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Generic free subgroups and statistical hyperbolicity
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Abstract. This paper studies the generic behavior of k-tuples of elements for k � 2

in a proper group action with contracting elements, with applications toward relatively
hyperbolic groups, CAT.0/ groups and mapping class groups. For a class of statistically
convex-cocompact action, we show that an exponential generic set of k elements for any
fixed k � 2 generates a quasi-isometrically embedded free subgroup of rank k. For
k D 2, we study the sprawl property of group actions and establish that statistically convex-
cocompact actions are statistically hyperbolic in the sense of M. Duchin, S. Lelièvre, and
C. Mooney.

For any proper action with a contracting element, if it satisfies a condition introduced
by Dal’bo-Otal-Peigné and has purely exponential growth, we obtain the same results on
generic free subgroups and statistical hyperbolicity.
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1. Introduction

1.1. Motivation and background. Suppose that a group G admits a proper and
isometric action on a proper geodesic metric space .Y; d/. The group G is assumed
to be non-elementary. It is not virtually cyclic. An element h 2 G is called
contracting if for some basepoint o 2 Y , an orbit ¹hn � oW n 2 Zº is a contracting
subset, and the map n 2 Z 7! hno 2 Y is a quasi-isometric embedding. Here a
subset X is called contracting if any metric ball disjoint from X has a uniformly
bounded projection to X (see [23, 7]). It is clear that this definition does not
depend on the choice of the basepoint.

The prototype of a contracting element is a hyperbolic isometry on Gromov-
hyperbolic spaces, but more interesting examples are provided by the following:

� hyperbolic elements in relatively hyperbolic groups or groups with nontrivial
Floyd boundary (see [17, 18]);

� rank-1 elements in CAT.0/ groups (see [3, 7]);

� certain infinite order elements in certain small cancellation groups (see [2]);

� pseudo-Anosov elements in mapping class groups of closed oriented surfaces
with genus greater than two acting on Teichmüller space (see [23]).

In [37], the second-named author proved that, for a class of statistically convex-
cocompact actions defined below, the set X of contracting elements is exponen-
tially generic in the ball model:

jX \ Bnj

jBnj
�! 1

exponentially fast, where Bn WD ¹g 2 GW d.o; go/ � nº.
Along this line, the goal of this paper is to continue the study of generic

properties for k-tuples of elements in G for a fixed k � 2. To that end, we introduce
a few more notations. We fix a basepoint o 2 Y and denote jgj D d.o; go/ for

easy notation. Denote G.k/ D ¹.u1; : : : ; uk/W ui 2 Gº and B
.k/
n D ¹.u1; : : : ; uk/ 2

G.k/W jui j � nº: When k is understood, we write Eu for .u1; : : : ; uk/, and jEuj for
max¹jui jW 1 � i � kº.

The asymptotic density of a subset X � G.k/ in the ball model is defined as

�.X/ D lim
n!1

jX \ B
.k/
n j

jB.k/
n j

if the limit exists. If the convergence happens exponentially fast, we denote

�.X/
exp
D � 2 Œ0; 1�. We shall be interested in the extreme cases �.X/

exp
D 1 (resp.

�.X/ D 1) which are called exponentially generic (resp. generic). By definition,
the complement of an (exponentially) generic set is called (exponentially) negli-
gible.
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The generic properties of k-tuples of elements have been studied using random
walks in various classes of groups with negative curvature. Let � be a probability
measure with finite support on the group G so that the support generates G as
a semi-group. A �-random walk is a product of a sequence of independent
identical �-distributed random variables on G. In our setting, Sisto [31] proved
that the n-th step of a simple random rank lands on a contracting element with
asymptotic probability one. In mapping class groups, this was obtained by Maher
for pseudo-Anosov elements. And the most general result is, as far as we know,
due to Maher and Tiozzo [22] which says that random elements are loxodromic
for any non-elementary group action on a hyperbolic space. When k D 2, Gilman,
Miasnikov, and Osin [19] proved that in hyperbolic groups, two simple random
walks on the Cayley graph, with asymptotic probability one, stay at a ping-pong
position in n-steps so that they generate an undistorted free group of rank 2. The
same result holds in non-virtually solvable linear groups [1] and in mapping class
groups [28, 34, 21] for two independent �-random walks. In fact, most of these
works are stated in a general class of groups with hyperbolic embedded subgroups
as defined by Dahmani, Guirardel and Osin [10], and equivalently, the class of
acylindrically hyperbolic groups in the sense of Osin [25]. It is worth pointing out
that a non-elementary group admitting a proper action with a contracting element
is acylindrically hyperbolic by a result of Sisto [31]. However, our first goal is to
address the analogue of generic free subgroups using counting measures defined
as above instead of probability measures from random walks.

In fact, studying the generic properties of k-tuples of elements in a counting
measure is not a new idea. In [13], M. Duchin, S. Lelièvre, and C. Mooney
initiated a study of the sprawl property of pairs of points in the space. The notion
of statistical hyperbolicity is then introduced to capture negative curvature in a
statistical sense. Roughly speaking, the intuitive meaning could be explained as
follows. Consider the annular set

A.n; �/ D ¹g 2 GW jjgj � nj � �º

for � > 0. On average, a random pair of points x; y on an annular set A.n; �/ of
the group has distance d.xo; yo/ nearly equals to 2n. We formulate this concept
using both annuli and balls.

Definition 1.1. Let G admit a proper action on a geodesic metric space .Y; d/.
Define

EB.G/ D lim
n!C1

1

jBnj2

X

x;y2Bn

d.x; y/

n
;

and for a constant � > 0,

EA.G; �/ D lim
n!C1

1

jA.n; �/j2

X

x;y2A.n;�/

d.x; y/

n
;

if the limit exists. The action is called statistically hyperbolic in annuli (resp. in
balls) if EA.G; �/ D 2 for any sufficiently large � > 0 (resp. EB.G/ D 2).
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Remark. In [13] this definition was introduced using annular model with � D 0

in Cayley graphs of groups. Here we consider also the quantity EB.G/ without
involving the extra parameter �. In our results, we obtain EA.G; �/ D EB.G/ D 2

along the same line of proofs.

The non-examples include elementary groups, Zd for d � 2, and the integer
Heisenberg group for any finite generating set among others (cf. [13]). In the
opposite, the exact value of EB.G/ D 2 indeed happens for many groups with
certain negative curvature from the point of view of coarse geometry. For instance,
non-elementary relatively hyperbolic groups are statistically hyperbolic for any
finite generating set (cf. [13, 24]). Moreover, the statistical hyperbolicity is
preserved under certain direct product of a relatively hyperbolic group and a
group. And the lamplighter groupsZm oZ where m � 2 are statistically hyperbolic
for certain generating sets [13].

The notion of statistical hyperbolicity could be considered for any metric space
with a measure as in [13], rather than our definition using a counting measure. In
this direction, it was proved in the same paper that for any m; p � 2, the Diestel-
Leader graph DL.m; p/ is statistically hyperbolic. The statistical hyperbolicity
for Teichmüller space with various measures was proved by Dowdall, Duchin and
Masur in [12].

The second goal of this paper is to generalize these results in a very general
class of proper actions using counting measures from orbits in Definition 1.1. In
what follows, we shall describe our results in detail.

1.2. Main results. In order to state our results, we first give a quick overview
of the various classes of actions under consideration in this study. First of all,
we consider the class of statistically convex-cocompact actions introduced in [37]
which generalizes a convex-cocompact action in a statistical sense. Making this
idea precise requires the notion of growth rate of a subset X in G:

ıX D lim sup
n!1

ln jX \ Bnj

n
:

It is clear that the value ıX does not depend on the choice of the basepoint. By
abuse of language, a geodesic between two sets A and B is a geodesic between
a 2 A and b 2 B .

Given constants 0 � M1 � M2, let OM1;M2
be the set of element g 2 G such

that there exists some geodesic  between NM2
.o/ and NM2

.go/ with the property
that the interior of  lies outside NM1

.Go/.

Definition 1.2 (SCC action). If there exist positive constants M1; M2 > 0 such
that ıOM1;M2

< ıG < 1, then the proper action of G on Y is called statistically
convex-cocompact (SCC).

The idea to define the set OM1;M2
is to look at the action of the fundamental

group of a finite volume Hadamard manifold on its universal cover. It is then easy
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to see that for appropriate constants M1; M2 > 0, the set OM1;M2
coincides with

the union of cusp subgroups up to a finite Hausdorff distance. The assumption in
SCC actions was called a parabolic gap condition by Dal’bo, Otal, and Peigné
in [11]. One of the motivations of this study is to push forward the analogy
between the concave set OM1;M2

and the (union of ) parabolic cusp regions. This
allows us to draw conclusions for the SCC actions through the analogy with the
geometrically finite actions, which have been well studied in last twenty years.

Moreover, our study suggests considering a class of proper actions satisfying
a more general condition introduced in the same paper [11]. The condition, refor-
mulated below, is proved to be equivalent to the finiteness of Bowen–Margulis–
Sullivan (BMS) measure on the geodesic flow of the unit tangent bundle of a geo-
metrically finite Hadamard manifold in [11], and later for any Hadamard manifold
by Pit and Shapira [27, Theorem 2].

Definition 1.3 (DOP condition). The group action of G on Y satisfies the Dal’bo–
Otal–Peigné (DOP) condition if there exist two positive constants M1; M2 > 0

such that
X

g2OM1;M2

jgj exp.�ıG jgj/ < 1

Remark. We remark that, in the setting of negatively curved manifolds, the DOP
condition is called positive recurrence by Pit and Shapira in [27], whereas the
notion of SCC actions is called strongly positive recurrence by Shapira and Tapie
in [30]. We thank Rémi Coulon for bringing these references to our attention.

The concept of the geodesic flow is non-applicable in a general geodesic metric
space with coarse negative curvature features such as the contracting property.
However, the definition of the DOP condition could be always made, and so could
be understood as substitute of finite BMS measures in a general metric space. One
of Roblin’s results [29, Théoreme 4.1] stated that in the setting of a geometrically
finite Hadamard manifold, the finiteness of BMS measures is characterized by the
purely exponential growth (PEG) of the action

jBnj � exp.ıGn/:

Hence, proper actions with purely exponential growth should be viewed as equiv-
alent to DOP conditions. We expect that this relation persists in a very general
setting, and remark that it is indeed true for the class of geometrically finite ac-
tions on a ı-hyperbolic space in [36] (weaker than the setting of Roblin).

Our first main result establishes a generic free basis property for the actions
with the DOP and PEG condition stated as follows.
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Theorem 1.4. Assume that a non-elementary group G acts properly on a geodesic
metric space .Y; d/ with a contracting element. If G satisfies the DOP and PEG
conditions, then for any k � 2, the set of all tuples .u1; : : : ; uk/ 2 G.k/ generating
a free subgroup H of rank k in G is generic in G.k/.

Moreover, we can further require that all non-trivial elements of H are con-
tracting, and that the orbital map h 2 H 7! ho 2 Y is a quasi-isometric embed-
ding with the image Ho being a contracting subset in Y .

When the action is SCC, the above DOP and PEG conditions are satisfied, and
moreover, we can obtain an exponential convergence rate for the above conclusion.

Theorem 1.5. Assume that a non-elementary group G admits a SCC action on
a geodesic metric space .Y; d/ with a contracting element. Then for any k � 2,
the set of all .u1; : : : ; uk/ 2 G.k/ generating a free subgroup H of rank k in G is
exponentially generic in G.k/.

The “moreover” statement in Theorem 1.4 holds as well for the free sub-
group H .

A group generated by a finite set acts cocompactly on its Cayley graph, so our
results apply for this particular case. A finitely generated subgroup H is called
undistorted if the inclusion H � G is a quasi-isometric embedding with respect
to word metrics.

Corollary 1.6. Let G be a non-elementary group with a finite generating set S . If
G has a contracting element, then for any k � 2, the set of all .u1; : : : ; uk/ 2 G.k/

which generates an undistorted free subgroup H of rank k in G is exponentially
generic in G.k/, and we can further require that all non-trivial elements of H are
contracting.

To illustrate consequences of previous results, we now list examples of groups
with contracting elements with respect to some Cayley graph:

(1) any relatively hyperbolic group G acting on a Cayley graph G .G; S/ with
respect to a finite generating set S , see [17];

(2) any group G with non-trivial Floyd boundary acting on a Cayley graph
G .G; S/ with respect to a finite generating set S , see [17];

(3) any right-angled Artin (Coxeter) group with respect to the standard generat-
ing set, if it is not virtually direct product, see [4, 6, 9];

(4) any Gr0
�

1
6

�

-labeled graphical small cancellation group G with finite compo-
nents labeled by a finite set S acting on its Cayley graph G .G; S/ (cf. [2]). In
particular, this includes any classical C0

�

1
6

�

small cancellation group G with
a finite generating set S acting on its Cayley graph G .G; S/. See [32] for a
definition of C0

�

1
6

�

groups.
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Thus, by Corollary 1.6, the list of these examples all have the generic free basis
property. We remark that this result is even new in the class of relatively hyperbolic
groups.

We next explain an application of Theorem 1.5 about surface group extensions.
Let M.†g/ be the mapping class group of a closed oriented surface †g of genus
g � 2. Combining the results of Minsky [23] and Eskin-Mirzakhani-Rafi [14] we
know that the action of M.†g/ on Teichmüller space T.†g/ is a SCC action with
a contracting element. By Theorem 1.5, we obtain the exponential genericity of
k-tuples of elements .u1; u2; : : : ; uk/ that are free bases in the counting measure
from the Teichmüller metric. Denote � WD hu1; u2; : : : ; uki. Marking a point
p 2 †g , the Bireman exact sequence in [8] gives an extension E� in M.†g ; p/ of
the surface group �1.†g ; p/ by � as follows

1 �! �1†g �! E� �! � �! 1:

We refer the reader to the reference [15] for related facts about M.†g/ and T.†g/.
In [16], Farb and Mosher studied when the extension is a hyperbolic group and

showed that, when � is a Schottky group, this is equivalent to the quasi-convexity
of �-orbits in T.†g/.

In Theorem 1.5, the quasi-isometrically embedded image of the free group �

are contracting and thus quasi-convex in the sense of Farb and Mosher. Thus, by
[16, Theorem 1.1], the free group � is convex-cocompact in their sense, so the
following result holds.

Theorem 1.7. The set of k-tuples of elements .u1; u2; : : : ; uk/ in M.†g/ with
hyperbolic extension in M.†g ; p/ is exponentially generic.

Remark. It is worth pointing out that the same result has been obtained by Taylor
and Tiozzo [34] where the k-tuples are chosen via independent random walks.

Our second main result obtains the statistical hyperbolicity for the same class
of actions as in Theorem 1.4, and in particular for statistically convex-cocompact
actions.

Theorem 1.8. Let a non-elementary group G act properly on .Y; d/ with a con-
tracting element satisfying the DOP and PEG conditions. Then G is statistically
hyperbolic in balls and annuli. In particular, if the action is SCC, then G is sta-
tistically hyperbolic in balls and annuli.

Remark. Motivated by the exponential convergence rate for SCC actions in
Theorem 1.5, one may wonder whether there is a significant convergence rate
of EA.G; �/ or EB.G/ under SCC actions. This is, however, not true even in free
groups: a simple computation as Example 4.5 shows that the convergence rate is
of order 1

n
. Hence, we have no assertion on the convergence speed.
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Except the class of SCC actions, the actions of discrete groups on CAT.�1/

spaces provide a source of examples with DOP condition and purely exponential
growth. For example, combining [29] and [27] we obtain that the finiteness of the
Bowen–Margulis–Sullivan measure on the geodesic flow is equivalent to either
having purely exponential growth or satisfying the DOP condition. Hence, we
obtain the following corollary.

Theorem 1.9. Suppose that the Bowen–Margulis–Sullivan measure on the unit
tangent bundle of a Hadamard manifold is finite. Then the fundamental group
action on the universal cover is statistically hyperbolic in balls and annuli. More-
over, the generic pair of elements generate a free group of rank 2 which is a uni-
formly quasi-isometric embedding with contracting image.

If a hyperbolic n-manifold for n � 2 is geometrically finite, then the BMS
measure is always finite [33]. We thus have the following corollary in Kleinian
groups, which seems to be not recorded in the literature. Note that examples
of non-geometrically finite Kleinian groups with finite BMS measures are con-
structed for n � 4 by Peigné in [26].

Corollary 1.10. Geometrically finite Kleinian groups are statistically hyperbolic
and have the generic free basis property.

For the action of mapping class groups on Teichmüller space, we then have the
following corollary, which could be thought of as a discrete analogue of the result
in [12].

Corollary 1.11. The action of mapping class groups on Teichmüller space is
statistically hyperbolic with respect to the Teichmüller metric.

Of course, the action of a group on the Cayley graph is SCC, so if there exists
a contracting element, then it is statistically hyperbolic. This allows us to give
new examples of groups with the statistically hyperbolic property in the original
sense [13].

Corollary 1.12. The following classes of groups are statistically hyperbolic with
respect to word metrics of special generating set.

(1) Any Gr0
�

1
6

�

-labeled graphical small cancellation group .G; S/ with finite
components labeled by a finite set S . In particular, any classical C0

�

1
6

�

small
cancellation group .G; S/ with a finite generating set S .

(2) Right-angled Artin (Coxeter) groups are statistically hyperbolic with respect
to the standard generating set, if they are not virtually direct product.
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We point out that it is not clear to us whether the above two classes of groups
are statistically hyperbolic for every generating set. Note that they include non-
relatively hyperbolic examples of groups (cf. [5, 20]). Hence, it would be interest-
ing to know to which extent the statistical hyperbolicity for every generating set
characterizes the class of relatively hyperbolic groups.

1.3. Sketch of proofs. To conclude the introduction, we give a sketch of proofs
of main theorems. We refer the reader to Section 4 for the full detail.

Sketch of proof of Theorem 1.4. We consider k D 2 and explain the main ingre-
dients of the proof that a generic subgroup H generated by two elements u1; u2

of G is free.

The strategy to prove that hu1; u2i is free is standard. We construct a quasi-
geodesic ˇ out of every freely reduced word W D x1x2 : : : xn .n � 1/ over
the alphabet ¹u1; u2; u�1

1 ; u�1
2 º. This quasi-geodesic has the following structure:

it is a piecewise geodesic ˇ D q0p1q1 : : : pnqn which travels alternatively into
a sequence of contracting subsets Xi , i.e., .pi /C; .pi /� 2 Xi . These ¹Xiº are
translated axis of a predefined contracting element h so they have uniformly
bounded projection.

The path with such a structure is called admissible (Definition 2.10). A result
in [35], Proposition 2.11 here, shows that if pi is sufficiently long and each qi

has bounded projection to Xi�1 and Xi , then ˇ is a quasi-geodesic. The difficulty
is thus the genericity of pairs .u1; u2/ which allows to obtain such an admissible
path for every word W .

We now explain in more details the construction of this admissible path and the
generic choice of .u1; u2/. We first start with a piecewise geodesic  D 1 : : : n

labeled by letters xi in the word W . To get the admissible path ˇ, we require each
i to travel into a contracting subset Xi 2 X, where X D ¹gAx.h/W g 2 Gº. We
then truncate the “angle” at x1 : : : xio between two consecutive Xi and XiC1 and
replace with a geodesic qi . See the truncation path as indicated by the red dotted
path in Figure 1.

o

y1
X1

z1

1

x1 o
2

y2
X2

z2

x1x2 o

y3
z3

X3
3

x1x2x3 o

yn

Xn

zn

n

W o

Figure 1. Truncated admissible path.
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Keeping in mind the desired bounded projection in Definition 2.10, we are thus
lead to consider the following sets.

(1) The set of elements u 2 E contains an .�; h/-barrier (Definition 2.12) in the
."; 1 � "/-proportion of Œo; uo�. See its precise definition in (9). Thus, the
barrier in xi 2 E produces a contracting set Xi 2 X.

(2) For each pair .u1; u2/ 2 E.2/, any segment Œo; so� labeled by an element
s 2 S WD ¹u1; u2; u�1

1 ; u�1
2 º stays far from the .�; h/-barrier of the other

t ¤ s�1 2 S . The contracting property then gives the bounded projection of
the “angle” and thus of the geodesic qi , to the barrier Xi of xi .

The main technical contribution of this paper is showing the negligibility
of several sets of independent interests under actions with the DOP and PEG
conditions. Among those, the genericity of the set E is proved in Lemma 3.3,
and the genericity of the set E.2/ is proved under two cases treated separately in
Lemmas 3.4 and 3.5. The proof of these results uses often Lemma 3.1 which says
that the set of elements with an "-proportion subsegment without .�; h/-barrier
is negligible. In the proof of this lemma, the DOP and PEG conditions are
used crucially to get the negligibility, and if the action is SCC, then the set is
exponentially negligible. �

Sketch of proof of Theorem 1.8. We give a sketch of the proof for the annuli case;
the ball case is similar. The proof of statistical hyperbolicity boils down to the
fact that for every " > 0, the generic pair .x; y/ 2 A.n; �/.2/ stays at an opposite
position:

d.xo; yo/ � d.o; xo/ C d.o; yo/ � 10"n � 2n.1 � 5"/:

By the genericity of pairs .x; y/, this inequality implies EA.G/ D 2.

Consider the geodesics ˛ D Œo; xo�; ˇ D Œo; yo�. Fix a contracting element
h with the C -contracting axis Ax.h/ for some C > 0. To achieve the above
inequality, we make use of a generic choice of pairs .x; y/ with the properties
very similar to the ones as above in the set E.

(1) The geodesic ˛ contains an .�; hm/-barrier in the .2"; 3"/-proportion of ˛.
The barrier produces a contracting set gAx.h/ WD gX . This is proved in
Lemma 3.3.

(2) The geodesic ˇ stays far from gX : ˇ \ NC .gX/ D ;, by Lemma 3.5.

(3) Let v; w be the entry and exit points of ˛ in NC .gX/. Then the distance
d.u; v/ is bigger than d.o; hmo/�2� by the first property, but is not larger than
"jxj, which is guaranteed by Lemma 3.2. Thus, v; w lie in .2"; 3"/-proportion
of ˛.
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xo yo

˛ ˇ

u

v

w gX

o

Figure 2. statistical hyperbolicity.

A consequence of these properties is that  \ NC .gX/ ¤ ; for  WD Œxo; yo�.
Indeed, if  \ NC .gX/ D ;, then by the first and second properties, we get

d.v; w/ � k…X.¹v; oº/k C k…X .¹o; yoº/k C k…X .¹yo; xoº/k C k…X .¹xo; wº/k

� 8C:

If m is chosen sufficiently large, then this contradicts with the third property that
d.u; v/ � d.o; hmo/ � 2�. Thus, we proved that  must intersect NC .gX/ at
the entry point u. In Lemma 4.4, a further estimate shows d.u; w/ � 4C , and
consequently,

d.xo; yo/ � 2.n � 4"n � 4"� � � � 4C /:

Since " can be made arbitrary small, we obtain EA.G/ D 2. �

The structure of this paper. The preliminary Section 2 discusses the notions
such as contracting elements, SCC actions, the DOP condition etc. and list a
few useful results needed later on. The main technical contribution of this paper
is contained in Section 3 which provides several negligible sets with property
required in the sketches of proofs in Introduction. Section 4 explains the choice
of a generic set of pairs whose properties are used to complete the proofs of
Theorems 1.4, 1.5, and 1.8.

Acknowledgment. The authors are deeply grateful to the referee for her/his
careful reading of our paper and providing us numerous useful remarks and
corrections, which improves a lot the presentation.

2. Preliminaries

In this section, we will introduce some preliminaries. First we fix some notations
and conventions.
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2.1. Notations and conventions. Let .Y; d/ be a proper geodesic metric space.
The r closed neighborhood of a subset X � Y is denoted by Nr .X/. We denote by
kXk the diameter of a subset X � Y and by dHaus.X1; X2/ the Hausdorff distance
of two subsets X1; X2 � Y . Given a point y 2 Y , and a subset X � Y , let …X .y/

be the set of point x in X such that d.y; x/ D d.y; X/. The projection …X .y/ is
non-empty if X is closed, which is the case in our applications. The projection of
a subset A � Y to X is then …X .A/ WD

S

a2A …X .a/.

The path  in Y under consideration is always assumed to be rectifiable with
arc-length parametrization Œ0; j j� !  , where j j denotes the length of  . Denote
by �; C the initial and terminal points of  respectively. For any two parameters
a < b 2 Œ0; j j�, we denote by Œ.a/; .b/� WD .Œa; b�/ and ..a/; .b// WD
..a; b// the closed (resp. open) subpath of  between a and b. For any x; y 2 Y ,
we denote by Œx; y� a choice of geodesic in Y from x to y.

Given a property (P), a point z on  is called the entry point satisfying (P) if
jŒ�; z� j is minimal among the points z on  with the property (P). A point w on
 is called the exit point satisfying (P) if jŒw; C� j is minimal among the points
w on  with the property (P).

A path  is called a .�; c/-quasi-geodesic for � � 1; c � 0 if the following
holds

jˇj � � � d.ˇ�; ˇC/ C c

for any rectifiable subpath ˇ of ˛.

Let ˇ;  be two paths in Y . Denote by ˇ �  (or simply ˇ) the concatenated
path provided that ˇ� D C.

Let f; g be real-valued functions with domain understood in the context. Then
f �ci

g means that there is a constant a > 0 depending on parameters ci such
that f < ag. The symbols �ci

and �ci
are defined analogously. For simplicity,

we shall omit ci if they are universal constants.

We say a sequence ¹anº � R of numbers converges to a number � 2 R

exponentially fast, denoted by an

exp
�! �, if

j� � anj � c�n

for some constant � 2 .0; 1/ and a positive constant c > 0.

Remark. (1) It is clear that the (exponential) genericity is preserved by taking
any finite intersection and finite union. This fact shall be often used implicitly.

(2) If X is exponentially negligible, then ıX < ıG , in which case we call
X growth tight in [35]. Note that if G has purely exponential growth, then a
growth tight set is exponentially negligible. In this paper, the group actions under
consideration always have purely exponential growth, so we do not distinguish
these two notions.
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2.2. Contracting property. We fix a preferred class of quasi-geodesicsL, which
contains at least all geodesics in Y .

Definition 2.1 (contracting subset). A subset X � Y is called �-contracting
with respect to L if for any quasi-geodesic  2 L with d.; X/ � �, we have
k…X ./k � �. A collection of �-contracting subsets is referred to as a �-
contracting system (with respect to L).

We first note the following examples in various contexts.

Examples 2.2. Let � � 1; c � 0 be any fixed numbers.

(1) Quasi-geodesics and quasi-convex subsets are contracting with respect to the
set of all .�; c/-quasi-geodesics in hyperbolic spaces.

(2) Fully quasi-convex subgroups (and in particular, maximal parabolic sub-
groups) are contracting with respect to the set of all .�; c/-quasi-geodesics
in relatively hyperbolic groups (see [18, Proposition 8.2.4]).

(3) The subgroup generated by a hyperbolic element is contracting with re-
spect to the set of all .�; c/-quasi-geodesics in groups with non-trivial Floyd
boundary (see [35, Section 7]).

(4) Contracting segments in CAT.0/-spaces in the sense of Bestvina and Fuji-
wara are contracting with respect to the set of all geodesics (see [7, Corol-
lary 3.4]).

(5) The axis of any pseudo-Anosov element is contracting with respect to all
geodesics in Teichmüller spaces [23].

Convention 2.3. In view of the above examples, the preferred collection L in the
sequel will always be the set of all geodesics in Y .

The notion of a contracting subset is equivalent to the following one considered
by Minsky [23]. The proof given in [7, Corollary 3.4] for CAT.0/ spaces is valid
in the general case. In this paper, we will always work with the above definition
of the contracting property.

Lemma 2.4. A subset X is contracting in Y if and only if any open ball B missing
X has a uniformly bounded projection to X .

We collect some properties of contracting sets that will be used later on. The
proof is straightforward and is left to the interested reader.

Lemma 2.5. Let X be a contracting set.

(1) Quasi-convexity. X is �-quasi-convex for a function � WR�0 ! RC: given
r � 0, any geodesic with endpoints in Nr .X/ lies in the neighborhood
N�.r/.X/.
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(2) Finite neighborhood. Let Z be a set with finite Hausdorff distance to X .
Then Z is contracting.

(3) There exists a constant C > 0 such that for any geodesic segment  ,
ˇ

ˇk…X .¹�; Cº/k � k…X ./k
ˇ

ˇ � C: (1)

In most situations, we are interested in a contracting system X with �-bounded
intersection for a function �WR�0 ! R�0, i.e. the following holds

kNr .X/ \ Nr .X 0/k � �.r/ for all X ¤ X 0 2 X

for any r � 0. This property is, in fact, equivalent to a bounded projection property
of X: there exists a constant B > 0 such that

k…X .X 0/k � B

for any X ¤ X 0 2 X. See [35] for further discussions.
An infinite subgroup H < G is called contracting if for some (hence any

by [37, Proposition 2.4.2]) o 2 Y , the subset Ho is contracting in Y . In fact,
we usually deal with a contracting subgroup H with bounded intersection: the
collection of subsets

¹gH � oW g 2 Gº

is a contracting system with bounded intersection in Y . (In [35], a contracting
subgroup H with bounded intersection was called strongly contracting.)

An element h 2 G is called contracting if the subset hhio is contracting, and
the orbital map n 2 Z 7! hno 2 Y is a quasi-isometric embedding. The set of
contracting elements is preserved under conjugacy.

Let H be a contracting subgroup. We define a group E.H/ as follows:

E.H/ WD ¹g 2 GW there exists r > 0 such that gHo � Nr.Ho/; Ho � Nr .gHo/º:

For a contracting element h, we have the following result about E.h/ WD E.hhi/
(see [37, Lemma 2.11]).

Lemma 2.6. Assume that G acts properly on .Y; d/. For a contracting element
h, the following statements hold:

(1) E.h/D¹g 2 GW there exists n>0 such that ghng�1 Dhn or ghng�1 Dh�nº;

(2) ŒE.h/W hhi� < 1, and E.h/ is a contracting subgroup with bounded intersec-
tion.

The contracting subset Ax.h/ WD ¹f � oW f 2 E.h/º shall be referred to as the
axis of h. In the following discussion, we always fix a contracting element h, so
we denote A D Ax.h/ for simplicity.

The following lemma is elementary and well-known. We provide a proof for
completeness.
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Lemma 2.7. For any C > 0, let  be a geodesic whose interior does not meet
NC .A/. Then

dHaus.…NC .A/./; …A.// � C:

In particular, if C is a contracting constant of A, then k…NC .A/./k � 3C .

Proof. For any x … NC .A/, it is sufficient to prove

dHaus.…NC .A/.x/; …A.x// � C:

For any y 2 …A.x/, let z be the point of a geodesic Œx; y� such that d.y; z/ D C .
We claim that z 2 …NC .A/.x/. Indeed, for each z0 2 NC .A/, there exists
y0 2 A such that d.y0; z0/ � C . By the definition of y 2 …A.x/, we have
d.x; y/ � d.x; y0/ so

d.x; z0/ C d.z0; y0/ � d.x; y0/ � d.x; y/ D d.x; z/ C d.z; y/;

which implies d.x; z0/ � d.x; z/. Thus, …A.x/ � NC .…NC .A/.x//:

For any z 2 …NC .A/.x/, there exists y 2 A so that d.y; z/ � C . Now for any
y0 2 …A.x/, there exists z0 2 …NC .A/.x/ so that d.x; y0/ D d.x; z0/ C C by the
above discussion. Then

d.x; y/ � d.x; z/ C d.y; z/ � d.x; z/ C C D d.x; z0/ C C D d.x; y0/:

This implies y 2 …A.x/, and so …NC .A/.x/ � NC .…A.x//. �

Lemma 2.8. Let C > 0 be the contraction constant of A and ˛; ˇ be two geodesics
with the same initial endpoint. If x is the entry point of ˛ into NC .A/ and
ˇ \ N4C .x/ D ;, then ˇ \ NC .A/ D ;.

Proof. If ˇ \ NC .A/ ¤ ;, then let y 2 ˇ be the entry point of ˇ in NC .A/. We
have

d.x; y/ � C C k…A.Œ˛�; x�˛/k C k…A.Œˇ�; y�ˇ /k C C � 4C;

which proves the lemma. �

Since gNC .A/ D NC .gA/ for every g 2 G, the following lemma is a
consequence of Lemmas 2.6, 2.7, and 2.5.

Lemma 2.9. For any C � 0, the collection X D ¹gNC .A/W g 2 Gº is a 3C -con-
tracting system with bounded projection.
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2.3. Admissible path. Let X be a contracting system with the bounded intersec-
tion property. The following notion of an admissible path will be used to obtain a
quasi-geodesic path.

Definition 2.10 (admissible path). Given D; � � 0 and a functionRWR�0 ! R�0,
a path  is called .D; �/-admissible in Y , if  is a concatenation of geodesic
subpaths p0q1p1 : : : qnpn .n 2 N/, the two endpoints of pi lie in some Xi 2 X

for each i , and satisfies the following called Long Local and Bounded Projection
properties.

(LL1) Each pi for 1 � i < n has length bigger than D, and p0; pn could be
trivial.

(BP) For each Xi , we have max¹k…Xi
.qi/k; k…Xi

.qiC1/kº � � , where q0 WD �

and qnC1 WD C by convention.

(LL2) Either Xi ¤ XiC1 have R-bounded intersection or qiC1 has length bigger
than D.

Saturation. The collection of Xi 2 X indexed as above, denoted by X./, will
be referred to as contracting subsets for  . The union of all Xi 2 X./ is called
the saturation of  .

The set of endpoints of pi shall be referred to as the vertex set of  . We
call .pi /� and .pi /C the corresponding entry vertex and exit vertex of  in Xi .
(compare with entry and exit points in Section 2.1)

The basic fact is that a “long” admissible path is a quasi-geodesic.

Proposition 2.11 ([35, Corollary 3.2]). Let � be the contraction constant of X.
For any � > 0, there are constants D0 D D0.�; �/ > 0; ƒ D ƒ.�; �/ > 0 such
that given D > D0 any .D; �/-admissible path is a .ƒ; ƒ/-quasi-geodesic.

Remark. We note that the admissible path  in [35, Corollary 3.2] was originally
claimed to be a .ƒ; 0/-quasi-geodesic, i.e. a bi-Lipschitz path. This is certainly
wrong when the concatenated admissible path is not simple. However the quasi-
geodesicity does follow from Proposition 3.1 there, which says that the endpoints
of each pi stay uniformly close to the geodesic with same endpoints of  . We
thank the referee for bringing our attention to this mistake.

We refer the reader to [35, 37] for further discussions about admissible paths.

2.4. SCC actions and barrier-free elements. We recall the notion of a barrier-
free element from [37].
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Definition 2.12. Fix constants �; M > 0.

(1) Given � > 0 and g 2 G, we say that a geodesic  contains an .�; g/-barrier
if there exists an element z 2 G so that

max¹d.z � o; /; d.z � go; /º � �: (2)

If no such z 2 G exists so that (2) holds, then  is called .�; g/-barrier-free.

(2) An element f 2 G is .�; M; g/-barrier-free if there exists an .�; g/-barrier-
free geodesic between NM .o/ and NM .fo/.

We have chosen two parameters M1; M2 so that the definition of a statistically
convex-cocompact action 1.2 is flexible and easy to verify. It is enough to take
M1 D M2 D M in our use. Henceforth, we set OM WD OM;M for ease of notation.
When the SCC action contains a contracting element, the definition is independent
of the basepoint (see [37, Lemma 6.2]).

Given �; M >0 and any g 2G, let V�;M;g be the collection of all .�; M; g/-bar-
rier-free elements of G. The following results will be key in next sections.

Proposition 2.13 ([37, Theorem B, C]). If G admits a SCC action on a proper
geodesic space .Y; d/ with a contracting element, then

(1) G has purely exponential growth.

(2) Let M0 be the constant in the definition of SCC action, then for any M > M0,
there exists � D �.M/ > 0 such that V�;M;g is exponentially negligible for
any g 2 G.

It is easy to see from the proof of [37, Corollary 4.5] that the following
conclusion holds in a general proper action.

Proposition 2.14. Suppose that a group G acts properly on a proper geodesic
space .Y; d/ with a contracting element, then for any M > 0, there exists � D
�.M/ > 0, �0 D �0.M/ so that

C1
X

nD1

jV�;M;g \ A.n; �/j exp.�nıG/ < C1

for any g 2 G and � > �0.

2.5. The DOP condition. This subsection collects several useful consequences
of the Dal’bo-Otal-Peigné condition. For any 0 � n1 � n2, we consider the
following annulus-like set

A.Œn1; n2�; �/ WD ¹g 2 GW n1 � � � d.o; go/ � n2 C �º:
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Usually, we consider the .�; �/-annulus A.Œ�n; n�; �/ for � 2 Œ0; 1�. For simplic-
ity, we write A.Œ�n; n�/ if � D 0, and assume that �n are integers.

Observe that

X

g2OM1;M2

jgj exp.�ıG jgj/ ��

C1
X

nD1

njOM1;M2
\ A.n; �/j exp.�nıG/; (3)

for any � > 0. Indeed, this follows from the fact that any g 2 OM1;M2
is contained

in a uniform number of annular sets A.n; �/ where n � 1. Consequently,
X

g2OM1;M2

exp.�ıGjgj/ < 1: (4)

Thus, if G admits a SCC action on Y , then the action satisfies the DOP
condition. We remark that the formula (4) turns out to be true for any proper
action of G on .Y; d/ with a contracting element: the methods in [37] can be
invoked to prove (4). This generality is not used here and so the details are left to
the interested reader.

For any � > 0, let

OM .n; �/ WD OM \ A.n; �/ [ ¹1º; V�;h.n; �/ WD V�;h \ A.n; �/:

The following elementary lemma will be needed in the next section.

Lemma 2.15. Assume that the proper group action satisfies the DOP condition.
For any " 2 .0; 1/ and any � > 0, we have

(1) lim
n!1

X

"n�l�n

njOM .l; �/j exp.�lıG/ D 0

and

lim
n!1

X

"n�l�n

l1Cl2Cl3Dl
X

l1;l2;l3�0

jOM .l1; �/j � jV�;h.l2; �/j�(2)

jOM .l3; �/j � .l1 C 1/ exp.�nıG/ D 0:

When the action is SCC, the convergence is exponentially fast.

Proof. By definition of the DOP condition, we obtain

C1
X

nD0

njOM .n; �/j exp.�nıG/ < 1:

from the formulae (3) and (4). By the Cauchy criterion of series, we know

lim
n!1

X

"n�l�n

l jOM .l; �/j exp.�lıG/ D 0
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where the convergence is exponential fast when the action is SCC. The first
statement (1) thus follows from the following

X

"n�l�n

"njOM .l; �/j exp.�lıG/ �
X

"n�l�n

l jOM .l; �/j exp.�lıG/:

By Proposition 2.14,

C1
X

nD1

jV�;hm.n; �/j exp.�nıG/ < 1;

where the partial sum converges exponentially fast when the action is SCC. The
second statement then follows from the convergence of the Cauchy product of
three convergent series. The proof is finished. �

At last, we introduce a slightly more general notion of negligibility using
.�; �/-annuli. Fix a number � 2 .0; 1� and � > 0. We say that a set K � G

is negligible in the .�; �/-annuli if the following holds:

jK \ A.Œ�n; n�; �/j

jA.Œ�n; n�; �/j
�! 0 as n ! 1: (5)

If the convergence is exponentially fast, the set K is called exponentially negligible
in the .�; �/-annuli.

The following lemma clarifies its role in proving the genericity in the next
sections. It follows immediately from the purely exponential growth.

Lemma 2.16. Assume that the proper group action has purely exponential growth.
For any � 2 .0; 1/, we have jA.Œ�n; n�/j �� exp.ıGn/ and

jA.Œ�n; n�/ � A.Œ�n; n�/j

jBn � Bnj

exp
�! 1;

jA.Œ�n; n�/j

jBnj

exp
�! 1:

Hence, in order to prove that a set K is (exponentially) negligible in G, we
can assume that K � A.Œ�n; n�; �/ for a certain choice of � 2 .0; 1/ to simplify
the discussion. That is to say, we only need to prove that K is (exponentially)
negligible in .�; �/-annulus. And, it turns out that the proof of (5) for � D 1 is
much simpler than that for � 2 .0; 1/. Therefore, we shall consider the big annulus
instead of the usual one in next sections.

The same consideration applies to the case of G.2/ where K can be assumed
to lie in A.Œ�n; n�/ � A.Œ�n; n�/.



120 S. Han and W.-Y. Yang

3. Negligible subsets

Throughout this section, let G admit a proper action on a proper geodesic metric
space .Y; d/ with a contracting element. If the group action satisfies the DOP
condition, then we take �; M; � > 0 to satisfy the definition of the DOP condition
and Proposition 2.14. When the action is SCC, the constants �; M > 0 are given
by Proposition 2.13. We denote OM D OM;M ;V�;h D V�;M;h for simplicity.

The goal of this section is to provide some negligible sets under the above
assumptions. Moreover, these are exponentially negligible when the group action
is SCC. We suggest that the reader only reads the definition of these sets first and
then reads the proof of the theorems in the next section, finally returns to the proof
that these sets are negligible.

In all results obtained in what follows, we assume in the DOP case, which have
already held in the SCC case by Proposition 2.13, that G has purely exponential
growth:

jBnj � exp.ıGn/ �� jA.n; �/j

for any � � 0. We fix such a constant �. This estimate will be used implicitly
several times.

3.1. Elements with definite barrier-free proportion. This subsection defines
three negligible subsets of elements with definite proportion with(out) certain
properties.

For any " 2 .0; 1/, let U."/ be the set of elements u 2 G such that some
geodesic ˛ D Œo; uo� contains a (connected) subsegment ˛" of length "juj outside
NM .Go/. That is to say,

U."/ D ¹u 2 GW there exist ˛ D Œo; uo�; ˛" � ˛ such that

j˛"j � "j˛j; ˛" \ NM .Go/ D ;:º
(6)

Lemma 3.1. If the action has PEG and satisfies the DOP condition, then for any
" 2 .0; 1/ and � 2 ."; 1�, we have that U."/ is negligible in .�; �/-annuli for
� � 2M .

Moreover, if the action is SCC, then U."/ is exponentially negligible.

Proof. Assume first that the group action satisfies the PEG and DOP condition.
Fix any 1 � � > ". By Lemma 2.16, we only need to show that

jU."/ \ A.Œ�n; n�/j

jA.Œ�n; n�/j
�! 0 as n ! 1.

Consider any g 2 U."/ \ A.Œ�n; n�/ and denote jgj D k, then �n � k � n. By
definition of U."/, there exists a geodesic ˛ D Œo; go� such that

˛ contains a subsegment of length "k which lies outside NM .Go/: (7)
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Among those, we consider the first maximal open segment .x; y/˛ of ˛ which lies
outside NM .Go/ and whose length is bigger than "k 2 Œ"�n; n�.

According to the length and the position of .x; y/˛ , we subdivide the intersec-
tion U."/ \ A.Œ�n; n�/ into a sequence of subsets as follows.

For 0 � i � .1 � "/n; "�n � l � n, define U l
i to be the set of element

g 2 U."/\A.Œ�n; n�/ such that the segment .x; y/˛ � ˛ defined as above satisfies
d.o; x/ D i and d.x; y/ D l . Then we have the following decomposition,

U."/ \ A.Œ�n; n�/ D
[

0�i�.1�"/n

"�n�l�n

U l
i :

For any g 2 U l
i , there exists a geodesic ˛ D Œo; go� such that ˛.i;iCl/ lies

outside NM .Go/ and max¹d.˛.i/; uo/; d.˛.i C l/; vo/º � M for some u; v 2 G.
Now we can write g D u.u�1v/.v�1g/, where

u 2 A.i; M/; u�1v 2 OM .l; 2M/;

v�1g 2 A.Œ�n � l � i; n � l � i �; M/ � Bn�l�iCM :

We assumed that G has purely exponential growth, so

jA.n; �/j �� exp.ıGn/ � jBnj:

We thus obtain

jU."/ \ A.Œ�n; n�/j �
X

0�i�.1�"/n

"�n�l�n

jU l
i j

�
X

0�i�.1�"/n

"�n�l�n

jA.i; �/j � jO.l; �/j � jBn�l�iC�j

��

X

0�i�.1�"/n

"�n�l�n

exp.iıG/ � jOM .l; �/j � exp..n � l � i/ıG/

��

X

"�n�l�n

njOM .l; �/j exp..n � l/ıG/:

Therefore, the negligibility of U."/ follows from Lemma 2.15.
If the group action is SCC, then there exists 0 < ıO < ıG such that

jOM .l; �/j �� exp.lıO/. The above computation goes through without changes,
and so we get

jU."/ \ A.Œ�n; n�/j ��

X

"�n�l�n

njOM .l; �/j exp..n � l/ıG/

��

X

"�n�l�n

n exp.lıOM
/ � exp..n � l/ıG/

�� n2 exp.�.ıG � ıO/"�n/ exp.nıG/:

Hence, in this case, U."/ is exponentially negligible. �
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Let h 2 G be a contracting element with the axis Ax.h/ D E.h/ � o, where
E.h/ is the maximal elementary subgroup given in Lemma 2.6.

Given " 2 .0; 1/ and C > 0, consider the following set of elements g 2 G such
that an "-percentage ˛" of ˛ D Œo; go� is contained in some translate of Ax.h/:

W."; h; C / D ¹g 2 GW there exists ˛ D Œo; go�; ˛" � ˛ \ NC .f Ax.h// such that

j˛"j � "j˛j for some f 2 Gº:

(8)

Lemma 3.2. Assume that the action has PEG. For any " 2 .0; 1/, � 2 ."; 1� and
C > 0, we have that W."; h; C / is exponentially negligible in .�; �/-annuli in G

for � > 0.

Proof. Since h 2 G is contracting, and by definition, i 7! hio is a quasi-isometric
embedding, we have jhhi \ Bnj � n. By Lemma 2.6, we have ŒE.h/W hhi� < 1,
so the following holds

jE.h/ \ Bnj � n:

As before, by Lemma 2.16, we want to show

lim
n!1

jW."; h; C / \ A.Œ�n; n�/j

jA.Œ�n; n�/j
D 0:

Let g 2 W."; h; C /\ A.Œ�n; n�/, so �n � j � n, where j WD jgj. By definition of
W."; h; C /, there exists ˛ D Œo; go�, i 2 Œ0; .1 � "/j � and f 2 G; k 2 E.h/ such
that

d.˛.i/; fo/ � C; d.˛.i C "j /; f ko/ � C:

Thus, we have f 2 A.i; C / and d.o; ko/ � "j C 2C � "n C 2C , which yields
that k 2 E.h/ \ B"nC2C . Consequently, we can write g D f k..f k/�1g/ where
.f k/�1g 2 Bn�i�"�nCC . This gives the following:

W."; h; C / \ A.Œ�n; n�/ �

.1�"/n
[

iD0

A.i; C / � .E.h/ \ B"nC2C / � Bn�i�"�nCC :

Since G has purely exponential growth, we have the following estimate:

jW."; h; C / \ A.Œ�n; n�/j �

.1�"/n
X

iD0

jA.i; C /j � jE.h/ \ B"nC2C j � jBn�i�"�nCC j

� n � n � exp..1 � "�/nıG/

which concludes the proof of the result. �
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We now introduce the third negligible sets of elements whose certain percent-
age is barrier-free. To be precise, we need a bit more notation. Let ˛ be a geodesic
and "1 � "2 2 Œ0; 1�. We denote by ˛Œ"1;"2� the subsegment ˛.Œ"1n; "2n�/ of ˛,
where n D j˛j.

Given 0 < "1 < "2 < 1 and h 2 G, we define

V."1; "2; h/ D ¹g 2 GW there exists ˛ D Œo; go� such that

˛Œ"1;"2� is .�; h/-barrier-freeº:
(9)

Lemma 3.3. Fix � 2 .0; 1�, and choose any two numbers "1 < "2 2 .0; �/

so that "2� 2 ."1; "2/. Let h be any element. If our group action satisfies the
DOP condition and PEG, then V."1; "2; h/ is negligible in .�; �/-annuli in G for
� � 2M .

Moreover, if the action is SCC, then V."1; "2; h/ is exponentially negligible
in G.

Proof. By Lemma 2.16, it suffices to prove that

jV."1; "2; h/ \ A.Œ�n; n�/j

jA.Œ�n; n�/j
�! 0 as n ! 1.

Let g 2 V."1; "2; h/ \ A.Œ�n; n�/ and denote jgj D k, so �n � k � n. By
definition of V."1; "2; h/, there exists a geodesic ˛ D Œo; go�, so that ˛.Œ"1k; "2k�/

is .�; h/-barrier-free. Set x D ˛."1n/; y D ˛."2�n/. By the choice of "2� 2
."1; "2/, we see that Œx; y�˛ D ˛.Œ"1n; "2�n�/ is a subsegment of ˛.Œ"1k; "2k�/,
and thus is .�; h/-barrier-free.

We now subdivide our discussion into three cases, the first two of which could
be viewed as degenerate cases of the third one. However, we treat them separately
in order to illustrate the idea of the latter one.

Case 1. Assume that x; y 2 NM .Go/ so there exists u; v 2 G such that

d.x; uo/ � M; d.y; vo/ � M:

Thus, Œx; y�˛ is a .�; h/-barrier-free geodesic between NM .uo/ and NM .vo/. So
u�1v 2 V�;h.

Denote " D "2��"1 > 0. Since d.x; y/ D "n and jd.uo; vo/�d.x; y/j � 2M ,
we have

u�1v 2 V�;h."n; 2M/:

Clearly,
u 2 A."1n; M/; v�1g 2 A.k � "2�n; M/:

Therefore, for � � 2M , we obtain that g D u.u�1v/.v�1g/ lies the following set

A."1n; �/ � V�;h."n; �/ � A.k � "2�n; �/: (10)
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Case 2. Assume that one of ¹x; yº lies outside NM .Go/. Let’s assume first that
x 2 NM .Go/; y … NM .Go/, so there exists u 2 G such that d.x; uo/ � M .
Consider the maximal open segment .y1; y2/ of ˛ which contains y but lies outside
NM .Go/. Hence, there exists v1; v2 2 G such that d.yi ; vio/ � M for i D 1; 2.
By definition, v�1

1 v2 2 OM .
Set s D d.o; y1/ 2 Œ"1n; "2�n�; t D d.o; y2/ 2 Œ"2�n; k�, where n � k � �n.

Thus, d.y1; y2/ D t � s, and jd.v1o; v2o/ � .t � s/j � 2M � �. This means that

v�1
1 v2 2 OM .t � s; �/:

Similarly as above,

u�1v1 2 V�;h.s � "1n; �/; v�1
2 g 2 A.k � t; �/:

Consequently, the element g D u.u�1v1/.v�1
1 v2/.v�1

2 g/ lies in the following
set

A."1n; �/ � V�;h.s � "1n; �/ � OM .t � s; �/ � A.k � t; �/ (11)

where s 2 Œ"1n; "2�n� and t 2 Œ"2�n; k�.
Similarly, when x … NM .Go/ and y 2 NM .Go/, we obtain

g 2 A.i; �/ � OM .j � i; �/ � V�;h."2�n � j; �/ � A.k � "2�n; �/;

where i 2 Œ0; "1n�; j 2 Œ"1n; "2�n�.

Case 3. We now consider the general case that x; y … NM .Go/. Recall that
" D "2��"1. By Lemma 3.1, the set U."/ is negligible. Without loss of generality,
we can assume that g … U."/. This implies that Œx; y�˛ \ NM .Go/ ¤ ;. Indeed,
if not, then the geodesic segment Œx; y�˛ lies outside NM .Go/. Since Œx; y�˛ is
a subsegment of ˛ D Œo; uo� of length ."2� � "1/n outside NM .Go/, we obtain
g 2 U."2� � "1/, that is a contradiction.

Hence, consider the maximal open segments .x1; x2/˛; .y1; y2/˛ of ˛ outside
NM .Go/ which contain x; y respectively. Since Œx; y�˛ \NM .Go/ ¤ ;, these two
intervals are disjoint.

Denote i D d.o; x1/; j D d.o; x2/ and s D d.o; y1/; t D d.o; y2/. Then
i 2 Œ0; "1n�; j < s 2 Œ"1n; "2�n�; t 2 Œ"2�n; k�, where k 2 Œ�n; n�. By the same
reasoning as in the previous two cases, we have

g 2 A.i; �/ � OM .j � i; �/ � V�;h.s � j; �/ � OM .t � s; �/ � A.k � t; �/ (12)

for each g 2 V."1; "2/ \ A.Œ�n; n�/ with jgj D k.
Note that "2� 2 ."1; "2/ and k 2 Œ�n; n�. We look at the index set

ƒ D ¹.i; j; s; t / 2 N
4W 0 � i � "1n � j � s � "2�n � t � nº;
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over which we define

V.i;j /;.s;t/ WD A.i; �/ � OM .j � i; �/ � V�;h.s � j; �/ � OM .t � s; �/ � Bn�tC�:

Combining (10), (11), and (12), we have the decomposition

V."1; "2; h/ \ A.Œ�n; n�/ �
[

.i;j;s;t/2ƒ

V.i;j /;.s;t/; (13)

up to a negligible set U."/.

To conclude the proof, it remains to show that the right-hand set in (13)
is negligible. For that purpose, we consider a triple of lengths .l1; l2; l3/ with
l1 C l2 C l3 D l 2 Œ"n; n�. We observe that there are at most .l1 C 1/ indexes
.i; j; s; t / 2 ƒ satisfying j � i D l1; s � j D l2; t � s D l3. In fact, we can choose
some i 2 Œ0; "1n� first, and once i is fixed, then j; s; t are all determined by the
triple .l1; l2; l3/. However, the choice of i can only change from "1n � l1 to "1n,
so we have at most l1 C 1 many .i; j; s; t / 2 ƒ falling in the same triple .l1; l2; l3/.

For each V.i;j /;.s;t/ with j �i D l1; s�j D l2; t �s D l3, we have the following
estimate:

jV.i;j /;.s;t/j � jA.i; �/j � jOM .j � i; �/j � jV�;h.s � j; �/j

� jOM .t � s; �/j � jBn�tC�j

� exp.iıG/ � jOM .l1; �/j � jV�;h.l2; �/j

� jOM .l3; �/j � exp..n � l1 � l2 � l3 � i/ıG/

� exp.nıG/ � jOM .l1; �/j � jV�;h.l2; �/j

� jOM .l3; �/j exp..�l1 � l2 � l3/ıG/;

where we used jBn�tC�j � exp..n� t /ıG/ since the action has purely exponential
growth.

Since the indexes .i; j; s; t / 2 ƒ can be grouped according to the triple
.l1; l2; l3/, we obtain

P

.i;j;s;t/2ƒ jV.i;j /;.s;t/j

exp.nıG/

�

l1Cl2Cl3Dl
X

"n�l�n

.l1 C 1/jO.l1; �/j � jV�;h.l2; �/j � jO.l3; �/j exp..�l1 � l2 � l3/ıG/:

This tends 0 as n ! 1 by Lemma 2.15(2). We conclude that the intersection
V."1; "2; h/\A.Œ�n; n�/ is negligible. When the action is SCC, the above inequal-
ity tends to 0 exponentially fast. The proof of the result is complete. �
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3.2. Negligible pairs of elements. The goal of Theorem 1.4 is to show a random
pair .u1; u2/ 2 G.2/ generates a free group of rank 2. We now define two negligible
sets of 2-tuples .u1; u2/ 2 G.2/ with big cancellation which shall prevent them to
be being free bases.

For any u 2 G, let ˛ D Œo; uo� be any geodesic with length parametrization
˛.t/. Define D N̨ D Œo; u�1o� to be the geodesic with parametrization

N̨ .t / WD u�1˛.juj � t /:

Given 0 < "1 < "2 < 1 and C > 0, let Z."1; "2; C / be the set of u 2 G such
that for some ˛ D Œo; uo�, one of the following two statements holds:

(1) N̨ intersects the C -neighborhood of the subsegment ˛Œ"1;"2� of ˛;

(2) ˛ intersects the C -neighborhood of the subsegment N̨ Œ"1;"2� of N̨

(where ˛Œ"1;"2� denotes the subsegment ˛.Œ"1n; "2n�/ of ˛ for n D j˛j).
In other words,

Z."1; "2; C / D ¹u 2 GW there exists ˛ D Œo; uo� such that

N̨ \ NC .˛Œ"1;"2�/ ¤ ; or ˛ \ NC . N̨ Œ"1;"2�/ ¤ ;º:
(14)

Lemma 3.4 (big cancellation I). Let 0 < "1 < "2 � 1 � "1 < � < 1 and C > 0. If
our group action satisfies the DOP condition and purely exponential growth, then
Z."1; "2; C / is negligible in .�; �/-annuli in G, where � � C C 2M .

Moreover, if the action is SCC, then Z."1; "2; C / is exponentially negligible
in G.

Proof. For any u 2 Z."1; "2; C / \ A.Œ�n; n�/ n U
�

"1

8

�

, there exists ˛ D Œo; uo�

satisfying the condition in the definition of Z."1; "2; C /. Denote j D juj and then
�n � j � n.

Without loss of generality, assume that N̨ \ NC .˛Œ"1;"2�/ ¤ ;. By definition,
there exists "1j � i � "2j , so that N̨ \ NC .˛.i// ¤ ;. Thus, there exists
s 2 Œi � C; i C C � such that

d. N̨ .s/; ˛.i// � C:

Set x D ˛.i/; y D N̨ .s/ D u�1˛.j � s/. Thus, d.x; y/ � C .
We follow a similar analysis as in the proof of Lemma 3.3.

Case 1. Assume that x; y 2 NM .Go/, so there exist v; w 2 G such that

d.x; vo/ � M; d.y; wo/ � M:

This implies d.vo; wo/ � d.x; y/ C 2M � 2M C C , so v�1w 2 B2M CC .
Since N̨ .0/ D o and s 2 Œi � C; i C C �, we have d.o; y/ D s and then
jd.o; wo/ � sj � M C C . Thus,

v 2 A.i; M/; w 2 A.i; M C C /:
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We can now write u D v.v�1uw/.w�1v/v�1, where

d.uwo; vo/ � d.o; uy/ � d.o; x/ C 2M

� d.o; ˛.j � s// � d.o; ˛.i// C 2M

� j � s � i C 2M � j � 2i C C

which implies v�1uw 2 A.j � 2i; 2M C C /.
Noting that v 2 A.i; M/, the set of elements u in this case belongs to the

following set

A.i; M/ � A.j � 2i; 2M C C / � B2M CC � A.i; M/:

Case 2. Assume that one of ¹x; yº lies outside NM .Go/. For definiteness,
assume that x 2 NM .Go/; y … NM .Go/; the other case is symmetric. Then
there exists v 2 G such that d.x; vo/ � M . Consider the maximal open segment
.y1; y2/ of N̨ which contains y but lies outside NM .Go/. Hence, there exists w 2 G

such that d.y1; wo/ � M .
Since u … U

�

"1

8

�

is assumed and then u�1 … U
�

"1

8

�

by definition, we obtain
that d.y1; y2/ < "1

8
j . Thus we have d.y1; y/ � d.y1; y2/ < "1

8
j . This yields

d.vo; wo/ � d.vo; x/ C d.x; y/ C d.y; y1/ C d.y1; wo/ �
"1

8
j C 2M C C:

Hence, we can also write u D v.v�1uw/.w�1v/v�1, where

v 2 A.i; M/; v�1w 2 B "1
8

j C2M CC
; v�1uw 2 B

j �2iC
"1
8

j C2M CC
:

Case 3. Assume x; y … NM .Go/. Consider the maximal open segment .x1; x2/˛

(resp. .y1; y2/˛) of ˛ (resp. N̨ ) which contains x (resp. y) but lies outside NM .Go/.
Then there exist v; w 2 G such that d.x1; vo/ � M; d.y1; wo/ � M . By a similar
argument as above we have the following conclusion: we can write

u D v.v�1uw/.w�1v/v�1;

where

v 2 BiCM CC ; v�1w 2 B "1
4

j C2M CC
; v�1uw 2 B

j �2iC
"1
4

j C2M CC
:

Summarizing the above three cases, we have
ˇ

ˇ

ˇZ."1; "2; C / \ A.Œ�n; n�/ n U
�"1

8

�ˇ

ˇ

ˇ

� 2

n
X

j D�n

"2j
X

iD"1j

jBiC�j � jB
j �2iC

"1
4

j C�
j � jB "1

4
j C�

j

� .1 � �/n � ."2 � "1/n � exp
��

1 �
"1

2

�

nıG

�
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where the last inequality used

jBiC�j � jB
j �2iC

"1
4

j C�
j � jB "1

4
j C�

j � exp
�

ıG

�

j C
"1

2
j � i

��

which follows from the purely exponential growth.

This shows that Z."1; "2; C /\A.Œ�n; n�/nU
�

"1

8

�

is negligible. By Lemma 3.1,

U
�

"1

8

�

is negligible, thus the conclusion follows. �

Fix 0 < "1 < "2 < � < 1 and C > 0. Let T ."1; "2; C / be the set of .u1; u2/ 2
G � G with the following property: there exist two geodesics ˛ WD Œo; u1o�; ˇ WD
Œo; u2o� such that neither of them is disjoint from the C -neighborhood of the
Œ"1; "2�-interval of the other. In other words,

T ."1; "2; C / D ¹.u1; u2/ 2 G � GW

there exists ˛ WD Œo; u1o�; ˇ WD Œo; u2o� such that

˛ \ NC .ˇŒ"1;"2�/ ¤ ; or ˇ \ NC .˛Œ"1;"2�/ ¤ ;º

(15)

where ˛Œ"1;"2� denotes the subsegment ˛.Œ"1n; "2n�/ of ˛ for n D j˛j.

Lemma 3.5 (big cancellation II). For any 0 < "1 < "2 � 1 � "1 < � < 1 and
C > 0, if our group action satisfies the DOP condition and PEG condition, then
T ."1; "2; C / is negligible in .�; �/-annuli in G � G, where � � C C 2M .

Moreover, if the action is SCC, then T ."1; "2; C / is exponentially negligible in
G � G.

Proof. Since the union of two (exponentially) negligible sets is (exponentially)
negligible, without loss of generality, we can assume that for all .u1; u2/ 2
T ."1; "2; C /, we have

ˇ \ NC .˛Œ"1;"2�/ ¤ ;:

Choose 1 � "1 < � < 1. By Lemma 2.16, we can assume further that .u1; u2/

belongs to T ."1; "2; C / \ .A.Œ�n; n�/ � A.Œ�n; n�//.

Denote n1 D ju1j. By definition of T ."1; "2; C /, there exists i 2 Œ"1n1; "2n1�

so that ˇ \ NC .˛.i// ¤ ;. Denote x D ˛.i/. We proceed by a similar argument
as before.

Case 1. Assume that x 2 NM .Go/ so there exists v 2 G such that d.x; vo/ � M .
Thus, v 2 A.i; M/. Then .u1; u2/ can be written as .v.v�1u1/; v.v�1u2//, where

v�1u1 2 A.n1 � i; M/; v�1u2 2 A.n2 � i; C C M/:
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Note that n1 2 Œ�n; n�. In this case, we bound by above the number of elements
.u1; u2/ as follows:

�
X

�n�n1�n

"1n1�i�"2n1

jA.i; �/j � jA.n1 � i; �/j � jA.Œ�n � i; n � i �; �/j

� n exp..2 � "1/ıGn/ D o.exp.2ıGn//;

so these pairs .u1; u2/ 2 T ."1; "2; C / are exponentially negligible.

Case 2. Otherwise, consider the maximal open segment .x1; x2/˛ of ˛, which
contains x but lies outside NM .Go/. Denote j WD d.o; x1/; l WD d.o; x2/. Thus
0 � j � i and i < l � n1.

Subcase 2.1 l � j � "1

2
n1, then u1 2 U

�

"1

2

�

. Since U
�

"1

2

�

is negligible in G by

Lemma 3.1, we have that U
�

"1

2

�

� G is negligible as well in G � G.

Subcase 2.2 l � j < "1

2
n1. As before, there exist v1; v2 2 G such that

d.x1; v1o/ � M; d.x2; v2o/ � M . Thus, v1 2 A.j; M/.
Then .u1; u2/ can be written as

.v1.v�1
1 v2/.v�1

2 u1/; v1.v�1
1 v2/.v�1

2 u2//;

where

v�1
1 v2 2 A.l � j; 2M/; v�1

2 u1 2 A.n1 � l; M/;

v�1
2 u2 2 A..n2 � i/ C .l � i/; C C M/

We consider the index set

ƒ D
°

.n1; i; j; l/ 2 Z
4W �n � n1 � n; "1n1 � i � "2n1;

0 � j � i � l � j C
"1

2
n1

±

:

Hence, we have the upper bound on pairs .u1; u2/ of the second case as follows

�
X

.n1;i;j;l/2ƒ

jA.j; �/j � jA.l � j; �/j � jA.n1 � l; �/j

� jA.Œ�n C l � 2i; n C l � 2i�; �/j

�
X

.n1;i;j;l/2ƒ

exp..n C n1 C l � 2i/ıG/

� n4 exp
��

2 �
"1

2

�

nıG

�

D o.exp.2ıGn//:

Therefore, in this case, we have proved the negligibility of T ."1; "2; C /. The proof
is complete. �
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4. The proof of the theorems

This section is devoted to the proof of the theorems of this paper.

4.1. Generically free subgroups. Let ƒ > 0 and k � 2. Denote by F.k/ the set
of k-tuples

¹u1; : : : ; ukº 2 G.k/

such that

(1) hu1; u2; : : : ; uki is a free subgroup of rank k consisting of contracting ele-
ments except the identity;

(2) the orbital map W 2 hu1; u2; : : : ; uki 7! Wo 2 Y is a .ƒ; ƒ/-quasi-isometric
embedding with contracting image.

Let F.u1; : : : ; uk/ be the free group generated by the k-tuples ¹u1; : : : ; ukº. In
order to prove that F.k/ is generic in G.k/, the idea is to construct a generic subset
E � G.k/, such that for any Eu D .u1; : : : ; uk/ 2 E and any nontrivial freely
reduced word W 2 F.u1; : : : ; uk/, we can construct an admissible path from o to
Wo that satisfies the conditions of Proposition 2.11 and thus the path is a quasi-
geodesic by the same proposition. This then concludes the proof of Theorem 1.4.

To be clear, we fix some notations and constants at the beginning (the reader
is encouraged to read the proof first and return here until the constant appears).

Setup (1) If the group action satisfies the DOP and PEG conditions, then con-
stants �; M; � > 0 are given by definition of DOP condition and Proposition 2.14.
Moreover if the group action is SCC, then �; M > 0 are given by Proposition 2.13.

(2) We fix a contracting element h so that by Lemma 2.9, the system X D
¹gAx.h/W g 2 Gº is C -contracting for a constant C > 0. Assume that C satisfies
Lemma 2.5 as well.

(3) By taking the maximum, we can assume C > � and � � 2M C C .

(4) Let D D D.3C; 9C / > 16C be the constant given by Proposition 2.11 for
.D; 9C /-admissible paths.

(5) Take m > 0 so that jhmj > DC2�. This can be done since h is a contracting
element, so that we have that n 2 Z 7! hn 2 G is a quasi-isometric embedding of
Z ! G.

We refer the reader to the definitions of the set V.2"; 1 � 2"; hm/ in (9), the set
W."; h; C / in (8), the set Z."; 1 � "; C / in (14) and the set T ."; 1 � "; C / in (15).

Lemma 4.1. Fix � 2 .8
9
; 1/ and " 2

�

1 � �; 1
4

�

. The subset E of all Eu D

.u1; : : : ; uk/ 2 G.k/ satisfying the following conditions is generic in .�; �/-annuli.
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(1) jui j � �jEuj for 1 � i � k.

(2) u˙1
i … V.2"; 1 � 2"; hm/ [ W."; h; �.C // [ Z."; 1 � "; 4C / for 1 � i � k,

where �.�/ is the quasiconvexity function given by Lemma 2.5.

(3) .u˙1
i ; u˙1

j / … T ."; 1 � "; 4C / for i ¤ j 2 ¹1; 2; : : : ; kº.

When the action is SCC, the set E is exponentially generic.

Proof. It suffices to show that the set of Eu 2 G.k/ in each statement as above is
generic. It is clear that our choice of �; " satisfy all the condition of the lemmas
in Section 3. Hence assertion (1) is given by Lemma 2.16. Assertion (2) is a
consequence of Lemmas 3.3, 3.2, and 3.4 together. Assertion (3) follows from
Lemma 3.5 by taking a finite intersection of (exponential) generic sets. �

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. For notational simplicity, we give the proof for k D 2. Let
E be the subset of G.2/ provided by Lemma 4.1. It suffices to show that E in
contained in F.2/.

First of all, for each .u1; u2/ 2 E \ A.Œ�N; N �/, we shall prove that hu1; u2i
generates a free group of rank 2. Namely, let W be a non-trivial reduced word
in F.u1; u2/. The goal is to prove that the evaluation of the word W in G

gives a non-trivial contracting element. Write W D x1x2 : : : xi : : : xn where
xi 2 ¹u1; u2; u�1

1 ; u�1
2 º:

We choose a geodesic p D Œo; u1o�, and denote by Np WD Œo; u�1
1 o� the u�1

1 -
translate of p with reverse orientation (as in Section 3.2). Similarly, we define
q D Œo; u2o� and its reverse Nq WD Œo; u�1

2 o�.

For the word W , define a path  to be a concatenation of geodesic segments
i for 1 � i � n as follows:

 D 1 � 2 � � � � n;

where i is the x1 : : : xi�1-translate of one of p; q; Np or Nq depending on xi .

We now describe a procedure to truncate  to get an admissible path. See
Figure 1.

By the definition of the set V.2"; 1 � 2"; hm/ in (9), for u1 … V.2"; 1 � 2"; hm/,
we have that the geodesic p contains a .�; hm/-barrier in pŒ2";.1�2"/�. Then there
exists P 2 X such that p \ N�.P / � p \ NC .P / is of diameter at least
d.o; hmo/ � 2�, where the assumption � < C is used. On the other hand,
since u1 … W."; h; �.C // defined in (8), the diameter of p \ N�.C/.P / is at

most "ju1j � "`.p/, and so p \ NC .P / is contained in pŒ";.1�"/�. Similarly, for
u2 … V.2"; 1�2"; hm/, we find Q 2 X so that q\NC .Q/ � qŒ";.1�"/� has diameter
at least d.o; hmo/ � 2�.
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Recall that i is a translate of one of p; q; Np; Nq by x1 : : : xi�1. We thus have a
sequence of contracting subsets Xi which are corresponding translates of either
NC .P / or NC .Q/. Let yi ; zi be the corresponding entry and exit points of i \Xi

for each 1 � i � n. Thus, by the above discussion, we have yi ; zi 2 
Œ";.1�"/�
i and

d.yi ; zi/ � jhmj � 2�:

We now truncate the subpath Œzi�1; .i /���Œ.i/�; yi � from  for each 1 � i � j

and replace it with a geodesic Œzi�1; yi �. The resulting path ˇ with same endpoints
with  is given as follows

ˇ D Œ1; y1�1
� Œy1; z1�1

� Œz1; y2� � � � � � Œzn�1; yn� � Œyn; zn�n
� Œzn; ��n

:

By Lemma 2.5, the subsegment Œyi ; zi �i
is contained in N�.C/.Xi /. By

Lemma 2.9, the system QX D ¹gNC .Ax.h//W g 2 Gº is a 3C -contracting system
with bounded projection. In the following lemma, we shall consider the admissible
path ˇ associated with Xi 2 QX.

Lemma 4.2. There exists K D K.N; D; C / > 0 such that the path ˇ is a .D; 9C /-
admissible path which is K-contracting.

By construction, the truncated path ˇ has a Hausdorff distance at most N to  .
By Lemma 2.5,  is also contracting.

Proof of Lemma 4.2. First of all, yi ; zi 2 Xi and d.yi ; zi/ � jhmj � 2� � D by
the choice of a high power hm, thus the condition (LL1) is satisfied.

Recall that W is a reduced word over ¹u1; u2; u�1
1 ; u�1

2 º, so the pair of any two
adjacent letters .xj ; xj C1/ does not belong to Z."; 1 � "; 4C / and T ."; 1 � "; 4C /.

By their definitions (14) (15), since yi ; zi 2 
Œ";.1�"/�
i , we obtain that both i�1

and iC1 are disjoint with the 4C -neighborhood of Œyi ; zi �i
. By Lemma 2.8, i�1

and iC1 are disjoint from Xi , so by Lemma 2.7,

max¹k…Xi
.i�1/k; k…Xi

.iC1/kº � 3C: (16)

Consequently, for any 1 < i � n, we have

k…Xi
.Œzi ; yiC1�/k

(1)
� k…Xi

.¹zi ; yiC1º/k C C

� k…Xi
.¹zi ;  i

Cº/k C k…Xi
.¹.i/C; yiC1º/k C C

(1)
� k…Xi

.Œzi ; .i/C�i
/k C k…Xi

.iC1/k C 3C

(16)
� 6C C 3C � 9C:

For any 1 � i < n, a similar estimate as above shows

k…Xi
.Œzi�1; yi �/k � 9C;
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and k…X1
.Œ1; y1�1

/k � 9C; k…Xn
.Œzn; z�n

/k � 9C . Thus the condition (BP) is
satisfied.

Since iC1 is disjoint from Xi , we have Xi ¤ XiC1 for all 1 � i < n. Then
all conditions in Definition 2.10 of admissible paths are verified. Thus, ˇ is a
.D; 9C /-admissible path.

Finally, let us note that ˇ is contracting. By [37, Proposition 2.9], if the
geodesics qi in Definition 2.10 are all bounded above (resp. blow) by a constant
L > 0 (resp. l > 0), then under the assumption of Proposition 2.11, the corre-
sponding .D; �/-admissible path is K-contracting for some K > 0 depending on
L; l; D; � . Since 4C DW l < d.yi ; ziC1/ < L WD 2N for each i , there exists
K D K.N; D; C / > 0 such that ˇ is K-contracting. 4

By Proposition 2.11, we know that ˇ is a .ƒ0; ƒ0/-quasi-geodesic for some
uniform ƒ0 > 1 depending only on D and C . Noting that u1; u2 2 A.Œ�N; N �/, we
have �N � ju1j; ju2j � N . Since `.ˇ/ � nD, we obtain from the .ƒ0; ƒ0/-quasi-
geodesicity of ˇ that

D

ƒ0

jW j � ƒ0 �
D

ƒ0

n � ƒ0 � d.o; Wo/ � n max¹ju1j; ju2jº � N jW j:

This holds for each nontrivial reduced word W , so H D hu1; u2i is a free group
of rank 2.

Set ƒ WD max
®

N; D
ƒ0

; ƒ0

¯

, which equals N for N � 0. If the subgroup H

is equipped with the word metric coming from the free basis ¹u1; u2º, then the
orbital map W 2 H 7! Wo 2 Y is a .ƒ; ƒ/-quasi-isometric embedding.

Note that H is a free group and so the image Ho has a quasi-geodesic tree
structure: any two points can be connected by a piecewise geodesic  labeled by
a reduced word W . Since the truncation ˇ lies in the N -beighborhood of  and
is contracting by Lemma 4.2, we obtain that  is K-contracting for a constant K

independent of W . By an elementary argument, it is straightforward to verify that
the image Ho is contracting by definition of the contracting property.

Now, it remains to prove that an element represented by a nontrivial reduced
word W is contracting. Since contracting elements are preserved under conjuga-
tion, we can assume that the word W is cyclically reduced. We now form the bi-
infinite word W 1 D : : : W � W : : : , which is reduced. We then define a bi-infinite
path  by concatenating geodesics and truncate it to get a contracting .D; 9C /-ad-
missible path ˇ by the same argument in Lemma 4.2. Since the element repre-
sented by W acts by translation on the contracting quasi-geodesic ˇ, this implies
by definition that W is contracting. This concludes the proof of Theorem 1.4. �

Proof of Theorem 1.5. If a non-elementary group G admits a proper SCC ac-
tion on .Y; d/ with a contracting element, then the corresponding set defined in
Lemma 4.1 is exponentially generic since these sets provided in Section 3 are
exponentially negligible. Therefore, F.k/ is exponentially generic in G.k/. �
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4.2. Statistical hyperbolicity

Proof of Theorem 1.8 for the annuli case. Choose any 0 < " < 1
4
. Let

E D U
� "

2

�

[ V.2"; 3"; hm/ \ W."; h; �.C //;

where �.�/ is given by Lemma 2.5.
Then by Lemmas 3.1, 3.3, and 3.2 together, we have

lim
n!C1

jE \ A.n; �/j

jA.n; �/j
D 0 (17)

for some � > 0. Below we fix such a constant �.
For any x 2 A.n; �/ n E, we fix a geodesic ˛ D Œo; xo�, and consider the

following set

Kx D ¹z 2 A.n; �/W there exists ˇ D Œo; zo� such that ˇ \ N4C .˛Œ";4"�/ ¤ ;º:

We shall show that:

Lemma 4.3. The set Kx is negligible:

lim
n!1

jKxj

jA.n; �/j
D 0 (18)

Proof of Lemma 4.3. If n1 D jxj, then n � � � n1 � n C �. We carry out the
same analysis as in the proof of Lemma 3.5 to bound jKx j.

Let z 2 Kx be an element of length n2 D jzj. If there exists some "n1 �
i � 4"n1 such that ˛.i/ lies in NM .Go/, then there is some v1 2 A.i; M/

such that the pair .x; z/ can be written separately as .v1.v�1
1 x/; v1.v�1

1 z// where
v�1

1 z 2 A.n2 � i; 2�/.
Otherwise, we can write .x; z/ separately as .v2.v�1

2 x/; v2.v�1
2 z// for some

i � l � i C "
2
n1 and some v2 2 A.l; M/, such that v�1

2 z 2 A..n2�i/C.l �i/; 2�/

(by our choice of x … U
�

"
2

�

, Subcase 2.1 of Lemma 3.5 can not happen).
If we introduce the index sets

ƒ1 D ¹.n2; i / 2 Z
2W n � � � n2 � n C �; "n1 � i � 4"n1º;

ƒ2 D
°

.n2; i; l/ 2 Z
3W �n � n2 � n; "n1 � i � 4"n1; i � l � i C

"

2
n1

±

;

then we have

jKxj �
X

.n2;i/2ƒ1

jA.n2 � i; 2�/j C
X

.n2;i;l/2ƒ2

jA.n2 C l � 2i; 2�/j

� exp..1 � "/nıG/ C n3 exp
��

1 �
"

2

�

nıG

�

;

which implies (18) from the purely exponential growth jA.n; �/j � exp.ıGn/.
4
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The next step is to bound the distance between xo with the orbit point yo

outside Kx. (See figure 2)

Lemma 4.4. For any y 2 A.n; �/ n Kx,

d.xo; yo/ � 2.n � 4"n � 4"� � � � 4C /:

Proof of Lemma 4.4. Since x … V.2"; 3"; hm/ in (9), ˛ contains a .�; hm/-barrier
in ˛Œ2";3"�, so there exists an element g 2 G such that

max¹d.go; ˛Œ2";3"�/; d.ghmo; ˛Œ2";3"�/º � � � C:

We denote X D NC .Ax.h//. Let v; w be the entry and exit point of ˛ into gX

respectively, so that

d.v; w/ � d.o; hmo/ � 2� > D:

For any y 2 A.n; �/ n Kx, we know from the definition of Kx that for any
geodesic ˇ D Œo; yo�, ˇ \ N4C .˛Œ";4"�/ D ;. Thus, we have ˇ \ gX D ; by
Lemma 2.8.

If we choose d.o; hmo/ � 2� > D � 16C as in the setup, then for any
 D Œxo; yo�, we have  \ gX ¤ ;. Indeed, if  \ gX D ;, then k…gX ./k � 3C

by the contracting property of gX . We will then obtain a contradiction:

d.v; w/ � k…gX .¹v; oº/k C k…gX .¹o; yoº/k

C k…gX .¹yo; xoº/k C k…gX .¹xo; wº/k

� k…gX .Œo; v�˛/k C k…gX .ˇ/k C k…gX ./k C k…gX .Œw; xo�˛/k C 4C

� 12C C 4C < D;

where k…gX .ˇ/k � 3C follows from the fact ˇ \ gX D ;:

Since x … W."; h; �.C // in (8), this implies that v; w 2 ˛Œ";4"�. Thus,
d.o; w/ � "n1 and d.w; xo/ � .1 � 4"/n1.

Let u be the entry point of  in gX . Then d.u; w/ � 4C by the contracting
property of X . Hence,

d.xo; u/ � d.xo; w/ � d.u; w/ � n1 � 4"n1 � 4C:

Since y 2 A.n; �/,

n � � � d.o; yo/ � d.o; w/ C d.w; u/ C d.u; yo/ � "n1 C 4C C d.u; yo/

which yields
d.u; yo/ � n � 4"n1 � � � C:

We finally obtain

d.xo; yo/ D d.xo; u/ C d.u; yo/ � 2.n � 4"n � 4"� � � � 4C /

concluding the proof of the claim. 4
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Let us return to the proof of the theorem. By Lemma 4.4,

X

x;y2A.n;�/

d.xo; yo/

� 2.n � 4"n � 4"� � � � 4C / � .jA.n; �/j � jEj/ � .jA.n; �/j � jKxj/:

Since

lim
n!1

jKxj

jA.n; �/j
D 0

in (18) and

lim
n!1

jEj

jA.n; �/j
D 0

in (17), we obtain

lim inf
n!1

1

jA.n; �/j2

X

x;y2A.n;�/

d.xo; yo/

n
� 2.1 � 4"/:

Since " is arbitrary, we have EA.G; �/ D 2. �

Proof of Theorem 1.8 for the ball case. The proof is almost identical to that in the
annuli case. We only spell out the difference in the proof.

Choose any 1
2

< � < 1 and any 0 < " < �
8
. Let

E D U
� "

2

�

[ V.2"; 3"; hm/ \ W."; �.C //:

Then by Lemmas 3.1, 3.3, and 3.2 together, we have

lim
n!C1

jE \ Bnj

jBnj
D 0:

For any x 2 A.Œ�n; n�/ n E, set n1 D jxj, then �n � n1 � n. We fix a geodesic
˛ D Œo; xo� and consider

Kx D ¹z 2 A.Œ�n; n�/W there exists ˇ D Œo; zo� such that ˇ \ N4C .˛Œ";4"�/ ¤ ;º:

By the same argument as in the annuli case, we have

lim
n!1

jKxj

jA.Œ�n; n�/j
D 0:
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Claim. For any y 2 A.Œ�n; n�/ n Kx, we have d.xo; yo/ � 2�n � 8"n � 8C .

Proof of the claim. The proof is the same as that in the annuli case, except that
we now use the big annulus A.Œ�n; n�/. Note that

d.xo; u/ � d.xo; w/ � d.u; w/ � n1 � 4"n1 � 4C;

where n1 2 Œ�n; n�. Since y 2 A.Œ�n; n�/,

�n � d.o; yo/ � d.o; w/ C d.w; u/ C d.u; yo/ � 4"n1 C C C d.u; yo/;

from which d.u; yo/ � �n � 4"n1 � 4C . So

d.xo; yo/ D d.xo; u/ C d.u; yo/ � 2�n � 8"n � 8C: 4

The same computation as above in the annuli case gives

lim inf
n!1

1

jBnj2

X

x;y2Bn

d.xo; yo/

n
� 2� � 8":

Since " can be made arbitrary small and � can be arbitrary close to 1, we obtain
EB.G/ D 2. �

Example 4.5. We carry out a concrete example to explain the convergence speed
of EA.G; �/ D 2 of a statistically hyperbolic group is at most of order O.n�1/.
Consider the free group F.a; b/ and its Cayley graph with respect to the free
generators ¹a; bº. It is easy to calculate

1

jA.n; 0/j2

X

x;y2A.n;0/

d.x; y/ D
3

4
� 2n C

1

4

2

3
� .2n � 2/ C

1

4

1

3

2

3
� .2n � 4/ C � � � C 0:

Thus we obtain

ˇ

ˇ

ˇ

ˇ

1

jA.n; 0/j2

X

x;y2A.n;0/

d.x; y/ � 2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

n � 1

2n
�

3

4n
�
�1

3
�

1

3n

�

�
1

2

ˇ

ˇ

ˇ

ˇ

D
1

2n
C

3

4n
�
�1

3
�

1

3n

�

D O
� 1

n

�

:
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