is still l , return non-trivial and stop the algorithm.

Otherwise, replace l by the new length of ˛0.

Step 3. If ˛0.ai / D �˛0.e/ for each i D 1; : : : ; n, then return trivial, otherwise

return non-trivial.

Since l decreases by at least one in each iteration of Step 2, the algorithm

terminates. Let us verify correctness of the algorithm. Since ˛0 is equivalent

to ˛ at all stages, if the algorithm returns trivial, then indeed Œc.Tn; ˛/� D Œ0�.

Conversely, if the algorithm returns non-trivial in Step 2(c), then we have reached

an unbalanced tree, so indeed Œc.Tn; ˛/� ¤ Œ0� by Theorem 4.2. (The theorem

applies, since every brotherhood is related to a brotherhood with initial letter

a1.) Also, if the algorithm returns non-trivial in Step 3, then it follows from

Corollary 3.2 applied to L D 1 that Œ˛� ¤ 0. Thus the algorithm works correctly.

Almost the same algorithm works in the group case. The main difference

appears in Step 2(a), where we have also to clear elements starting with a2a�1
1 .

This is because not every brotherhood is related to a brotherhood starting from a1,

7 By this we mean that we do not discuss in detail how to implement the algorithm on a
computer. For a detailed discussion of a possible computer-implementation of our algorithm we
refer the reader to the companion paper [15].
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but every brotherhood is related to a brotherhood starting from either a1 (if its

second letter is not a�1
1 ) or a2a�1

1 (otherwise). Also, in Step 3 we have to take the

inverses of the generators into account.

This leads to the following algorithm:

Algorithm decide triviality in yC.Fn/

Input: Weighted tree .Tn; ˛/.

Output: Trivial or Non-trivial according to whether Œc.Tn; ˛/� D Œ0� or not.

Step 1. Let ˛0 WD ˛, and let l be the depth of ˛0.

Step 2. While l � 2 repeat the following steps to the tree ˛0:

(a) Transfer all brotherhoods which start with a1 or or a2a�1
1 and have

depth l .

(b) Reduce all constant brotherhoods of depth l .

(c) If the depth of ˛0 is still l , return non-trivial and stop the algorithm.

Otherwise, replace l by the new length of ˛0.

Step 3. If ˛0.ai / D ˛0.a�1
i / D �˛0.e/ for each i D 1; : : : ; n, then return trivial,

otherwise return non-trivial.

The proof for termination and correctness is as in the monoid case.

As mentioned earlier, the algorithms above are merely “pen-and-paper” algo-

rithms, and not formal algorithms in the sense of computer science, since we do

not discuss the implementation details (such as data storage and implementation of

arithmetic operations). However, it is possible to formalize these algorithms, and

once a formalization is given, one can discuss their runtime. Since this requires

some considerations in complexity theory which are very different in nature from

the arguments in the present article, we defer these discussions to a separate arti-

cle [15].

Also it turns out that the algorithms arising from formalizing the above pen-

and-paper algorithms are not quite optimal as far as their runtime is concerned.

The main problem is that in the transfer step Step 2(a), big coefficients in the

transferred brotherhood may generate big coefficients in related brotherhoods.

For this reason, the algorithms discussed in [15] are based on a modification of

the ideas discussed in this subsection. Instead of always applying transfer to

the brotherhoods starting with a1 (or a2a�1
1 in the group case), we will apply

transfer to some family of brotherhoods which is carefully chosen to minimize the

amount of newly created data. The precise way to choose these brotherhoods is

more complicated (especially for non-integer coefficients) and based on a mixed

optimization strategy; we refer the reader to [15] for details.
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Appendix A. Homogenizations of counting functions

In this appendix we discuss certain classes of homogeneous functions related to

counting functions.

Definition A.1. Let M be a monoid. A function f W M ! R is called homoge-
neous if f .gn/ D n � f .g/ for all g 2 M and n � 0. It is called homogenizable if

for every g 2 M the limit

Of .g/ D lim
n!1

f .gn/

n

exists. In this case, Of W M ! R is called the homogenization of f .

By basis properties of limits, the homogenizable functions form a real vector

space, and homogenization defines a linear endomorphism of this vector space,

whose image is given by the subspace of homogeneous functions. Moreover, if

two homogenizable functions are at bounded distance, then their homogenizations

coincide.

It is well-known that quasimorphisms are homogenizable (see e.g. [6]). More-

over, if f is a quasimorphism, then its homogenization Of can be characterized

as the unique homogeneous function at bounded distance from f . Moreover, two

quasimorphisms are at bounded distance if and only if their homogenizations co-

incide.

In this appendix we will show (following closely an argument from [11] for

counting quasimorphisms) that counting functions on free monoids and groups

are also homogenizable. However, in the group case it is not true that a counting

function is at bounded distance from its homogenization. Consequently, some

standard arguments from the theory of homogeneous quasimorphisms do not carry

over to the setting of counting functions. This caveat is the reason why we work

out a couple of otherwise standard arguments in detail.

From now on let S D ¹a1; : : : ; anº be a set of cardinality n. We denote by Mn

and Fn respectively the free monoid and free group with basis S . In analogy with

the subword relation discussed in the introduction we can also introduce a cyclic

subword relation as follows. Informally, if v; w 2 Mn we say that v is a cyclic
subword of w if v can be read off by running along (possibly several times) the

cyclic word obtained by closing up w (i.e. writing w along a circle). Thus e.g.

a1a2 is a cyclic subword of a2a1a3a1, but also a3
1 is a cyclic subword of a2

1. To

define this more formally, we introduce the following notation.

Given positive integers l:m we denote by Œl �m the unique number in ¹1; : : : ; mº
which is congruent to l modulo m. Then v D s1 � � � sl 2 Mn is a cyclic subword

of w D r1 � � � rm 2 Mn if there exists j 2 ¹1; : : : ; mº such that

si D rŒj Ci�m for all i D 1; : : : ; l: (A.1)
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Given v 2 Mn we define the elementary cyclic counting function b�vW Mn ! Z as

follows: b�v.w/ counts the cyclic occurrences of v in w, i.e. if v D s1 � � � sl and

w D r1 � � � rm 2 Mn, then b�v.w/ is the number of j 2 ¹1; : : : ; mº such that (A.1)

holds.

Lemma A.2. The elementary counting function �vW Mn ! Z is homogeniz-
able, and its homogenization is given by the elementary cyclic counting function
b�vW Mn ! Z.

Proof. The elementary cyclic counting function is obviously homogeneous.

Moreover, if (A.1) holds for some j 2 ¹1; : : : ; mº and j � m � l , then (1.1)

holds for the same j . It follows that kb�v � �vk1 � jvjS . Thus for all w 2 Mn,

lim
n!1

�v.wn/

n
D lim

n!1

� b�v.wn/

n
C

�v.wn/ � b�v.wn/

n

�

D lim
n!1

b�v.wn/

n
D lim

n!1

n � b�v.w/

n

D b�v.w/: �

Note that in the monoid case we have kb�v � �vk1 < 1. We will see in

Example A.4 that the corresponding statement fails in the group case. The reason

for this failure is given by cyclic cancellations, as we explain next.

Recall that a reduced word w 2 Fn is called cyclically reduced if its initial

letter is not the inverse of its final letter. In this case we can close up w and

obtain a reduced cyclic word. Every reduced word w 2 Fn is conjugate to a

cyclically reduced (and reduced) word w0 (sometimes called the cyclic reduction
of w), which is unique up to cyclic permutation. In particular, the cyclic word

obtained by closing w0 depends only on w. Given a reduced word v 2 Fn we

define an elementary cyclic counting function b�vW Fn ! Z as follows. Given a

reduced word w 2 Fn, let w0 be its cyclic reduction. Then b�v.w/ counts the

cyclic occurrences of v in the reduced cyclic word obtained by closing w0. With

this definition understood we have:

Lemma A.3. The elementary counting function �vW Fn ! Z is homogeniz-
able, and its homogenization is given by the elementary cyclic counting function
b�vW Fn ! Z.

Proof. We observe first that if w D xw0x�1 as above, then

lim
n!1

�v.wn/

n
D lim

n!1

�v.xwn
0 x�1/

n
D lim

n!1

�v.wn
0 /

n
;

because j�v.xwn
0x�1/ � �v.wn

0 /j < 2jxjS . It thus suffices to show that the

homogenization of �v coincides with b�v on cyclically reduced words w D w0.

However, on such words we can argue literally as in the monoid case. �
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Example A.4. We have �a1
.an

1a2a�n
1 / D n, whereas c�a1

.an
1a2a�n

1 / D 0. Thus

k�a1
� c�a1

k1 D 1.

In the body of the text we will apply homogenization in the following form.

Corollary A.5. Let f D
P

aw�w be a counting function either on the free monoid
Mn or on the free group Fn. Then the following hold:

(i) f is homogenizable;

(ii) the homogenization of f is given in terms of elementary cyclic counting
functions as

Of D
X

˛w c�w I

(iii) if f is a bounded function, then Of D 0.

Proof. (i) follows from Lemma A.2 and Lemma A.3 together with the fact that

homogenizable functions form a vector space. (ii) follows from these lemmas

together with the fact that homogenization is linear. (iii) is immediate from the

definition of homogenization. �

Finally, let us relate the spaces yC.Fn/ and yC.Mn/ to cyclic counting functions.

Here by a cyclic counting function we mean a linear combination of elementary

cyclic counting functions with real coefficients. By Corollary A.5 we have well-

defined linear maps

�Mn
W yC.Mn/ �! span¹c�w j w 2 Mnº; �Fn

W yC.Fn/ �! span¹c�w j w 2 Fnº;

which send a class Œf � to the homogenization Of .

Theorem A.6. The maps �Mn
and �Fn

are isomorphisms. In particular yC.Fn/

and yC.Mn/ can be identified with the respective vector spaces of cyclic counting
function.

Some parts of Theorem A.6 are obvious. Firstly, surjectivity is immediate

from Corollary A.5. In the monoid case, injectivity is also easy. Namely, given

f 2 C.Mn/ we have kf � Of k1 < 1. Thus if Of D 0, then f is bounded

and thus Œf � D 0. This shows that ker.�Mn
/ is trivial, and thus �Mn

is indeed an

isomorphism. However, in view of Example A.4 this simple argument does not

work in the group case. Instead we have to use the full strength of the proof of

Theorem 1.3.
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Proof of Theorem A.6. Since yC.Fn/ is the union of the pure subspaces yC.Fn/L,

it suffices to show that for each fixed L � 2, the map

�LW yC.Fn/L ,�! yC.Fn/
�Fn
��! span¹c�w j w 2 Fnº; Œf � 7�! Of

is injective. Denote by qLWRŒFn�L ! yC.Fn/L the natural surjection and define

K 0
L.Fn/ WD ker.�L ı qL/. Then we have a commuting diagram with exact rows

0 // KL.Fn/ //

.�L/�

��

RŒFn�L
qL

//

Id

��

yC.Fn/L

�L

��

// 0

0 // K 0
L.Fn/ // RŒFn�L

�LıqL
// Im.�L/ // 0:

Since �L is onto, the induced map .�L/� embeds KL.Fn/ into K 0
L.Fn/, and we have

to show that this embedding is onto. We have seen in Step 2 of Subsection 2.4 that

the kernel KL.Fn/ can be characterized as the subset of RŒFn� on which certain

certificates hciL vanish. However, by definition of these certificates, these also

vanish on K 0
L.Fn/. This yields the desired surjectivity and finishes the proof. �

Combining Theorem A.6 with Theorem 1.5 we deduce:

Corollary A.7 (basis theorem for elementary cyclic counting functions). (i) De-
note by W the set of all words in Mn which do not start or end with a1 (including
the empty word). Then the elementary cyclic counting functions ¹c�w j w 2 W º
form a basis for the space span¹c�w j w 2 Mnº of all cyclic counting functions.

(ii) Denote by W 0 the set of all reduced words in Fn which do not start with a1

or a2a�1
1 and do not end with a�1

1 or a1a�1
2 (including the empty word), and let

W WD W 0 [ ¹a�1
1 º. Then the elementary cyclic counting functions ¹c�w j w 2 W º

form a basis for the space span¹c�w j w 2 Fnº of all cyclic counting functions.
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