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Acylindrical hyperbolicity
of groups acting on quasi-median graphs
and equations in graph products

Motiejus Valiunas!

Abstract. In this paper we study group actions on quasi-median graphs, or “CAT(0) prism
complexes,” generalising the notion of CAT(0) cube complexes. We consider hyperplanes
in a quasi-median graph X and define the contact graph CX for these hyperplanes. We show
that CX is always quasi-isometric to a tree, generalising a result of Hagen [18], and that
under certain conditions a group action G ~, X induces an acylindrical action G ~, CX,
giving a quasi-median analogue of a result of Behrstock, Hagen and Sisto [5].

As an application, we exhibit an acylindrical action of a graph product on a quasi-tree,
generalising results of Kim and Koberda for right-angled Artin groups [20, 21]. We show
that for many graph products G, the action we exhibit is the “largest” acylindrical action of
G on a hyperbolic metric space. We use this to show that the graph products of equationally
noetherian groups over finite graphs of girth > 6 are equationally noetherian, generalising a
result of Sela [27].
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1. Introduction

Group actions on CAT(0) cube complexes occupy a central role in geometric
group theory. Such actions have been used to study many interesting classes of
groups, such as right-angled Artin and Coxeter groups, many small cancellation and
3-manifold groups, and even finitely presented infinite simple groups, constructed
by Burger and Mozes in [9]. Study of CAT(0) cube complexes is aided by their
rich combinatorial structure, introduced by Sageev in [26].

In the present paper we study quasi-median graphs, which can be viewed as a
generalisation of CAT(0) cube complexes; see Definition 2.1. In particular, one
may think of quasi-median graphs as “CAT(0) prism complexes,” consisting of
prisms—cartesian products of (possibly infinite dimensional) simplices—glued
together in a non-positively curved way. In his Ph.D. thesis [11], Genevois
introduced cubical-like combinatorial structure and geometry to study a wide
class of groups acting on quasi-median graphs, including graph products, certain
wreath products, and diagram products.

In particular, given a quasi-median graph X, we study hyperplanes in X : that s,
the equivalence classes of edges of X, under the equivalence relation generated by
letting two edges be equivalent if they induce a square or a triangle. Two hyperplanes
are said to intersect if two edges defining those hyperplanes are adjacent in a square,
and osculate if two edges defining those hyperplanes are adjacent but do not belong
to a square; see Definition 2.3. This allows us to define two other graphs related
to X, which turn out to be useful in the study of groups acting on X.

Definition 1.1. Let X be a quasi-median graph. We define the contact graph CX
and the crossing graph A X as follows. For the vertices, let V(CX) = V(AX) be
the set of hyperplanes of X. Two hyperplanes H, H' are then adjacent in AX if
and only if H and H’ intersect; hyperplanes H, H' are adjacent in CX if and only
if H and H’ either intersect or osculate.

For a CAT(0) cube complex X, Hagen has shown that the contact graph CX
is a quasi-tree—that is, it is quasi-isometric to a tree [18, Theorem 4.1]. Here we
generalise this result to quasi-median graphs.

Theorem A. For any quasi-median graph X, the contact graph CX is a quasi-
tree, and there exists a (91, 182)-quasi-isometry from a simplicial tree to CX. In
particular, there exists a universal constant § > 0 such that CX is §-hyperbolic for
any quasi-median graph X .

We prove Theorem A in Section 3.2.
In this paper we study acylindrical hyperbolicity of groups acting on quasi-
median graphs.
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Definition 1.2. Suppose a group G acts on a metric space (X, d) by isometries.
Such an action is said to be acylindrical if for every ¢ > 0, there exist constants
D¢, N, > 0 such that for all x, y € X withd(x, y) > D, the number of elements
g € G satisfying

d(x,x8)<e and d(y,y%) <e

is bounded above by N,. Moreover, an action G ~, X by isometries on a
hyperbolic metric space X is said to be non-elementary if orbits under this action
are unbounded and G is not virtually cyclic.

A group G is then said to be acylindrically hyperbolic if it possesses a non-
elementary acylindrical action on a hyperbolic metric space.

Acylindrically hyperbolic groups form a large family, including non-elementary
hyperbolic and relatively hyperbolic groups, mapping class groups of most surfaces,
and Out(F,) for n > 3 [25]. This family also includes “most” hierarchically
hyperbolic groups [5, Corollary 14.4], and in particular “most” groups G that
act properly and cocompactly on a CAT(0) cube complex with a “factor system”:
see [5]. The following result shows that, more generally, many groups acting on
quasi-median graphs are acylindrically hyperbolic.

In the following theorem, we say a group action G ~, X is special if there
are no two hyperplanes H, H' of X such that H and H' intersect but H¢ and H’
osculate for some g € G, and there is no hyperplane H that intersects or osculates
with H& # H for some g € G. We say a collection 8 of sets is uniformly finite if
there exists a constant D € IN such that each S € § has cardinality < D.

Theorem B. Let G be a group acting specially on a quasi-median graph X, and
suppose vertices in AX |G have uniformly finitely many neighbours.

(i) If AX is connected and AX /G has finitely many vertices, then the inclusion
AX — CX is a quasi-isometry.

(ii) If stabilisers of vertices under G ~, X are uniformly finite, then the induced
action G ~, CX is acylindrical. In particular, if the orbits under G ~, CX
are unbounded, then G is either virtually cyclic or acylindrically hyperbolic.

We prove part (i) of Theorem B in Section 3.1, and part (ii) in Section 4.

Note that a large class of examples of group actions on CAT(0) cube complexes
with a factor system comes from special actions [5, Corollaries 8.8 and 14.5].
Theorem B (ii) generalises this result to quasi-median graphs. We also show
that several other hierarchically hyperbolic space-like results on CAT(0) cube
complexes generalise to quasi-median graphs: for instance, existence of “hierarchy
paths,” see [5, Theorem A (2)] and Proposition 3.1.

The main application of Theorems A and B we give is to study graph products
of groups. In particular, let I' be a simplicial graph and let § = {G, | v € V(I')}
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be a collection of non-trivial groups. The graph product T'G of the groups G, over
I" is defined as the group

s = (ve;/k(I‘) Gv)/«gglgz;lgvgw | gv € Gy, guw € Gy, (v,w) € E(I'))).

For example, for a complete graph I' we have I'G = [, ¢y ) Gy, While for discrete
I' we have I'G§ = *,cy(r) Gy. The applicability of the results above to graph
products follows from the following result of Genevois.

Theorem 1.3 (Genevois [11, Propositions 8.2 and 8.11]). Let T" be a simplicial
graph, let § = {G, | v € V(I')} be a collection of non-trivial groups, and let
S = Uyery Gv \ {1} € T'S. Then the Cayley graph X of I'G with respect to S is
quasi-median. Moreover, the action of I'G on X is free on vertices and special.

Moreover, if 'S and X are as in Theorem 1.3, then, as noted before [11,
Lemma 8.8], the hyperplanes of X are of the form H$ for some g € I'G and
for a unique v € V(I'), where H, is the hyperplane dual to the clique spanned by
G, <T'G = V(X) (meaning H, is dual to any edge in that clique). Thus, vertices
of AX /TG are of the form HIY forv e V(T). It follows from [11, Lemma 8.12]
that HY 9 and HY are adjacent in AX/TI'G if and only if ¥ and v are adjacent
in I', and so we may deduce the following result.

Lemma 1.4 (Genevois [11]). The graph AX /TS is isomorphic to T'.

An important subclass of graph products are right-angled Artin groups (RAAGS):
indeed, if G, =~ Z then I'G is the RAAG associated to I". In this case, a vertex
v € V(I') is usually identified with a generator of G,. In [20] Kim and Koberda
constructed the extension graph I'¢ of a RAAG G = I'G as a graph with vertex set
V(¢ ={v8 € G| geG,ve V(I)}, where g and hY are adjacent in '° if and
only if they commute as elements of G. This graph turns out to be the same as the
crossing graph AX of the Cayley graph X defined in Theorem 1.3.

In fact, Kim and Koberda showed that, given that | VV(I")| > 2 and both I" and its
complement I'C are connected, I'¢ is quasi-isometric to a tree [20] and the action
of G on I'® by conjugation is non-elementary acylindrical [21]. In this paper we
generalise these results to arbitrary graph products; this follows as a special case
of Theorems A and B. As a special case, we recover hyperbolicity of the extension
graph I'® and acylindricity of the action I'G ~, "¢, providing an alternative (shorter
and more geometric) argument to the ones presented in [20, 21]. In the following
corollary, a graph I is said to have bounded degree if there exists a constant D € IN
such that each vertex of I" has degree < D.
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Corollary C. Let I' be a simplicial graph, let § = {G, | v € V(I")} be a collection
of non-trivial groups, and let X be the quasi-median graph defined in Theorem 1.3.
Then CX is a quasi-tree, and if I' has bounded degree then the induced action
I'S ~ CX is acylindrical. Moreover, if |V(I')| > 2 and the complement T'C of T is
connected, then either I'G =~ C, x C, is the infinite dihedral group, or this action
is non-elementary.

The hyperbolicity of CX and the acylindricity of the action follow immediately
from Theorems A, B, 1.3, and Lemma 1.4, while non-elementarity is shown in
Section 5.1.

It is worth noting that Minasyan and Osin have already shown in [24] that
if |[V(I')| > 2 and the complement of I is connected, then I'§ is either infinite
dihedral or acylindrically hyperbolic. However, their proof is not direct and does
not provide an explicit acylindrical action on a hyperbolic space. The aim of
Corollary C is to describe such an action.

We also show that in many cases the action of I'G on CX is, in the sense of
Abbott, Balasubramanya and Osin [1], the “largest” acylindrical action of I'G on a
hyperbolic metric space: see Section 5.2. In particular, we show that many graph
products are strongly AXH-accessible. This generalises the analogous result for
right-angled Artin groups [1, Theorem 2.18 (c)].

Corollary D. Let T be a finite simplicial graph and let G = {G, | v € V(I')} be
a collection of infinite groups. Suppose that for each isolated vertex v € V(I'),
the group Gy is strongly AH-accessible. Then T'S is strongly AH-accessible.
Furthermore, if I' has no isolated vertices, then the action I'G ~, CX, where X is
as in Theorem 1.3, is the largest acylindrical action of 'S on a hyperbolic metric
space.

We prove Corollary D in Section 5.2.

Remark 1.5. After the first version of this preprint was made available, it has
been brought to the author’s attention that most of the results stated in Corollary C
follow from the results in [13, 12, 15]. Moreover, a special case of Corollary D
(when the vertex groups G, are hierarchically hyperbolic) follows from the results
in [2, 6]. See Remarks 5.4 and 5.5 for details.

As an application, we use Corollary C to study the class of equationally
noetherian groups, defined as follows.

Definition 1.6. Given n € IN, let F,, denote the free group of rank » with a free ba-
sis X1,..., X,. Given a group G, an element s € F,, and a tuple (g1, ...,g,)€G",
we write s(g1,...,8&n) € G for the element obtained by replacing every occurence
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of X; in s with g;, and evaluating the resulting word in G. Given a subset S C F,
the solution set of S in G is

Vo(S) ={(g1.....8n) € G" | s(g1.,...,gn) = 1 forall s € S}.

A group G is said to be equationally noetherian if for any n € IN and any subset
S C F,, there exists a finite subset So C S such that Vi (Sy) = Vs (S).

Many classes of groups are known to be equationally noetherian. For example,
groups that are linear over a field—in particular, right-angled Artin groups—are
equationally noetherian [4, Theorem B1]. It is easy to see that the class of
equationally noetherian groups is preserved under taking subgroups and direct
products; a deep and non-trivial argument shows that the same is true for free
products:

Theorem 1.7 (Sela [27, Theorem 9.1]). Let G and H be equationally noetherian
groups. Then G = H is equationally noetherian.

Using methods of Groves and Hull developed for acylindrically hyperbolic
groups [17], we generalise Theorem 1.7 to a wider class of graph products.

Theorem E. Let T" be a finite simplicial graph of girth > 6, and let G = {G, | v €
V(T')} be a collection of equationally noetherian groups. Then the graph product
'S is equationally noetherian.

We prove Theorem E in Section 6.

The paper is structured as follows. In Section 2, we define quasi-median graphs
and give several results that are used in later sections. In Section 3, we analyse
the geometry of the contact graph and its relation to crossing graph, and prove
Theoren A and Theorem B (i). In Section 4, we consider the action of a group G
on a quasi-median graph X, and prove Theorem B (ii). In Section 5, we consider
the particular case when G = I'G is a graph product and X is the quasi-median
graph associated to it, and deduce Corollaries C and D. In Section 6, we apply
these results to prove Theorem E.

Acknowledgments. Iam deeply grateful to Anthony Genevois for his PhD thesis
filled with many great ideas, for discussions which inspired the current argument
and for his comments on this manuscript. I would also like to thank Jason Behrstock,
Daniel Groves, Mark Hagen, Michael Hull, Thomas Koberda, Armando Martino
and Ashot Minasyan for valuable discussions. A special thanks goes to the
anonymous referee for their insightful comments and for pointing out a gap in the
proof of the previous version of Theorem E.
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2. Preliminaries

Throughout the paper, we use the following conventions and notation. By a graph X,
we mean an undirected simple (simplicial) graph, and we write V(X) and E(X)
for the vertex and edge sets of X, respectively. Moreover, we write dy (—, —) for
the combinatorial metric on X—thus, we view X as a geodesic metric space. We
consider the set IN of natural numbers to include 0.

Given a group G, all actions of G on a set X are considered to be right actions,
0:X x G — X, and are written as 0(x,g) = x% or 6(x,g) = xg. Note that
this results in perhaps unusual terminology when we consider a Cayley graph
Cay(G, S): in our case it has edges of the form (g,sg) forg €e G ands € S.

2.1. Quasi-median graphs. In this section we introduce quasi-median graphs
and basic results that we use throughout the paper. Most of the definitions and
results in this section were introduced by Genevois in his thesis [11]. We therefore
refer the interested reader to [11] for further discussion and results on applications
of quasi-median graphs to geometric group theory.

Definition 2.1. Let X be a graph, let x;, x5, x3 € V(X) be three vertices, and let
k € IN. We say a triple (y1, y2, y3) € V(X)3 is a k-quasi-median of (x1, x, x3) if
(see Figure 1a):

(i) yi and y; lie on a geodesic between x; and x; for any i # j;
(i) k =dx(y1,y2) = dx(y1,y3) = dx(y2,y3); and
(iii) k is as small as possible subject to (i) and (ii).

We say (y1, 2. y3) € V(X)3 is a quasi-median of (x1,x5,x3) € V(X)3 ifitisa
k-quasi-median for some k. A 0-quasi-median is called a median.
We say a graph X is a quasi-median graph if (see Figure 1b):

(i) every triple of vertices has a unique quasi-median;
(ii) K1,1,2 is not isomorphic to an induced subgraph of X ; and

(iii) if Y = Cs is a subgraph of X such that the embedding ¥ < X is isometric,
then the convex hull of Y in X is isomorphic to the 3-cube.

There are many equivalent characterisations of quasi-median graphs: see [3,
Theorem 1]. In this paper we think of quasi-median graphs as generalisations of
median graphs. Recall that a graph X is called a median graph if every triple of
vertices of X has a unique median. In particular, every median graph is quasi-
median; more precisely, it is known that a graph is median if and only if it is
quasi-median and triangle-free: see [11, Corollary 2.92], for instance.
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Kiip2 Cs 3-cube

(a) A k-quasi-median (y1, y2, y3) (b) The graphs K ; 2, C¢ and the 3-cube.
Of (X] 5 X2, x3)-

Figure 1. Graphs appearing in Definition 2.1.

Remark 2.2. The class of quasi-median graphs is reminiscent of the class of a
bucolic graphs, introduced in [7], in that both of these generalise median graphs
to a class that also includes finite complete graphs. Neither of these two classes
includes the other: in essence, bucolic graphs differ from quasi-median ones
in that they do not contain infinite complete subgraphs, but may contain an
induced subgraph K, (see Figure 1b); compare [11, Definition 2.1] and [7,
Definition 2.11]. We chose to work with quasi-median graphs as they are more
suitable for our applications: for instance, the Cayley graph X of a graph product
I'G defined in Theorem 1.3 is quasi-median, but not bucolic unless G is a collection
of finite groups.

In what follows, a clique is a maximal complete subgraph, a triangle is a
complete graph on 3 vertices, and a square is a complete bipartite graph on two
sets of 2 vertices each.

Definition 2.3. Let X be a quasi-median graph. Let ~ be the equivalence relation
on E(X) generated by the equivalences e ~ f when e and f either are two sides
of a triangle or opposite sides of a square. A hyperplane H is an equivalence
class [e] for some e € E(X); in this case, we say H is the hyperplane dual to e
(or, alternatively, H is the hyperplane dual to any clique containing e¢). Given a
hyperplane H dual to e € E(X), the carrier of H, denoted by N(H ), is the full
subgraph of X induced by [e¢] C E(X); a fibre of H is a connected component of
N(H) \ J, where J is the union of the interiors of all the edges in [e].

Given two edges e, e’ € E(X) with a common endpoint (p, say) that do not
belong to the same clique, let H and H' be the hyperplanes dual to e and ¢’,
respectively. We then say H and H' intersect (or intersect at p) if e and e’ are
adjacent edges in a square, and we say H and H' osculate (or osculate at p)
otherwise.
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Finally, given two vertices p,q € V(X) and a hyperplane H, we say H
separates p from g if every path between p and ¢ contains an edge dual to H. More
generally, we say H separates two subgraphs P, Q € X if H does not separate
any two vertices of P or any two vertices of Q, but it separates a vertex of P from
a vertex of Q. Given a path y in X, we also say H crosses y if y contains an edge
dual to H.

Another important concept in the study of quasi-median graphs are gated
subgraphs. Such subgraphs coincide with convex subgraphs for median graphs,
but in general form a larger class in quasi-median graphs.

Definition 2.4. Let X be a quasi-median graph, let Y € X be a full subgraph, and
letv e V(X). Wesay p € V(Y) is a gate for v in Y if, for any g € V(Y), there
exists a geodesic in X between v and ¢ passing through p. We say a full subgraph
Y C X is a gated subgraph if every vertex of X has a gatein Y.

The following result says that the subgraphs of interest to us are gated. Here,
by convention, given two graphs Y and Z we denote by Y x Z the 1-skeleton of
the square complex obtained as a cartesian product of Y and Z. The facts that
C,N(H), and F are gated subgraphs follow from Lemmas 2.16, 2.24, and 2.29
(respectively) in [11], while the facts about the isomorphism W: N(H) — F x C
follow from its construction as well as Lemmas 2.28 and 2.29 in [11]. Note that,
in our terminilogy, a “fibre” is a priori different from a “main fibre” defined in [11,
Definition 2.27]; however, these two graphs are isomorphic by [11, Lemma 2.29].

Proposition 2.5 (Genevois [11, Section 2.2]). Let X be a quasi-median graph, H a
hyperplane dual to a clique C, and F a fibre of H. Then N(H ), C and F are gated
subgraphs of X. Moreover, there exists a graph isomorphism V: N(H) — F x C,
and the cliques dual to H (respectively the fibres of H ) are precisely the subgraphs
U~1({p} x C) for vertices p € V(F) (respectively W1 (F x {p}) for vertices
p € V(C)).

2.2. Special actions. In this section we describe the hypotheses that we impose
on group actions on quasi-median graphs. We first define what it means for an
action on a quasi-median graph to be special.

Definition 2.6. Let X be a quasi-median graph, and let G be a group acting on it
by graph isomorphisms. We say the action G ~, X is special if

(i) no two hyperplanes in the same orbit under G ~, X intersect or osculate;
and

(ii) given two hyperplanes H and H' that intersect, H& and H’ do not osculate
forany g € G.
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Special actions on CAT(0) cube complexes were introduced by Haglund and
Wise in [19]. Notably, there it is shown that, in our terminology, if a group G
acts specially, cocompactly and without “orientation-inversions” of hyperplanes
on a CAT(0) cube complex X, then the fundamental group of the quotient X /G
embeds in a right-angled Artin group.

It is clear from [11, Lemma 2.25] that no hyperplane in a quasi-median graph
can self-intersect or self-osculate. The next lemma says that, moreover, the action
of the trivial group on a quasi-median graph is special. Recall that two hyperplanes
are said to interosculate if they both intersect and osculate.

Lemma 2.7. In a quasi-median graph X, no two hyperplanes can interosculate.

Proof. Suppose for contradiction that hyperplanes H and H' intersect at p and
osculate at g for some p, g € V(X), and assume without loss of generality that p and
¢ are chosen in such a way that dy (p, ¢) is as small as possible. Itis clear that p # ¢:
see, for instance, [11, Lemma 2.13]. On the other hand, since N(H) and N(H’)
are gated (and therefore convex) by Proposition 2.5, and as p,qg € N(H) N N(H"),
it follows that a geodesic between p and ¢ lies in N(H) N N(H’). In particular, if
r is a vertex on this geodesic, then H and H' either intersect at r or osculate at r;
by minimality of dx (p, ¢), it then follows that dx (p,q) = 1.

Let e be the edge joining p and ¢, and let K be the hyperplane dual to e. It
follows from Proposition 2.5 that K # H and K # H': indeed, if we had K = H
(say), then K = H and H’ would intersect at ¢, contradicting the choice of ¢. Thus
K is distinct from H and H’, and so e belongs to a fibre of H and a fibre of H'. It
then follows from Proposition 2.5 that K intersects both H and H' at ¢, and that
the graph Y shown in Figure 2 is a subgraph of X.

We now claim that the embedding ¥ < X is isometric. Indeed, as H, H'
and K are distinct hyperplanes, no two vertices p’, ¢’ € V(Y) with dy (p’,q") = 2
can be joined by an edge in X, as that would create a triangle in X with edges
dual to different hyperplanes. It is thus enough to show that if p’,q" € V(Y)
and dy (p’,q") = 3, then dx(p’,q’) = 3. Up to relabelling H, H' and K, we
may assume without loss of generality that p’ = s and ¢’ = ¢. Now it is
clear that dx (s,q) # 1: otherwise, p;s and ¢g¢q are opposite sides in a square
in X, contradicting the fact that H # H’. Thus, suppose for contradiction that
dx (s,q) = 2. But then the triple (p1,s,?) is a quasi-median of (p1, s, ¢) for some
vertex ¢t € V(X), and the edges p1s, p1t, q1q are dual to the same hyperplane, again
contradicting the fact that H # H’. Thus the embedding ¥ < X is isometric, as
claimed.

But now the embedding of the C¢ C Y formed by vertices s, p1, 41, ¢, g> and
p2 into X is also isometric, and so the convex hull of this C¢ in X is a 3-cube.
Thus there exists a vertex u € V(X) joined by edges to s, p» and g». This implies
that H and H' intersect at ¢, contradicting the choice of ¢g. Thus H and H’ cannot
interosculate. O
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s

H H'
P1 P2
K
q1 q2
q

Figure 2. Proof of Lemma 2.7: the graph Y (solid edges) and the vertex t € V(X).

Remark 2.8. We use Lemma 2.7 in the following setting. Let y be a geodesic in
a quasi-median graph X, let e and e’ be two consecutive edges of y, and let H
and H’ be the hyperplanes dual to e and ¢’, respectively. Suppose that H and H’
intersect. It then follows from Lemma 2.7 that H and H' cannot osculate at the
common endpoint p of e and ¢’, and therefore H and H’ must intersect at p. In
particular, X contains a square with edges e, ¢/, f and f”, in which f and f’ are
the edges opposite to e and ¢’, respectively. We may then obtain another geodesic
y’ in X (with the same endpoints as y) by replacing the subpath ee’ of y with f' 1.
We refer to the operation of replacing y by y’ as swapping e and e’ on y.

2.3. Geodesics in quasi-median graphs. In this section we record two results
on geodesics in a quasi-median graph. The first one of these is due to Genevois.

Proposition 2.9 (Genevois [11, Proposition 2.30]). A path in a quasi-median
graph X is a geodesic if and only if it intersects any hyperplane at most once.
In particular, the distance between two vertices of X is equal to the number of
hyperplanes separating them. O

Lemma 2.10. Let p,q,r € V(X) be vertices of a quasi-median graph X such that
some hyperplane separates q from p and r. Then there exists a hyperplane C
separating q from p and r and geodesics y, (respectively y,) between q and p
(respectively q and r) such that q is an endpoint of the edges of v, and y, dual
to C.

Proof. Let C be a hyperplane separating ¢ from p and r, let y, (respectively y;)
be a geodesic between ¢ and p (respectively ¢ and r), and let ¢, and ¢, be the edges
of y, and y, (respectively) dual to C. Let g, and q,,, g- and g, be the endpoints of
cp, ¢y (respectively), labelled so that C does not separate ¢, ¢, and g,. Suppose,
without loss of generality, that y, and C are chosen in such a way that dx (g, g,) is
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as small as possible, and that y, is chosen so that dx (g, ¢,) is as small as possible
(subject to the choice of y, and C). See Figure 3.

We first claim that ¢ = ¢,,. Indeed, suppose not, and let c;, # cp be the other
edge of y,, with endpoint g,. Let C,, be the hyperplane dual to ¢,,. Then C,, does not
separate g, and p (as y, is a geodesic), nor ¢ and r (by minimality of dx (¢, gp)),
but it separates g, (and so p) from ¢ (and so r). On the other hand, C separates
gp from p (as y, is a geodesic) and g from r (as y, is a geodesic). Therefore, C
and C, must intersect. But then we may swap ¢, and c,, on y, (see Remark 2.8),
contradicting minimality of dx (¢, g,). Thus we must have g = ¢,,.

We now claim that ¢ = ¢,. Indeed, suppose not, and let ¢, # ¢, be the other
edge of y, with endpoint ¢,. Let C; be the hyperplane dual to ¢... Then C; does not
separate ¢ and g, (as C is the only hyperplane separating ¢ = ¢, and q,,), nor g,
and r (as y, is a geodesic), but it separates ¢ (and so ql’]) from g, (and so r). On the
other hand, C separates ¢, from r (as y, is a geodesic) and g from q;). Therefore,
C and C; must intersect. But then we may swap ¢, and ¢, on y,, contradicting
minimality of dx (g, ¢,). Thus we must have g = g,. O

/
CI)

Figure 3. Proof of Lemma 2.10.

3. Geometry of the contact graph

Here we analyse the geometry of the contact graph CX of a quasi-median graph X.
In Section 3.1 we show that, under certain conditions, CX is quasi-isometric
to AX, and prove Theorem B (i). In Section 3.2 we prove that CX is a quasi-tree
(Theorem A).

3.1. Contact and crossing graphs. The following proposition allows us to lift
geodesics in C(X) back to X. This generalises the existence of “hierarchy paths”
in CAT(0) cube complexes [5, Theorem A (2)] to arbitrary quasi-median graphs.
Moreover, the same result applies when CX is replaced by AX, as long as AX is
connected.
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Proposition 3.1. LetI' = CX or ' = AX, and let A, B € V(TI") be hyperplanes
in the same connected component of I'. Let p € V(X) (respectively g € V(X))
be a vertex in N(A) (respectively N(B)). Then there exists a geodesic A =
Ao, ..., Am = B in T and vertices p = po,..., pm+1 = q € V(X) such that
pi € N(Ai—1) N N(A;) for 1 <i <mand dx(p,q) = Y (Lo dx (pi, pi+1)-

Proof. By assumption, there exists a geodesic A = Ao, A1,...,Am = B inT'. For
1 <i <m,let p; € V(X) be a vertex in the carriers of both A;_; and A;, and let
Po = P, Pm+1 = ¢. Suppose that the 4; and the p; are chosen in such a way that
D =" o dx(pi, pi+1) is as small as possible. We claim that D = dx (p, q).

Let y; be a geodesic between p; and p;4+; for 0 < i < m. Suppose for
contradiction that D > dx(p,q): this means that ygy; --- ¥, is not a geodesic.
Therefore, there exists a hyperplane C separating p; and p;; as well as p; and
p;j+1 forsomei < j. Let ¢; (respectively c;) be the edge of y; (respectively y;)
dual to C.

As hyperplane carriers are gated (and therefore convex), any hyperplane
separating p; and p;y, either is or intersects 4; for 0 < i < m. Now note
that j —i < 2: indeed, we have dr(4;,C) < 1 and dr(4;,C) < 1, so
J—i=dr(A;,A;) <141 = 2. Inparticular, j —i € {1,2}.

We now claim that j =i + 1. Indeed, suppose for contradiction that j =i 4 2.
Let p; ., (respectively p;_ ,) be the endpoint of ¢; (respectively ¢; ) closer to p;
(respectively p;+3). Then we have

dx (pi, pi+1) + dx (pi+1, pi+2) + dx (pi+2, pi+3)
= dx(pi, pis1) + dx (Pig1> Pi+1) + dx (Pit1, pit+2)
+ dx (Pi+2. Pivn) + dx (Piyy. Pi+3)
> dx (pi. Pit1) + dx (Pig1s Piga) + dx (Pjyr. Pit3),

)]

with equality if and only if y;y;i+1¥;, is a geodesic, where y; (respectively v/ ,)
is the portion of y; (respectively y;+2) between p;  ; and p; 1 (respectively p; 2
and p;_ ,). Buty/yi+1y; ., cannot be a geodesic as it passes through two edges dual
to C, and so strict inequality in (1) holds. We may then replace A;+;, p;+1 and
pi+2 with C, p;_, and p;_,, respectively, contradicting minimality of D. Thus
Jj =i+ 1, as claimed.

Therefore, C separates p;4+; from p; and p;y,. By Lemma 2.10, we may
assume (after modifying C, y; and y; 41 if necessary) that p; 4, is an endpoint
of both ¢; and c;+1. As ¢; and c;4+; are dual to the same hyperplane, it follows
that they belong to the same clique. In particular (as carriers of hyperplanes are
gated and so contain their triangles) this whole clique belongs to N(A4;) N N(A;j+1).
If riy1 # pis1 is the other endpoint of c;, then dx (p;,ri+1) < dx(pi, pi+1)
and dx (ri+1, pi+2) < dx(pi+1, pi+2). We may therefore replace p;+1 by rit1,
contradicting minimality of D. Thus D = dx(p, q), as claimed. O
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Taking I' = AX and p = ¢ in Proposition 3.1 immediately gives the following.

Corollary 3.2. Let A,B € V(AX) be hyperplanes in the same connected
component of AX osculating at a point p € V(X). Then there exists a geo-
desic A = Ay,...,Am = B in AX such that A;—, and A; intersect at p for
1<i<m. O

Lemma 3.3. Suppose a group G acts on X specially with N orbits of hyperplanes.
Let A and B be hyperplanes that osculate and belong to the same connected
component of AX. Then dax (A, B) < max{2, N —1}.

Proof. Let p € V(X) be such that A and B osculate at p. By Corollary 3.2, there
exists a geodesic A = Ay, A1,...,An = B in AX such that A;_; and A; intersect
at p foreachi. Letiq,...,iy € N, satisfying 0 = i) <ip <--- <ip =m+1,
be such that Ag = Ag+1—1 for 1 < j < k — 1 (for instance, we may take
i; = j —1). Suppose this is done so that k is as small as possible. Clearly, this
implies Ag # Ag, whenever 1 < j < j' < k — 1: otherwise, we may replace
i, i byir,..., ij,ij’+1,...,Ik, contradicting minimality of k. In particular,
k < N + 1;as m > 2, note also that k > 2. We will consider the cases kK = 2 and
k > 3 separately.

Suppose first that &k > 3. We claim thati; ; —i; < 1 whenever 1 < j <k —1.
Indeed, note that whenever 1 < j <k —2, p € N(4;;,) "N(4;;,,), and so 4;; and

. . . G _
Ai;,, must either intersect or osculate. But A4; 4 intersects A;, 1, and Aij =
AgH_l: therefore, as the action G ~, X is special, it follows that A; j. and A; 41

must intersect. In particular, ij ;1 —i; = dAx(Aij,Aij+]) <lforl<j<k-2.
For j = k—1, we may similarly note that N(4;, —1) "N(4;;  ,—1) # D andso 4;;
and A,, = A;; ,—1 must intersect: thus ij 1 —i; = dAX(Ai_/_l,Ai_/+l_1) <1lin
this case as well. In particular, we get

k—1

dax(A,B) =m =iy —ij —1 = (Z(i,+1—i,-))—1 <k—2<N-—1,
j=1

as required.

Suppose now that £k = 2. Similarly to the case k > 3, we may note that
p € N(A1)NN(Am), and so, as Ag and A; intersectand as AS = A it follows that
A and A,, intersect. Thusm—1 = dax (A1, An) < landsodax (A, B) =m < 2,
as required. d

Proof of Theorem B (i). It is clear that dex (A, B) < dax(A, B) for any hyper-
planes A and B, as AX is a subgraph of CX. Conversely, Lemma 3.3 im-
plies that dax (A, B) < Nd@X(A,B) for any hyperplanes A and B, where
N = max{2, N —1}. O
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Remark 3.4. We note that all the assumptions for Theorem B (i) are neces-
sary. Indeed, it is clear that AX needs to be connected. To show neces-
sity of the other two conditions, consider the following. Let Gy = (S | R)
be the group with generators S = {a;; | (i,j) € 72} and relators R =
U, jyez2ta? ;- lai . @i j+1], @i, ait1,;]); this is the (infinitely generated) right-
angled Coxeter group associated to a “grid” in R2: a graph " with V(I") = Z2,
where (i, j) and (i’, j) are adjacent if and only if [i —i’| +|j — j/| = 1. Let X
be the Cayley graph of G with respect to S.

Then X is a quasi-median (and, indeed, median) graph by [11, Proposition 8.2].
Furthermore, by the results in [11, Chapter 8], AX is connected, and if H; ; is the
hyperplane dual to the edge (1,a;,;) of X (for (i, j) € Z?) then dex (Ho 0, H; ;) <1
but dax(Ho,0, H;,j) = |i| + |j| for all (i, j). Thus the inclusion AX — CX
cannot be a quasi-isometry. Moreover, by Theorem A, we know that CX is a
quasi-tree, whereas the inclusion into AX of the subgraph spanned by {H, ; |
(i, j) € Z*} (which is isomorphic to the “grid” T') is isometric, and so AX cannot
be hyperbolic—therefore, AX and CX are not quasi-isometric in this case.

It follows from [11, Proposition 8.11] that the usual action of Gy on X is
special—however, there are infinitely many orbits of hyperplanes under this action.
On the other hand, let G = G¢ x Z?2, where the action of Z? = (x,y | xy = yx)
on Gy is given by af’j.ym = a;n,j+m; this can be thought of as an example of a
graph-wreath product, see [22] for details. Then it is easy to see that the action of
G on Gy extends to an action of G on X. This action is transitive on hyperplanes,
and therefore not special.

3.2. Hyperbolicity. We show here that CX is a quasi-tree, proving Theorem A.

Proposition 3.5. Let A,B € V(CX) be two hyperplanes and suppose that
dex (A, B) > 2. Then there exists a midpoint M of a geodesic between A and B in
CX and a hyperplane C separating N(A) and N(B) such that dex (M, C) < 3/2.

Proof. By Proposition 2.5, we know that N(A) and N(B) are gated. It then follows
from [11, Lemma 2.36] that there exist vertices p € V(N(A4)) and g € V(N(B))
such that any hyperplane separating p from g also separates N(A4) from N(B). Let
A= Ay,....,Am =B e V(CX)and p = po,..., pm+1 = ¢q € V(X) be as given
by Proposition 3.1 in the case I' = CX, and let M be the midpoint of the former
geodesic. It is clear that N(A4;) N N(A4;) = @ whenever |i — j| > 2; in particular,
pi # pi+1 whenever 1 <i <m — 1.

Now leti = [m/2] € {l,...,m—1}, and let C be any hyperplane separating p;
and p; ;1. By the choice of the p;, there exists a geodesic between p and g passing
through p; and p;;: therefore, C separates p and ¢q. Therefore, by the choice
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of p and ¢, C also separates N(A) from N(B). Finally, note that as C separates
Di, Pi+1 € N(4;), we have dex (A4;, C) < 1. Therefore,

m 1 3
dox (M. C) = dex (M. 4;) +dex(4;,©) = |5 —i| +dex (41, €) = S +1 =3,
as required. d
Definition 3.6. For a geodesic metric space ¥ and two points x, y € ¥ we say a
point m € Y is a midpoint between x and y if dy (m,x) = dy(m,y) = %dy (x,y).

Let D € IN. A geodesic metric space Y is said to satisfy the D-bottleneck

criterion if for any points x, y € Y, there exists a midpoint m between x and y such
that any path between x and y passes through a point p such that dy (p,m) < D.

Theorem 3.7 (Manning [23, Theorem 4.6]). A geodesic metric space Y is a quasi-
tree if and only if there exists a constant D such that Y satisfies the D-bottleneck
criterion. If this is the case, then there exists a (26D, 52D)-quasi-isometry from a
simplicial tree to Y . O

Remark 3.8. In [23], the last part of Theorem 3.7 is not explicitly stated, that
is, the pair of constants (26D, 52 D) is not explicitly computed. However, in [23]
Manning constructs a map 8: T — Y, where T is a simplicial tree, such that edges
in T are mapped to geodesic segments in Y, such that dy (y, (7)) < 20D for any
y € Y, and such that

8Ddr (v, w) — 16D < dy (B(v). B(w)) = 26Ddr (v, w) 2

for any vertices v, w € V(T). It is easy to check, using (2) and the fact that any
point in T is within distance % from a vertex, that we also have

8Ddr (v, w) — 50D < dy(B(v), B(w)) <26Ddr(v,w) + 52D
for any points v,w € T, and so B is a (26D, 52 D)-quasi-isometry, as required.

Proof of Theorem A. We claim that CX satisfies the 7/2-bottleneck criterion.
Thus, let a, b € CX be any two points, and let A, B € V(CX) be two hyperplanes
lying on a geodesic between a and b such that dex(A,a) < 1 and dex (B, b) < 1.
Note that if M is a midpoint between A and B, then there exists a midpoint m
between a and b such that dex (m, M) < 1.

If dex(a,b) < 7, then any path between a and b passes through a, and
dex(a,m) = dex(a,b)/2 < 7/2 for any midpoint m between a and b, so the
7/2-bottleneck criterion is satisfied.

On the other hand, if dex (a,b) > 7, then dex (A, B) > 5 and so we may define
points M and C as given by Proposition 3.5; let also m be a midpoint m between

a and b such that dey (m, M) < % Let Bq,..., B, be hyperplanes lying on a path
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in CX between a and b (in order), so that A = B;, By+1,..., By+s = B is a path
in CX between A and B, where r, s € {0, 1}. Choose vertices q1,...,q, € V(X)
such that ¢; € N(B;j—1) N N(B;) for all i. As g, € N(A), gn+s € N(B), and as
C separates A and B, it follows that C separates ¢, and ¢, s, and so it separates
qi and ¢g; 4, for some i. But as ¢;, gi+1 € N(B;), it follows that dex (C, B;) < 1.

Then 3 5
dex(M, B;) <dex(M,C) +dex(C, B;) < 3 +1= >

implying, in particular, that B; ¢ {A, B} (as dex(M,A) = dex(M,B) =
dex (A, B)/2 > 5/2), and so B; lies on the chosen path between a and b. But
then dex(m, Bi) < dex(m, M) 4+ dex(M, B;) <3 < %, and so 7/2-bottleneck
criterion is again satisfied, as required.

In particular, Theorem 3.7 implies that CX is a quasi-tree, and there exists a
(91, 182)-quasi-isometry from a simplicial tree 7" to CX. This implies that there
exists a (K, C)-quasi-isometry y: CX — T, where K = 91and C = (3-91+44)-182.
The y-images of edges in a geodesic triangle of CX are then (K, C')-quasi-geodesics
in the tree 7', and such quasi-geodesics must be within Hausdorff distance R from
geodesics with the same endpoints, where R = R(K, C) is a universal constant:
see, for instance, [8, Chapter III.H, Theorem 1.7]. This implies that geodesic
triangles in CX must be §-slim, where § = K(2R + C), proving the last part of
the Theorem. d

4. Acylindricity

In this section we prove Theorem B (ii). To do this, in Section 4.1 we introduce
the notion of contact sequences (see Definition 4.2) and show the main technical
result we need to prove Theorem B (ii): namely, Proposition 4.3. In Section 4.2 we
use this to deduce Theorem B (ii).

Throughout this section, let X be a quasi-median graph.

4.1. Contact sequences. In this subsection, for a gated subgraph ¥ < X and a
collection J{ of hyperplanes in X, we denote by Y. € V(X) the set of vertices
v € V(X) for which there exists a vertex p, € V(Y) such that all hyperplanes
separating v from p, are in H. Moreover, we write Yq¢ for the full subgraph of X
spanned by Y.

Lemma 4.1. Let Y < X be a gated subgraph and let H be a collection of
hyperplanes in X. Then the subgraph Ys¢ of X is gated.

Proof. Suppose for contradiction that Y4 is not gated, and let v € V(X)) be a ver-
tex that does not have a gate in Yq¢. Let p be the gate for v in Y. Let p be a vertex of
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Ys5¢ on a geodesic between v and p with dx (v, p) minimal. By our assumption,
p is not a gate for v in Y5, and so there exists a vertex § € V(Yy¢) such that no
geodesic between v and ¢ passes through p. Let g be the gate of g in Y. Let y),
Yg- 0, 5, n be geodesics between p and p, ¢ and ¢, p and ¢, p and ¢, v and p
(respectively), as shown in Figure 4.

Since both n and § are geodesics, and since 7)3 is not (by the choice of §), it
follows from Lemma 2.10 that we may assume, without loss of generality, that
there exists a hyperplane C and edges ¢y, ¢, of 7, 8 (respectively), both of which
are dual to C and have p as an endpoint. But as p is the gate for v in Y, as ny,
is a geodesic by the choice of p, and as g € Y, it follows that ny,§ is a geodesic.
Therefore, by Proposition 2.9 H cannot cross y,8, and so H does not separate p
and ¢. As H separates p and g, it follows that H separates ¢ and ¢ and so crosses
Yq- In particular, since § € V(Yy) and since g € V(Y) is a gate for g in Y, it
follows that all hyperplanes crossing y, are in }(, and therefore H € H. But then
the endpoint p’ # p of ¢ is separated from p € V(Y') only by hyperplanes in J;
this contradicts the choice of p. Thus Yy is gated, as claimed. O

<o
=

Figure 4. Proof of Lemma 4.1.

Now let a group G act on a quasi-median graph X. This induces an action
of G on the crossing graph AX. Let H be the set of orbits of vertices under
G ~, AX—alternatively, the set of orbits of hyperplanes under G ~, X. We
may regard each element of J{ as a collection of hyperplanes—thus, for instance,
given Hy € H we may write | ] H, for the set of all hyperplanes whose orbits are
elements of H.

Letn € N, and let Hy, ..., H, be subsets of H. Pick a vertex (a “basepoint”)
0 € V(X), and define the subgraphs Yy, ..., Y, € X inductively: set Yo = {0} and
Yi = (Yi—1)yg for1 <i <n. By Lemmad4.1, Y, is a gated subgraph. We denote
Y, as above by Y (o, H;, ..., H,), and we denote the gate for v € V(X) in Y, by
g(v;0,Hq, ..., Hy).
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Definition 4.2. Let H, H' € V(CX), and let p, p’ € V(X) be such that p € N(H)
and p’ e N(H'). Letn = dex (H, H’). Given any geodesic H = Hy, ..., H, =
H’ in CX and vertices p = po, p1,..., pn+1 = p' € V(X) such that p;, pjy1 €
N(H;)for0<i <n,wecall & = (Hy,..., Hy, po, ..., pnt1) & contact sequence
for (H,H', p, p').

Given a contact sequence & = (Hy, ..., Hy, po,..., pnt1) for (H, H', p, p')
and a vertex v € V(X), we say (go.....gn) € V(X)"T1 is the v-gate for
G if g; is the gate for v in N(H;) for 0 < i < n. We furthermore de-
note the tuples (dx (pn, gn); - - -, dx (po, §0)) and (dx (p1, &o), - - -, dx (Pn+1, &n))
by ¢ (&,v) and €\ (S, v), respectively. We say a contact sequence & for
(H, H', p, p') is v-minimal if for any other contact sequence &' for (H, H', p, p’)
we have either € (&,v) < € (&', v) or &\ (6,v) < & (&', v) in the lexico-
graphical order.

Finally, suppose a group G acts on X. Given a vertex v € V(X) and a
contact sequence S = (Hy, ..., Hy, po, ..., pn+1) for (H, H', p, p’) with a v-gate
(g0.---.8&n), wesay (Ho, ..., H,, Hg, ..., 3,), where H;, I, € V(CX/G),isthe
(v, G)-orbit sequence for G if

H; = {H® | H € V(CX) separates p; from g;}
and
H, = {HC | H € V(€X) separates p;; from g;}

for0 <i <n.

It is clear that given any H, H’, p and p’ as in Definition 4.2, there exists a
contact sequence for (H, H', p, p’). As the lexicographical order is a well-ordering
of IN”, it follows that a v-minimal contact sequence exists as well.

Proposition 4.3. Suppose a group G acts specially on a quasi-median graph
X. Let H H € V(CX), let p,p’ € V(X) be such that p € N(H) and
p' € N(H'), and let v € V(X). Let & = (Hy,...,Hy, po,..., pn+1) be
a v-minimal contact sequence for (H, H', p, p') with v-gate (go,...,gn) and
(v, G)-orbit sequence (Ho, . .., H,, Hy, ..., H;,). Writeg; := g(v; p, Ho, ..., H;)
and g, = g(v; p', 3, ..., H}) for 0 < i < n. Then,

(i) gn = 9o
(ii) no hyperplane from\ ) H; osculates with a hyperplane from | ) J—C} whenever
i > j;and

(iii) for 1 < i < n, the hyperplanes separating g, from g; (respectively g,
from g;_,) are precisely the hyperplanes separating p; from g; (respectively
pi from gi—y).
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Proof. Induction on n.

For n = 0, we claim that go = go. Indeed, by definition of H, we have
go € Y(po,Hy), and so there exists a geodesic 1 between p and v passing through
go and go. Suppose for contradiction go # go, let a C 1 be the edge with endpoint
go such that the other endpoint ¢, # go of a satisfies dx (v, go) > dx (v, ¢4), and
let A be the hyperplane dual to a; see Figure 5a. Then go € N(Hp) N N(A), and
so Hy and A either coincide, or intersect, or osculate. As A separates p and gg, we
know that A¢ separates p and go and so A% and H, either coincide or intersect
for some g € G. Thus, as the action G ~, X is special, it follows that A and
Hy cannot osculate, and therefore they either coincide or intersect. But then we
also have g, € N(H)), contradicting the choice of gy. Therefore, g9 = go, as
claimed. A symmetric argument shows that g, = go, and so the conclusion of the
proposition is clear.

Suppose now that n > 1, and let g; = g(v; pp, 3,_;,...H}) for0 <i <n
(so that g, = p,). Notice that (Hy, ..., Hy—1, po. ..., pn) is a v-minimal contact
sequence for (H, H,—1, p, pn)- Thus, by the inductive hypothesis we have

i) gn-1 = @6,

(ii’) no hyperplane from | J 3; osculates with a hyperplane from | H; whenever
n—1>i>j;

(iii") for 1 <i <n — 1, the hyperplanes separating g, from g; (respectively g;
from g;_,) are precisely the hyperplanes separating p; from g; (respectively
pi from g;_1).

Moreover, let §; = g(v; p1,Hiq,...H;) for 0 < i < n (so that §o = p1),
and notice that (Hq, ..., H,, p1,..., Pn+1) iS @ v-minimal contact sequence for
(Hy, H', p1, p'). Thus, by the inductive hypothesis we have

(") 8n = 81:
(ii”) no hyperplane from [ J H; osculates with a hyperplane from (] #; whenever
i>j=1
(iii”) for 2 < i < n, the hyperplanes separating g, from g; (respectively g;

from g;_, ) are precisely the hyperplanes separating p; from g; (respectively
pi from g;_1).

Finally, the proof of the n = 0 case above shows that g(v; p;, H;) = g =
g(v; pit1,3;) for0 <i <n.

Now let ¢ = g,—; and note that we also have ¢ = g/: this is clear if » = 1 and
follows from the inductive hypothesis if n > 2. Let A, B, A", B’ C V(CX) be the
sets of hyperplanes separating ¢ from g,_1, ¢ from g/, g} from g,, g, from gy,
respectively; see Figure 5b. We claim that A = A’ and B = B’. We will show this
in steps, proving part (ii) of the Proposition along the way.



Acylindrical hyperbolicity and equations in graph products 163

(a) Case n = 0. (b) Case n > 1.

Figure 5. Proof of Proposition 4.3: general setup.

AN3B = @. Suppose for contradiction that there exists some hyperplane
A e ANB. As A € A, we know that A4 separates g from g;,, and so by (iii") above
it also separates p; from gg: thus dex (Hp, A) < 1. Similarly, as 4 € B, by (iii")
above we know that A separates p, from g, and therefore dex (H,, A) < 1. Hence,
n =dex(Hy, Hy) <2, and soeithern = 1 orn = 2.

Let o, B be geodesics between p; and g¢, p, and g,, respectively, and leta C o
and b C B be the edges dual to A. As a and b lie on geodesics with endpoint v,
we may pick endpoints ¢, and ¢, of a and b, respectively, such that A does not
separate ¢, gp and v.

Suppose first that n = 2: see Figure 6a. Note that in this case Hy, A, H> is a
geodesic in CX and that dx (p2, g2) > dx (q», g2) and dx (p1,8o) > dx(qa, &o)-
Moreover, since ¢, lies on a geodesic between p; and g¢, we have g, € N(Hy); sim-
ilarly, g, € N(H>). Furthermore, by the construction we know that g,, g, € N(A).
We may therefore replace pq, p» and H; by q4, g5 and A, respectively, contradicting
v-minimality of &. Thus n # 2.

Suppose now that n = 1. Then A separates p; from both gy and g;. By
Lemma 2.10, we may then without loss of generality assume that p; is an endpoint
(distinct from ¢, and gp) of both a and . Now note that both @ and b are edges on
a geodesic between p; and v, so we must have ¢ = b, and in particular ¢, = ¢p;
see Figure 6b. Since A separates p; from both gy and g1, it intersects or coincides
with both Hy and H1, and so q, € N(Hp) N N(H;). We may therefore replace
Pn by qq; but we have dx (p1,g1) > dx(qa,g1) and dx(p1,g0) > dx(qa. &o),
contradicting v-minimality of &. Thus no such hyperplane A € A N B can exist
and so AN B = @, as claimed.

ANB =g@. Thisisclear, as g,—1 = g lies on a geodesic between g = g/ and
dn, and so no hyperplane can separate g,—; from both g and g,.
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A’'NB = @. LetC be the set of hyperplanes separating g,, and v. We first claim
that A’ N B = A’ N €. Indeed, let B € A’ N B. Since B € B, it separates ¢ and
g); as g = gn lies on a geodesic between ¢ and v, B cannot separate g; and v.
Butas B € A’, it separates g and g,, and so B must separate g, and v. Therefore,
B € A’ N €. Conversely, let C € A’ N C. Since C € C, it separates g, and v; as g,
lies on a geodesic between ¢ and v, C cannot separate ¢ and g,,. Butas C € A/, it
separates g} and g,, and so C must separate ¢ and g}. Therefore, C € A’ N B, and
soA’NB = A" NE, as claimed.

Now suppose for contradiction that there exists a hyperplane A € A’ N B =
A’ N BN E. Let y be a geodesic between g, and v, and let ¢ C y be the edge dual
to A. By Lemma 2.10, we may without loss of generality assume that g, is an
endpoint of c¢: see Figure 6c.

Now let g, # g5 be the other endpoint of c¢. Note that since A € B, we have
A% € 3(,. Therefore, it follows that ¢, is separated from g,_; only by hyperplanes
in | JH,; as dx (v, gn) > dx(v,q.), this contradicts the definition of g,. Thus
ANB = @, as claimed.

AcA and Bc B'. AsANB=ga=ANDB, every hyperplane separating ¢
and g,—; does not separate ¢ and g}, nor g,—; and g,, thus it separates g} and g,.
It follows that A € A’. Similarly,as AN B =@ = A’ N B, we get B C B'.

Part (ii)). By (ii’) and (ii”) above, it is enough to show that no hyperplane from
(U H, osculates with a hyperplane from | ;. Thus, let A (respectively B) be
a hyperplane separating p; and g, (respectively p, and g,), so that A9 € Hy
and B € K. It is now enough to show that A¢ and B” do not osculate for any
g.heG.

But as A separates p; from go, we know from (iii’) that it also separates g} = ¢
from gy = gn—1, thatis, A € A. Similarly, as B separates p, and g,, we know
from (iii”) that B € B. Butas ANB = @ = AN B’ and as B C B/, it follows
that A separates ¢ and g from g,_; and g,, while B separates ¢ from g} and g,_;
from g,. Therefore, A and B must intersect. But as the action G ~, X is special, it
follows that A% and B” do not osculate for any g, s € G. Thus no hyperplane from
(U H,, osculates with a hyperplane from (_J 3, and so part (ii) holds, as required.

A’ NnB’" = @. Suppose for contradiction that A € A’ N B’ is a hyperplane. Let
o’ be a geodesic between g} and g,, leta C o’ be the edge dual to A, and let q,, q,,
be the endpoints of a so that A does not separate g} and ¢,. Suppose, without loss
of generality, that o’ and A4 are chosen in such a way that dx (g}, g,) is as small as
possible.

We now claim that g/ = ¢,. Indeed, suppose not, and let ' # a be the
other edge on &’ with endpoint ¢g,. Let A’ € A’ be the hyperplane dual to a’; see
Figure 6d. Then A" does not separate ¢ and g} (as A’ N B = @), nor g,—; and g,
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(by minimality of dx (g7, ¢4)), but it separates g/ (and so ¢) from g, (and so g,—1).
In particular, A" € A, and so A" € | J H;. On the other hand, A € B’ € |J H,, and
so A and A’ cannot oscullate by part (ii). It follows that A and A" must intersect,
and therefore we may swap a and a’ on o', contradicting minimality of dx (¢ ga)-
Thus g} = g4, as claimed.

But now ¢/, is separated from ¢ just by hyperplanes in | J H,. Furthermore,
A cannot separate g, and v (as g, lies on a geodesic between g,—; and v, and as
A separates g,—; and g,), nor g, and ¢/, (as o’ is a geodesic), but A separates g,
(and so g, and v) from g]. In particular, dx (v, g}) > dx (v, q}), contradicting the
fact that g = g,. Thus A’ N B’ = @, as required.

A= A’and B = B’. We have already shown A C A’ and B C B’. Conversely,
as A'NB = g = A'NB’, every hyperplane separating g and g, does not separate
g and g}, nor g,—; and g,, thus it separates ¢ and g,—. It follows that A’ C A and
so A=A Similarly,as ANB" =@ =A"NB, weget B="D7".

Now part (iii) of the Proposition follows immediately. Indeed, given (iii’)
and (iii”), it is enough to show that the hyperplanes separating g,—; from g,
(respectively g} from g;) are precisely the hyperplanes separating g,—; from g,
(respectively g from g;). But this, and so (iii), follows from the fact that A = A’
and B = B'.

Finally, we are left to show part (i). We know that A’ = A < | J X, and
s0 gn € Y(g),3y) € Y(p', 3, ..., H). In particular, there exists a geodesic
between v and g, passing through g(v; p’, 5, ..., 3) = g,. But a symmetric
argument can show that there exists a geodesic between v and g;, passing through g,,.
Thus g, = g, proving (i). O

4.2. Consequences of Proposition 4.3

Corollary 4.4. Let a group G act specially on a quasi-median graph X. Let
H H' K, K €V(CX), and let p, p',v,v' € V(X) be such that p € N(H), p’ €
N(H'), v € N(K) and v' € N(K'). Suppose that dex(H,K) > dex(H, H') +
dex(K,K') + 3.

If 6 is a v-minimal contact sequence for (H, H', p, p’), then & is also v'-mini-
mal. Furthermore, if (3o, ..., Hpn, Ky, ..., 3),) is the (v, G)-orbit sequence for S,
then g(v; p, Ho, ..., Hy) = g(v’; p, Ho, ..., Hy).

Proof. Letm = dex(K,K'), and let K = Ky,...,K,, = K’ be a geodesic in
CX. For1 <i <m, choose a vertex v; € N(K;—1) N N(Kj;); let also vg = v and
Umt+1 = V. Letn =dex(H, H').

Given a contact sequence & = (Hy, ..., Hy, po,..., pny1) for (H, H', p, p)
and any v € V(X), the tuples € (&, v) and €\ (&, v) only depend on the gates
for v in the N(H;), 0 <i < n. In particular, if for all hyperplanes 4 € V(CX) with
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(a)Ae ANB:casen = 2. b)Ae ANB:casen = 1.
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Figure 6. Proof of Proposition 4.3: showing that A = A’ and B = B'.

dex(H, A) < n the gates for v and v" in N(A4) coincide, then the set of v-minimal
contact sequences for (H, H', p, p’) coincides with the set of v’-minimal ones.

Thus, let A € V(CX) be a hyperplane with dex (H, A) < n, and suppose for
contradiction that g # g/, where g and g’ are the gates for v and v’ (respectively)
in N(A4). Let B be a hyperplane separating g and g’. Since B separates two
points in N(A), we must have dex (A4, B) < 1, and so dex(H,B) <n + 1. On
the other hand, as B separates the gates of v and v’ in a gated subgraph, B must
also separate v = vg and v/ = vy, 41. Thus B must separate v; and v; 4 for
somei € {0,...,m}. Asv;,viy1 € N(K;), it follows that dex (B, K;) < 1. In
particular, dex (B, K) < dex(B,K;) + dex(Ki,K) < i +1 < m + 1. But
then dex(H,K) < dex(H,B) + dex(B,K) < n 4+ m + 2, contradicting our
assumption. Thus we must have g = g’, and so the set of v-minimal contact
sequences for (H, H', p, p") coincides with the set of v’-minimal ones. In particular,
G is a v’-minimal structural sequence for (H, H', p, p’), and so the conclusion of
Proposition 4.3 holds if v is replaced by v’ as well.

Now suppose for contradiction that g, (v) = g(v; p, Ho, ..., H,) is not equal
to gn(v') = g p,Ho,...,H,). Let B be a hyperplane separating g, (v)
from g,(v’). Then B separates gates for v and v’ in a gated subgraph, and so
as above we get dex (B, K) < m + 1. On the other hand, since B separates g, (v)
from g, (v’), it follows that B separates p from either g, (v) or g, (v'): without loss
of generality, suppose the former. Then B must separate g(v; p, Ho, ..., H;—1)
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and g(v; p, Ho, ..., ;) for some j € {0,...,n}. By Proposition 4.3 (iii), it then
follows that B separates p; from g;, and so dex (B, H;) < 1; in particular,
dex(H,B) < dex(H,Hj) + dex(H;,B) < j +1 < n + 1. Therefore,
dex(H,K) < dex(H,B) + dex (B, K) < n + m + 2, again contradicting our
assumption. Thus we must have g, (v) = g, (v’), as required. O

Lemma 4.5. Suppose G acts specially on X. Let D € N, and suppose every
vertex of AX/G has at most D neighbours. If v,w € V(X), then there exist at
most (D + 1)? hyperplanes H € V(CX) such that w € N(H) and w is not the
gate for v in N(H ).

Proof. Let U C V(X) be the set of vertices u € V(X) such that dx (u, w) = 1
and dx (v, w) = dx(v,u) + 1. We claim that |U| < D + 1. Indeed, suppose there
exist k distinct vertices uy, ..., ux € U, and let H; be the hyperplane separating
w and u; for 1 < i < k. Itis clear that H; # H; wheneveri # j: indeed, if
H; = H; = H then by Proposition 2.9 H cannot separate v from either u; or u;,
and therefore u; = u;, hence i = j. Since w € N(H;) N N(H;) for every i, j and
since the action G ~, X is special, it also follows that H iG #* HjG whenever i # j.

We now claim that H; and H; intersect for every i # j. Indeed, H; cannot
separate u; from v (by Proposition 2.9), nor w from u; (as H; # Hj), but it
does separate w (and so u;) from ¥; (and so v). On the other hand, a symmetric
argument shows that H; separates w and u; from u; and v. Thus H; and H; must
intersect, as claimed. Therefore, dax (H;, H;) = 1 and so, as HiG + H J.G, we have
dax/c(HE, HF) = 1. In particular, {H, ..., HZ} are k vertices of a clique in
AX/G, and so by our assumption it follows that k < D + 1. Thus |[U| < D + 1,
as claimed.

Now let u € U, and let H C V(CX) be the set of hyperplanes H € V(CX)
such that u,w € N(H). It is then enough to show that || < D + 1. Thus,
let Hy, H,, ..., H; € H be k distinct hyperplanes, where H; is the hyperplane
separating u and w. As w € N(H;) N N(H;) forevery i, j andas G ~, X is
special, it is clear that HC # H jG for any i # j. Furthermore, it is clear (see, for
instance, Proposition 2.5) that H; and H; intersect for every j # 1. In particular,
dax(Hy, Hj) = 1, and so dAX/G(HG, HJ.G) = 1. As by assumption HIG has at
most D neighbours in AX/G, it follows that k < D + 1,andso |H| < D + 1, as
required. O

Theorem 4.6. Suppose a group G acts specially on a quasi-median graph X, and
suppose there exists some D € N such that | Stabg (w)| < D forany w € V(X) and
any vertex of AX /G has at most D neighbours. Then the induced action G ~, CX
is acylindrical, and the acylindricity constants D, and N, can be expressed as
functions of € and D only.

Proof. Let ¢ € N. We claim that the acylindricity condition in Definition 1.2 is
satisfied for D, = 2e+6and N, = N2E+t3)D/(N—1)2, where N = (D+1)220+1,
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Indeed, let 4,k € AX be such that dex (h,k) > D.. Let H, K € V(CX) be
hyperplanes such that dex (H,h) < 1/2 and dex (K, k) < 1/2, and note that we
have dex(H,K) > Dy — 1 = 2¢ + 5. Let Go(h,k) = {g € G | dex(h,h8) <&,
dex (k, k%) < ¢}, and note that we have G.(h, k) C G.+1(H, K). We thus aim to
show that |G.4+1(H, K)| < N,.

Pick vertices v € N(K) and p € N(H), and an element g € G.41(H, K).
Let & = (Ho,...,Hn, po,---, pnt1) be a v-minimal contact sequence for
the tuple (H, H®, p, p®) with v-gate (go,...,gn) and (v, G)-orbit sequence
(Fo, ..., Hp, HG, ..., H)sas g € Seq1(H, K), wehaven < e+1. For0 <i <n,
setg; = g(v: p, Ho. ..., H;) and g; = g(v; p&,7(,,...,3);letalso g_; = p and
Op1 = PE.

We first claim that there exist hyperplanes Ag,..., 4, € V(CX) such that
gi—1,0; € N(A;) for each i. Indeed, this is clear if g; = p;4+; for each i, as in
that case we may simply take A; = H; for each i. Otherwise, let k € {0,...,n}
be minimal such that gx # pry1, and let A be a hyperplane separating gz and
Pi+1 such that gz € N(A). For0 <i < k — 1 we may take A; = H;, while for
k < i < n we can show (by induction on i, say) that g; € N(A4). Indeed, the
base case (i = k) is clear by construction; and if g;_; € N(A) for some i > k
and gi—1 = qo,-...9m = @; is a geodesic in X, then A cannot osculate with
the hyperplane separating g;_; and g; by Proposition 4.3 (ii) and (iii), and so
q;j € N(A) by induction on j. Thus we may take A; = A for k <i < n, so that
gi—1,0i € N(4;) for each i, as claimed. A symmetric argument shows that there
exist hyperplanes By, ..., Bo € V(CX) such that g; ,, g; € N(B;) for each i.

Now, we pass the sequence (g_1, ..., gs) to a subsequence (gk,. - - - . 9k, ) by
removing those g; for which g;_; = g;. It then follows that gx, , # gx, and that
Ok, 0k € N(Ag;) forl <i < a,wherea <n+1 < &+ 2. Similarly, we
may pass the sequence (g;,, .- ., gg) to a subsequence (gk(f), e, gk;)) such that
9, #+ Ok and that gk;_l,g;q € N(By,;)for1 <i <b,whereb <n+1=<¢e+2.

Nowasdex (H, H8)+dex (K, K8)+3 <2(e+1)+3 = 2¢+5 < dex(H, K),
it follows from Corollary 4.4 that & is also a v&-minimal contact sequence and that
gv; p, Ho,...,Hp) = g(8; p,Ho,...,H,). Therefore, by Proposition 4.3 (i)
and the discussion above,

g(v;p7g_ck15"-7g{ka) :g(v;p’g_c()v'-'sg_fn) :g(vg;pvj{()y"-’g{n)
=g pE. I, .. Hy) = g(u: p. I, .. HYE (3)
:g(v,p,ﬂ{;c/l,, ;c;))g

As the stabiliser of g(v; p, Hy,, ..., Hx,) has cardinality < D, it follows that,

given any subsets Hy,, ..., H,, 3, , ..., 3, € V(CX/G), there are at most D
1 b

elements g € G satistying (3). Butas gg;,_, # gk, » as g, lies on a geodesic between

gk;,_, and v, and as gg; ., gk, € N(A;), it follows from Lemma 4.5 that there are at

most (D + 1)? possible choices for Ay, (for 1 <i < a). Moreover, given a choice
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of Ag,;, as Hy,; < starAX/G(Ag) and by assumption |starAX/G(Ag)| <D+1,
there exist at most 22! choices for Hy, . It follows that there exist at most N¢
choices for the subsets Hy,, ..., Hi, € V(€X/G), where N = (D + 1)22P+1;
similarly, there exist at most N choices for the subsets fH;fﬁ s iH;c;) C V(CX/G).
In particular,

e+2 e+2 £13

e (H.K)| = D( 3 N) (Yo N?) < D(IIVV_ 1)2 = N,
b=0

a=0

as required. d

5. Application to graph products

We use this section to deduce results about graph products from Theorems A
and B: namely, we show Corollary C in Section 5.1 and Corollary D in Section 5.2.
Throughout this section, let I be a simplicial graph and let § = {G,, | v € V(I")}
be a collection of non-trivial groups. Let X be the quasi-median graph associated
to I'G, as given by Theorem 1.3: namely, X is the Cayley graph of I'G with respect
to the (not necessarily finite) generating set S = |_|, vy (Gu \ {1}).

For the rest of the paper, given a subset A € V(I"), we write 'y for the full
subgraph of I" spanned by A and denote {G, | v € A} by G4, and we view the
graph product I'4G4 as a subgroup of I'G. We will use the following result.

Theorem 5.1 (Genevois [11, Section 8.1]; Genevois and Martin [15, Theo-
rem 2.10]). Forv € V(I'), let H, be the hyperplane dual to the clique G, C X.
Then any hyperplane H in X is of the form HE for some v € V(I') and g € I'G.
Moreover, the vertices in N(H) are precisely Usiar(v) Gstar(v) € S V(X).

Remark 5.2. Due to our convention to consider only right actions, the Cayley
graph X = Cay(I'G, S) defined in Theorem 1.3 is the left Cayley graph: for s € S
and g € I'G, an edge labelled s joins g € V(X) to sg € V(X). Therefore, contrary
to the convention in [11, 15], the vertices in the carrier of a hyperplane will form a
right coset of Isiar(v) Gstar(v) for some v € V(I).

5.1. Acylindrical hyperbolicity. Here we prove Corollary C. It is clear from
Theorem 1.3 and Lemma 1.4 that we may apply Theorems A and B to the quasi-
median graph X associated to a graph product I'G. In particular, it follows that the
contact graph CX is a quasi-tree and I'G acts on it acylindrically. We thus only
need to show that, given that |V/(I")| > 2 and the complement I'C of T is connected,
either the action I'G ~, CX is non-elementary or I'G = C; * C,.
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Lemma 5.3. The following are facts equivalent:
(i) CX is unbounded,
(ii) T'C is connected and |V(I')| > 2.

Proof. We first show (i) = (ii). Indeed, if I" is a single vertex v, then X
is a single clique and so CX is a single vertex. On the other hand, if I'C is
disconnected, then we have a partition V(I') = A U B where A and B are adjacent
and non-empty. In particular, 'S = T'yG4 x I'sGp, and so any vertex g € I'G
of X can be expressed as g = gagp for some g4 € I'494 and gg € I'pYsp.
Thus, if H € V(€X) then by Theorem 5.1 N(H) = Tar(v) Gstar(v) 8485 for some
g4 € T45G4, gp € I'pSp and v € V(I'): without loss of generality, suppose
v € A. Then 8B € 1—‘393 = 1—‘star(v)gstar(v) and 84 € 1—‘ASA = 1—‘Star(u)gstar(u) for
any u € B, and so g4 € N(H) N N(Hy); therefore, dex(H, H,) < 1. Since
1 € N(H,) " N(Hy) and so dex (Hy, Hy) < 1 for any u,v € V(I'), it follows that
dex(H,H') <3forany H, H € CX and so CX is bounded, as required.

To show (ii) = (i), suppose that I" is a graph with at least 2 vertices and
connected complement. Thus, there exists a closed walk (v, vy, ..., v¢) on the
complement of T that visits every vertex—in particular, we have v; € V(I") with
vg = voandv;_; # vi, (vi—1,v;) ¢ E(T")for1 <i < {. Pick arbitrary non-identity
elements g; € Gy, fori = 1,...,{, and consider the element g = g;--- g, € I'G.

Now letn € IN, and let A, B € V(CX) be such that 1 € N(A) and g" € N(B).
Let A = Ao, ..., A = B be the geodesic in CX and let 1 = py, ..., pmt+1 = g"
be the vertices in X given by Proposition 3.1. It follows from the normal form
theorem for graph products [16, Theorem 3.9] that

n

(g1 80)+-(g1°+- &)

is the unique normal form for the element g”. In particular, as geodesics in X
are precisely the words spelling out normal forms of elements of I'G, we have
Pi = &tn—c;+18n—c;+2 " &tn>» Where 0 = ¢ < ¢; < -+ < ¢py1 = {n and
indices are taken modulo £.

We now claim that ¢;+1 — ¢; < £ for each i. Indeed, suppose ¢;+1 —¢; > £
for some i. Note that, as p;, pi+1 € N(4;), it follows from Theorem 5.1 that
Cstar(v) Istarwy Pi = V(N(A:)) = Ctar(v) Gstarw) Pi+1 for some v € V(I'), and there-
fore we have Pi+1pi_1 € Fstar(v)gstar(v)- But as 8tn—ci4184n—ci41+1 """ 8ln—c;—1 is
a normal form for p;11p; I (where indices are taken modulo £), it follows that
vj € star(v) for €n —cj41 < j < {n — ¢; (with indices again modulo £). But
as by assumption ¢;+; — ¢; > £ and as {vy,...,vs} = V(I'), this implies that
star(v) = V(TI"), and so v is an isolated vertex of I'C. This contradicts the fact that
I'C is connected; thus ¢;+; — ¢; < £ for each i, as claimed.

In particular, we get {n = Y~ ((ci+1 —¢;) < (m + )¢, andsom + 1 > n.
Thus dex (A, B) = m > n and so CX is unbounded, as required. O
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It is now easy to deduce when the action of I'G on CX is non-elementary
acylindrical.

Proof of Corollary C. By the argument above, we only need to show the last part.
Thus, suppose that I is a graph with at least 2 vertices and connected complement.
Then, by Lemma 5.3, the graph CX is unbounded. In particular, given any
H € V(CX) and n € IN, we may pick H' € V(CX) such that dex(H, H') > n + 1.
Since the action I'G§ ~, X is transitive on vertices, it follows that given any
vertex p € N(H) there exists g € I'G such that p8 € N(H’), and in particular
dex(H8,H') < 1. Thus dex(H, H%) > n, and so the action 'S ~, CX has
unbounded orbits.

It is left to show that I'G is either isomorphic to C, * C, or not virtually cyclic.
Indeed, if T" has only two vertices (v and w, say) and G, = Gy, = C;, then I is
a discrete graph with two vertices and I'§ =~ G, * G, = C, * C,. Otherwise,
we claim that there exists a subset A C V(I") such that I'4G4 is a free product of
two non-trivial groups, not both C,. If |V(I")| = 2 (and so V(') = {v, w}) then
I'G 2 G,*G,, and so we may take A = V(T"). Otherwise, since |V(I")| > 3and "¢
is connected, I'C contains a path of length 2, and so there exist vertices vy, v, w € I’
such that vy ~ w ~ vy. Let A = {v1, vz, w} and H = Ty, v,) 9w, 0.} (0 either
H = Gy, x Gy, or H = G, * Gy,). Since the groups G, are non-trivial for each
ve V(),wehave |[H| >4 > 2and so ['494 = Gy * H satisfies our conditions,
which proves the claim.

Thus, in either case I'4 G4 has infinitely many ends, and so is not virtually cyclic.
In particular, since the subgroup I'4G4 < I'G is not virtually cyclic, neither is I'G,
as required. O

Remark 5.4. After appearance of the first version of this paper in a form of a
preprint, it has been brought to the author’s attention that most of the results stated
in Corollary C have already been proved by Genevois. In [12, Theorem 4.11],
Genevois shows that AX is quasi-isometric to a tree whenever it is connected and
I' is finite, so in particular, by Theorem B (i), CX is a quasi-tree as well. Moreover,
methods used by Genevois to prove [13, Theorem 4.1] can be adapted to show
that the action of 'G on CX is non-uniformly acylindrical; here, the non-uniform
acylindricity of an action G ~, X is a weaker version of acylindricity, defined
by replacing the phrase “is bounded above by N.” by “is finite” in Definition 1.2.
Corollary C strengthens this statement.

5.2. AX-accessibility. Here we study AX-accessibility, introduced in [1] by
Abbott, Balasubramanya and Osin, of graph products. In particular, we show that
if I is connected, non-trivial, and the groups in G are infinite, then the action of
'S on CX is the “largest” acylindrical action of I'G on a hyperbolic metric space.
Hence we prove Corollary D.
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We briefly recall the terminology of [1]. Given two isometric actions G ~, X
and G ~ Y of a group G, we say G ~ X dominates G ~, Y, denoted
G~ Y =<XGnr X,ifthere exist x € X, y € Y and a constant C such that

dy(y,y%) < Cdx(x,x8)+C

forall g € G. The actions G ~ X and G ~ Y are said to be weakly equivalent if
GAX=<GnYand G ~ Y <G ~ X. This partitions all such actions into
equivalence classes.

It is easy to see that < defines a preorder on the set of all isometric actions of
G on metric spaces. Therefore, < defines a partial order on the set of equivalence
classes of all such actions. We may restrict this to a partial order on the set AH(G)
of equivalence classes of acylindrical actions of G on a hyperbolic space. We
then say the group G is AH-accessible if the partial order AH(G) has a largest
element (which, if exists, must necessarily be unique), and we say G is strongly
AXH-accessible if a representative of this largest element is a Cayley graph of G.

Recall that for an action G ~, X by isometries with X hyperbolic, an element
g € G is said to be loxodromic if, for some (or any) x € X, the map Z — X given
by n — x&" is a quasi-isometric embedding. It is clear from the definitions that the
“largest” action G ~, X will also be universal, in the sense that every element of G,
that is loxodromic with respect to some acylindrical action of G on a hyperbolic
space, will be loxodromic with respectto G ~, X.

In [1, Theorem 2.18 (c)], it is shown that the all right-angled Artin groups are
A -accessible (and more generally, so are all hierarchically hyperbolic groups—in
particular, groups acting properly and cocompactly on a CAT(0) cube complex
possessing a factor system [2, Theorem A]). Here we generalise this result to
“most” graph products of infinite groups. The proof is very similar to that of [1,
Lemma 7.16].

Proof of Corollary D. 1t is easy to show—for instance, by Theorem 5.1—that CX
is (G-equivariantly) quasi-isometric to the Cayley graph of I'G with respect to
UveV(F) l_‘star(v)gst'clr(v)-

We prove the statement by induction on |V/(I')|. If |[V(I")| = 1 (V(I')| = {v},
say), then v is an isolated vertex of I' and so, by the assumption, I'G = G, is
strongly A -accessible.

Suppose now that |V(T")| > 2. If T has an isolated vertex (I' = T4 U {v}
for some partition V(I') = A U {v}, say), then I'§ = I'yG4 * G, is hyperbolic
relative to {494, G, }. By the induction hypothesis, both I'4 G4 and G, are strongly
AJ-accessible, and hence, by [1, Theorem 7.9], so is I'G. If, on the other hand,
the complement T'C of T is disconnected (I'C = Ff ] Fg for some partition
V(') = AU B, say), then I'G = I'yG4 x 'gGp is not acylindrically hyperbolic
by [25, Corollary 7.2], as both I'4G4 and I'g Gp are infinite. It then follows from [1,
Example 7.8] that I"G is strongly AJ{-accessible; it also follows that any acylindrical
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action of I'G on a hyperbolic metric space (I'§ ~ CX, say) represents the largest
element of AH(I'G).

Hence, we may without loss of generality assume that I" is a graph with no
isolated vertices and connected complement. It then follows that |V(I')| > 4,
and so by Corollary C, CX is a hyperbolic metric space and I'G acts on it non-
elementarily acylindrically. It is easy to see from Theorem 5.1 that, given two
hyperplanes H, H' € V(CX), they are adjacent in CX if and only if there exist
distinct u,v € V(I') and g € I'G such that H = H$ and H' = H§. It follows
that the quotient space CX/I'G is the complete graph on |V(I")| vertices, and in
particular, the action I'§ ~, CX is cocompact.

Moreover, it follows from Theorem 5.1 that the stabiliser of an arbitrary vertex
H{]g of CX is precisely G =~ (Fstar(v)Qsm(v))g = G{;g X (thk(v)glink(v))g. Since
I" has no isolated vertices, link(v) # @, and so, as all groups in G are infinite,
both G§ and (Tink(w) Siink(v)) are infinite groups. Thus, G is a direct product of
two infinite groups, and so—by [25, Corollary 7.2], say—G does not possess a
non-elementary acylindrical action on a hyperbolic space. Since G is not virtually
cyclic, for every acylindrical action of I'G on a hyperbolic space Y, the induced
action of G on Y has bounded orbits. It then follows from [1, Proposition 4.13]
that I'G is strongly AH-accessible—and in particular, I'§ ~, CX represents the
largest element of AH(T'9G). O

Remark 5.5. Corollary D gives some explicit descriptions for the class of hier-
archically hyperbolic groups, introduced by Behrstock, Hagen and Sisto in [5].
In particular, a result by Berlai and Robbio [6, Theorem C] says that if all vertex
groups G, are hierarchically hyperbolic with the intersection property and clean
containers, then the same can be said about I'G. Moreover, Abbott, Behrstock
and Durham show in [2, Theorem A] that all hierarchically hyperbolic groups are
A -accessible, which implies Corollary D in the case when the vertex groups G,
are hierarchically hyperbolic with the intersection property and clean containers.

More precisely, every hierarchically hyperbolic group G comes with an action
on a space X, such that there exist projections y: X — 2¢¥ to some collection
of §-hyperbolic spaces {CY | Y € &), where G is a partial order that contains a
(unique) largest element, S € S, say. Moreover, the action of G on X induces an
action of G on (a space quasi-isometric to) U = (J,c 7s(x) € es , and in [5,
Theorem 14.3] it is shown that this action is acylindrical. In [2], this construction
is modified so that the action G ~, U represents the largest element of AH(G).
If I' is connected, non-trivial, and the groups G, are infinite and hierarchically
hyperbolic (with the intersection property and clean containers), then the proof
of Corollary D gives this action I'G§ ~, U explicitly. This is potentially useful for
studying hierarchical hyperbolicity of graph products.
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Remark 5.6. Note that the condition on the G, being infinite is necessary for

the proof to work. Indeed, suppose I' = c.z_é_g_c.z’ is a path of length 3, and

Gy, = (gy) = C, for each v € V(I'), so that I'G is the right-angled Coxeter group
over I'. Notice that I'G =~ A x¢ B, where A = Gy X (G4 * G.), B = G, x Gy
and C = G,. In particular, since C is finite, I'G is hyperbolic relative to {4, B}.
Hence the Cayley graph Cay(I'G, A U B) is hyperbolic and the usual action of I'G
on it is acylindrical.

Itis easy to verify from the normal form theorem for amalgamated free products
that the element g5, g; will be loxodromic with respect to I'G ~, Cay(I'G, A U B).
However, as g584 € Istar(c) Istar(c)>» We know that g, g, stabilises the hyperplane
dual to G, C V(X) under the action of I'G on CX, and so g gy is not loxodromic
with respectto 'S ~, CX. In particular, the equivalence class of I'G ~, CX cannot
be the largest element of AJ(I"G). It is straightforward to generalise this argument
to show that if ¢ € V(I") is a separating vertex of a connected finite simplicial
graph I', then for any graph product I'G with G, finite, the action I'G ~, CX will
not be the “largest” one.

On the other hand, note that this particular group I'G (and indeed any right-
angled Coxeter group) will be A -accessible: see [2, Theorem A (4)].

6. Equational noetherianity of graph products

In this section we prove Theorem E. To do this, we use the methods that Groves
and Hull exhibited in [17]. Here we briefly recall their terminology.

The approach to equationally noetherian groups used in [17] is through se-
quences of homomorphisms. In particular, let G be any group, let F be a finitely
generated group and let ¢;: F — G be a sequence of homomorphisms (i € IN).
Let w: P(IN) — {0, 1} be a non-principal ultrafilter. We say a sequence of proper-
ties (P;);e holds w-almost surely if w({i € IN | P; holds}) = 1. We define the
w-kernel of F with respect to (¢;) to be

Fo o) =1f € F | ¢i(f) = 1 w-almost surely};

we write F,, for F, () if the sequence (¢;) is clear. It is easy to check that F,,
is a normal subgroup of F. We say ¢; factors through F, w-almost surely if
F,, C ker(¢;) w-almost surely.

The idea behind all these definitions is the following result.

Theorem 6.1 (Groves and Hull [17, Theorem 3.5]). Let w be a non-principal
ultrafilter. Then the following are equivalent for any group G-

(i) G is equationally noetherian;

(ii) for any finitely generated group F and any sequence of homomorphisms
(pi: F — G), @; factors through F,, w-almost surely.
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Remark 6.2. Note that Definition 1.6 differs from the usual definition of equation-
ally noetherian groups, as we do not allow “coefficients” in our equations: that is,
we restrict to subsets S C F, instead of S € G * F,. However, the two concepts
coincide when G is finitely generated—see [4, §2.2, Proposition 3]. We use this
(weaker) definition of equationally noetherian groups as it is more suitable for
our methods. In particular, we use an equivalent characterisation of equationally
noetherian groups given by Theorem 6.1.

The structure of this section is as follows. In Section 6.1, we introduce
“admissible” graphs and show that being equationally noetherian is preserved
under taking graph products over connected admissible graphs. In Section 6.2,
we introduce (polygonal) dual van Kampen diagrams for graph products—a tool
that we use in our proof of Theorem E. In Section 6.3, we introduce minimal
polygonal representations for words in a free group, closely related to polygonal
van Kampen diagrams defined in the preceding subsection. In Section 6.4, we give
our main technical results in order to show that all connected graphs of girth > 6
are admissible. In Section 6.5, we combine these results to prove Theorem E.

6.1. Reduction to sequences of linking homomorphisms. Suppose now that
the group G acts by isometries on a metric space (Y, d). As before, let F be
a finitely generated group, @ a non-principal ultrafilter, and (¢;: FF — G)2, a
sequence of homomorphisms. Pick a finite generating set S for F'. We say that the
sequence of homomorphisms (¢;) is non-divergent if
lim inf max d(y, y%®) < .
® yeY seS

We say that (¢;) is divergent otherwise. It is easy to see that this does not depend
on the choice of a generating set S for F.

The main technical result of [17] states thatin case Y is hyperbolic and the action
of G on Y is non-elementary acylindrical, it is enough to consider non-divergent
sequences of homomorphisms (cf Theorem 6.1).

Theorem 6.3 (Groves and Hull [17, Theorem B]). Let Y be a hyperbolic metric
space and G a group acting non-elementarily acylindrically on Y . Suppose that for
any finitely generated group F and any non-divergent sequence of homomorphisms
(pi: F — G), ¢; factors through F, w-almost surely. Then G is equationally
noetherian.

We now consider the particular case when G is a graph product and ¥ = CX
is the crossing graph of the quasi-median graph X associated to G. Thus, as
before, let I be a finite simplicial graph and let § = {G, | v € V(I')} be a
collection of non-trivial groups. It turns out that in this case we may reduce any
non-divergent sequence of homomorphisms to one of the following form: see the
proof of Theorem 6.6.
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Definition 6.4. Let F be a finitely generated free group, let S C F be a free basis
for F, and let ¢: F — I'G be a homomorphism. We say ¢ is linking if for each
s € §, there exists v = v(s) € V(I') such that ¢(s) € Iink(w) link(v); although
in general this depends on the choice of the free basis S, we will usually fix S
and omit references to it. We say the graph I" is admissible if for every collection
of non-trivial equationally noetherian groups § = {G, | v € V(I')} and every
sequence of linking homomorphisms (¢;: F — I'G)72,, ¢; factors through F,
w-almost surely.

The proof of Theorem 6.6 uses the following result.
Lemma 6.5. Full subgraphs of admissible graphs are admissible.

Proof. LetI be aadmissible graph, letg = {G, | v € V(I")} be a collection of non-
trivial equationally noetherian groups, and let F be a finitely generated free group.
Let A C V(T'), so that I'4 is a full subgraph of I', and let ((piA: F —T454)72, be
a sequence of linking homomorphisms. Let w be a non-principal ultrafilter. We
aim to show that 90{4 factors through F,, 4y w-almost surely.

Note that we have a canonical inclusilon of subgroup t4: 454 — I'G. For
each i, let o, = 140 (piA: F — TI'G. Itis easy to see that the ¢; are linking
homomorphisms. In particular, since I" is admissible, we have F,, (,,) € ker ¢;
w-almost surely. Moreover, since t4 is injective, we have ker (piA = ker ¢; for each

iand F, ,4) = Fo (o). Thus F, 4y C ker(pl.“l w-almost surely, and so Iy is
admissible, as required. O

Theorem 6.6. For any connected admissible graph T' and any collection § =
{Gy | v € V(I')} of equationally noetherian groups, the graph product T'S is
equationally noetherian.

Proof. We proceed by induction on [V(T')|. If [V(T")| = 1 (V(I') = {v}, say) then
I'S =~ Gy, and so the result is clear. Thus, assume that |V(I")| > 2.

If the complement of I" is disconnected, then we have a partition V(I') = AU B
such that I'§ =~ I'y94 x 'pGp. By Lemma 6.5, both 4 and I'p are admissible,
and so ['4G4 and I'g Gp are equationally noetherian by the induction hypothesis. It
is clear from the definition that a direct product G x H of equationally noetherian
groups G and H is equationally noetherian: indeed, this follows from the cartesian
product decomposition Vgx g (S) = Vg (S) x Vi (S), forany S € F,,. Thus I'G is
equationally noetherian.

Therefore, we may without of loss of generality assume that I" is a connected
graph with a connected complement and with |V (I")| > 2 (and, therefore, |V(T")| > 4).
In this case, Corollary C shows that CX is a hyperbolic metric space and the action
of I'G on it is non-elementary acylindrical. We thus may use Theorem 6.3 to show
that I'G is equationally noetherian.
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In particular, let F' be a finitely generated group and let (¢;: F — I'G)72, be
a non-divergent sequence of homomorphisms. By Theorem 6.3, it is enough to
show that ¢; factors through F,, w-almost surely.

We proceed as in the proof of [17, Theorem D]. Let S be a finite generating
set for F. Note that, by Theorem 5.1, we may conjugate each ¢; (if necessary) to
assume that the minimum (over all hyperplanes H in X) of maxses dex (H, H% (s ))
is attained for H = H, for some u € V(I"). Moreover, it is easy to see from
Theorem 5.1 that |||g||« — dex(Hy, H§)| < 1 forany g € I'S and u € V(I),
where we write || g||« for the minimal integer £ € IN such that g = g;--- g, and
gi € Tstar(v;) Gstar(v;) for some v; € V(T'). In particular, since the sequence (¢;) is
non-divergent, it follows that

lim max [|; (s) ]|« < oc.
o seS

It follows that for each s € S, there exists /iy € IN such that ||@; (s)]|« = 7
w-almost surely. Moreover, for each s € S, there exist Uy,1, ..., 054, € V(I') such
that we have

Qi (s) = g’i,s,l "'gi,s,ﬁs
with g;s; € Fstar({)s.j)gstar({)&j) w-almost surely. But since Igarv) Gstarw) =
Gy X Dlink(v) link(v) for each v € V(I'), we can write &;s,; = is,2j—18i.5.2)5
where gis2j-1 € G,;w. < Tlink(vy.»;_1) Gink(vy.2,;_1) with any choice of vertex
Vs2j—1 € link(dy,;) (which exists since I' is connected and |V(I")| > 2), and
gis.2j € Dlink(vy ;) Stink(vg »,;) With vs2; = Us,j. It follows that, after setting
ng = 20y, we w-almost surely may write

@i(s) = 8i,s,1 " 8i,s,ng

with gis,j € Tlink(v,. ;) Glink(vs_)-
Now for each s € S, define abstract letters kg 1, . .., hsn,. For each v € V(I'),
let

Sv = {hs,j | vs,j = U},

let S = Upeya)Sy, and let F = F(S), the free group on S. We can define a map
from S to F by sending s € S to hg,1 -+ hs . Let N be the normal subgroup of
F generated by images of all the relators of F under this map. This gives a group
homomorphism p: F — F/N.

The map ¢;: F/N — T'G, obtained by sending A ;N to g j, is w-almost
surely a well-defined homomorphism. Indeed, all the relators in F/N are of the
form ¢p({hs,1---hsn, | s € S}), where ¢(S) is a relator in F, and so w-almost
surely map to the identity under ¢;. It is also clear that ¢; = ¢; o p w-almost surely.

Now let 7: F — F/N be the quotient map. Then, by construction, the
homomorphisms ¢, = ¢; o m: F — T'G are linking (when they are wull defined).
Since I' is admissible and the groups G, are equationally noetherian, it follows
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that ¢; factors through F,, w-almost surely. Since x is surjective, this implies
that (F/N), C ker@; w-almost surely. Thus ¢; = ¢; o p factors through
F, = p~'((F/N),) w-almost surely, as required. O

We expect that the class of equationally noetherian groups is closed under taking
arbitrary graph products. Although we are not able to show this in full generality,
in the next subsections we show that any connected graph I" that is triangle-free,
square-free and pentagon-free, is admissible, and therefore (by Theorem 6.6) the
class of equationally noetherian groups is closed under taking graph products over
such graphs I'.

6.2. Dual van Kampen diagrams. Before embarking on a proof of Theorem E,
let us define the following notion. Following methods of [10] and [21], we consider
dual van Kampen diagrams for words representing the identity in I'G; recently,
dual van Kampen diagrams for graph products have been independently introduced
by Genevois in [14]. Here we explain their construction and properties.

We consider van Kampen diagrams in the quasi-median graph X given by
Theorem 1.3, viewed as a Cayley graph. In particular, note that we have a
presentation

'S = (S| RaURn) “)

with generators

S =] |G, \ {1}

veV Tl

and relators of two types: the “triangular” relators

Ra = | |ighk™" | g.h.k € Gy \ {1}.gh = k in Gy}
veV(T)

and the “rectangular” relators

Rp = I_l{[gvvgw] | gv € Gy \ {1}, gw € Gy \ {1}}.
(v,w)eE ()

We now dualise the notion of van Kampen diagrams with respect to the
presentation (4). Let D € R? be a van Kampen diagram with boundary label w,
for some word w € S* representing the identity in T'G, with respect to the
presentation (4). It is convenient to pick a colouring V(I") — IN and to colour edges
of D according to their labels. Suppose that w = g; --- g, for some syllables g;,
and let ey, ..., e, be the corresponding edges on the boundary of D. We add a
“vertex at infinity” oo somewhere on R? \ D, and for eachi = 1,...,n, we attach
to D atriangular “boundary” face whose vertices are the endpoints of e; and oc.
We get the dual van Kampen diagram A corresponding to D by taking the dual of
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D as a polyhedral complex and removing the face corresponding to co: thus, A is
a tesselation of a disk. See Figure 7.

ay

ay Yar Yar

cq

2

as
o)

Figure 7. Van Kampen diagram (D, left) and its dual (A, right) with the word
arbiciazbrcaaz ey tasby ey tay e 1! as its boundary label, where a; € G, with
aya = ag, b € Gp, ¢; € G¢ with cq4c3 = ¢y, and b ~ a ~ c in I'. The black edges on D
represent the boundary faces attached: the non-visible endpoint of each black edge is the
point co. The dual van Kampen diagram A contains 6 components in total: 2 components
corresponding to each of the vertices a, b and c.

We lift the colouring of edges in D to a colouring of edges of A: this gives a
corresponding vertex v € V(I") for each internal edge of A. We say a 1-subcomplex
(a subgraph) of A is a v-component (or just a component) for some v € V(T') if it
is a maximal connected subgraph each of whose edges correspond to the vertex v.
We call a vertex of A an intersection point (respectively branch point, boundary
point) if it comes from a triangular (respectively rectangular, boundary) face in D.
It is easy to see that boundary, intersection and branch points lying on a component
C will be precisely the vertices of C of degree 1, 2, and 3, respectively.

We now equip dual van Kampen diagrams with some additional structure. Some
of the concepts introduced in the following Definition are displayed in Figure 8.

Definition 6.7. Let W be a cyclic word over | |, ¢y (Gy \ {1}) such that W = 1
in I'G. A polygonal van Kampen diagram for W is a dual van Kampen diagram
with boundary label W together with the following information:

e a subdivision W = g; --- g of W into geodesic subwords gy, called van
Kampen pieces, such that for each £ € {1, ..., k} we have supp g, C link(v)
for some v € V(I');
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e an assignment of a label from V(T") x {", ©} for each van Kampen piece,
such that supp g, C {v} if g has label (v, ) and supp g¢ < link(v) if g, has
label (v, 7).

For any v € V(I'), we write v for (v, ’), and call each van Kampen piece with label
v a v-piece; we write 0 for (v, ), and call each van Kampen piece with label v a
v-piece.

We say a van Kampen piece g is trivial if |g| = 0, small if |g| = 1, and large
otherwise. With g1, ..., gx the van Kampen pieces as above, we say g, ..., &,
are consecutive van Kampen pieces if 2 <m < k and j;+; = j; + 1 (mod k) for
1 <i <m — 1. We say van Kampen pieces g and & are adjacent if either g, h or
h, g are consecutive.

We adopt the convention that W is read out by following the boundary of A
clockwise. For a van Kampen piece g of A, we write J, (A) for the subinterval of
the boundary dA of A corresponding to the subword g. Given two distinct points
P, Q € dA, we write [ P, Q] for the closed subinterval of dA going clockwise from
P to Q. We say a component C of A is supported at a van Kampen piece g if
it has a boundary point on Jg(A). A supporting interval of C is an interval of
the form [P, Q], where P, Q € 0A are distinct boundary points of C such that all
boundary points of C are contained in [P, Q].

An oriented component of A is a pair (C, [P, Q]), where C is a component of
A and [P, Q] is a supporting interval of C. An oriented component (C, [P, Q]) is
said to enclose an oriented component (C’, [P’, Q’]) (or we may simply say that
(C,[P, Q]) encloses C") if [P, Q'] € [P, Q]. We say that (C, [P, Q]) is trivial if
P €Jg(A), QO € J4(A) and g, h are consecutive van Kampen pieces; (C, [P, Q]) is
said to be minimal if it is not trivial and does not enclose any non-trivial components,
and almost minimal if it is neither trivial nor minimal and does not enclose any
non-trivial non-minimal components. We say (C, [P, Q]) is an oriented component
starting (respectively ending) at a van Kampen piece g if P € J(A) (respectively

0 € Jg(N)).

We order the components supported at a given van Kampen piece g by looking
at their boundary points on J¢ (A). In particular, fori > 1 and a van Kampen piece
g, we say a component C supported at g is the i -th component supported at g if the
boundary point of C in J (A) is the i-th boundary point on Jg (A) when following
dA clockwise. We similarly define the last (or penultimate) component supported
atg.

The following two Lemmas will be used in Section 6.4.

Lemma 6.8. Let A be a polygonal van Kampen diagram, and suppose that T is
triangle-free. Then for any van Kampen piece g of A, no two components supported
at g intersect.
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u v

X y
(a) The graph T (b) A polygonal van Kampen diagram for I"'G.

Figure 8. An example of a polygonal van Kampen diagram A. The interval Jg(A)
corresponding to a van Kampen piece g is drawn as a smooth curve, with the label of
g written next to it. The trivial components are C1, C» and C3 (with the obvious choices of
supporting intervals). The oriented component (C’, [Py, P4]) is minimal, but for 1 <i < 3,
the oriented component (C’, [P; 41, P;]) is not minimal as it encloses C”. The components
C3 and C” are the first (penultimate) and second (last) components, respectively, supported
at the unique y-piece of A.

Proof. Let C be a v-component and C’ be a w-component (for some v, w € V(I')),
both supported at a van Kampen piece g. Suppose for contradition that C and
C’ intersect: then w € link(v). But we have {v, w} C supp g C link(u) for some
u € V(I'). Hence u,v,w span a triangle in I', contradicting the fact that I" is
triangle-free. Thus C and C’ cannot intersect, as required. d

Lemma 6.9. Let A be a polygonal van Kampen diagram, and suppose that T’
has girth > 5. Suppose C; and C, are distinct components of A supported at a
van Kampen piece g of A, and C is a v-component ( for some v € V(I')) that
either intersects or coincides with each of C1 and Cy. Then g is a v-piece, and C
intersects both Cy and C,.

Proof. Let C; and C, be the i-th and the j-th pieces (respectively) supported at g,
and suppose, without loss of generality, thati < j.

Suppose first that j > i + 2. Let Py, P, € J,(A) be the boundary points
of Cy, Cy, respectively. Note that, by the assumption, any continuous path in
A between a point in [Py, P»] \ {P1, P} and a point in [P;, P;] \ {P1, P>} must
intersect either C or Cy or C,. Thus, if C’ is the (i + 1)-st component supported
at p, then C’ must either intersect or coincide with one of C, C; and C,. But C’
cannot intersect C; or C; by Lemma 6.8, and it cannot coincide with either C;
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or C, since g is a geodesic. Thus C’ must either intersect or coincide with C;
by replacing C, with C’ if necessary, we may therefore assume, without loss of
generality, that j =i + 1.

Now let v1,v, € V(I') be such that C; and C, are a v;-component and a
vy-component, respectively. As g is a geodesic and j = i + 1, it follows that
V1 # va. This implies that we cannot have C; = C = Cs; on the other hand, if one
of the C; intersected C and the other one was equal to C, then C; and C, would
intersect, contradicting Lemma 6.8. Thus both C; and C, must intersect C, and
S0 v1, vz € link(v). As I is square-free and v; # vy, this implies that g must be a
v-piece, as required. O

6.3. Minimal polygonal representations. Throughout this and the next subsec-
tions, let I' be a connected finite simple graph with at least two vertices, and let
G ={Gy | v € V(I')} be a collection of groups. Let F = (Sy | ) be a finitely gen-
erated free group (so that |So| < 00), let S := So U Sg! C F,andlet¢;: F — I'G
be a sequence of homomorphisms. For each v € V(I'), let S, € S be the set
of all s € S such that supp ¢;(s) C link(v) w-almost surely. Suppose that the
homomorphisms ¢; are linking, and in particular, S = | J, ey Sv-

Now for each v € V(I'), define abstract letters TU(O) = {t,(s) | s € Sp}. Let F be
a free group with free basis So := So U (|, vy T v(o))’ so that F is a free factor
of F. We may extend the homomorphisms ¢;: F — I'G to homomorphisms
@i F — TG by setting ¢ (tv(s)) = my(pi(s)), where m,:T'G — G, is the
canonical prOJectlon Let T, U(O) L (Tv(o))_1 C F forv € V(I'), and let
S:=8uS,'cF.

For each v € V(T'), let F, and F, be the subgroups of F generated by T,
and S, := S, U (Wwetinkw) Tw), respectively. Note that ¢ (Fy) € G, and

@i (F ) € Dlink(v) Jlink(v) @-almost surely. For convenience, for any v, w € V(I')
and s € Sy we also set

) = {”"(S) e

otherwise,

so that we have well-defined functions #,: So — T(O) U {1} extending to homomor-
pisms £,: F — F

The aim of this and the next subsections is to introduce several technical lemmas
we will use in a proof of the following result.

Proposition 6.10. If T has girth > 6, then F,, ;) is the normal closure K of

= ( U@ nEa)u( Uik £))

veV() veV(T)
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By construction, [F,, ﬁv] C F, w-almost surely for all v € V(T'), and so
X C F,. Thus, we only need to show that K contains every f € F such that
@i (f) = 1 w-almost surely. We will use the remainder of this subsection to prove
this. In order to do that, we work with “polygonal representations,” which are
defined below and closely related to polygonal van Kampen diagrams introduced
in Section 6.2.

Definition 6.11. Let W = s, ---s, be a cyclic word over the alphabet S. A polyg-
onal representation for W consists of the following data.

o A subdivision W = [sj, -+ 5j,—1]8j, =+ Sjp—1| - [Sj_, -=*Sj—1| of W, where
Jk = Jo, into subwords p; = s;,_, ---5j,—1 called pieces, such that for each
te{l,... .k} wehaves;,_,,...,sj,—1 €S, for some v € V(I').

e An assignment of a label from V(T") x {’, "} for each piece. For any v € V(I"),
we write ¥ for (v, "), and call each piece with label v a ¥-piece; we write ¢ for
(v,7), and call each piece with label ¢ a 0-piece. We require the assignment to
be such that for any piece p; = sj,_, -**5j,—1, we have s;,_,,...,8;,-1 € Ty
if pg is a v-piece, and s7,_,,...,Sj,—1 € §v if p; is a v-piece.

The length of a piece py is the number lim® |@; (p¢)| € IN U {oo}, where |g| is the
word length of g € T'G over the alphabet |_|,cy ) (Gyv \ {1}). Clearly, any v-piece
has length < 1 for any v € V(I'). If a piece p; has length L < oo, then (as I is
finite) there exist vertices vy, ...,vr € V(I') such that we w-almost surely have
©i(pe) = gi1--- gi,r for some gi,m € Gy,,; if in addition we have v, # v,y for
1 <m <m' < L,then py is said to be a small piece. A piece that is not small is
called large.

Given a finite sequence pj, . ..., p;,, of pieces, we say p;, ..., pj, are consec-
utiveif 2 <m <k and ji;+; = ji +1 (mod k) for 1 <i <m — 1. We say a piece
p is adjacent to a piece g if either p, g or ¢, p are consecutive.

It is clear that every word has at least one polygonal representation: for instance,
the one where pieces are single letters.

We say two words U, U’ over S are equivalent if UK and U’K are conjugate
in F/K, and we say two cyclic words W, W’ over S are equivalent if some
(equivalently, any) representative words U of W and U’ of W’ are equivalent.
It is clear that this defines an equivalence relation on the set of cyclic words over S.

Given a cyclic word W’ with a polygonal representation D’, we denote by
P(W’,D') and P(W’, D’) the number of v-pieces (for v € V(I')) and the number
of v-pieces (for v € V(I')), respectively, in D’. A polygonal representation D
for a word W is said to be minimal if, for all cyclic words W’ equivalent to W
and all polygonal representations D’ for W’, we have (I3 (W, D), P(W,D)) <
(P(W', D), P(W', D)) in the lexicographical order.
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Remark 6.12. There is an a priori noticeable discrepancy between the definition of
a “small/large piece” in Definition 6.11 and the definition of a “trivial/small/large
van Kampen piece” in Definition 6.7. However, in view of parts (i) and (ii) of
Lemma 6.13 below, the two definitions are related in the following sense.

Let W be a cyclic word over S, let D be a polygonal representation for W
with pieces pi, ..., pk, and suppose that D is a minimal polygonal representation.
Suppose moreover that W € F,: in particular, w-almost surely there exists a
polygonal van Kampen diagram A; with van Kampen pieces g; 1. ..., g x, where
gi.¢ is a geodesic word representing ¢; (p¢) for each £, and where the label of the
van Kampen piece g; ¢ coincides with the label of the piece py. Then py is a small
(respectively large) piece if and only if g; ¢ is w-almost surely a small (respectively
large) van Kampen piece.

Since in the subsequent argument we do not consider polygonal representations
that are not minimal, we chose our terminology the way we did in Definitions 6.7
and 6.11.

Lemma 6.13. A minimal polygonal representation satisfies the following:
(i) there are no pieces of length 0;

(ii) every small piece is a v-piece for some v € V(') (in particular, any small
piece has length 1, and there are no pieces of length 2);

(iii) if p1,..., pm are consecutive pieces, py and py, are a w1 -piece and a v-piece
(respectively) for some wy,v € V(I'), and, for each j € {2,....m}, pj isa
w;-piece for some w; € V(I'), then we have {w, wa, ..., Wx—1} € link(v);

@(v) if p1,..., pm are consecutive pieces, p1 and p,, are v-pieces for some
v € V(I'), and, for each j € {2,...,m — 1}, p; is a w;-piece for some
w; € V(I'), then {w>, ..., wp—1} £ link(v);

(v) no two pieces with the same label are adjacent;
(vi) for any v € V(T') and w € link(v), no w-piece is adjacent to a v-piece;
(vii) forany v € V(I') and w € link(v), no 0-piece is adjacent to both a w-piece
and a v-piece;
(viii) for any v € V(T), no 0-piece is adjacent to two v-pieces;

(ix) for any v € V(I), no v-piece is adjacent to two v-pieces.

Proof. Let D be a minimal polygonal representation for a word W. We claim that
D satisfies the conclusions of the Lemma. We check the parts (i)—(ix) in order.
Some of these parts are visualised in Figure 9.

(i) Note that if p is a piece of length 0, then ¢; (p) = 1 w-almost surely, and
sop € F, N F,, where u = v if p is a v-piece and u is any vertex
in link(v) if p is a v-piece (such a vertex u exists since I" is connected).
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—eoe® o0
4 P1 P2 Pm—1 ]7.1.]7.3 pm.—.l
v y u
fwalP) | o o, D3 P2
e —lee® - ® YY)
twl(p) Tw, (P) P1Pm P2 Pm—1 P1Pm P3 Pm—1
(ii) (iii) (iv)
VN v
—i—e Yl ——{o—
) o
p1 o p2 D3 p1FZ§4p3 P1 D2 p3
U ! 4
——te ——
—— o— —-Ie
pPip3 D2 pP1p3 p2 pip3 P2

(vii) (viii) (ix)

Figure 9. Proof of Lemma 6.13. The colours represent different vertices, v being blue and w
or w; reddish. The u-pieces and #-pieces (for some u € V(I')) are denoted by ® and —,
respectively.

(i)

(iii)

In particular, p € X C K, and so deleting the subword p of W and the
piece p from D results in a new word W’, equivalent to W, and a polygonal
representation D’ for W'. But then we either have (P (W', D'), P(W', D)) =
(P(W,D), P(W,D) — 1) or (P(W, D), P(W', D)) = (P(W,D) — 1,
P (W, D)). This contradicts minimality of D.

Suppose that p is a small v-piece for some v € V(I'). Then there ex-
ist distinct vertices wy,...,w, € link(v) such that we have ¢;(p) =
gi,1*** &i,m w-almost surely, where g,y € Gy,. In particular, we have
(tw,(p) - tw,, (P)) " 'p e FyN F, C K. Thus, replacing the subword p of
W with a subword ty,, (p) - - - tw,, (p) results in a new word W', equivalent
to W, and replacing the v-piece p in D with m pieces t,, (p), .. .. tw,, (p)
(with labels 1, ..., W, respectively) we obtain a polygonal representa-
tion D’ for W’. However, then D’ satisfies (P (W', D), P(W',D’)) =
(ﬁ(W, D) — 1, P(W, D) + £), contradicting minimality of D.

Suppose for contradiction that this is not the case. We then have [p,,
P2+ pm-1] € [Fy. F,] € K, and so multiplying (a conjugate of) the word

W = pi---pmWo by [pm, p2++- pm—1] We get W' = p1pmpa -+ pm—1Wo
equivalent to W. We define a polygonal representation D’ for W’ by
letting the pieces be pipm, p2. ..., Pm—1 together with the pieces of Wy,
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where pi1 p,, is a W;-piece and all the other pieces have the same labels
as the corresponding pieces in D. But then (P(W', D), P(W',D')) =
(ﬁ(W, D), P(W, D) — 1), again contradicting minimality of D.

(iv) Suppose for contradiction that this is not the case. We construct a word
W' equivalent to W and a polygonal representation D’ for W the same
way as in part (iii), except for letting p; p,, be a v-piece this time. Then
again (P(W’', D), P(W', D)) = (P(W,D), P(W,D) — 1), contradicting
minimality of D.

(v) If two adjacent pieces p and g have the same label, then we can concatenate
them (resulting in a single piece with the same label) to obtain a new polyg-
onal representation D’ of W. But then we have (P (W, D’), P(W, D)) =
(P (W, D), P(W,D)—1)if pandq are v-pieces, and (P(W, D), P(W, D))=
(ﬁ(W, D) — 1, P(W, D)) if p and ¢ are d-pieces (for some v € V(T')). This
contradicts minimality of D.

(vi) The case when p, g are consecutive pieces such that p is a v-piece and q is
a w-piece (for some w € link(v)) is exactly the case m = 2 in part (iii). If
instead ¢, p are consecutive, a symmetric argument works.

(vii) Suppose that pq, p2, p3 are consecutive pieces such that p;, p, and p;
have labels w, ¥ and v, respectively; if instead p;, p» and p; have labels
v, U, and W, respectively, then a symmetric argument works. We then
have [ps, p2] € [Fo. fv] C K, and so multiplying (a conjugate of) W =
p1P2p3Wo by [p3, p2] we getaword W/ = py p3 po Wy equivalent to W. We
define a polygonal representation D’ for W’ by letting the pieces be p1 p3
and p, together with the pieces of Wy, where p; p3 is a w-piece and all the
other pieces have the same labels as the corresponding pieces in D. But then
(P(W', D), P(W', D)) = (P(W,D), P(W,D) — 1), again contradicting
minimality of D.

(viii) This follows exactly as in part (vii), except that the labels of the piece p; of
D and the piece p; p3 of D’ are now both v instead of .

(ix) Suppose that pi, p», p3 are consecutive pieces with labels 9, v and 9,
respectively. We then have [ps, p3] € [F,, ﬁv] C K, and so multiplying a
conjugate of W = py p2 p3Wo by [p2, p3] ™" we getaword W' = p1 p3 p2Wo
equivalent to W. We define a polygonal representation D’ for W' by letting
the pieces be p; p3 and p, together with the pieces of W, where p;ps3 isa
v-piece and all the other pieces have the same labels as the corresponding
pieces in D. But then (P(W',D'), B(W’, D)) = (P(W,D) — 1, P(W, D)),
again contradicting minimality of D. O

6.4. Graphs of large girth. The idea of our proof of Proposition 6.10 is to use
properties of polygonal van Kampen diagrams analogous to the ones enjoyed by
minimal polygonal representations. In particular, we define the following.



Acylindrical hyperbolicity and equations in graph products 187

Definition 6.14. A polygonal van Kampen diagram is said to be minimal if A
satisfies the conditions (i)—(ix) in Lemma 6.13, with each appearance of the word
“piece” replaced with “van Kampen piece.”

In particular, we will refer to Lemma 6.13 when talking about minimal polygonal
van Kampen diagrams. Therefore, in the following discussion we will use the
fact that minimal polygonal van Kampen diagrams have no trivial pieces (by
Lemma 6.13 (i)), and so all their van Kampen pieces are either small or large. The
following results (Lemma 6.15, Lemma 6.16 and Corollary 6.17) are the main
auxiliary results required in our proof of Proposition 6.10.

Lemma 6.15. Let A be a minimal polygonal van Kampen diagram, and suppose
that T has girth > 6. If (C, [P, Q)) is a component of A that is either trivial or
minimal, then the following hold.:
(i) (C,[P, Q]) does not enclose any other components;
(ii) if C is supported at a van Kampen piece g, then g is large;
(iii) if C is supported at a van Kampen piece g, then either P € J4(A) and
C is the last component supported at g, or Q € Jg(A) and C is the first
component supported at g.

P/
R 7
C
(a) (C,[P, Q) trivial, part (i). (b) (C, [P, Q]) minimal, part (i), j = 1.
' &7’ gj
g1 g
C
(c) (C,[P, Q]) minimal, part (i), j > 1. (d) (C, [P, Q]) minimal, part (ii).

C/
Figure 10. Proof of Lemma 6.15. CO >{ denotes that a component C] either intersects or
0
coincides with a component Cy.
Proof. Let (C,[P,Q]) be an oriented v-component. We will show proper-

ties (i)—(iii) when (C, [P, Q]) is trivial (see (T.i)—(T.iii) below) and when it is
minimal (see (M.i)—(M.iii) below) separately.
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(C, [P, Q)) is trivial. There are two consecutive van Kampen pieces g, 4 such
that P € Jg(A) and Q € J,(A).

(Ti)

(T.ii)

(T.iii)

Leti > 1 be such that C is the i-th component supported at g. Suppose
that (C, [P, Q]) encloses a component (C’, [P’, Q’]). Then we must have
P’ €Jg(A), Q" € I5(A), and C’ must be the j-th component supported
at g for some j > i; see Figure 10a. But then, whenever C” is the
J'-th component supported at g, where i + 1 < j' < j, we know by
Lemma 6.8 that C and C” do not intersect, and so (C, [P, Q]) encloses C”.
In particular, we may assume, without loss of generality, that j =i + 1.

Now let v’ € V(I') be the label of C’. As g is a geodesic, it follows
that v’ # v. As T is square-free, it follows that | link(v) N link(v)| < 1.
Therefore, as both C and C’ are supported at both g and 4, it follows that
link(v) N link(v") = {w} and that g and & are both w-pieces. But this
contradicts Lemma 6.13 (v). Thus (C, [P, Q]) cannot enclose any other
component, as required.

If g (or h) is small then it is a v-component by Lemma 6.13 (ii), and if
it is large then it is a w-component for some w € link(v). Therefore,
if g and i were both small, then they would be two adjacent v-pieces,
contradicting Lemma 6.13 (v); if one of them was small and the other
one large, then they would be a v-piece adjacent to a w-piece for some
w € link(v), contradicting Lemma 6.13 (vi). Thus both g and & must be
large, as required.

As g and h are adjacent, it is clear that C is not supported at van Kampen
pieces other than g and /4. If C is not the first component supported at 4,
then let C’ be the first component supported at #. By Lemma 6.8, C and C’
do not intersect, and so (C, [P, Q]) must enclose C'—but this contradicts
part (T.i). Thus C must be the first component supported at /; similarly,
C must be the last component supported at g.

(C,[P, Q]) is minimal. Let gq,..., g, be consecutive van Kampen pieces of A
such that P € Jg,(A) and Q € Jg,(A).

(M.i) Suppose that (C, [P, Q]) encloses a v’-component (C’, [P’, Q’]) for some

v' € V(). As (C,[P, Q]) is minimal, it follows that (C’, [P/, Q']) is
trivial, andso P’ € J,, (A)and Q" € Jg; , (A) forsome j € {1,...,£~1}.
Without loss of generality, assume that C’ is chosen in such a way that j
is as small as possible. By part (T.ii) applied to (C’,[P’, Q']), gj+1is a
large van Kampen piece, and so there are at least 3 components supported
at gj4+1. Therefore, the second component C supported at g;1—say
a vy -component for some vy € V(I')—is not trivial by part (T.iii), and
so, as (C,[P, Q]) is minimal, C4 must either intersect C or coincide
with C. As g;41 is a geodesic and as C’, C. are the first and the second
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components supported at g;; (respectively), we also have v # v'.
Moreover, as g;4 is large, it must be a #i-piece for some u € V(I') by
Lemma 6.13 (ii).

Suppose first that j = 1; see Figure 10b. Then the components C and
C’ are supported at g1, and so g; is a large van Kampen piece; therefore,
by Lemma 6.13 (ii), g; is a w-piece for some w € link(v) N link(v’).
Now if we had C = Cy, then we would have v = vy # v/, and
so, as C and C’ are supported at both g; and g,, both g; and g,
would have to be u-pieces for the unique (as I' is square-free) vertex
u € link(v) N link(v’), contradicting Lemma 6.13 (v). On the other hand,
if C4 intersected C, then v, w, v, u, v4+, v would be a closed walk on T" of
length 5, contradicting the fact that I' is triangle-free and pentagon-free.
Thus we arrive at a contradiction in either case, and so we cannot have
j=1L

Suppose now that j > 1: then Jg; (A) C [P, O], and so, by minimality
of (C, [P, Q]), C must either intersect or coincide with every non-trivial
component supported at g;. Moreover, g; must be a large piece by
part (T.ii), and so there must be at least 3 components supported at g;
by Lemma 6.13 (ii). In particular, by part (T.iii) and the minimality of j,
the first and the second components supported at g; are non-trivial, and
so they must each either intersect or coincide with C; see Figure 10c. It
follows from Lemma 6.9 that g; is a 0-piece, and in particular v’ € link(v).
But now if we had Cy = C, then v, v’, u would span a triangle in T,
contradicting the fact that I' is triangle-free. On the other hand, if C+
intersected C, then—as v4 # v’ and C’, C4 are both supported at gj 1,
and as I is square-free—it would follow that g; 1 must be a 9-piece, as
well as g;, contradicting Lemma 6.13 (v). Thus we cannot have j # 1
either.

Suppose that C is supported at a small van Kampen piece g;, and so g; is
a v-piece. Then either j > 1 or j < {; without loss of generality, assume
that j > 1. Let j’' < j be largest such that C is supported at j', so that
j' = 1; see Figure 10d. It follows from part (M.i) that (C, [P, Q]) does not
enclose any components. In particular, foreachm € {j'+1,...,j—1},C
intersects every component supported at m, and so g, is either a v-piece
or a W,,-piece for some wy,, € link(v).

Now if g, is a 0-piece forsomem € {j’+1,..., j — 1}, then we must
have j = j'+2and m = j’ + 1: indeed, otherwise one of g,,—; and
gm-1 1s either a v-piece or a w-piece for some w € link(v), contradicting
either Lemma 6.13 (v) or Lemma 6.13 (vi). But then g; 4 is a ¥-piece
adjacent to a v-piece gj 4, and to g;-, which is either a v-piece or a
w-piece for some w € link(v) (as C is supported at j'); this contradicts
either Lemma 6.13 (vii) or Lemma 6.13 (viii). On the other hand, if for
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allme {j '+ 1,...,j — 1}, gm is a wy,-piece for some w,, € link(v),
then, as before, g/ is either a ¥-piece or a w-piece for some w € link(v),
contradicting either Lemma 6.13 (iii) or Lemma 6.13 (iv). Thus in either
case, gj cannot be small, as required.

Suppose that C is supported at g; for some j € {1,...,£}. If C is not the
first component supported at g;, then the first component C’ supported at
g, does not intersect C by Lemma 6.8; but (C, [P, Q]) does not enclose
C’ by part (M.i), implying that j = 1. Similarly, if C is not the last
component supported at g;, then j = £. But by part (M.ii), the van
Kampen piece g; is large, and so C cannot be both the first and the last
component supported at g;. As 1 # £, it follows that either j = 1 and
C is the last component supported at g;, or j = £ and C is the first
component supported at g;, as required. d

Lemma 6.16. Let A be a minimal polygonal van Kampen diagram, and suppose
that T has girth > 6. Then A has no almost minimal components.

(a)v =" (b) g¢ large.

g
1 /
/ / / &
g C/ h g C/ h
Ci
C

C C

(d)w =vy =v. (e) wi, vy € link(v). v—, v+ € link(v). vV = vy = .

1
h/
i C

(f) w;y = v and (g) w; €link(v) and

Figure 11. Ruling out impossible scenarios in the proof of Lemma 6.16.

Proof. Suppose that (C, [P, Q]) is an almost minimal v-component of A. Let
g and & be the van Kampen pieces of A such that P € Jg(A) and Q € J,(A).
Then (C, [P, Q]) must enclose a minimal v’-component (C’, [P’, Q’]) (for some
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v e V(I')); let g’ and i’ be the van Kampen pieces of A such that P’ € Jg/(A)
and Q' € J,/(A). Suppose, without loss of generality, that (C’, [P, Q']) is chosen
in such a way that [P, P’] is as small as possible: that is, if (Cg, [Pg, Qp]) is any
minimal component enclosed by (C, [P, Q]), then [P, P'] C [P, P].

We first claim that v # v’. Indeed, as (C’,[P’, Q’]) is minimal and C’ is
supported at /', it follows from Lemma 6.15 (ii) that 4’ is a large van Kampen
piece, and so, by Lemma 6.13 (ii), there are at least 3 components supported at /’.
Therefore, the second component supported at /'—a v”-component C”, say—is
neither trivial nor minimal by Lemma 6.15 (iii), and so it must either intersect or
coincide with C; see Figure 11a. As /' is a geodesic and C’ and C” are the first
(by Lemma 6.15 (iii)) and the second components (respectively) supported at 4/, it
follows that v’ # v”. If C = C”, then this immediately implies v # v’. On the
other hand, as C’ and C” are supported at /', it follows that #" must be a #i-piece
for some u € link(v’) N link(v"”). Thus, if C and C” intersect, then v” € link(v),
and so the fact that T is triangle-free implies that v # v’. Thus we have v # v’ in
either case, as claimed.

Now let ¢’ = go, g1,...,&m = h’' be consecutive van Kampen pieces in A. We
claim that the pieces g1, ..., gm—1 are small. Indeed, suppose for contradiction
that g is large for some £ € {1,...,m — 1}, and so, by Lemma 6.13 (ii), there are at

least three components supported at g¢. Let C; and C, be the first and the second
components supported at gy, respectively. As (C’,[P’, Q’]) is minimal and not
supported at gy, it follows from Lemma 6.15 (i) that C’ intersects both C; and C»,
and that neither Cy nor C; is trivial; see Figure 11b. As C, is neither the first nor
the last component supported at gy, it follows from Lemma 6.15 (iii) that C; is not
minimal, and so must either intersect or coincide with C. On the other hand, if C;
is not minimal, then it must likewise either intersect or coincide with C; whereas
if (C1,[P1, Q1]) is minimal for some [Py, Q1], then we cannot have P, € [P/, Q]
by minimality of (C’, [P’, Q']), and we cannot have P; € [P, P’] by minimality
of [P, P'], so P; ¢ [P,Q] and C must intersect C;. Thus C; and C, are two
components supported at gy and each either intersecting or coinciding with C
and C’, so by Lemma 6.9 g, must be both a 0-piece and a ©’-piece, which is
impossible as v # v’.

Thus the pieces g1, ..., gm—1 are all small, as claimed. It follows that, for each
Lef{l,...,m—1}, gg is a we-piece for some wy; € V(I'), and there is a unique
wg-component Cy supported at g¢. Thus, by Lemma 6.15 (i), each C; intersects
C’ and so wy € link(v’) for each £. Moreover, it also follows from Lemma 6.15 (ii)
that each Cy is neither trivial nor minimal, and so must either intersect or coincide
with C; therefore, wy € link(v) U {v}.

We now claim thatm = 2. Indeed, as (C’, [P’, Q]) is not trivial, we cannot have
m < 2. Onthe otherhand, if m > 2, then consider wy, w, € link(v’); see Figure 11c.
By Lemma 6.13 (v), we have w; # w,, and so we cannot have w; = v and w, = v.
We also cannot have w; = v and w, € link(v): indeed, otherwise v, v/, w, span a
triangle in I, contradicting the fact that I" is triangle-free; similarly, w; € link(v)
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and w, = v is impossible. Finally, we have | link(v) Nlink(v")| < 1 (as I is square
free and v # V'), S0 as w; # w,, we cannot have wy, w, € link(v). Thus we
must have m = 2, as claimed. In particular, the van Kampen pieces g’, g1, 1’ are
consecutive, and g; is a w;-piece for some w; € link(v") N (link(v) U {v}).

Now by Lemma 6.15 (ii) and Lemma 6.15 (iii), C’ is the last component
supported at g’ and the first component supported at #’, and both g’, i’ are large.
In particular, by Lemma 6.13 (ii), there are at least 3 components supported at each
g’ and i’. Moreover, by Lemma 6.15 (iii), the penultimate component supported
at g’ and the second component supported at #’—say a v_-component C_ and a
v4-component C, respectively—are both not trivial and not minimal, and so they
must each either intersect or coincide with C; in particular, v_, v4 € link(v) U {v}.

Now if w; = vy = v (see Figure 11d), then C; = C = C; and in particular
C; and C’ intersect, contradicting Lemma 6.8 (as both C1 and C’ are supported
at 1'); similarly, we cannot have w; = v— = v. If wy, v+ € link(v) (see Figure 11e)
then, as /1’ is large, we know that /4’ is a &i-piece for some u € link(v’) N link(v),
and v, v4,u, v, wy, v is a closed walk in T of length 5, contradicting the fact that
I' is triangle-free and pentagon-free; similarly, we cannot have wy, v— € link(v).

It follows that either w; = v and v_,v4+ € link(v) (see Figure 11f), or
w; € link(v) and v— = vy = v (see Figure 11g). In either case, C’ and C—
are two pieces supported at g’ and intersecting Cy, and so g’ is a w;-piece by
Lemma 6.9; similarly, /4’ is a W -piece. But then g; is a 1;-piece adjacent to two
w1 -pieces, contradicting Lemma 6.13 (ix). This concludes the proof. O

Corollary 6.17. Let A be a minimal polygonal van Kampen diagram, and suppose
that T has girth > 6. Then A has 0 van Kampen pieces.

Proof. We claim first that all components of A are either minimal or trivial. Indeed,
otherwise A has a non-minimal non-trivial component (C, [P, Q]) with [P, Q]
minimal (with respect to inclusion) among all such components. Thus (C, [P, O])
cannot enclose any non-minimal non-trivial component by minimality of [P, O],
and so (C, [P, Q]) is almost minimal. This contradicts Lemma 6.16.

Thus, as all components of A are either minimal or trivial, it follows by
Lemma 6.15 (ii) that A has no small van Kampen pieces. Suppose A has at least one
van Kampen piece. Then any piece p of A has length > 3 by Lemma 6.13 (ii). Now
if C is the second component of A supported at a piece p, then C is a component
that is either minimal or trivial, but C is neither the first nor the last component
supported at p. This contradicts Lemma 6.15 (iii).

Thus A has no van Kampen pieces, as required. d

6.5. Proofs of Proposition 6.10 and Theorem E. In this subsection, we deduce
Proposition 6.10 from the results in Section 6.4. We then use Proposition 6.10 and
Theorem 6.6 to prove Theorem E.
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Proof of Proposition 6.10. As noted after the statement of the Proposition, it is
clear that K C F,, and so we only need to show that F,, € K. This is equivalent to
saying that every (cyclic) word W € F, is equivalent to the trivial word 1 € F,, of
length 0. As the trivial word has a polygonal representation D¢ with O pieces, which
is clearly minimal, it is enough to show that Dy, is the unique minimal polygonal
representation for any word W € F,,.

Thus, let D be a minimal polygonal representation for a word W € F,,, and let
P1,--., Pk be the pieces of D, so that W = p; --- pg. Since ¢; (W) = 1 w-almost
surely, we may w-almost surely define a polygonal van Kampen diagram A; for
W; = gi1---gix whose van Kampen pieces are g; 1,..., gk, where g; ¢ is a
geodesic word over |_|, ev)(Gv \ {1}) representing ¢; (p¢), such that the label of a
piece g; ¢ is v whenever g; , represents an element in G, \ {1} for some v € V(I').
Let A € NN for the set of all i € IN such that

o o;(W)=1;

e foreach ¢ € {1,...,k} and each j € {0, 1}, the piece p,; has length j if and
only if the van Kampen piece g; ; has length j;

e foreach £ € {l,...,k}, the label of the piece p; of D coincides with the label
of the van Kampen piece g; ¢ of A;.

It follows from Lemma 6.13 (i), Lemma 6.13 (ii) and the construction that A is
an w-large subset of IN. But note that as D is minimal, the polygonal van Kampen
diagram A; is minimal for each i € A. It then follows from Corollary 6.17 that A;
has 0 van Kampen pieces for each i € A (and so w-almost surely). Thus D has 0
pieces, and so D = Dy, as required. O

Proof of Theorem E. 1If |V(I')| = 1, then we have I'G =~ G, for the unique vertex
v of I', and so I'§ is equationally noetherian by the assumption. Thus, we may
assume, without loss of generality, that |V(I")| > 2.

Suppose first that I" is connected. We claim that I" is admissible. Thus, let
F be a finitely generated free group, and let (¢; : F — I'G)?2, be a sequence
of linking homomorphisms. As in the beglnmng of Section 6. 3 define a free
group F containing F and subgroups F,, F,, < F for each v € V(T"), and extend
the homomorphisms ¢; to @;: F — I'G. It follows from the construction that
ker(¢;) = ker(¢;) N F for each i, and so F,, (y;) = Fw,(@) NnF.

Now for any v € V(I'), consider homomorphisms <pi(”): ﬁv — Dlink(v) Gtink(v)
given by <pi(”)(g) = @i(g). As I' is square-free, we have I'inkw)Slinkw) =
*welink(v) Gws in particular, it follows from Theorem 1.7 (and |V(I")| < oo) that
[link(v) Slink(v) is equationally noetherian. It follows that (ﬁ”)w,(wfv’) - ker((pi(v))

w-almost surely. But it follows from the construction that ker(<pi(”) ) = ker(@;) N Fy

foreach i, and in particular (ﬁv)w ) = _w,@i)ﬂl:"\v. Thus Fw,(@)ﬂﬁv C ker(¢;)

w-almost surely.
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Note that, by our construction, we have [F,, ﬁv] C ker(¢;) for each i and each
v € V(I'). Together with the fact that Fw,(@) NF, C ker(¢;) w-almost surely for
each v € V(I'), this implies (by Proposition 6.10) that Fw,(@) C ker(¢;) w-almost
surely. In particular, it follows that F,, () = Fu (5, N F C ker(@:) N F = ker(g;)
w-almost surely. Thus I' is admissible, as claimed. In particular, it follows from
Theorem 6.6 that I'§ is equationally noetherian.

Finally, suppose that the graph I" is not connected. Then we have a partition
V(') = A; U--- U Ay, into non-empty subsets such that I' = I'y, LU --- LTy, isa
disjoint union of connected subgraphs I'y,, and so I'G = I'g, G4, * -+ * I'4,,94,,-
By the argument above, it follows that I'y, G4, is equationally noetherian for each i.
Therefore, by Theorem 1.7, I'G is equationally noetherian as well, as required. [
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