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Abstract. A result of Gersten states that if G is a hyperbolic group with integral cohomo-

logical dimension cdZ.G/ D 2 then every finitely presented subgroup is hyperbolic. We

generalize this result for the rational case cdQ.G/ D 2. In particular, our result applies to

the class of torsion-free hyperbolic groupsG with cdZ.G/ D 3 and cdQ.G/ D 2 discovered

by Bestvina and Mess.
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1. Introduction

The cohomological dimension cdR.G/ of a group G with respect to a ring R is

less than or equal to n if the trivial RG-module R has a projective resolution of

length n. Let Q denote the field of rational numbers. The main result of this note:

Theorem 1.1. Let G be a hyperbolic group such that cdQ.G/ � 2. If H is a

finitely presented subgroup, then H is hyperbolic.

The analogous statement for cdZ.G/ is a result of Steve Gersten that we recover

as a consequence of the inequality

cdQ.G/ � cdZ.G/:

Corollary 1.2 (Gersten, [10, Theorem 5.4]). Let G be a hyperbolic group such

that cdZ.G/ D 2. If H is a finitely presented subgroup, then H is hyperbolic.

https://creativecommons.org/licenses/by/4.0/
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The first motivation to generalize Gersten’s result to the rational case is the ex-

istence of hyperbolic groups of integral cohomological dimension three and ratio-

nal cohomological dimension two. The nature of finitely presented subgroups of

groups in this class was not known. The first examples of such groups were discov-

ered by Bestvina and Mess [3] based on methods by Davis and Januszkiewicz [6].

The class also contains finite index subgroups of hyperbolic Coxeter groups, ex-

amples that were discovered by Dranishnikov [7, Corollary 2.3]. We recall the

nature of Bestvina-Mess examples in the following corollary.

Corollary 1.3 ([3]). Let X be a finite polyhedral 3-complex such that

� X admits piecewise constant negative curvature cellular structure satisfying

Gromov’s link condition, and

� X is a 3-manifold (without boundary) in the complement of a single vertex

whose link is a non-orientable closed surface.

If G D �1X then cdQ.G/ D 2, cdZ.G/ D 3 and any finitely presented subgroup

of G is hyperbolic.

The statement of Corollary 1.2 is sharp in the sense that there exist hyperbolic

groups of integral cohomological dimension three containing finitely presented

subgroups that are not hyperbolic, the first example was found by Noel Brady [4].

More recently, infinite families of hyperbolic groups of integral cohomological di-

mension three containing non-hyperbolic finitely presented subgroups have been

constructed, see for example [15].

Corollary 1.4. If G is a hyperbolic group such that cdZ.G/ D 3 and it contains

a non-hyperbolic finitely presented subgroup, then cdQ.G/ D cdZ.G/.

A second motivation of this project was to generalize Gersten’s result to groups

admitting torsion, specifically, to the class of hyperbolic groups G admitting a 2-

dimensional classifying space for proper actions
x
EG. Recall that a model for

x
EG

is aG-CW-complexX with the property that for each subgroupH the subcomplex

of fixed points is contractible ifH is finite, and empty ifH is infinite. The minimal

dimension of a model for
x
EG is denoted by gd.G/. Considering the cellular chain

complex with rational coefficients of a model for
x
EG with minimal dimension

shows that

cdQ.G/ � gd.G/:

This inequality implies the following corollary.

Corollary 1.5. If G is a hyperbolic group such that gd.G/ � 2, then any finitely

presented subgroup is hyperbolic.
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The statement of Corollary 1.5 was known in the following cases:

� IfG admits a CAT.�1/ 2-dimensional model for
x
EG, see [12, Corollary 1.5].

� If G admits a 2-dimensional model for
x
EG, and H is finitely presented

with finitely many conjugacy classes of finite groups, a consequence of [16,

Theorem 1.3].

� If G is a hyperbolic small cancellation group of type C.7/, C.5/�T .4/,

C.4/�T .5/, C.3/�T .7/ or C 0.1=6/, see [10, Theorem 7.6].

We remark that for a group G satisfying the hypothesis of Corollary 1.5, the

conclusion follows from Gersten’s result 1.2 if, in addition, G is assumed to be

virtually torsion free. It is an outstanding question whether hyperbolic groups are

virtually torsion free [14].

Remark 1.6. During the refereeing process of this manuscript, a generalization

of Theorem 1.1 was proved in context of totally disconnected locally compact

hyperbolic groups [1].

Homological filling functions and the proof of Theorem 1.1. Let R be a

subgring ofQ. The .nC1/-dimensional homological Filling Volume function over

R of a cellular complex X is a function FVnC1
X;R WN ! R describing the minimal

volume required to fill integral cellular n-cycles with cellular .nC 1/-chains with

coefficients in R.

For a groupG with aK.G; 1/modelX with finite .nC1/-skeleton, the .nC1/-

dimensional homological Filling Volume function overR ofG, denoted by FVnC1
G;R ,

is defined as FVnC1
zX;R

where zX is the universal cover of X . This function depends

only of the group G up to the equivalence relation on the set of non-decreasing

functions N! R defined as f � g if and only if f � g and g � f , where f � g

means there is C > 0 such that for all k 2 N,

f .k/ � Cg.Ck C C/C Ck C C:

Recall that a group G is of type R-FPn if the trivial RG-module R admits a

partial projective resolution

Pn �! � � � �! P2 �! P1 ! P0 �! R! 0

where eachPi is a finitely generatedRG-module. In [13], it is shown that to define

FVnC1
G;Z is enough to assume that the group G is of type Z-FPnC1. We prove that

the same statement holds for FVnC1
G;R in Section 3. The main technical result of this

note is the following.

Theorem 1.7. Let R be a subring of Q. Let G be a group of type R-FPnC1 and

suppose cdR.G/ D n C 1. Let H � G be a subgroup of type R-FPnC1. Then

there is a constant C > 0 such that for all k

FV nC1
H;R � FV

nC1
G;R :
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This theorem generalizes the main result of [13], by considering an arbitrary

subgring of the rational numbers instead of only the ring of integers, and by re-

placing the topological assumptionsFnC1 onG andH with the weaker hypothesis

R-FPnC1.

The main result of this note, Theorem 1.1, is a consequence of Theorem 1.7

and the characterization of hyperbolic groups stated below, which is credited

to Gersten [9]. This characterization was revised by Mineyev [17, Theorem 7,

statements (0) and (2)], and it was also revisited by Groves and Manning in [11,

Theorem 2.30].

Theorem 1.8 ([17, Theorem 7], [11, Theorem 2.30]). A group G is hyperbolic if

and only ifG is finitely presented and the rational filling function FV2G;Q is bounded

by a linear function, i.e., FV2G;Q.k/ � k.

Proof of Theorem 1.1. LetG be a hyperbolic group such that cdQ.G/ D 2, and let

H be a finitely presented subgroup. Theorem 1.8 implies that FV2G;Q is bounded

by a linear function. By Theorem 1.7, FV2H;Q � FV
2
G;Q. It follows FV2H;Q is bounded

by a linear function. Then Theorem 1.8 implies thatH is a hyperbolic group. �

In view of Theorem 1.8, we raised the following question.

Question 1.9. LetG be aQ-FP2 group and supposeFV 2G;Q is bounded by a linear

function. Is G a hyperbolic group?

The analogous question obtained by replacing Q with Z is known to have a

positive answer [10, Theorem 5.2]. One motivation behind this question is that a

positive answer would imply that in Theorem1.1H can be assumed to be Q-FP2
instead of being finitely presented. Recall that Q-FP2 condition is weaker than

being finitely presented, see the examples in [2].

The rest of the note is devoted to the definition of homological filling function

and the proof of Theorem 1.7. The argument is relatively self-contained, and uses

and simplifies ideas from [13]. The main contributions of the article beside the

results stated above are

(1) the definition of filling functions for arbitrary subdomains of the rationals,

since the definition in [13] does not generalize directly, and

(2) the replacement of topological arguments in [13] by algebraic ones that al-

low us to prove certain statements under the weaker homological finiteness

conditionR-FPnC1 instead of the topological assumptionFnC1; see Proposi-

tion 4.1 which is a construction based on the homological mapping cylinders,

and Remark 4.2.
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Organization. Preliminary definitions are included in Section 2, specifically

the notions of filling norms and bounded morphisms on modules over arbitrary

normed rings. Section 3 discusses the generalization of homological filling func-

tions defined over arbitrary subdomains of the rational numbers. The last section

contains the proof of Theorem 1.7.

Acknowledgments. The authors thank Mladen Bestvina, Ilaria Castellano, and

the referee for comments and corrections. The second author acknowledges

funding by the Natural Sciences and Engineering Research Council of Canada,

NSERC.

2. Filling norms, bounded morphisms

All rings considered in this article have a multiplicative identity. Let R be a ring

and let R denote the ordered field of real numbers. A norm on R is a function

j � jWR! R such that for any r; r 0 2 R

� jr j � 0 with equality if and only if r D 0,

� jr C r 0j � jr j C jr 0j, and

� jr1r2j � jr1jjr2j for r1; r2 2 R.

A normed ring is a ring equipped with a norm.

From here on, assume that R is a normed ring. A norm on an R-moduleM is

a function k � kWM ! R such that for any m;m0 2M and r 2 R

� kmk � 0 with equality if and only if m D 0,

� kmCm0k � kmk C km0k, and

� krmk � jr jkmk.

A functionM ! R that satisfies the last two conditions and has only non-negative

values is called a pseudo-norm.

The `1-norm on a free R-module F with fixed basis ƒ is defined as






X

x2ƒ

rxx






1
D

X

x2ƒ

jrx j:

A free R-module with fixed basis is called a based free module.

Definition 2.1 (filling norm). A filling norm on a finitely generatedR-moduleM

is defined as follows. Let �WF ! M be a surjective morphism of R-modules

where F is a finitely generated free R-module with fixed basis ƒ and induced

`1-norm k � k1. The filling norm on M induced by � and ƒ is defined as

kmkM D inf¹kxk1W x 2 F; �.x/ D mº:
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Remark 2.2. The following statements can be easily verified.

(1) An `1-norm k � k1 on a finitely generated free R-module F is a filling norm.

(2) A filling norm k � k on a finitely generated R-module M is a pseudo-norm,

and is regular in the sense that

krmk D jr jkmk

for any m 2M and r 2 R such that r is a unit and jr jjr�1j D 1.

Definition 2.3 (bounded morphism). A morphism f WM ! N between R-mod-

ules with norms k � kM and k � kN respectively is called bounded (with respect to

these norms) if there exists a fixed constant C > 0 such that kf .a/kN � CkakM
for all a 2M .

The following lemma appears in [16] for the case that R is a group ring. The

proof for an arbitrary ring is analogous, we have included the argument for the

convenience of the reader.

Lemma 2.4 ([16, Lemma 4.6]). Morphisms between finitely generatedR-modules

are bounded with respect to filling norms.

Proof. First observe that if Q'WA ! B is a morphism between finitely generated

based free R-modules, then for a 2 A,

k Q'.a/kB � CkakA;

where k � kA and k � kB are the corresponding `1-norms, the constant C is defined

as max¹k Q'.a/kB W a 2 ƒº where ƒ is the fixed basis of A.

Now we prove the statement of the lemma. Let 'WP ! Q be a morphism

between finitely generated R-modules, and let k � kP and k � kQ denote filling

norms on P and Q respectively. Suppose A is a finitely generated based free

R-module and that �WA ! P induces the filling norm k � kP , and analogously

assume that �0WB ! Q induces the filling norm k �kQ. Then, sinceA is free, there

is a morphism Q'WA ! B such that ' ı � D �0 ı Q'. Let C be the constant for Q'

defined above. Let p 2 P and note that for any a 2 A such that �.a/ D p,

k'.p/kQ � k Q'.a/kB � CkakA:

Hence k'.p/kQ � CkpkP . �

Two norms k � k and k � k0 on an R-moduleM are said to be equivalent if there

exists a constant C > 0 such that for all m 2M

C�1kmk � kmk0 � Ckmk:

By considering the identity function on a finitely generated moduleM , the previ-

ous lemma implies:
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Corollary 2.5. Any two filling norms on a finitely generated R-module M are

equivalent.

Remark 2.6. Let M be a free R-module with basis ƒ, and let N be a free

R-submodule generated by a finite subsetƒ0 � ƒ. Consider the induced `1-norms

k � kƒ and k � kƒ0 on M and N respectively.

(1) The projection map � WM ! N is bounded with respect to the induced

`1-norms.

(2) The inclusion map {WN !M preserves the induced `1-norms, in particular,

it is bounded.

Lemma 2.7. LetN be a finitely generated module with filling norm k�kN . Suppose

that N is an internal direct summand of a free module F with an `1-norm k � k1.

Then k � kN � k � k1 on N .

Proof. SinceN is a finitely generated module contained in F , there exist a finitely

generated free submodule I of F which is an internal summand, F D I˚J , such

that N � I , and the restriction of k � k1 to I is an `1-norm on I . Let �WN ! I

denote the inclusion and �WF ! N denote the projection. By Lemma 2.4, both

�jI W I ! N and �WN ! I are bounded morphisms with respect to the norms k�k1
and k � kN ; let C1 and C2 be the corresponding constants. Then

knkN D k�.�.n//kN � C1k�.n/k1 � C2C1knkN

for all n 2 N , and hence k � kN � k � k1 on N . �

For the rest of this section, letG be a group, letH be a subgroup, and as above

let R be a ring with norm j � j.

Remark 2.8. LetM be a free RG-module with `1-norm k � kƒ induced by a free

basis setƒ. ThenM is a free RH -module and there exist a free RH -basisƒH of

M such that the induced `1-norms k � kƒ and k � kƒH
are equal.

Indeed, if S is a right transversal of the subgroupH in G, then

ƒH D ¹gxW x 2 ƒ; g 2 Sº

is a free RH -basis of M as an H -module, and the statement about the `1-norms

holds.

Lemma 2.9. LetM be a finitely generated and projectiveRG-module with filling

norm k � kM and letN be a finitely generatedRH -module with filling norm k � kN .

Suppose that N is a internal direct summand of M as an RH -module. Then

k � kN � k � kM on N .
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Proof. Let F be a finitely generated free based module with `1-norm k � k1, and

let �WF ! M be a surjective RG-morphism inducing filling norm k � kM . Since

M is projective, there exist an RG-morphism j WM ! F such that j ı � D idM .

Lemma 2.4 implies that j and � are boundedRG-morphisms. Therefore k � kM �

k�k1. Now considerF as anRH -module with same `1-norm k�k1, see Remark 2.8.

Since N is a direct summand of M as an RH -module, it is a direct summand of

F as an RH -module. Then Lemma 2.7 implies k � kN � k � k1 on N . �

3. Definition of homological filling functions

In this sectionR denotes a subring of the rational numbers with the absolute value

as a norm. Let G be a group. The group ring RG is a free abelian module overR,

observe that RG is a normed ring with `1-norm induced by the free R-basis G.

From now on, we consider RG as a normed ring with this norm.

Definition 3.1 (integral part). Let P be a finitely generatedRG-module. An inte-

gral part of P is a ZG-submodule A which is finitely generated as a ZG-module,

and A generates P as an RG-module.

From here on, Œ0;1� denotes the set of non-negative real numbers and infinity.

The order relation as well as the addition operations are extended in the natural

way.

Definition 3.2. The nth-filling function of a group G of type R-FPnC1,

FV nC1
G;R WN �! Œ0;1�;

is defined as follows. Let

PnC1

@nC1

�! Pn
@n

�! � � �
@2

�! P1
@1

�! P0 �! R! 0; (1)

be a partial projective resolution of finitely generated RG-modules of the trivial

RG-module R. Let Kn be an integral part for ker.@n/, let k � kPn
and k � kPnC1

be

filling norms for Pn and PnC1 respectively. Then

FV nC1
G;R .k/ D sup¹kk@nC1

W  2 Kn; kkPn
� kº;

where

kk@nC1
D inf¹k�kPnC1

W� 2 PnC1; @nC1.�/ D º:

By convention, define the supremum of the empty set as zero.

See Remark 3.8 on finiteness of FV nC1
G;R . The rest of this section discusses the

proof of the following theorem, which generalizes [13, Theorem 3.5]. Consider
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the equivalence relation on the set of non-decreasing functions N ! Œ0;1�

defined as f � g if and only if f � g and g � f , where f � g means there is

C > 0 such that for all k 2 N,

f .k/ � Cg.Ck C C/C Ck C C:

Theorem 3.3. Let G be a group of type R-FPnC1. Then the nth-filling function

FV nC1
G;R of G is well defined up to the equivalence relation �.

The proof of Theorem 3.3 relies on the following basic structure theorem for

subgrings of Q.

Proposition 3.4. LetR be a subring of Q. Then there is a set S of prime numbers

in ZC such that R consists of all fractions a
b

where a 2 Z and b is product of

powers of elements of S .

In the following proposition, which is a consequence of Proposition 3.4, we

use the convention that for an element a of an RG-module A, and any r 2 R, ra

denotes the element .re/a 2 A where e is the identity element of G; moreover,

the ring of integers Z is naturally identified with the subring of RG via m 7! me.

Proposition 3.5. Let P and Q be finitely generated RG-modules. Then

(1) if A is an integral part, then for all units r 2 R, rA D ¹raW a 2 Aº is an

integral part;

(2) if f WP ! Q is a morphism of RG-modules, and A and B are integral parts

of P andQ respectively, then there exists a positive integerm which is a unit

in RG and such that f .mA/ � B .

Proof. The first statement is immediate from the definition. For the second

statement. Let S be a finite generating set of A as a ZG-module, and observe

that S generates P as an RG-module. Let F.S/ be the free RG-module on S ,

let �WF.S/ ! P , and let C be the ZG-submodule of F.S/ generated by S , and

observe that �.C / D A. Analogously, let T be a finite generating set ofB as aZG-

module, let  WF.T / ! Q, and let C 0 be the ZG-submodule of F.T / generated

by T , and note that  .C 0/ D B .

Since F.S/ is free, there is an RG-morphism �WF.S/ ! F.T / such that the

following diagram commutes:

F.S/ F.T /

P Q

 

!
�

 ��  �  

 

!
f

(2)
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Note that �WF.S/ ! F.T / is described by a finite matrix with entries in

RG. By Proposition 3.4, there is an integer m, which is a unit in R, such that

the morphism m:�WF.S/ ! F.T / given by ˛ 7! m˛ has the property that

�.C / � C 0. By commutativity of the diagram f ı .m�/ D  ı .m�/ and therefore

f .mA/ � B . �

The following lemma is a strengthening of Proposition 3.5 that will be used in

the last section.

Lemma 3.6. LetH 6 G be a subgroup and letP andQ be finitely generatedRH

and RG modules respectively. If f WP ! Q is an RH -morphism, and A and B

are integral parts of P and Q respectively, then there exists a positive integer m,

which is a unit in R, such that f .mA/ � B .

Proof. ConsideringQ as anRH -module, the proof proceeds similar to 3.5 except

that here F.T / is infinitely generated and so the matrix is infinite. But observe that

only finitely many entries are non-zero, so the same argument holds. �

Proof of Theorem 3.3. The proof is divided into two steps. The second step is a

small variation of the argument in [13, Proof of Theorem 3.5] for which we only

remark the changes.

Step 1. FV nC1
G (up to equivalence) does not depend on the choice of the integral

part Kn.

Let A and B be two integral parts of Kn, and let FVA and FVB denote

the corresponding nth-filling functions of G. By Proposition 3.5, there exists a

positive integer m, that is a unit in RG, such that m:A � B . Let  2 A such that

kkPn
� k. Then, since m is a unit and jmjjm�1j D 1, kkınC1

D 1
m
kmkınC1

and kmkPn
D mkkPn

� mk; see Remark 2.2. Observe that m 2 B therefore

kkınC1
� 1

m
FVB.mk/. Since  was arbitrary, FVA.k/ �

1
m
FVB.mk/. By

symmetry we get the other inequality.

Step 2. FV nC1
G (up to equivalence) does not depend on the choice of the resolu-

tion (1).

Let .P�; @�/ and .Q�; ı�/ be a pair of resolutions as in (1). Since any two

projective resolutions ofR are chain homotopy equivalent, there exist chain maps

fi WPi ! Qi ; gi WQi ! Pi , and a map hi WPi ! PiC1 such that

@iC1 ı hi C hi�1 ı @i D gi ı fi � Id:
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By Proposition 3.5, there exist integral parts Kn and K 0
n of ker.@n/ and ker.ın/

respectively, such that fn.Kn/ � K
0
n. This ensures that the same argument in [13,

Proof of Theorem 3.5] works except for a minor change in the choice of the element

named ˇ in the cited proof. Replace it by the following: “for � > 0, choose

ˇ 2 QnC1 such that ınC1.ˇ/ D fn.˛/ and kˇkQnC1
< kfn.˛/kınC1

C�:” The rest

of the proof proceeds in the same manner. �

Remark 3.7 (Topological interpretation of filling functions). Assume G admits

a K.G; 1/ model X with finite .n C 1/-skeleton. The augmented cellular chain

complex C�. zX;R/ of the universal cover zX of X is a projective resolution of the

trivial RG-module R by free modules. By considering the `1-norm of Ci . zX;R/

induced by the basis consisting of i-dimensional cells of zX , the definition of FVnC1
G;R

using this resolution provides the interpretation FVnC1
G;R as the minimal volume

required to fill integral n-cycles with .nC1/-cellular chains with coefficients inR.

Observe that

FV nC1
G;R � FV

nC1
G;Z (3)

Remark 3.8 (finiteness of FV nC1
G;R ). Assume that G admits a K.G; 1/ model X

with finite .nC1/-skeleton. By the main result of [8], for every positive integer k,

FV nC1
G;Z .k/ <1. Then equation (3) implies that FV nC1

G;R .k/ <1 for any k � 0.

A positive answer to the following question in the case that R D Z is given

in [8].

Question 3.9. Suppose that G is of type R-FPnC1. Is FV nC1
G;R .k/ < 1 for all

k 2 N?

Remark 3.10 (on the use integral part in Definition 3.2). We note that the filling

function FVnC1
G;Z was defined in [13] by considering ker.@n/ in lieu of its integral

part. This approach does not work to define FVnC1
G;Q as the following example

illustrates. Consider the group presentation G D hx; yjŒx; y�i and let X be the

universal cover of the presentation complex, i.e., the Cayley complex. In X

consider the following cycles with rational coefficients an D
1
4n
Œxnyn� for n 2 N.

Then kank1 D 1 and by regularity kank@ D
1
4
n, in particular

max¹kk@2
W  2 Zn. zX;Q/; kk1 � 1º D 1;

and hence the approach in [13] does not yield a well definedFV 2G;Q.k/. In contrast,

using Definition 3.2, FV 2G;Q � FV
2
G;Z � k

2.

4. Proof of Theorem 1.7

The proof of Theorem 1.7 is discussed after the proof of the following proposition.
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Proposition 4.1. Suppose that cdR.G/ D nC 1, G is of type R-FPnC1, andH is

a subgroup of G of type R-FPnC1. Then for any partial projective resolution of

the trivial RH -module R of finite type

QnC1 �! Qn �! � � � �! Q0 �! R �! 0; (4)

there is a projective resolution of the trivial RG-module R of finite type

0 �!MnC1 �! Mn �! � � � �!M0 �! R �! 0; (5)

an injective morphisms {i WQi !Mi of RH -modules, 0 � i � n, such that

Qn � � � Q1 Q0 R

Mn � � � M1 M0 R:

 

!

 ! {n

 

!

 ! {1

 

!

 

!

 ! {0  ! Id

 

!

 

!

 

!

 

!

(6)

is a commutative diagram ofRH -modules, and the short exact sequences ofRH -

modules

0 �! Qi

{i
�!Mi �! Si �! 0 (7)

split. In particular each Si is a projective RH -module.

Remark 4.2. Proposition 4.1 replaces topological arguments in [13], based on

work of Gersten [10], that use topological mapping cylinders. The arguments

there are relatively less involved. In the generality that we are working, it is not

possible to rely on this type of topological constructions. We would need free

cocompact actions on .nC1/-acyclic complexes forG andH , they are not known

to exist under our hypothesis. Specifically, recall that a group G is of type FHn,

if G admits a cocompact action on an n-acyclic spaceX ; in this case the action of

G on the cellular chain complex of X induces a resolution of Z as a ZG-module.

Hence FHn implies FPn. It is an open question whether groups of type FPn are

of type FHn for n � 3, see [2].

The proof of the Proposition 4.1 is an application of the mapping cylinder of

chain complexes from basic homological algebra that we recall below.

Let B� D ¹Bi ; diº and C� D ¹Ci ; d
0
i º be two chain complexes of modules over

some fixed ring, and let f WB� ! C� be a chain map. Then the mapping cylinder

M� D ¹Mi ; d
00
i º is a chain complex where Mi D Ci ˚ Bi ˚ Bi�1 with

d 00
i D

0

@

d 0
i 0 �fi
0 di IdB
0 0 �di

1

A
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Observe that, if both B� and C� consists of only finitely generated projective

modules then the the same holds for M�. The natural inclusion C� ,! M� given

by c 7! .c; 0; 0/ is a chain homotopy equivalence. The chain homotopy inverse

map ��WM� ! C� is given by .c; b; b0/ 7! c C f .b/. Let |�WB� ! M� be the

inclusion given by b 7! .0; b; 0/. It is an observation that the triangle

B� C�

M�

 

!
f�

 

!|�

 !
��

(8)

commutes. For background on mapping cylinders see [18].

Proof of Proposition 4.1. We split the proof into four steps.

Step 1. Definition of the resolution (5) as a mapping cylinder

Since cdR.G/ D n C 1 and G is of type R-FPnC1, there is a projective

resolution of RG-modules of finite type

0 �! PnC1 �! Pn �! � � � �! P0 �! R �! 0; (9)

see [5, p. 199, Proposition 6.1].

The group ring RG is a free right RH -module. It follows that the extension

of scalars functor from left RH -modules to left RG-modules A 7! RG˝RH A is

exact. This functor also preserves finite generation and projectiveness. From the

given resolution (4), we obtain a partial projective resolution of the RG-module

RG ˝RH R of finite type

RG ˝RH Qn �! � � � �! RG ˝RH Q0 �! RG ˝RH R �! 0: (10)

Consider the RG-morphism �WRG ˝RH R! R induced by

�WRG �R �! R; .s; r/ 7�! �.s/r; (11)

where �WRG ! R is the augmentation map, �.
P

rigi / D
P

ri . Since each of the

RG-modules RG ˝RH Qi is projective, there are RG-morphisms fi WRG ˝RH
Qi ! Pi such that

RG ˝RH Qn � � � RG ˝RH Q0 RG ˝RH R

Pn � � � P0 R:

 

!

 ! fn

 

!

 

!

 ! f0

 ! �

 

!

 

!

 

!

(12)

is a commutative diagram, see [5, p. 22, Lemma 7.4].
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LetM� D .Mi / be the mapping cylinder of the chain map f D .fi /where fi is

the RG-morphism defined above for 0 � i � n, fnC1 is the morphism 0! PnC1,

and fi is the morphism 0! 0 for any other value of i .

Observe that

Mi D Pi ˚ .RG ˝RH Qi /˚ .RG ˝RH Qi�1/

for 1 � i � n,M0 D P0˚.RG˝RHQ0/˚0,MnC1 D PnC1˚0˚.RG˝RHQn/,

and Mi D 0 for any other value of i . Hence all Mi are finitely generated and

projective.

LetP� D .Pi / be the chain complex induced by (9), wherePi D 0 for i > nC1

and i < 0. Observe that P� is the target of the chain map f . Since P� andM� are

chain homotopic,

0 �!MnC1 �! Mn �! � � � �!M0 �! R �! 0;

is a projective resolution of finite type of the trivial RG-module R.

Step 2. Definition of the injective RH -morphisms {i WQi !Mi .

We have the following commutative diagram of RH -modules

Qn � � � Q1 Q0

RG ˝RH Qn � � � RG ˝RH Q1 RG ˝RH Q0

Mn � � � M1 M0:

 
!

 ! �n
 

!
 

!

 ! �1  ! �0

 

!

 ! |n

 

!

 

!

 ! |1  ! |0

 

!

 

!

 

!

(13)

where �k WQk ! RG˝RH Qk is the natural inclusion given by q 7! e˝q (here e

denotes the identity element ofG), and the vertical arrows |i WRG˝RH Qi !Mi

are the natural inclusions. Then define

{i D |i ı �i

for 0 � i � n, and observe that they are injective RH -morphisms.

Step 3. Verifying commutative diagram (6).

In view of the commutative diagram (13), we only need to verify that ifH0.Q/

and H0.M/ denote the cokernels of Q1 ! Q0 and M1 ! M0 respectively, then

the RH -morphism H.{0/WH0.Q/! H0.M/ induced by {0 is an isomorphism.

Before the argument, we remark that this is not immediate, it depends on the

choice of the RG-morphism f0; the available choices for f0 depend on the choice

of the RG-morphism �WRG ˝RH R! R; our choice is defined by (11).
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Let H0.P / denote the cokernel of P1 ! P0. Let ��1WR ! RG ˝RH R

be defined by r 7! e ˝ r where e denotes the identity element of G. Then

� ı ��1 is the identity map on R. It follows that the induced RH -morphism

H0.f0 ı �0/WH0.Q/ ! H0.P / is an isomorphism. Since �WM� ! P� given by

.p; q; q0/ 7! pCf .q/ is a chain homotopy equivalence,H.�0/WH0.M/! H0.P /

is an isomorphism. Observe thatH.f0ı�0/ equalsH.�0/ıH.{0/ and henceH.{0/

is an isomorphism.

Step 4. The exact sequence (7) splits, and each Si is a projective RH -module.

This is immediate since {i WQi ! Mi is the inclusion of a direct summand of

Mi as an RH -module. Since restriction of scalars preserves projectiveness,Mi is

projective as an RH -module and hence Si is projective as well. �

Proof of Theorem 1.7. Consider projective resolutions as (4) and (5) as well as

RH -morphisms {i WQi !Mi as described in Proposition 4.1.

Let M� D .Mi ; ı
M
i / denote the chain complex induced by (5), with the

assumption that Mi D 0 for i > n and i < 0. Analogously, let Q� D .Qi ; ı
Q
i /

be the chain complex induced by (4), with the assumption that Qi D 0 for i > n

and i < 0. Observe that we are not using the modules QnC1 and MnC1 in the

definition ofQ� andM�. Let S� be the quotient chain complexM�=Q�. Consider

the induced chain map { D .{i /WQ� !M�.

We use the following notation. The kernel of ı
Q
n is denoted by Zn.Q/. The

n-homology group of the complexQ� is denoted byHn.Q/. Analogous notation

is used for the other chain complexes.

Step 1. The induced sequence

0 �! Zn.Q/
{n
�! Zn.M/ �! Zn.S/ �! 0 (14)

is exact and satisfies:

� Zn.Q/ is a finitely generated RH -module;

� Zn.M/ is a finitely generated and projective RG-module;

� Zn.Q/ is a direct summand of Zn.M/ as an RH -module.

Observe thatHnC1.Q/ andHn�1.Q/ are both trivial. The short exact sequence

of chain complexes of RH -modules

0 �! Q�

{
�!M� �! S� �! 0 (15)

induces a long exact sequence

0 �! Hn.Q/
{n
�! Hn.M/ �! Hn.S/ �! 0 (16)

which is precisely (14).
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TheRH -moduleZn.Q/ is finitely generated sinceQnC1 is a finitely generated

RH -module and ı
Q
nC1 maps QnC1 onto Zn.Q/.

That Zn.M/ is a finitely generated and projective RG-module follows from

a direct application of Schanuel’s lemma [5, p. 193, Lemma 4.4] to the exact

sequences (5) and

0 �! Zn.M/ �! Mn �! � � � �!M0 �! R �! 0: (17)

Finally, to show that Zn.Q/ is a direct summand of Zn.M/ as an RH -module,

we argue that that Zn.S/ is projective RH -module. Consider the sequence of

RH -modules induced by S�

0 �! Zn.S/ �! Sn �! � � � �! S0 �! 0: (18)

Note that this sequence is exact by observing the long exact sequence of homolo-

gies induced by (15). Indeed, Hi .Q/ and Hi.M/ are trivial for 0 < i < n, and

H.{/WH0.Q/ ! H0.M/ is an isomorphism by (6). Since each Si is projective,

exactness of (18) implies that Zn.S/ is projective.

Step 2. FV nC1
H;R � FV

nC1
G;R .

Let k � kMn
and k � kZn.M/ denote filling norms on the RG-modules Mn and

Zn.M/ respectively. Similarly, let k � kQn
and k � kZn.Q/ denote filling norms on

RH -modules Qn and Zn.Q/. For the map Zn.Q/
{n
�! Zn.M/, by Lemma 3.6

there exist integral parts K and K 0 of Zn.Q/ and Zn.M/ respectively, such that

K maps into K 0 by the morphism {.

Since {WQn !Mn is the inclusion of a direct summand ofMn as anRH -mod-

ule, andMn is a projective RH -module, Lemma 2.9 implies that k � kMn
� k �kQn

on Qn. In particular, there is a constant C0 such that

k{n./kMn
� C0kkQn

for every  2 Qn.

By Step 1, {nWZn.Q/ ! Zn.M/ is the inclusion of a direct summand of

Zn.M/ as an RH -module, and Zn.M/ is a projective RH -module. Lemma 2.9

implies k � kZn.M/ � k � kZn.Q/ on Zn.Q/. Hence there is C1 > 0 such that

kkZn.Q/ � C1k{n./kZn.M/

for every  2 Zn.M/, and � ı { is identity on Zn.Q/.

Let k 2 N and  2 K � Z.Qn/ such that kkQn
� k. Then

kkZn.Q/ � C1k{n./kZn.M/ � C1 FV
nC1
G;R .k{n./kMn

/ � C1 FV
nC1
G;R .C0kkQn

/

Therefore FVnC1
H;R.k/ � C1 FV

nC1
G;R .C0k/ for every k. �
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