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A higher moment formula

for the Siegel–Veech transform

over quotients by Hecke triangle groups
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Abstract. We compute higher moments of the Siegel–Veech transform over quotients of

SL.2;R/ by the Hecke triangle groups. After fixing a normalization of the Haar measure on

SL.2;R/ we use geometric results and linear algebra to create explicit integration formulas

which give information about densities of k-tuples of vectors in discrete subsets of R
2

which arise as orbits of Hecke triangle groups. This generalizes work of W. Schmidt on the

variance of the Siegel transform over SL.2;R/= SL.2;Z/.
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1. Introduction

The Siegel–Veech transform maps a function on R
2 to a function on sets of trans-

lation surfaces. This powerful transformation gives information about the asymp-

totic density of saddle connections [17] and and cusp excursions [3]. On connected

strata of translation surfaces, the Siegel–Veech transform is integrable [16] and in

L2 with respect to the Masur–Veech measure [2]. In [16], Veech also showed that

the Siegel–Veech transform is integrable over closed SL.2;R/ orbits of Veech

surfaces with respect to the induced Haar measure. Building on work of Siegel,

Schmidt, and Rogers [15, 14, 13] we compute higher moments of the Siegel–Veech

transform over sets of surfaces with the Hecke triangle groups as their stabilizer

group.

The Hecke triangle group Hq for integers q � 3 is the discrete subgroup of

SL.2;R/ generated by

S D

�

0 �1

1 0

�

and T D

�

1 �q

0 1

�

; where �q D 2 cos
��

q

�

:

https://creativecommons.org/licenses/by/4.0/
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Note H3 D SL.2;Z/ and for all q � 3, Hq has finite co-volume in SL.2;R/. For

more information on Hecke triangle groups see [10].

Let Vq be the discrete subset of R2 defined by

Vq D Hq �

�

1

0

�

;

which corresponds to a subset of saddle connections of a translation surface when

q is odd (see Section 2.3). Define Yq D SL.2;R/=Hq with corresponding Haar

probability measure �. Let Bc..R2/k/ be the set of bounded measurable functions

with compact support on .R2/k.

Definition 1.1. For f 2 Bc..R2/k/ and, by abuse of notation g D Œg� 2 Yq, we

define the Siegel–Veech transform by

Of .g/ D
X

.v1;:::;vk/2V k
q

f .g.v1; : : : ; vk//:

In the above definition k D 1 is the classical Siegel–Veech transform, and

for particular f 2 Bc..R2/k/ of the form f .x1; � � � ; xk/ D h.x1/ � � � h.xk/ for

h 2 Bc.R2/, Of corresponds to the kth power of the classical Siegel–Veech

Transform of h on R
2. Veech proved that the classical Siegel–Veech transform

is integrable with the following formula from Section 16 of [17].

Theorem 1.2. For f 2 Bc.R2/,
Z

Yq

Of .g/ d�.g/ D
1

c.q/

Z

R2

f .x/ dx;

where the Siegel–Veech constant is given by

c.q/
def
D �

�

� �
�

q
�

�

2

�

:

We will first prove the following theorem which computes the square of the

classical Siegel–Veech transform on Bc.R2/. To state the theorem, we introduce

the following two definitions:

Definition 1.3 (Set of non-vanishing determinants). Let

Nq
def
D ¹n 2 ZŒ�q� n ¹0ºW there exists v1; v2 2 Vq with det.v1 v2/ D nº

D

²

n 2 ZŒ�q � n ¹0ºW there exists 0 � m < �q jnj with

�

m

n

�

2 Vq

³

;
(1)

where (1) will be proved in Lemma 3.5.
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Definition 1.4 (q-geometric Euler totient function). For b 2 ZŒ�q� define

'q.b/ D #

²

1 � a � �q jbj W

�

a

b

�

2 Vq

³

:

Note that �3 D 1 and V3 D SL.2;Z/ � e1 so '3 reduces to the standard Euler

totient function.

Theorem 1.5. Let f 2 Bc.R2�R
2/, Nq be the set of non-vanishing determinants,

and 'q the q-geometric Euler totient function. Then,

Z

Yq

Of d�.g/ D
X

n2Nq

'q.n/

c.q/

Z

SL.2;R/

f .gJn/ d�C
1

c.q/

Z

R2

.f .x; �x/Cf .x; x// dx (2)

where Jn D
�

1 1
0 n

�

, � is the Haar probability measure on Yq, � is Haar measure

on SL.2;R/ normalized so �.Y3/ D �2

6
, and dx is the Lebesgue measure on R

2

normalized so the area of the unit square is 1.

Note Of is uniformly bounded by Lemma 16.10 of [17], so both sides of (2)

are finite. The proof of Theorem 1.5 will use Schmidt’s outline of proof (see

Section 2.1). It is a useful exercise to consider this proof in the case of Schmidt

with q D 3. That is where N3 D Z n ¹0º and the constant c.3/ D �2

6
D �.2/.

In Section 5 we will see how the formula in Theorem 1.5 allows us to understand

the asymptotic densities of saddle connections of translation surfaces with Veech

group Hq for q odd. Theorem 1.5 is in fact a special case of the main theorem,

which calculates the kth moment of the classical Siegel–Veech transform.

Theorem 1.6. Let f 2 Bc..R2/k/ and define

Jn;m D

�

1 m

0 n

�

:

Then
Z

Yq

Of d�.g/

D
X

�2Rk

�D.1;˙1;:::;˙1/

1

c.q/

Z

R2

f .�x/ dx

C
X

n2Nq

X

0�m<�q jnj

.m;n/T 2Vq

X

1�j <k

X

�;˛;ˇ

1

c.q/

Z

SL.2;R/

f

�

�g

�

1

0

�

; gJn;m

�

˛

ˇ

��

d�.g/;
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where for each 1 � j < k we have � 2 R
j is of the form .1; ˙1; : : : ; ˙1/ and

˛ D .0; ˛2; : : : ; ˛k�j / and ˇ D .1; ˇ2; : : : ; ˇk�j / where for each 2 � i � k � j

we have
�

˛i

ˇi

�

2 J �1
n;mVq : (3)

1.1. Outline. In Section 2 we give an overview of the history of the problem,

followed by the necessary background on translation surfaces, Veech groups, and

the geometric Euler totient function. In Section 3 we prove Theorem 1.5, followed

by Section 4 where we prove Theorem 1.6. Finally in Section 5 we explain how

we found numerical evidence for the result.

Acknowledgments. I thank Jayadev Athreya for proposing the project and many

useful discussions. I thank Bianca Viray and Claire Burrin for useful comments

and discussions about the totient function. Thanks to Anthony Sanchez for useful

comments on the paper. Finally I would like to thank Kimberly Bautista, Maddy

Brown, and Andrew Lim of the Washington Experimental Mathematics Lab for

their contributions to my numerical experiments and discussion in generalizing to

higher moments.

2. Background and history

We first give a summary of previous related results in the geometry of num-

bers, followed by background on translation surfaces, Veech groups, and the q-

geometric Euler totient function.

2.1. Geometry of numbers. We will first focus on the mean and variance of the

primitive Siegel transform, which is a special case of the Siegel–Veech transform

defined in the previous section. First we set up some notation and definitions,

then state the theorems of Siegel, Rogers, and Schmidt computing the mean and

variance of the primitive Siegel transform.

Consider f 2 Bc.Rd /. We aim to understand f evaluated on visible lattice

points in R
d , where a point v D .v1; : : : ; vd /T 2 Z

d is primitive or visible if

gcd.v1; : : : ; vd / D 1. We denote the set of primitive vector points by Z
d
prim, which

one can show Z
d
prim D SL.d;Z/ �

�

1
0

�

. Define Xd D SL.d;R/= SL.d;Z/. By

abuse of notation, for an equivalence class g D Œg� 2 Xd , we define the primitive

Siegel transform by

Of .g/ D
X

v2Zd
prim

f .gv/:
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In 1945, Siegel [15], Sections 5–6, showed

Z

Xd

Of .g/ d�.g/ D
1

�.d/

Z

Rd

f .x/ dx (4)

where the standard Lebesgue measure onR
d is dx, � is the Riemann zeta function,

and � is probability Haar measure on Xd .

In order to understand higher moments of Of , we split into the cases where

d D 2 and d > 2. We address the latter case first.

For understanding higher moments of Of , C. A. Rogers’ 1955 paper [13],

Theorem 5 solved the case for Of k with d > 2 and k < d . For simplicity, we

will only consider the case k D 2 of Rogers’ result. Recall for f 2 Bc.Rd /, and

defining h 2 Bc.R2 � R
2/ by h.x; y/ D f .x/f .y/ we have

X

v1;v22Zd
prim

h.gv1; gv2/ D
X

v1;v22Zd
prim

f .gv1/f .gv2/ D
h

X

v2Zd
prim

f .gv/
i2

D . Of /2:

Rogers showed that for f 2 Bc.Rd /, and h.x; y/ D f .x/f .y/, the second

moment of f is given by

Z

Xd

. Of /2.g/ d�.g/ D

Z

Xd

X

v1;v22Zd
prim

h.gv1; gv2/ d�.g/

D
1

�.d/2

Z

Rd �Rd

h.x; y/ dx dy C
1

�.d/

Z

Rd

Œh.x; x/ C h.x; �x/� dx:

(5)

For a modern proof of (5), see Section 4 of [3].

For k � d > 2 and f 2 Bc.Rd /, the function Of k is not integrable (Proposi-

tion 7.1 of [9]). However when d D 2 we have Of is bounded on X2, and thus Of k

integrable for any k � 1. So we now exclusively study the case d D 2. Rogers

had a mistake in his paper claiming (5) held for d D 2, which we can see does not

work by setting h0 to be the characteristic function of the set given by

¹.v1; v2/W max.jv1j; jv2j/ � R ; det.v1v2/ … Z º:

Applying (5) to h0, the left hand side of (5) will be identically zero as for any

v1; v2 2 Z
2
prim

det.gv1 gv2/ D det.g/ det.v1v2/ 2 Z;

and the right hand side will be nonzero as the vectors with integer determinant are

a Lebesgue measure zero subset of R2 � R
2.

In correction to Rogers, Schmidt addressed the case where d D 2 (see [14],

Section 6).
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Theorem 2.1. Let f 2 Bc.R2 � R
2/: Then

Z

Y3

Of d�.g/ D
X

n2Zn¹0º

'.n/

�.2/

Z

SL.2;R/

f .gJn/ d� C
1

�.2/

Z

R2

f .x; �x/ C f .x; x/ dx (6)

where ' is the standard Euler totient function.

Note this formula does not look exactly like the formula in Schmidt [14] as we

have a different normalization of the Haar measure �. Note also that Theorem 2.1

is a special case of Theorem 1.5.

2.2. Translation surfaces. A translation surface is a surface formed by taking

a finite number of polygons in the plane and gluing opposite sides by translation,

where surfaces are equivalent up to cutting and pasting of these polygons via

translation. Equivalently a translation surface is a closed Riemann surface X with

a nonzero holomorphic 1-form !. This section will focus on examples relevant to

this paper. For more background see [11], [8], and [5].

Given A 2 SL.2;R/ and .X; !/ a translation surface, we produce a new

translation surface A � .X; !/, which is the surface with charts of .X; !/ composed

with A acting linearly on R
2. The Veech group is the stabilizer subgroup of this

action

SL.X; !/
def
D ¹A 2 SL.2;R/W A � .X; !/ D .X; !/º:

The Veech group is always discrete and in fact trivial for almost every translation

surface [6].

Saddle connections on a translation surface .X; !/ are geodesics which start

and end at zeros of the 1-form ! on X . For each saddle connection  , there is

an associated holonomy vector v D
R

 ! 2 R
2 which records the length and

direction of  .

2.3. Hecke triangle groups as Veech groups. We will consider surfaces whose

Veech group is given by SL.X; !/ D Hq for q � 3. When q D 3, H3 D SL.2;Z/

which is the Veech group for the square torus. In general given a translation surface

.X; !/ where we glue two regular .2n C 1/-gons and then identify opposite sides,

Veech showed in [16] that SL.X; !/ D H2nC1. For even Hecke triangle groups,

Bouw and Möller [4] followed by a constructive proof of Hooper [7] were able

to show that there exists a translation surface .X; !/ with SL.X; !/ conjugate to

an index 2 subgroup of H2n, but there is no translation surface with Veech group

containing H2n.

Notice the set of holonomy vectors for the square torus are

Z
2
prim D SL.2;Z/ �

�

1

0

�

D H3 �

�

1

0

�

:
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The characterization is not as clean for other surfaces, but if .X; !/ is a translation

surface with SL.X; !/ a lattice, then the set of holonomy vectors will always

be given as a finite union of SL.X; !/-orbits [16], 5th paragraph, Section 3.

By studying the Siegel–Veech transform over Vq we will be able to understand

asymptotic density of saddle connections for a class of translation surfaces [17].

2.4. Geometric Euler totient function. Recall we define the q-geometric Euler

totient function by

'q.b/ D #

²

1 � a � �q jbj W

�

a

b

�

2 Vq

³

;

where '3 D ' is the standard Euler totient function. Since Vq is discrete and thus

'q is finite and well defined. Though 'q generalizes the standard Euler totient

function, 'q does not agree with the more standard Euler totient function defined

for the ring of integers over a number field in terms of the product formula over

prime ideals.

Following [10], we can define a greatest common q-divisor denoted .a; b/q

for a; b 2 ZŒ�q� using a Euclidean pseudo-algorithm. This greatest common q-

divisor has many similar properties to the gcd function, including for any t ¤ 0,

.ta; tb/q D t � .a; b/q: (7)

With this definition we also have the following useful characterization of elements

of Hq as proved in Proposition 3.7 of [10].

Proposition 2.2. A matrix Œ a c
b d � 2 SL.2;ZŒ�q�/ is in Hq if and only if .a; b/q D

.c; d/q D 1. In fact if .a; b/q < 1 or jbj < 1, then .a; b/T cannot be a column of

a matrix in Hq.

3. Orbits and integrals

The goal of this section is to prove Theorem 1.5.

Let f 2 Bc.R2 � R
2/, and define Of as in Definition 1.1. Consider the map

f 7�!

Z

Yq

Ofd�:

This mapping is a positive linear functional which is SL.2;R/- invariant, where

SL.2;R/ acts diagonally by g � .v1; v2/ D .gv1; gv2/ for .v1; v2/ 2 R
2 � R

2.

Hence by the Riesz representation theorem, there exists a measure � so that
Z

R2�R2

f d� D

Z

Yq

Of d� for any f 2 Bc.R2 � R
2/:



64 S. Fairchild

Since � is SL.2;R/-invariant, we can write � as a combination of measures on

SL.2;R/ orbits of R2 �R
2. So to understand � we need to understand our integral

over SL.2;R/ orbits.

The outline of the proof is as follows. In Section 3.1 we split R2 � R
2 into

SL.2;R/ orbits under the diagonal action and find the possible SL.2;R/-invariant

measures on these subsets. In Section 3.2 we will reduce the uncountable num-

ber of orbits which occur in our setting to two linearly dependent orbits, and a

countable number of linearly independent orbits. After setting up notation in Sec-

tion 3.3, in Section 3.4 we reduce the linearly dependent case to Theorem 1.2,

finally addressing the linearly independent case in Section 3.5.

3.1. Decomposition into orbits. Let Rn
0 D R

n n ¹0º, similarly Z
n
0 D Z

n n ¹0º,

and Z0Œ�q� D ZŒ�q � n ¹0º.

Lemma 3.1. The following decomposes R2 � R
2 into disjoint SL.2;R/ orbits:

R
2 � R

2 D
�

G

n2R0

Dn

�

t
�

G

t2R0

LDt

�

t H t V t ¹0º;

where we have the linearly independent determinants,

Dn D ¹.v; w/ 2 R
2 � R

2W det.v w/ D nº;

the linearly dependent subsets

LDt D ¹.v; tv/W v 2 R
2
0º;

and two special cases of linearly dependent vectors: horizontal and vertical

H D ¹.v; 0/W v 2 R
2
0º V D ¹.0; v/W v 2 R

2
0º:

Proof. We will realize each subset as an orbit of SL.2;R/ under the diagonal

action on R
2 �R

2. Since g � ¹0º D 0 for all g 2 SL.2;R/, the point ¹0º is an entire

orbit.

Now notice that g �
�

1
0

�

D R
2
0. Using this fact, for any t 2 R0,

SL.2;R/ �

��

1

0

�

;

�

t

0

��

D ¹.v; tv/W v 2 R
2
0º D LDt :

Similarly for H and V , it suffices to see that they are both given by

H D SL.2;R/ �

��

1

0

�

;

�

0

0

��

V D SL.2;R/ �

��

0

0

�

;

�

1

0

��

:

Finally, for n ¤ 0, since nR2
0 D R

2
0,

SL.2;R/ �

��

1

0

�

;

�

0

n

��

D ¹.v; nu/W det.v u/ D 1º D Dn:



A higher moment formula 65

Thus we have shown each of these subsets is an SL.2;R/ orbit. Finally, since

every pair of elements in R
2 is either linearly independent and thus have a nonzero

determinant or linearly dependent and thus are scalar multiples we conclude every

element .v1; v2/ 2 R
2 � R

2 is contained in one of the given sets. Thus we have a

decomposition of R2 � R
2 into SL.2;R/ orbits. �

The last task of this subsection is to determine the possible measures on each

of our subsets. We will freely use the fact that Haar measure is unique up to

scaling. In this section we will fix a particular scaling of Haar measure for each

measure, and then by taking a linear combination of these different measures we

can obtain �.

On ¹0º, there is only one probability measure given by ı0, which is trivially

SL.2;R/ invariant.

On H; V , and LDt for t 2 R0, we have a copy of R2
0. Notice Lebesgue measure

m2 on R
2 is SL.2;R/-invariant. So we will fix the standard Lebesgue measure

giving the unit square Œ0; 1�2 volume 1 on each of the subsets H , V , and LDt for

t 2 R0. Since ¹.0; 0/º is a measure zero subset, without loss of generality we can

write integrals with respect to m2 over all of R2. To see this measure is the unique

SL.2;R/-invariant measure (up to scaling), consider the induced Haar measure

under the quotient of SL.2;R/=N Š R
2
0, where N D

®�

1 t
0 1

�

W t 2 R
¯

.

To find a Haar measure on Dn, we will first find a Haar measure on SL.2;R/,

then we will show how this can be viewed as a Haar measure on Dn. To construct

a Haar measure on SL.2;R/, consider SL.2;R/ as a subset of .R4; m4/ where mk

is Lebesgue measure on R
k . As a result, for measurable A � SL.2;R/, we can

define the cone measure

�.A/ D m4.C.A// where C.A/ D ¹˛gW ˛ 2 .0; 1�; g 2 Aº:

Under matrix multiplication, m4 is SL.2;R/ invariant. Hence � is an SL.2;R/

invariant measure on SL.2;R/. Under this measure, the set of matrices with a zero

in the top left corner is a null set. Thus we can write the measure d� D da db ds

under the coordinates
�

1 0

s 1

�

�

�

a b

0 a�1

�

:

With this normalization, in the quotient by SL.2;Z/, we can compute the push-

forward defined in terms of the projection map � and fundamental domain F [1]

.�/�.Y3/ D �.��1.Y3/ \ F / D
�2

6
D �.2/:

With this fixed normalization, � gives the Poincaré volume. This means that we

in fact have

.�/�.Yq/ D c.q/:
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Now having fixed Haar measure on D1, for Dn with n ¤ 0, we identify Dn

with D1 D SL.2;R/ as Dn D D1Jn. Since we can write Dn D D1Jn, we choose

the coordinates on Dn to be the same as those on D1. In this manner, we have �

is the Haar measure we will choose as our normalization of Haar measure on Dn.

We’ve now decomposed R
2 � R

2 into SL.2;R/ orbits, and fixed a normaliza-

tion of Haar measure on each of these orbits.

Since Haar measure is unique up to scaling, we can now write our SL.2;R/

invariant measure on R
4 as

� D aı0 C
X

t2R[¹1º

bt m2 C
X

n2R0

cn�

for some constants a; bt ; cn. where b1 corresponds to V and b0 corresponds to H .

3.2. Reduction to visible determinants and removal of zero term. We have

shown
Z

Yq

Of d� D

Z

R2�R2

f d�

D af .0; 0/ C

Z

t2R[¹1º

bt

Z

R2

f .x; tx/ dx C

Z

n2R0

cn

Z

SL.2;R/

f .gJn/ d�;

(8)

where we define .x; 1x/ D .0; x/.

The purpose of this section is to prove the following.

Lemma 3.2. In (8), a D 0, t 2 ¹˙1º, and n 2 Nq.

Proof. To see that t 2 ¹˙1º, consider the function f supported on LDt for

t 2 R [ ¹1º where LD0 D H and LD1 D V . That is, for some large R and

B.0; R/ denoting the Euclidean ball in R
4, let

fR;t .x; y/ D �
B.0;R/n¹0º

.x; y/�
LDt

.x; y/ for x; y 2 R
2:

On the left hand side of (8), notice

OfR;t .Œg�/ D
X

v1;v22Vq

fR;t .gv1; gv2/

D #¹v1; v2 2 Vq \ B.0; R/W gv1 D tgv2º

D #¹v1; v2 2 Vq \ B.0; R/W v1 D tv2º:

If Œ a
c � 2 Vq by Proposition 2.2, we have .a; c/q D 1, and thus (7), .ta; tc/q D t .
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So by Proposition 2.2 Œ ta
tc � cannot be an element of Vq unless t D ˙1. Or more

geometrically since Vq are the set of vectors visible from the origin, tv is never

visible from the origin unless t D ˙1. Hence we’ve shown

OfR;t D

´

0 if t ¤ ˙1;

#¹v 2 Vq \ B.0; R/º if t D ˙1:

On the right hand side of (8), the only nonzero term will be the coefficient of bt

for if x 2 B
�

0; R
t

�

, then tx 2 B.0; R/. Thus,
Z

R2

fR;t .x; tx/ dx � m2

�

BR2

�

0;
R

t

��

> 0:

But when t ¤ ˙1, the left hand side of (8) is zero since OfR D 0. Hence bt D 0

for t ¤ ˙1.

We now want to show that the set of possible determinants is Nq . For the

determinant n loci (n ¤ 0), we similarly define

fR;n.x; y/ D �
B.0;R/

.x; y/�
Dn

.x; y/ for x; y 2 R
2:

We compute

OfR;n.Œg�/ D
X

v1;v12Vq

fR;n.gv1; gv1/

D #¹v1; v2 2 Vq \ B.0; R/W det.v1 v2/ D det.gv1; gv2/ D nº:

Since Nq is the set of determinants that can arise as the determinant of two

elements in Vq, we can write

OfR;n D

´

#¹v1; v2 2 Vq \ B.0; R/W det.v1v2/ D nº if n 2 Nq ;

0 if n … Nq :

On the right hand side of (8), the only nonzero term corresponds to cn, and
Z

SL.2;R/

fR.gJn/ d� > 0

since Dn \B.0; R/ has positive cone measure. In order to match the left hand side

of (8) for OfR;n, we conclude cn D 0 for all n … Nq .

We conclude this proof by showing a D 0. To see this, consider the character-

istic function over the set ¹.0; 0/º � R
2 �R

2. That is set f0.x; y/ D �
¹.0;0/º

.x; y/.

Then on the right hand side of (8), we have f0.0; 0/ D 1, all other integrals are zero

since ¹.0; 0/º is a measure zero subset of R2, and cannot show up in SL.2;R/Jn

for any n. Thus the right hand side of (8) for f0 is a. On the left hand side of (8),

.0; 0/ is not a pair of visible vectors since .0; 0/ cannot be the first column of a

matrix in Hq, so the left hand side is zero. Thus we conclude a D 0. �
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To summarize, in this section we reduced our equation (8) to

Corollary 3.3.

Z

Yq

Of d� D

Z

R
2

b1f .x; x/ C b�1f .x; �x/ dx C
X

n2Nq

cn

Z

SL.2;R/

f .gJn/ d�:

3.3. Notation and division into smaller lemmas. In the proceeding sections,

we will compute the values for b1; b�1, and cn for n 2 Nq . In order to do this,

we introduce the following notation: for D a discrete subset of .R2/k which is

Vq-invariant under the diagonal action, define fDW Yq ! R by

fD.Œg�/ D
X

v2Dk

f .gv/

In a similar manner define the functional TDW Bc..R2/k/ ! R by

TD.f / D

Z

Yq

fD.Œg�/ d�.Œg�/:

We now define the following sets:

DV
n D Dn \ .Vq � Vq/ D ¹.v; w/ 2 Vq � Vq W det.v w/ D nº;

LDV
˙1 D ¹.v; ˙v/W v 2 Vqº:

Then we can rewrite the left hand side of Corollary 3.3 as

Z

Yq

h

f
LDV

1
C f

LDV
�1

C
X

n2Nq

fDV
n

i

d�

D TLDV
1

.f / C TLDV
�1

.f / C
X

n2Nq

TDV
n

.f /:

Thus finding the coefficients in Corollary 3.3 is reduced to finding coefficients

individually in each of these equations:

TLD˙1
.f / D b˙1

Z

R2

f .x; ˙x/ dx; (9)

and for each n 2 Nq

TDV
n

.f / D cn

Z

SL.2;R/

f .gJn/ d�: (10)
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3.4. Reducing to Siegel–Veech formula in linearly dependent case. In this

section, we will prove that the coefficients b1 and b�1 in (9) are given by

b1 D b�1 D 1
c.q/

by reducing to the Siegel–Veech Primitive Integral Formula

(Theorem 1.2). That is, we will prove the following:

Lemma 3.4. For any f 2 Bc.R2 � R
2/,

TLDV
˙1

.f / D
1

c.q/

Z

R2

f .v; ˙v/ dv

where c.q/ is the Poincaré volume of the unit tangent bundle over H2=Hq.

Proof. Given f 2 Bc.R2 � R
2/, define Nf 2 Bc.R2/ by

Nf˙.u/ D f .u; ˙u/:

So we now compute

TLDV
˙1

.f / D

Z

Yq

X

v2Vq

f .gu; ˙gu/ d�.Œg�/

D

Z

Yq

X

u2Vq

Nf˙.gu/ d�.Œg�/

D
1

c.q/

Z

R2

Nf˙.x/ dx (by Theorem 1.2)

D
1

c.q/

Z

R2

f .x; ˙x/ dx:

This concludes the proof of the lemma. �

We’ve now shown b˙1 D c.q/�1, in the next section, we address the coeffi-

cients cn for n 2 Nq .

3.5. Coefficients on loci with fixed determinant. The goal of this section is to

prove that each cn D c.q/�1'q.n/ for n 2 Nq . We will first decompose DV
n into

Hq orbits under the diagonal action, showing there are 'q.n/ orbits which each

contribute equally to TDV
n

. After showing this, we will find the value over a single

orbit.
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Lemma 3.5. Let n 2 Z0Œ�q �. There exists v1; v2 2 Vq with det.v1v2/ D n if and

only if there exists m 2 ZŒ�q� with 0 � m < �qjnj and Œ m
n � 2 Vq.

In particular, the equality in (1) for Nq holds.

Proof. First, suppose there exists m 2 ZŒ�q� with 0 � m < �q jnj and Œ m
n � 2 Vq.

Set v1 D
�

1
0

�

, which is in Vq since T v1 D v1, and set v2 D Œ m
n �. Then v1; v2 2 Vq

with determinant n, so n 2 Nq .

Conversely suppose v1; v2 2 Vq with det.v1v2/ D n. Let g 2 Hq so that

ge1 D v1. Then,

g�1Œv1 v2� D Œe1 g�1v2�:

Since the determinant is n,

g�1v2 D

�

`

n

�

for some ` 2 ZŒ�q �. Applying the matrix T to the left j times for some j 2 Z

gives

T j g�1Œv1 v2� D Œe1 T j g�1v2�

where

T j g�1v2 D

�

` C jn�q

n

�

:

Thus we can find j 2 Z so that m D ` C jn�q satisfies

0 � m < �qjnj;

and the proof is complete. �

Lemma 3.6. For n 2 Nq The subset DV
n is the union of 'q.n/ different orbits

DV
n D

G

0�m<jnj�q

.m;n/T 2Vq

E.m/
n ;

where

E.m/
n D

²

 �

�

1 m

0 n

�

W  2 Hq

³

:

Proof. We will first show that the decomposition of every element in DV
n can be

written as an element E
.m/
n for some m.

Let
�

a b

c d

�

2 DV
n

From the proof of Lemma 3.5, there exists a matrix h 2 Hq with

h

�

a b

c d

�

D

�

1 m

0 n

�

for 0 � m < �qjnj:
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Since
�

b
d

�

2 Vq , we also have Œ m
n � D h

�

b
d

�

2 Vq . We have now shown every

element in DV
n is in E

.m/
n for some m with 0 � m < �q jnj and Œ m

n � 2 Vq.

To see that we have no duplicate representatives of our orbits, let 0 < m1; m2 �

�q jnj with m1 ¤ m2 and Œ m1
n �; Œ m2

n � 2 Vq . Without loss of generality suppose

m2 > m1. If the representatives

�

1 m1

0 n

�

and

�

1 m2

0 n

�

were in the same Hq orbit, there would exist an element
�

a b
c d

�

2 Hq such that

�

a b

c d

��

1 m1

0 n

�

D

�

1 m2

0 n

�

:

This implies a D 1; c D 0; d D 1; and b D m2�m1

n
: Since 0 < m2 �m1 < �qn, we

have 0 < b < �q . This is a parabolic element with upper right entry smaller than

the generating matrix T , and thus not in Hq. Therefore we conclude that E
.m/
n are

'q.n/ distinct Hq orbits whose union is all of DV
n . �

Lemma 3.7. For a fixed m with 0 � m < �q jnj and Œ m
n � 2 Vq,

T
E

.m/
n

.f / D
1

c.q/

Z

SL.2;R/

f .gJn/ d�2:

Proof. Let � W SL.2;R/ ! Yq be the projection map g 7! Œg�. Recall we normalize

� so that ��.�/.Yq/ D c.q/. Hence ��

�

c.q/�1�
�

D �. Moreover, to push a

function from SL.2;R/ to a function on X2, we have to sum over the orbits Hq.

Thus,

1

c.q/

Z

SL.2;R/

f

�

g

�

1 m

0 n

��

d� D

Z

Yq

X

2Hq

f

�

g �  �

�

1 m

0 n

��

d� D T
E

.m/
n

.f /:

For the last part of the lemma, we compute the following:

1

c.q/

Z

SL.2;R/

f

�

g

�

1 m

0 n

��

d�

D
1

c.q/

Z

SL.2;R/

f

�

g

�

1 1�m
n

0 1

��

1 m

0 n

��

d�

�

g

�

1 1�m
n

0 1

��

D
1

c.q/

Z

SL.2;R/

f

�

g

�

1 1

0 n

��

d�.g/;
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where the last equality follows from the fact that SL.2;R/ is a unimodular group,

so the Haar measure � is both left and right invariant under the action of SL.2;R/.

�

Lemma 3.7 shows that T
E

.m/
n

.f / is constant for with respect to m. Hence we

conclude

TDV
n

D
X

0�m<�q jnj

.m;n/T 2Vq

T
E

.m/
n

D
'q.n/

c.q/

Z

SL.2;R/

f .gJn/ d�.g/:

In conclusion, we’ve now shown that

TDV
n

D
'q.n/

c.q/

Z

SL.2;R/

f .gJn/ d� .g/

As well as

TLD˙1
D

1

c.q/

Z

R2

f .x; ˙x/ dx:

Putting these results together with Corollary 3.3, we have now shown Theo-

rem 1.5 holds.

4. Higher moments

We will prove Theorem 1.6 which is the generalization of Theorem 1.5 which

corresponds to higher moments of the classical Siegel–Veech Transform on R
2.

4.1. Decomposition into orbits. We first decompose .R2/k into SL.2;R/ orbits.

Given a point in .R2/k , either all the terms are linearly dependent, or there exist

two terms in the k-tuples which are linearly dependent.

Lemma 4.1. The following decomposes .R2/k into disjoint SL.2;R/ orbits:

.R2/k D
�

G

�

LD�

�

t
�

G

n;�;˛;ˇ

Dn;�;˛;ˇ

�

:

In the linearly dependent case,

LD� D ¹�xW x 2 R
2º

for � 2 R
k with first nonzero entry (if it exists) given by 1.
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In the linearly independent case,

Dn;�;˛;ˇ
def
D ¹.�x; ˛x C ˇy/W det.x y/ D nº;

where n 2 R0 is the determinant of the first nonzero vector with the first linearly

independent vector. For 0 � j < k we have � 2 R
j where the first nonzero entry

is 1 and ˛; ˇ 2 R
k�j where ˛ D .0; ˛2; : : : ; ˛k�j / and ˇ D .1; ˇ2; : : : ; ˇk�j /.

Proof. We first claim that LD� and Dn;�;˛;ˇ can be written as SL.2;R/ orbits.

Indeed since SL.2;R/ acts transitively and linearly by matrix multiplication on

R
2 n ¹0º we can write

SL.2;R/ � �

�

1

0

�

D LD� :

Similarly since SL.2;R/ acts transitively on determinant n subsets as proved in

Lemma 3.1 and linearly on R
2, we can write

SL.2;R/ �

�

�

�

1

0

�

; ˛

�

1

0

�

C ˇ

�

0

n

��

D Dn;�;˛;ˇ :

Next we show that the union of the orbits in fact covers all of .R2/k . To

do this consider a vector v D .v1; v2; : : : ; vk/ 2 .R2/k. If all vi D 0 then

v 2 LD0. Otherwise there is some first nonzero vi which we will call x. If

dim.span.v1; : : : ; vk// D 1, then every other element will be a linear multiple of

x. Hence v 2 LD� where � has first nonzero entry is 1 and all remaining entries

are real numbers.

If however dim.span.v1; : : : ; vk// D 2, then set y to be the first vector after

x which is linearly independent of x. For all vi which occur after y, vi can be

written as a linear combination of x and y, thus written as ˛ix C ˇiy for some

real numbers. Since LD� and Dn;�;˛;ˇ are subsets of .R2/k we conclude that

.R2/k D
�

[

�

LD�

�

[
�

[

n;�;˛;ˇ

Dn;�;˛;ˇ

�

:

Finally we finish the proof by proving each of these orbits is distinct. Since all

pairs of entries in LD� have determinant 0 and SL.2;R/ preserves determinants,

we know that the LD� and Dn;�;˛;ˇ must be disjoint.

Now suppose that LD� D LD�0 . Since the first nonzero vector must have a

coefficient of 1, if �j D 1 is the first nonzero element, then �0
j D 1 as well. Now

every vector after the first vector is linearly dependent on the first nonzero vector,

so there is a unique coefficient and � D �0.

Similarly, since we choose a coefficient of 1 for the first nonzero vector, and a

coefficient of 1 for the first vector which is linearly independent, we have a unique

representation of the linear combinations ˛ix C ˇiy. Hence the Dn;�;˛;ˇ are also

all disjoint. This completes the proof. �
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4.2. Reduction to smaller lemmas. Using the notation of Section 3.3 we will

rewrite
R

Yq

Of d�, reducing the proof of Theorem 1.6 to smaller lemmas.

Define

DV
n;�;˛;ˇ D Dn;�;˛;ˇ \ .Vq/k

and

LDV
� D LD� \.Vq/k:

Moreover for 1 � m � jnj with .m; n/T 2 Vq define

E
.m/

n;�;˛;ˇ
D Hq �

�

�

�

1

0

�

; Jm;n

�

˛

ˇ

��

where
� ˛

ˇ

�

is a 2 � .k � j / matrix and

Jn;m D

�

1 m

0 n

�

corresponds to Jn D Jn;1 in the k D 2 case. By Lemma 3.6, we can write

Dn;�;˛;ˇ D
G

0�m<�q jnj

.m;n/T 2Vq

E
.m/

n;�;˛;ˇ
:

Lemma 4.2. We have

Z

Yq

Of d� D
X

�

TLDV
�

C
X

n2Nq

X

0�m<�q jnj

.m;n/T 2Vq

X

�;˛;ˇ

T
E

.m/

n;�;˛;ˇ

;

where in the linearly dependent case � 2 R
k, where the first element of � must

be 1, and any remaining elements of � must be ˙1.

In the linearly independent case, given n 2 Nq , there exists a unique 0 �

m < �q jnj so that the two vectors lie in the Hq orbit of Jm;n Given n and m,

we have � 2 R
j with first entry 1 and all remaining elements ˙1. Moreover

˛ D .0; ˛2; : : : ; ˛k�j / and ˇ D .1; ˇ2; : : : ; ˇk�j / where ˛ and ˇ satisfy (3) for

each 2 � i � k � j .

Proof. By Lemma 4.1, given v 2 .Vq/k, we must have v 2 LDV
� or DV

n;�;˛;ˇ
for

some � or .n; �; ˛; ˇ/.

If v 2 LDV
� , first note that the zero vector is not in Vq . Hence the first entry in

� must be 1. Since the vectors are in Vq and must be constant multiples of the first

vector, all other vectors must be ˙v1. Thus � must have the specified form.
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Moving onto the linearly independent case, if v 2 DV
n;�;˛;ˇ

, then we can write

v D .�v1; ˛v1 C ˇvj / for some 1 < j � k where vj is the first vector after v1

which is not co-linear with v1. Since all the vectors in �v1 must be in Vq, � must

have first entry 1 and all other entries ˙1.

Setting det.v1 vj / D n by the definition of Nq we have n 2 Nq .

Finally we need to determine the criterion for ˛ D .0; ˛2; : : : ; ˛k�j / and

ˇ D .1; ˇ2; : : : ; ˇk�j /. So that for all 1 � i � k � j we have ˛iv1 C ˇivj 2 Vq .

By Lemma 3.6, there exists  2 Hq and 0 � m < �q jnj with .m; n/T 2 Vq so

that

 � .v1jvj / D

�

1 m

0 n

�

:

So we have

 � .˛iv1 C ˇivj / D

�

˛i C mˇi

nˇi

�

:

Since Hq acts transitively on Vq, ˛iv1 C ˇivj 2 Vq is equivalent to
�

1 m

0 n

� �

˛i

ˇi

�

D

�

˛i C mˇi

nˇi

�

2 Vq :

Multiplying by the inverse of Jn;m we see ˛ and ˇ must satisfy (3).

So for each n, there exists m with 0 � m < �qjnj so that .m; n/T 2 Vq. Given

this m, we already have the requirement for �, and the ˛ and ˇ must satisfy (3).

This concludes the proof. �

Now that we have decomposed
R

Yq

Of d�, the higher moments case is complete

once we prove the following two lemmas.

Lemma 4.3. Given the restrictions of � in Lemma 4.2,

T
LDV

�
D

1

c.q/

Z

R2

f .�v/ dv:

Proof. The proof strategy is identical to the strategy in Lemma 3.4. �

Lemma 4.4. Given the restrictions of n; m; �; ˛; ˇ in Lemma 4.2’

T
E

.m/

n;�;˛;ˇ

D
1

c.q/

Z

SL.2;R/

f

�

�g

�

1

0

�

; gJn;m

�

˛

ˇ

��

d�.g/:

Proof. This proof strategy is identical to the proof in Lemma 3.7. Note we cannot

use the change of variables to get equal contribution for each T
E

.m/
n

as in the case of

Lemma 3.7 because the criterion for which ˛ and ˇ can occur depends on m. �
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Combining Lemma 4.2 with Lemma 4.3 and Lemma 4.4, we have now con-

cluded the proof of Theorem 1.6.

5. Numerical evidence

This section discusses how to interpret Theorem 1.6 in terms of a counting prob-

lem. We will focus on the case k D 2, that is Theorem 1.5. The following propo-

sition is from Section 16 of [17].

Proposition 5.1. For B.0; R/ the ball of radius R in R
2,

lim
R!1

#¹Vq \ B.0; R/º

�R2
D

1

c.q/
:

We will use the notation

#¹Vq \ B.0; R/º �
�R2

c.q/
;

where

f .R/ � g.R/ () lim
R!1

f .R/=g.R/ D 1:

In the case q D 3 this can be interpreted as the probability a randomly chosen

integer vector is primitive is 1
�.2/

. See Figure 1 and Figure 2 for visualization of

the points of Vq for q D 3; 4; 5.

To construct the set Vq, we used a Farey tree construction in the first quad-

rant and then used the 4-fold symmetry of Vq, that is .a; b/ 2 Vq implies

.a; �b/; .�a; b/; .�a; �b/ 2 Vq. The generalization of the Farey tree construc-

tion as found in [10] begins with the vectors

�

1

0

�

D

�

1 0

0 1

�

�

�

1

0

�

2 Vq and

�

0

1

�

D

�

0 �1

1 0

�

�

�

1

0

�

2 Vq:

Then for i D 2; : : : ; q � 1 we add the vectors

�

ai

bi

�

D

�

�qai�1 � ai�2

�qbi�1 � bi�2

�

;

where
�

a1

b1

�

D

�

1

0

�

and

�

a0

b0

�

D

�

0

�1

�

:

Iterating this step between each pair of adjacent vectors we obtain the elements

of Vq.
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Figure 1. For R D 100, the left hand plot includes all integer pairs .a; b/ and the right hand

plot includes all primitive integers pairs .a; b/ with gcd.a; b/ D 1 where a2 C b2 � 1002.

This demonstrated the expectations that for large R, the number of points on the left should

be approximately �1002, but on the right the number of points should be �1002

�.2/
.

Figure 2. On the left is a plot of the vectors V4, and on the right is a plot of the vectors V5.

These plots were generated using the Farey Tree construction.
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Now that we’ve generated plots for Vq , we can now count pairs of elements

in Vq corresponding to the square of the Siegel–Veech transform. Specifically for

f D �
B
R4 .0;R/

the characteristic function of the Euclidean ball in R
4, we want to

understand TDV
n

.f / which will asymptotically grow like the function

Countq.R; n/
def
D #

²�

a b

c d

�

2 DV
n W a2 C b2 C c2 C d 2 � R2

³

:

Theorem 1.5 states that

Countq.R; n/
Z

SL.2;R/

f .gJn/ d�

�
'q.n/

c.q/
;

which is not useful for understanding data without more knowledge about the

integral
R

SL.2;R/ f .gJn/ d�.

Newman [12] showed that Count3.R; 1/ � 6R2. In particular combining with

Theorem 1.5, we obtain
Z

SL.2;R/

f .gJ1/ d� � �2R2:

Next using the result of Schmidt [14], we can extend this result to the fact that

when q D 3,
Z

SL.2;R/

f .gJn/ d� �
�2

n
R2:

Thus we deduce that for any q � 3,

Countq.R; n/

R2
�

1

c.q/
� 'q.n/ �

�2

n
D

'q.n/ � �2

n � c.q/
:

Indeed in our numerical experiments we obtained the desired results. In Fig-

ure 3, we show the convergence for k D 1; 2; 3; 4. Recall DV
n can be decomposed

into 'q.n/ orbits E
.m/
n where 0 � m < �q jnj, and on each orbit we were able to

verify we had density asymptotic to �2

n�c.q/
as desired and graphed in Figure 4. Fi-

nally in Figure 5, we provide a visualization for pairs of elements in Vq for q D 3

and q D 5.
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Figure 3. For q D 3 this is a plot of R on the horizontal axis, and a plot of Count.R;k/

R2 on the

vertical axis. Notice that k D 2 and k D 4 both converge to 3 since 6'.4/
4

D 6'.2/
2

D 3.

Figure 4. For q D 3, a plot of R on the horizontal axis, and a plot of Count.R;n;1/

R2 on the

vertical axis, where Count.R; n; 1/ is number of elements within the ball of radius R, which

are in the orbit SL.2;Z/ � Jn.
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Figure 5. For each element .a; b/ in Vq , we can visualize these points by considering a=b,

which for simplicity we will consider the pairs with a=b 2 Œ0; 1�. These pictures plot the

points in DV
k

by placing a point if the point a=b on the x-axis and the point c=d on the y-

axis have the corresponding pairs .a; b/ and .b; c/ in DV
k

. On the left are pairs of primitive

vectors, and on the right are pairs of vectors in V5 where in the legend u D �, the golden

ratio.
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