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Measure equivalence and coarse equivalence

for unimodular locally compact groups
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Abstract. This article is concerned with measure equivalence and uniform measure equi-

valence of locally compact, second countable groups. We show that two unimodular, lo-

cally compact, second countable groups are measure equivalent if and only if they admit

free, ergodic, probability measure preserving actions whose cross section equivalence re-

lations are stably orbit equivalent. Using this we prove that in the presence of amenability

any two such groups are measure equivalent and that both amenability and property (T)

are preserved under measure equivalence, extending results of Connes-Feldman-Weiss and

Furman. Furthermore, we introduce a notion of uniform measure equivalence for uni-

modular, locally compact, second countable groups, and prove that under the additional

assumption of amenability this notion coincides with coarse equivalence, generalizing re-

sults of Shalom and Sauer. Throughout the article we rigorously treat measure theoretic

issues arising in the setting of non-discrete groups.
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1. Introduction

Measure equivalence for countable discrete groups was originally introduced by

Gromov [23] as a measurable analogue of quasi-isometry and has since then

proven to be an important tool in geometric group theory with connections to

ergodic theory and operator algebras. Notably, measure equivalence was used

by Furman in [19, 20] to prove strong rigidity results for lattices in higher rank

simple Lie groups, and continuing this line of investigation, Bader, Furman, and

Sauer [4] introduced measure equivalence in the setting of unimodular,1 locally

compact, second countable groups. The first aim of the present paper is to es-

tablish a rigorous understanding of this notion of measure equivalence and its

relationship to other established notions of equivalence between locally compact,

second countable groups, such as orbit equivalence of probability measure pre-

serving actions and stable orbit equivalence of cross section equivalence relations

associated with such actions. We obtain proofs of results that might be considered

folklore by parts of the community, but the present piece of work has the virtue

of being largely self-contained and furthermore offers a careful treatment of the

subtle measure theoretic issues arising from the fact that the saturation of a null

set (respectively Borel set) with respect to a non-discrete locally compact group is

not necessarily null (respectively Borel). It is precisely these measurability issues

that form the gap between folklore results and the rigorous treatment offered here.

Our first main theorem establishes an equivalence between the notions of measure

equivalence and (stable) orbit equivalence within the framework of unimodular,

locally compact, second countable groups. For discrete groups the equivalence

of (i) and (ii) below can be found in [11, Proposition 1.22]; and the equivalence

of (i) and (iii) for discrete groups can be found in [21, Theorem 2.3] (see also [20,

Lemma 3.2 and Theorem 3.3] for related earlier results).

Theorem A (Theorem 3.8). For unimodular, locally compact, second countable

groups G and H the following are equivalent:

(i) G and H are measure equivalent;

(ii) G � S1 and H � S1 admit orbit equivalent, essentially free, ergodic, proba-

bility measure preserving actions on standard Borel probability spaces.

(iii) G andH admit essentially free, ergodic, probability measure preserving ac-

tions on standard Borel probability spaces whose cross section equivalence

relations are stably orbit equivalent.

Here, and in what follows, S1 denotes the circle group and we refer to Sec-

tions 2 and 3 for definitions of the various notions appearing in the statement and

for remarks on item (ii). Note that in case both G andH are non-discrete, the am-

plification by S1 in statement (ii) is not necessary; see Theorem 3.8 for a precise

1 See also [12] and [26] for the non-unimodular case.
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statement. A particular instance of the rigorous treatment provided by this work

is Theorem 2.12, worth mentioning in its own right, which shows that one can

always pass from a measure equivalence coupling to a strict measure equivalence

coupling; i.e. one where all maps involved are Borel isomorphisms and genuinely

equivariant.

An important property of measure equivalence for discrete groups is the fact

that all countably infinite, amenable discrete groups are pairwise measure equiv-

alent, which follows from the work by Ornstein and Weiss in [34] as proven by

Furman in [19]. As a consequence of Theorem A we deduce a similar result in

the non-discrete setting.

Theorem B (Theorems 4.2 and 4.1). All non-compact, amenable, unimodular,

locally compact, second countable groups are pairwise measure equivalent. Con-

versely, if G andH are measure equivalent, unimodular, locally compact, second

countable groups and one of them is amenable then so is the other.

Further, we clarify the role of measure equivalence in connection with prop-

erty (T) by extending [19, Corollary 1.4] to the locally compact case, again care-

fully treating measure theoretic issues, by passing to the aforementioned strict

coupling provided by Theorem 2.12.

Theorem C. If G and H are measure equivalent, unimodular, locally compact,

second countable groups and one has property (T) then so does the other.

Uniform measure equivalence for finitely generated, countable discrete groups

was introduced by Shalom in [39], combining the notions of measure equivalence

and quasi-isometry, with the purpose of capturing the important situation of two

cocompact, finitely generated lattices in a common Lie group. With the notion of

measure equivalence extended to the class of unimodular, locally compact, second

countable groups, it is natural to also extend uniform measure equivalence to this

setting, in such a way that if two such groups are closed, cocompact subgroups

of the same locally compact, second countable group then they are uniformly

measure equivalent. We introduce such a notion in Definition 6.5, show that the

situation just described indeed gives rise to uniformly measure equivalent groups

in Proposition 6.13 and prove that our definition reduces to the existing one [38,

Definition 2.23]2 in the case of finitely generated, discrete groups. For finitely

generated, discrete, amenable groups it was shown by Shalom [40] and Sauer [38]

that uniform measure equivalence coincides with quasi-isometry (equivalently

coarse equivalence; cf. [9, Corollary 4.7]) and we show that this result also carries

over to the locally compact setting by means of the following theorem.

2 In [38] the term bounded measure equivalence is used.
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Theorem D (Theorem 6.17). Two amenable, unimodular, locally compact, sec-

ond countable groups are uniformly measure equivalent if and only if they are

coarsely equivalent.

In addition to the introduction, this article has five sections. In Section 2 we

introduce measure equivalence after Bader, Furman, and Sauer [4], paying partic-

ular attention to measure theoretic aspects, and in Section 3 we prove Theorem A.

In Section 4 we use Theorem A in order to show how amenability behaves with

respect to measure equivalence as stated in Theorem B, likewise in Section 5 we

show that property (T) is invariant under measure equivalence of (unimodular)

locally compact second countable groups. In the final Section 6, we provide a

definition of uniform measure equivalence, prove Theorem D and check several

statements that are expected to hold true for a good notion of uniform measure

equivalence.

Notation for locally compact groups. All locally compact groups are assumed

to be Hausdorff and we will abbreviate “locally compact second countable” by

“lcsc.” Moreover, all group actions on spaces will be left actions.
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2. Measure equivalence couplings

In this section we fix our measure theoretical notation and recall relevant facts

about measure equivalence couplings between unimodular lcsc groups. Further-

more, we prove that any measure equivalence coupling can be replaced by a strict

coupling. In order to be able to treat the measure theoretical aspects at a suf-

ficiently rigid level, we begin by defining our notion of measurable spaces and

group actions on such.
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Definition 2.1. By a measurable space we mean a setX endowed with a �-algebra

B whose elements are called the measurable subsets of X . If X is furthermore

endowed with a measure �WB ! Œ0;1�, the triple .X;B; �/ is referred to as

a measure space, and when the �-algebra is clear from the context we will often

suppress it notationally and simply write .X; �/. We will use the standard measure

theoretic lingo and refer to a subset N � X as a null set if N is contained in a

measurable subset of measure zero. Similarly, the complement of a null set will be

referred to as being conull and any non-null subset is referred to as non-negligible.

If � and � are two measures on B with the same null sets we write � � � and refer

to the two measures as being equivalent, and we furthermore denote by Œ�� the

measure class of �; i.e. the set of all measures equivalent to it. An isomorphism

of measurable spaces .X;B/ and .Y;C/ is a bijective measurable map f WX ! Y

whose inverse is also measurable. If .X;B/ and .Y;C/ are moreover endowed

with measure classes Œ�� and Œ�� of measures� and �, respectively, a non-singular

isomorphism between .X;B; Œ��/ and .Y;C ; Œ��/ is a measurable map f WX ! Y

for which there are conull, measurable subsets X0 � X and Y0 � Y such

that f restricts to a measurable isomorphism f0WX0 ! Y0 and f�.Œ��/ D Œ��.

An isomorphism of measure spaces .X;B; �/ and .Y;C ; �/ is a measurable map

f WX ! Y for which there exist conull, measurable subsets X0 � X and Y0 � Y

such that f restricts to an isomorphism of measurable spaces f0WX0 ! Y0 and

f�.�/ D �. Lastly, for a topological space X the �-algebra generated by the open

sets is referred to as the Borel �-algebra and its sets are called Borel sets.

Remark 2.2. The definition of a non-singular isomorphism between spaces

.X; Œ��/ and .Y; Œ��/ is required to be compatible at all levels with the measur-

able structures of X and Y . This is no restriction of generality when compared

with other possible notions. Indeed, let X0 � X and Y0 � Y be two not necessar-

ily measurable conull subsets and let f WX0 ! Y0 a measurable isomorphism for

the restricted �-algebras that satisfies f�Œ N�jX0
� D Œ N�jY0

� where N� and N� denote the

completed measures. Since X0 � X is conull, there is a measurable conull subset

X00 � X0. Then also Y00 WD f .X00/ is conull in Y0 – and hence in Y – so there is

a measurable subset Y000 � Y00 which is conull in Y . We setX000 WD f
�1.Y000/,

which is measurable with respect to the relative �-algebra of X00. Since X00 is

measurable in X , it follows that X000 is measurable as a subset of X , and it is

conull by construction. We can therefore restrict f to a measurable isomorphism

X000 ! Y000 and extend this to a measurable map from X to Y , which is an

isomorphism of non-singular spaces in the sense of Definition 2.1. For technical

reasons, this definition is preferable to superficially more general ones. A similar

reasoning applies to isomorphisms between measure spaces.

Definition 2.3. Let .X;B/ be a measurable space andG be an lcsc group. ThenX

is said to be a measurableG-space if its endowed with an action ofG for which the

action mapG�X ! X is measurable; hereG is equipped with the Borel �-algebra
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and G � X with the product �-algebra. Moreover, if the measurable G-space X

is endowed with a measure � and the G-action is non-singular, i.e. Œg��� D Œ��

for all g 2 G, then .X;B; �/ is called a non-singular G-space. If the action is

actually measure preserving, i.e. g�� D � for all g 2 G, then .X;B; �/ is called

a measure G-space. Lastly, an action preserving a given probability measure is

referred to as a pmp action.

Remark 2.4. If .X;B/ is a measurable space and � is a �-finite measure on it,

then there exists a probability measure� onX which is equivalent to �; ifEn � X

are disjoint, measurable, of positive and finite �-measure and with conull union

in X , one may for instance take the measure

�.A/ WD

1
X

nD1

2�n �.A \En/

�.En/
; A 2 B:

This standard fact will be used repeatedly throughout the paper — in particular

we shall apply it to the Haar measures on a given lcsc group, which are all �-finite

since every lcsc group is �-compact.

Recall that a topological space is said to be Polish if it is homeomorphic to a

complete, separable metric space and that a measurable space .X;B/ is said to be

a standard Borel space ifX admits a topology with respect to which it is Polish and

B is the Borel �-algebra; i.e. the �-algebra generated by the open subsets. In this

situation, elements of B are often referred to as Borel sets and a measure defined

on the Borel �-algebra is referred to as a Borel measure. As the following two

results show, the class of standard Borel spaces possesses a number of pleasant

features. Lemma 2.5, which follows from an important theorem of Suslin, will

be used repeatedly throughout the paper, while Theorem 2.6 will only be used in

Section 3.

Lemma 2.5 (see [25, Corollaries 13.4 and 15.2]). Any Borel subset of a standard

Borel space X is itself standard Borel. Moreover, if f WX ! Y is an injective,

measurable map between standard Borel spaces, its image f .X/ is again standard

Borel and the inverse map f �1W f .X/! X is measurable.

Theorem 2.6 (Lusin and Novikov, see [25, Theorem 18.10]). LetX; Y be standard

Borel spaces and letE � X�Y be a Borel subset such that��1
X .x/ is countable for

every x 2 X . Then there is a countable partition into Borel subsetsE D
S

n2NEn

such that �X jEn
is injective for all n 2 N.

In what follows, we shall thus refer to a bijective measurable map between

standard Borel spaces as a Borel isomorphism, and the adjective “standard Borel”

will always indicate that the underlying space is a standard Borel space. Thus,
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a standard Borel G-space is a standard Borel space which is also a measurable

G-space, and a standard Borel measure G-space is a standard Borel G-space

equipped with a Borel measure with respect to which the action is measure

preserving. Lastly, a standard Borel measure space with a Borel probability

measure will be referred to as a standard Borel probability space.

Definition 2.7 ([42]). If .X; �/ and .Y; �/ are measureG-spaces, thenX and Y are

said to be isomorphic if there exist conull,G-invariant measurable subsetsX0 � X

and Y0 � Y and a G-equivariant isomorphism of measurable spaces f WX0 ! Y0

such that f��jX0
D �jY0

. As is standard, we will often write f WX ! Y in this

situation.

With these preliminaries taken care of, we can now introduce the notion of

measure equivalence following Bader-Furman-Sauer.

Definition 2.8 ([4]). Two unimodular lcsc groups G andH with a choice of Haar

measures �G and �H are said to be measure equivalent if there exist a standard

Borel measureG �H -space .�; �/ and two standard Borel measure spaces .X; �/

and .Y; �/ such that

(i) both � and � are finite measures and � is non-zero;

(ii) there exists an isomorphism of measure G-spaces i W .G � Y; �G � �/ �!

.�; �/, where� is considered a measureG-space for the restricted action and

G � Y is considered a measure G-space for the action g:.g0; y/ D .gg0; y/;

(iii) there exists an isomorphism of measure H -spaces j W .H � X; �H � �/ !

.�; �/, where� is considered a measureH -space for the restricted action and

H �X is considered a measure H -space for the action h:.h0; x/ D .hh0; x/.

A standard Borel space .�; �/ with these properties is called a measure equival-

ence coupling between .G; �G/ and .H; �h/, and whenever needed we will specify

the additional data by writing .�; �; X; �; Y; �; i; j /.

Remark 2.9. Since the Haar measure on a locally compact group is unique up

to scaling, the existence of a measure equivalence is independent of the choice

of Haar measures on the groups in question. For a proof that measure equi-

valence is indeed an equivalence relation, the reader is referred to [4, Appen-

dix A] where the composition of measure equivalence couplings is discussed;

for the details, see also [42, Appendix B] and [30]. Given a measure equival-

ence coupling .�; �; X; �; Y; �; i; j / between two unimodular lcsc groups with

Haar measure, .G; �G/ and .H; �H /, one can define its coupling constant as

�.X/=�.Y / and observe that it is multiplicative under composition and compat-

ible with scaling of Haar measures. So the fundamental group of a unimod-

ular lcsc group can be defined as the group of coupling constants of its self-

couplings for a fixed choice of Haar measure. By convention, two unimodular
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lcsc groups G and H are called measure equivalent if there is a measure equi-

valence coupling .�; �; X; �; Y; �; i; j / between .G; �G/ and .H; �H / for some

choice of Haar measures. The previous discussion makes it clear that, with-

out loss of generality, one may assume that � and � are probability measures.

Also note that, under the hypotheses in Definition 2.8, .�; �/ is automatically

�-finite and if A � G � Y is a G-invariant subset then A D G � Y0 where

Y0 D ¹y 2 Y j there exists g 2 G such that .g; y/ 2 Aº. Thus, the requirement

on the map i amounts to saying that there exist a measurable conull subset Y0 � Y

and a measurable conull G-invariant subset�0 � � such that i WG � Y0 ! �0 is

a measure preserving, G-equivariant isomorphism of Borel spaces (and similarly

for j ).

A recurring issue when working with group actions on measure spaces is that

we often encounter only near actions in the sense of the following definition.

Definition 2.10. A measure preserving near action of a lcsc groupG on a measure

space .X; �/ is a measurable map G �X �! X; .g; x/ 7! g:x, such that

(i) e:x D x for almost all x 2 X ;

(ii) for all g1; g2 2 G: .g1g2/:y D g1:.g2:y/ for almost all x 2 X ;

(iii) for all g 2 G and all measurable subsets A � X one has �.g:A/ D �.A/.

Appealing to a result of Mackey, we may actually replace a near action by a

measure preserving action which agrees with the near action almost everywhere

as long as the the group is second countable and the underlying Borel space is

standard.

Lemma 2.11 ([36, Lemma 3.2], cf. [30, Theorem 1]). Let .X; �/ be a standard

Borel probability space and let G � X ! X be a measure preserving near

action of a lcsc group. Then there is a standard Borel measureG-space Y and an

isomorphism of measure spaces f WX ! Y such that for all g 2 G the equality

g:f .x/ D f .g:x/ holds for almost all x 2 X .

Recall that ifG andH are topological groups and .X; �/ is a measureG-space

then a measurable map !WG � X ! H is called a measurable cocycle if for all

g1; g2 2 G there exists a conull subset X0 � X such that the cocycle relation

!.g1g2; x/ D !.g1; g2:x/!.g2; x/ holds for all x 2 X0. A measurable cocycle is

said to be strict if the cocycle relation is satisfied for all x 2 X . Assume now that

G and H are measure equivalent, unimodular, lcsc groups and denote by .�; �/

a measure equivalence coupling with associated finite standard Borel measure

spaces .X; �/ and .Y; �/ and measure space isomorphisms i and j . That is, there

exist conull, measurable subsets X0 � X , Y0 � Y , �0; �
0
0 � � such that �0 and
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�0
0 are G-and H -invariant, respectively, and the restrictions

i0 WD i jG�Y0
WG � Y0 �! �0;

j0 WD j jH�X0
WH �X0 �! �0

0

are G- and H -equivariant, measure preserving, measurable isomorphisms, re-

spectively. Then for every h 2 H there exists a conull, measurable subset

Yh � Y0 such that for all y 2 Yh and all g 2 G, one has h:i0.g; y/ 2 �0, and

thus i�1
0 .h:i0.g; y// 2 G � Y0 makes sense. For such y 2 Yh we now define

!G.h; y/
�1 2 G to be the G-coordinate of i�1

0 .h:i0.eG ; y// and h:y to be the

Y -coordinate of i�1
0 .h:i0.eG ; y//. Extending hWYh ! Y to Y by setting h.y/ D y

for y 2 Y n Yh, a direct computation shows that this defines a measure preserving

near action.

Another direct computation reveals that any measurable extension of !G to

H � Y is a measurable cocycle. Note also that if i itself were a measurable

isomorphism and G-equivariant at every point, then the associated near action

of H on .Y; �/ is a genuine action and the associated measurable cocycle !G is

automatically strict. In exactly the same manner we get a measure preserving near

action G Õ .X; �/ with associated measurable cocycle !H WG �X ! H .

The following theorem shows that one may always replace a measure equival-

ence coupling with one where all the defining properties are satisfied pointwise,

in contrast to almost everywhere.

Theorem 2.12. Let .�; �; X; �; Y; �; i; j / be a measure equivalence coupling

between unimodular lcsc groups G and H with action .g; h; t / 7! .g; h/:t . Then

there are conull, Borel subsets �0 � �, X 0 � X and Y 0 � Y and a measure

preserving actionG�H��0 �! �0, .g; h; t / 7! .g; h/Ft , such that the following

hold:

(i) for all .g; h/ 2 G �H one has .g; h/:t D .g; h/ F t for �-almost all t 2 �0;

(ii) there exists a Borel isomorphism i 0WG � Y 0 ! �0 with i 0�.�G � �jY 0/ D �j�0

and i 0.g0g; y/ D .g0; eH / F i
0.g; y/ for all g0; g 2 G and all y 2 Y 0;

(iii) there exists a Borel isomorphism j 0WH�X 0 ! �0 with j 0
�.�H��jX 0/ D �j�0

and j 0.h0h; x/ D .eG ; h0/ F j
0.h; x/ for all h0; h 2 H and all x 2 X 0.

Proof. By definition, there exist conull, Borel subsetsX0 � X , Y0 � Y ,�0; �
0
0 �

� such that �0 and �0
0 are G- and H -invariant, respectively, and such that the

restrictions

i0 WD i jG�Y0
WG � Y0 �! �0;

j0 WD j jH�X0
WH �X0 �! �0

0

are G- andH -equivariant, measure preserving Borel isomorphisms, respectively.
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As shown above, we obtain a measure preserving near action of H on .Y0; �/

and by Lemma 2.11 there exists a measure preserving action,.h; y/ 7! h:y, of H

on Y0 which agrees with the near action almost everywhere. Denote by !G and

!H the measurable cocycles associated with the coupling, and assume without

loss of generality [42, Theorem B.9] that both cocycles are strict. We then get a

measure preservingH -action onG�Y0 by defining h:.g; y/ D .g!G.h; y/
�1; h:y/

which induces a measure preserving H -action on �0 WD i0.G � Y0/ given by

h:t D i0.h:i
�1
0 .t // that agrees with the originalH -action on� almost everywhere.

Now clearly �0 is both G- and H -invariant (for the original action of G and

the new action of H ) and i0 is a measure preserving, G �H -equivariant Borel

isomorphism with respect to these actions. Symmetrically, we obtain a measurable

G-action on X0 which pushes forward to a G-action on �0
0 WD j0.H � X0/ that

agrees with the original action G Õ � almost everywhere and with respect to

which j0 is a G �H -equivariant, measure preserving, Borel isomorphism.

Next, replace � with a probability measure � in the same measure class, and

note that both the new actionsG�H Õ �0 andG�H Õ �0
0 are non-singular with

respect to �. The inclusions�0 � � and�0
0 � � induce G �H -equivariant iso-

morphisms at the level of measure algebras by [36, Lemma 3.1] (here� is consid-

ered with the originalG �H -action and�0 and�0
0 with the ones just constructed)

associated with � and in total we therefore obtain a G �H -equivariant isomor-

phism of measure algebras ˆWB.�0; Œ��/! B.�0
0; Œ��/: By Mackey’s uniqueness

theorem [30, Theorem 2] there exist �-conull (and thus �-conull)G �H -invariant

Borel subsets �00 � �0 and �0
00 � �

0
0 and a G �H -equivariant Borel isomor-

phism 'W�00 ! �0
00 which dualizes to ˆ. Since ˆ preserves the measure � the

same is true for '. Now pull �0
00 back via j0 to an H -invariant subset ofH �X0

which is then of the form H �X00 for a conull Borel subset X00 � X0 and, simi-

larly, pull�00 back via i0 to a set of the form G�Y00. Then replacing .�; �/with

.�00; �j�00
/ we obtain measure preserving Borel isomorphisms

i00W .G � Y00; �G � �jY00
/ �! .�00; �j�00

/;

'�1 ı j00W .H � X00; �H � �jX00
/ �! .�00; �j�00

/;

which are, respectively, pointwise G- and H -equivariant. Putting �0 D �00,

X 0 D X00, Y 0 D Y00, i 0 D i00 and j 0 WD '�1 ı j00 we obtain a coupling with the

claimed properties. �

Remark 2.13. A measure coupling .�; �; X; �; Y; �; i; j / in which i and j are

Borel isomorphisms and globally equivariant is called a strict measure coupling,

and the theorem just proven shows that there is always a strict measure coupling

between measure equivalent groups.

The following lemma will be used in the proof of Proposition 2.17 and in

Section 3.
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Lemma 2.14. LetG be an lcsc group andX be a standard Borel space and endow

G �X with the structure of a measurable G-space given by multiplication on the

first factor.

(i) If Œ�� is a probability measure class on X and Œ�� is a G-invariant class of

a �-finite measure on G � X that projects to Œ�� via the right leg projection

pX WG �X ! X then Œ�� D Œ�G � ��.

(ii) If � is a probability measure on X and � is a G-invariant �-finite measure

on G �X which is equivalent to a probability measure projecting to �, then

there is a measurable function bWX ! Œ0;1Œ such that � D �G � b�.

Note that part (i) may be seen as a generalization of [28, Lemma 3.3], and that

part (ii) boils down to uniqueness of the Haar measure in the situation where X is

a one-point space.

Proof. We start by proving (i). Since � is �-finite it is equivalent to a probability

measure �0 and we have � � .pX/�.�/ � .pX/�.�0/, so upon replacing �

with .pX /�.�0/ we may assume that .pX /�.�0/ D �. So Theorem 2.1 in [24]

applies and we find a disintegration � D
R

X �
x d�.x/, where �x are Borel

measures supported on G � ¹xº for each x 2 X . Further, the classes Œ�x� are

uniquely determined �-almost everywhere and since � is �-finite, �x is �-almost

everywhere �-finite too. We may therefore assume that �x is �-finite for all x 2 X .

Fix now a g 2 G and consider the measure g��. The family .g��x/x2X then

provides a disintegration of g��, and since g�� � � by assumption, we conclude

from the uniqueness part of [24, Theorem 2.1] that g��x � �x for almost all

x 2 X . Thus, by Fubini’s theorem, we conclude that for almost all x 2 X ,

g��x � �x for almost all g 2 G. Fixing an x 2 X such that g��x � �x for

almost all g 2 G, one observes that the set ¹g 2 G j g��x � �xº is closed under

the multiplication in G, and hence has to be equal to G by [42, Proposition B.1].

This shows that, �-almost everywhere, the measure class Œ�x� is G-invariant. By

Mackey’s result [28, Lemma 3.3], this implies that Œ�x� D Œ�G � ıx �, where ıx

denotes the Dirac mass at x. We therefore obtain that

� �

Z

X

�x d�.x/ �

Z

X

�G � ıx d�.x/ D �G � �,

which finishes the proof of (i).

We next prove (ii). By Theorem 2.1 in [24] there exists a disintegration

� D
R

X �
x d�.x/ where, for all x 2 X , each �x is a Borel measure on G � X

whose support lies in G � ¹xº and the map x 7! �x is unique up to measure zero.

For notational convenience, whenever x 2 X we will identify G with G � ¹xº in
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the sequel. For fixed g 2 G, the equality
Z

X

�x d�.x/ D � D g�� D

Z

X

g��
x d�.x/

shows that g��x D �x for �-almost all x 2 X . By Fubini, this implies that for

�-almost all x 2 X the subgroup ¹g 2 G j g��x D �xº 6 G is co-negligible

and must therefore equal G by [42, Proposition B.1]. We therefore obtain that

�x is G-invariant for �-almost all x 2 X . Replacing �x by �G on a �-negligible

subset, we may assume that �x is G-invariant for all x 2 X . Hence, uniqueness

of the Haar measure implies that for all x 2 X there is some b.x/ 2 Œ0;1Œ such

that �x D b.x/�G . Choosing a measurable subset E � G satisfying �G.E/ D 1,

we find that that b.x/ D �x.E � X/ for all x 2 X , which proves measurability

of bWX ! Œ0;1Œ. We infer that � D �G � b�. This finishes the proof of the

lemma. �

We end this section with a result showing that in addition to strictness, one can

also obtain freeness and ergodicity of measure couplings. In order to clarify the

measure theoretical subtleties, we recall the following definitions.

Definition 2.15. Let G be an lcsc group and .X; �/ a non-singular G-space.

� We say that G Õ X is essentially free if the set of all elements in X whose

stabiliser is non-trivial is conull.

� We say that G Õ X is ergodic if every measurable subset A � X , for which

the set A�gA � X is a null set for all g 2 G, is either null or conull in X .

Remark 2.16. Note that whenG acts non-singularly on a standard Borel probabil-

ity space .X; �/, then ergodicity of the action is equivalent to the formally weaker

statement: any G-invariant Borel set A � X is either null or conull (cf. [22,

Proposition 7.7]). In particular, when given a standard Borel G-space with a �-fi-

nite G-invariant Borel measure �, we may find a probability measure � onX such

that Œ�� D Œ�� and for which the action is therefore non-singular. Hence in this

situation there is no difference between the two notions of ergodicity.

Proposition 2.17. Let G andH be measure equivalent, unimodular, lcsc groups.

Then there exists a free, ergodic and strict measure equivalence coupling between

G and H .

Proof. We split the proof into two statements.

(i) There exists a strict measure equivalence coupling between G and H with

genuinely free G �H -action.

(ii) The measures associated with the coupling in (i) can be replaced by ergodic

ones.
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We first prove (i). Assume, as we may by Theorem 2.12, that .�;X; Y; i; j / is a

strict measure equivalence coupling and let .Z; �/ be a standard Borel probability

space upon which G �H acts freely and measure preservingly, the existence of

which is guaranteed by [1, Proposition 1.2] combined with [33, Lemma 10]. Now

consider .�0; �0/ WD .� � Z; � � �/ with the diagonal G �H -action. The Borel

isomorphism i�1 � idW�0 ! G � Y �Z intertwines the G-action on �0 with the

action on G � Y � Z given by g0:.g; z; y/W D .g0g; y; g0:z/. Further, the Borel

isomorphism ˛WG � Y � Z ! G � Y � Z given by ˛.g; y; z/ WD .g; y; g�1:z/

preserves �G � � � � and intertwines the G-action just described with the action

given by multiplication on the first leg. Thus, setting .Y 0; �0/ WD .Y � Z; � � �/,

the map .i � id/ ı ˛�1WG � Y 0 ! �0 is a Borel isomorphism intertwining the

G-action on the first leg with theG-action on�0. By symmetry, this shows that�0

is a strict measure equivalence coupling and, by construction, the G �H -action

on �0 is free.

To prove (ii), assume that .�; �; X; �; Y; �; i; j / is a strict, free measure equi-

valence coupling and hence that i and j induce measure preserving actions

G Õ .X; �/ and H Õ .Y; �/. By the Ergodic Decomposition Theorem [22, The-

orem 7.8] there exists a standard Borel probability space .Z; �/ and a family of

G-invariant, ergodic probability measures .�z/z2Z such that the map z 7! �z.A/

is measurable for every measurable subset A � X and

�.A/ D

Z

Z

�z.A/ d �.z/:

Since �z isG-invariant andH is unimodular, the pushforward �z WD j�.�H ��z/

is G �H -invariant and hence the same is true for �z WD .i
�1/��z on G � Y when

the latter is considered with theG �H -action induced by i�1. As � D j�.�H ��/

we get that �.B/ D
R

Z
�z.B/ d �.z/ for every measurable set B � � and since

� is �-finite, �z is �-finite for almost all z 2 Z and hence the same is true

for �z . Denote by Z0 the conull Borel subset consisting of points z for which

�z is �-finite and pick a z 2 Z0; we now show that �z is ergodic. To this end, note

first that Remark 2.16 applies so it suffices to check ergodicity only on genuinely

G �H -invariant measurable subsets B � �. For such a set B , since the coupling

is strict we obtain that j�1.B/ is H -invariant and hence of the formH �B0 for a

Borel subset B0 � X . By G-invariance of B we conclude that B0 is invariant

for the induced action G Õ X and hence either null or conull with respect

to �z; thus B is either null or conull with respect to �z . From this we conclude

that �z is ergodic for the G �H -action induced via i . Since �z is �-finite it is

equivalent to a probability measure �0
z and applying Lemma 2.14 to the probability

measure �z WD .�Y /��0
z we obtain a measurable function bz WY ! Œ0;1Œ such

that �z D �G � bz�z . Now note that since �z is ergodic for the G �H -action

�0
z WD bz�z is ergodic for the H -action; to see this let B � Y be an H -invariant

Borel set and note that G � B is G �H -invariant and hence either null or conull
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with respect to �z D �G � �
0
z . Moreover, for any Borel set U � G we have

�G.U /�.Y / D .�G � �/.U � Y /

D

Z

Z

�z.U � Y / d �.z/

D

Z

Z

�G.U /�
0
z.Y / d �.z/;

so �0
z is finite �-almost surely. Hence for any choice of z 2 Z such that �0

z is finite,

the measure equivalence coupling .�; �z; X; �z; Y; �
0
z; i; j / is ergodic. �

3. Measure equivalence and orbit equivalence

We now introduce orbit equivalence in the setting of non-discrete lcsc groups, as

treated for instance in [11, Definition 1.12] for ergodic actions. We specify our

definition as follows.

Definition 3.1. Let G and H be lcsc groups and let .X; �/ be an essentially free,

non-singular, standard Borel probability G-space and .Y; �/ be an essentially free,

non-singular, standard Borel probability H -space.

� The two actions are said to be orbit equivalent if there exist a Borel map

�WX ! Y , conull Borel subsets X0 � X and Y0 � Y such that ��� � �

and � restricts to a Borel isomorphism �0WX0 ! Y0 with the property that

�0.G:x \X0/ D H:�0.x/ \ Y0 for all x 2 X0: (1)

� If the actions are actually measure preserving then they are said to be orbit

equivalent if they are so as non-singular actions and if the map � can be

chosen such that��.�/ D �. Moreover, the actions are said to be stably orbit

equivalent if there exist non-negligible Borel subsets A � X and B � Y

such that G:A � X is conull, H:B � Y is conull and there exists a Borel

isomorphism �WA ! B such that ��.�.A/�1�jA/ D �.B/�1�jB and such

that

�.G:a \ A/ D H:�.a/ \ B for all a 2 A: (2)

Remark 3.2. Note that the conull subsets in the definition of orbit equivalence

are required to be Borel, but reasoning as in Remark 2.2 one sees that this is

equivalent to the corresponding definition without the Borel requirement (and with

measures replaced by completed measures). Note also that if the two actions are

orbit equivalent so are their restrictions to any choice of conull, invariant subsets

in X and Y , respectively.
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Remark 3.3. Note that if G andH are non-discrete lcsc groups that admit stably

orbit equivalent, ergodic actions then the original actions are actually already orbit

equivalent [11, Lemma 1.20]. Thus, the notion of stable orbit equivalence is really

only of interest for discrete groups.

Lemma 3.4. If G Õ .X; �/ and H Õ .Y; �/ are non-singular, essentially

free actions of lcsc groups G and H on standard Borel probability spaces and

if �WX ! Y is an orbit equivalence between the two actions, then there exist

measurable cocycles cWG �X ! H and d WH � Y ! G with the properties that

(i) for all g 2 G the relation�.g:x/ D c.g; x/:�.x/ holds for almost all x 2 X ;

(ii) for all h 2 H the relation ��1.h:y/ D d.h; y/:��1.y/ holds for almost all

y 2 Y .

Here ��1 denotes any Borel extension to Y of ��1
0 WY0 ! X0.

Proof. The set of points with trivial stabilizer is invariant, conull and Borel [33,

Lemma 10], so we may assume that both actions are genuinely free. Fix X0 and

Y0 as in the definition and a g 2 G. Then g�1X0 \ X0 WD Xg is conull in X and

for x 2 Xg we have �.g:x/ 2 H:�.x/ \ Y0 so there exists a unique (by freeness)

element c.g; x/ 2 H such that �.g:x/ D c.g; x/:�.x/. This defines a map

cW ¹.g; x/ 2 G �X j x 2 Xgº �! H;

and the domain of c is conull in G � X by Fubini, since each Xg is conull

in X . Extend c to all of G � X by mapping elements in the complement of

¹.g; x/ 2 G �X j x 2 Xgº to e 2 H . Then c is a measurable cocycle, because for

all g1; g2 2 G and all x in the conull subset Xg1g2
\ g�1

2 :Xg1
\Xg2

we have

c.g1g2; x/:�.x/ D �.g1g2:x/

D �.g1:.g2:x//

D c.g1; g2:x/:�.g2:x/

D c.g1; g2:x/c.g2; x/:�.x/;

and hence c.g1g2; x/ D c.g1; g2:x/c.g2; x/ by freeness. Moreover, by construc-

tion �.g:x/ D c.g; x/:�.x/ for all x in the conull subsetXg . The existence of the

cocycle d follows by symmetry. �

The cocycles constructed in Lemma 3.4 are compatible with the natural mea-

sures on G � X and H � X as the next lemma describes. It will be used in the

proof of Lemma 3.11

Lemma 3.5. LetG andH be lcsc groups and let .X; �/ be an essentially free, er-

godic, pmp action on standard Borel probabilityG-space and .Y; �/ an essentially

free, ergodic, pmp, standard Borel probability H -space. If �WX ! Y is an orbit

equivalence between the two actions and cWG � X ! H the associated cocycle,

thenˆWG�X ! H�Y; .g; x/ 7! .c.g; x/; �.x//; satisfiesˆ�Œ�G��� D Œ�H���.
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Proof. The push-forwardˆ�Œ�G��� projects onto the class��Œ�� D Œ��. Further,

it satisfies the condition of Definition 2.3 in [24], saying that .H �Y;ˆ�Œ�G ���/

is a measure groupoid. So the uniqueness statement for invariant measures

classes on groupoids formulated as Proposition 3.4 of [16] applies and shows that

ˆ�Œ�G � �� D Œ�H � ��. �

3.1. Cross section equivalence relations. In this section we briefly recall the

notion of a cross section for an action of a locally compact group, which is

originally due to Forrest [18] and more recently treated in [27] and [11]. LetG be

an lcsc group and let .X; �/ be a standard Borel probability space endowed with

a non-singular, essentially free action � WG Õ .X; �/. It is well known that it is,

in general, impossible to choose a Borel subset of X meeting every orbit exactly

once, but by [18, Proposition 2.10] one may find a Borel subset X0 � X and an

open neighbourhood of the identity U � G such that

(i) the restricted action map � jWU �X0 ! X is injective, and

(ii) the subset G:X0 is Borel and conull in X .

A subset X0 � X with the above mentioned properties is called a cross section

of the action G Õ .X; �/. Note that since G is assumed second countable, if

� jWU �X0 ! X is injective then � jWG �X0 ! X is countable-to-one and hence

the set

Z WD ¹.x; x0/ 2 X �X0 j x 2 G:x0º

is Borel and the projection �l WZ ! X is countable-to-one. One may therefore

define a �-finite Borel measure � on Z by setting

�.E/ WD

Z

X

j��1
l .x/ \Ej d�.x/;

where j�j here, and in what follows, denotes the cardinality of the set in question. In

the situation whereG is unimodular and the action is assumed measure preserving

one has the following.

Proposition 3.6 (cf. [27, Proposition 4.3]). Let G be an unimodular lcsc group

and .X; �/ be a standard Borel probability space endowed with an essentially

free, pmp action G
�
Õ .X; �/. Denote by X0 � X a cross section and fix a Haar

measure �G on G. Then the following hold.

(1) The setRX0
WD ¹.x; x0/ 2 X0�X0 j x 2 G:x

0º is a Borel equivalence relation

with countable orbits.

(2) There exist a unique Borel probability measure �0 on X0 and a number

covol.X0/ 2�0;1Œ such that the map ‰WG � X0 ! Z given by ‰.g; x0/ WD

.g:x0; x0/ satisfies

‰�.�G � �0/ D covol.X0/�;
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where Z and � are as defined above. Thus, whenever U � G is an open

identity neighbourhood with � jWU �X0 ! X injective then

.� j/�.�G jU � �0/ D covol.X0/�jU:X0
:

Moreover, the measure �0 is invariant under the equivalence relation RX0
.

(3) The action G Õ .X; �/ is ergodic if and only if .RX0
; �0/ is ergodic and

in this case the equivalence relation associated with another choice of cross

section is stably orbit equivalent to RX0
.

(4) The group G is amenable if and only if .RX0
; �0/ is amenable.

The equivalence relation RX0
is referred to as a cross section equivalence

relation for the action G Õ .X; �/. For background material about countable

equivalence relations and their properties we refer to [17] and [10]. At this point

we just single out our definition of stable orbit equivalence, since we were unable

to find a suitable reference for this in the non-ergodic case (see e.g. [20] for the

ergodic case).

Definition 3.7. Let R and S be countable Borel measure preserving equivalence

relations on standard Borel probability spaces .X; �/ and .Y; �/. Then R and S

are said to be stably orbit equivalent if there exist non-negligible Borel subsets

A � X and B � Y and a Borel isomorphism �WA! B such that

(i) the R-saturation of A, i.e. the set

¹x 2 X j there exists a 2 A such that .x; a/ 2 Rº;

is conull in X and the S-saturation of B is conull in Y ;

(ii) for all a; a0 2 A, .a; a0/ 2 R if and only if .�.a/;�.a0// 2 S;

(iii) ��.�.A/�1�jA/ D �.B/
�1�jB .

3.2. Equivalence of measure equivalence and stable orbit equivalence. The

aim in the section is to provide a proof of Theorem A; more precisely we prove

the following.

Theorem 3.8. For unimodular, lcsc groupsG andH the following are equivalent:

(i) G and H are measure equivalent;

(ii) G � S1 and H � S1 admit orbit equivalent, essentially free, ergodic, pmp

actions on standard Borel probability spaces;

(iii) G and H admit essentially free, ergodic, pmp actions on standard Borel

probability spaces for which the cross section equivalence relations associ-

ated with some (equivalently any) choice of cross sections are stably orbit

equivalent.
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If both groups G and H are discrete, (ii) can be replaced by

(ii)0 G andH admit stably orbit equivalent, essentially free, ergodic, pmp actions

on standard Borel probability spaces.

If both G and H are non-discrete, (ii) can be replaced by

(ii)00 G and H admit orbit equivalent, essentially free, ergodic, pmp actions on

standard Borel probability spaces.

Here, and in what follows, S1 denotes the circle group. We split up the proof

of Theorem 3.8 into several lemmas, some of which are, in the interest of future

reference, stated in slightly more generality than needed for Theorem 3.8.

Lemma 3.9. If G and H are non-discrete, unimodular, lcsc groups with essen-

tially free, ergodic, pmp actions G Õ .X; �/ and H Õ .Y; �/ on standard Borel

probability spaces and if X0 � X and Y0 � Y are cross sections for the two ac-

tions whose associated cross section equivalence relations are stably orbit equiv-

alent then the original actions are orbit equivalent.

Proof. Let U � G and V � H be precompact, open neighbourhoods of the

identities in G and H such that the restricted actions maps ˛WU � X0 ! X

and ˇWV � Y0 ! Y are injective and hence Borel isomorphisms onto their

image by Lemma 2.5. Since G and H are assumed non-discrete, we may choose

an isomorphism of standard Borel probability spaces f W .U; �G.U /
�1�G jU / !

.V; �H .V /
�1�H jH / (see [25, Theorem (17.41)]). By assumption there exist non-

negligible Borel subsetsA � X0 andB � Y0 and a Borel isomorphism�WA! B

preserving orbits and the restricted (normalized) measures. Then the map

Q�WU:A �! V:B

given by

U:A
˛�1

�! U � A
f ��
���! V � B

ˇ
�! V:B

is an isomorphism of probability measure spaces by Proposition 3.6(2). Further, it

preserves orbits, since� is an orbit equivalence and for u1; u2 2 U and a1; a2 2 A

we have u1a1 � u2a2 if and only if a1 � a2. It follows that Q� is an orbit

equivalence, which shows that the original actions G Õ .X; �/ and H Õ .Y; �/

are stably orbit equivalent and since both G and H are assumed non-discrete the

two actions are actually orbit equivalent by [11, Lemma 1.19]. �

Lemma 3.10. If G and H are measure equivalent, unimodular, lcsc groups then

for any strict, essentially free, measure equivalence coupling .�; �; X;�; Y; �; i; j /

the associated pmp actions G Õ .X; �/ and H Õ .Y; �/ are essentially free and

for any choice of cross sections X0 � X and Y0 � Y the associated cross section

equivalence relations are stably orbit equivalent.
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Note that measure equivalence couplings with the properties prescribed in

Lemma 3.10 always exist by Proposition 2.17. The statement in Lemma 3.10

is implicit in the proofs of Proposition 4.3 and Corollary 4.6 in [27], but for the

convenience of the reader we provide a full proof below.

Proof. Let .�; �; X; �; Y; �; i; j /be an essentially free, strict measure equivalence

coupling between G and H , and note that we may assume that it is genuinely

free by Proposition 2.17. Since G � H Õ � is free so are both the induced

actionsGÕ.X; �/ andHÕ.Y; �/ and we can therefore find cross sectionsX0 � X

and Y0 � Y with associated probability measures �0 and �0 satisfying the

conditions in Proposition 3.6(2). Denote by RX0
and RY0

the associated cross

section equivalence relations; we now need to show that these are stably orbit

equivalent. Note that X 0
0 WD j.¹eH º � X0/ and Y 0

0 WD i.¹eGº � Y0/ are both cross

sections3 for the action G � H Õ � and we will now consider them with the

probability measures �0
0 WD j�.ıeH

� �0/ and �0
0 WD i�.ıeG

� �0/. Note also that

the map x0 7! j.eH ; x0/ is an orbit equivalence between RX0
and the restriction

to X 0
0 of the orbit equivalence relation RG�H of G �H Õ �. It therefore suffices

to show that RG�H jX 0

0
is stably orbit equivalent with RG�H jY 0

0
. For notational

convenience we put K WD G �H and define

S WD ¹.x0; y0/ 2 X
0
0 � Y

0
0 j y0 2 K:x0º;

Z WD ¹.t; x0; y0/ 2 � �X
0
0 � Y

0
0 j K:t D K:x0 D K:y0º;

ZX 0

0
WD ¹.t; x0/ 2 � �X

0
0 j t 2 K:x0º;

ZY 0

0
WD ¹.t; y0/ 2 � � Y

0
0 j t 2 K:y0º;

ZX0
WD ¹.x; x0/ 2 X �X0 j x 2 G:x0º;

ZY0
WD ¹.y; y0/ 2 Y � Y0 j y 2 H:y0º:

Each of these sets is Borel in the product space in question and we now endow

them with �-finite measures. Note that the projection maps �l W S ! X 0
0 and

�r W S ! Y 0
0 are both countable-to-one and we can therefore define two measures

on S by integrating the counting measure against the measures on X 0
0 and Y 0

0,

respectively. In more detail, for a Borel subset E � S we define

l .E/ WD

Z

X 0

0

j��1
l .x0/ \ Ej d�

0
0.x0/;

r.E/ WD

Z

Y 0

0

j��1
r .y0/ \Ej d �

0
0.y0/:

3 Strictly speaking, we have only defined cross sections for non-singular actions on probabil-
ity spaces, but since � is �-finite we may replace it with an equivalent probability measure with
respect to which the action is then non-singular.
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Similarly, the left leg projection maps from Z;ZX 0

0
and ZY 0

0
onto� are countable-

to-one and we obtain �-finite measures �Z; �Z
X

0

0

and �Z
Y

0

0

by integrating the

counting measure along it against the original measure � on �.

Claim 1. The Borel isomorphisms ˛WK � X 0
0 ! ZX 0

0
and ˇWK � Y 0

0 ! ZY 0

0

given by ˛.k; x0/ WD .k:x0; x0/ and ˇ.k; y0/ D .k:y0; y0/ satisfy ˛�.�K � �
0
0/ D

covol.X0/�Z
X

0

0

and ˇ�.�K � �
0
0/ D covol.Y0/�Z

Y
0

0

.

Proof of Claim 1. For any Borel function f WZX 0

0
! Œ0;1Œ we get, using the

unimodularity of H and the measure � associated with X0 via Proposition 3.6,

that
Z

Z
X

0

0

f d˛�.�K � �
0
0/

D

Z

G

Z

H

Z

X0

f ..g; h/:j.eH ; x0/; j.eH ; x0// d�G.g/ d�H .h/ d�0.x0/

D

Z

G

Z

X0

Z

H

f .j.h!H .g; x0/
�1; g:x0/; j.eH ; x0// d�H .h/ d�0.x0/ d�G.g/

D

Z

G

Z

X0

Z

H

f .j.h; g:x0/; j.eH ; x0//d�H .h/ d�0.x0/ d�G.g/

D

Z

H

Z

G

Z

X0

f ı .j � j /.h; g:x0; eH ; x0/ d�0.x0/ d�G.g/ d�H .h/

D covol.X0/

Z

H

Z

ZX0

f ı .j � j /.h; x; eH ; x0/d�.x; x0/ d�H .h/

D covol.X0/

Z

H

Z

X

X

x02X0

x2G:x0

f .j.h; x/; j.eH ; x0//d�.x/ d�H .h/

D covol.X0/

Z

H

Z

X

X

x02X0

j.h;x/2j.H�G:x0/

f .j.h; x0/; j.eH ; x0// d�.x/ d�H .h/

D covol.X0/

Z

�

X

x0

0
2X 0

0

t2K:x0

0

f .t; x0
0/ d�.t/

D covol.X0/

Z

Z
0

X0

f d �Z
X

0

0

:
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This proves that

˛�.�K � �
0
0/ D covol.X0/�Z

X
0

0

and the formula

ˇ�.�K � �
0
0/ D covol.Y0/�Z

Y
0

0

follows by a similar argument. 4

Claim 2. The Borel isomorphisms ˆ1WK � S ! Z and ˆ2WK � S ! Z

given by ˆ1.k; x0; y0/ D .k:x0; x0; y0/ and ˆ2.k; x0; y0/ D .k:y0; x0; y0/ satisfy

ˆ1�.�K � l / D covol.X0/�Z and ˆ2�.�K � r/ D covol.Y0/�Z.

Proof of Claim 2. For any Borel function f WZ! Œ0;1Œ we have

Z

Z

f dˆ1�.�K � l /

D

Z

K

Z

S

f .k:x0; x0; y0/ d l .x0; y0/ d�K.k/

D

Z

K

Z

X 0

0

X

y02K:x0\Y 0

0

f .k:x0; x0; y0/d�
0
0.x0/ d�K.k/

D covol.X0/

Z

Z
X

0

0

X

y02K:x0\Y 0

0

f .t; x0; y0/ d �Z
X

0

0

.t; x0/ (by Claim 1)

D covol.X0/

Z

�

X

x02K:t\X 0

0

X

y02K:x0\Y 0

0

f .t; x0; y0/ d �.t/

D covol.X0/

Z

Z

f d �Z:

This proves the first formula claimed and the other one follows similarly. 4

Since K Õ � is assumed free, for every .x0; y0/ 2 S there exists a unique

ƒ.x0; y0/ 2 K such that ƒ.x0; y0/y0 D x0 and the map ƒW S ! K defined

this way is Borel. Indeed X 0
0 � Y

0
0 and RG�H are Borel subsets of � � �.

So if I denotes the inverse image of X 0
0 � Y

0
0 \ RG�H under the action map

ıWK ��! � ��, then Lemma 2.5 shows that ıjI is a Borel isomorphism onto

its image. Thusƒ D pK ı .ıI /
�1 is a Borel map, where pK WK ��! K denotes

the first coordinate projection. Consider now the Borel map �WK � S ! K � S

given by �.k; x0; y0/ D .kƒ.x0; y0/; x0; y0/ and note that since K is unimodular

��.�K � l / D �K � l . Moreover, a direct computation shows that ˆ1 D ˆ2 ı �
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and hence we conclude that

1

covol.Y0/
ˆ2�.�K � r / D

1

covol.X0/
ˆ1�.�K � l / (Claim 2)

D
1

covol.X0/
.ˆ2 ı �/�.�K � l /

D
1

covol.X0/
ˆ2�.�K � l /;

and since ˆ2 is a Borel isomorphism this implies that covol.X0/.�K � r/ D

covol.Y0/.�K � l / which, in turn, yields

covol.X0/r D covol.Y0/l : (3)

With the formula (3) at our disposal we can now finish the proof. Consider

any K-invariant, �-non-negligible measurable subset �1 � � and define and

S1 WD S \ �1 � �1. By the Lusin–Novikov Theorem 2.6 we can find Borel

partitions S1 D
S

n2NEn and S1 D
S

n2N Fn such that �l jEn
and �r jFn

are

injective for all n 2 N. At least one of the intersections En \ Fm for n;m 2 N is

non-negligible, so that we can pick a Borel subset S2 � S1 with l .S2/ > 0 and

on which both �l and �r are injective. We put X 0
2 WD �l.S2/ and Y 0

2 WD �r.S2/

and observe that �l jS2
W S2 ! X 0

2 and �r jS2
W S2 ! Y 0

2 are Borel isomorphisms by

Lemma 2.5. Note also that

0 < l .S2/ D

Z

X 0

0

j��1
l .x0/ \ S2j d�

0
0.x0/ D �

0
0.X

0
2/:

We may then define a Borel isomorphism  WD �r ı .�l jS2
/�1WX 0

2 ! Y 0
2 and the

formula (3) now implies that

 �.�
0
0jX 0

2
/ D

covol.X0/

covol.Y0/
�0

0jY 0

2
;

and, by definition,  preserves the restrictions of the orbit equivalence relation

of K Õ � to X 0
2 and Y 0

2, respectively. Moreover, we have K:X 0
2 D K:Y 0

2 and

since �0
0.X

0
2/ > 0 it follows from Claim 1 that this set is non-negligible in �.

The proof is now concluded by applying a maximality argument. Denote by

A the set of countable families .Si / of pairwise disjoint Borel subsets Si � S

such that �l and �r are injective on
S

i Si and such that K:�l.Si/ D K:�r.Si/

are pairwise disjoint and non-negligible subsets of �. Then A is inductively

ordered by inclusion of families. So we can pick a maximal element .Smax;i/

and put Smax D
S

i Smax;i . Maximality implies that X 0
max WD �l.Smax/ and

Y 0
max WD �r.Smax/ satisfy that K:X 0

max D K:Y 0
max is conull in �. Moreover, by

what was shown above the associated map  max WD �r ı .�l jSmax/WX
0
max ! Y 0

max
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scales the restricted measures and maps orbits to orbits; thus  max is an orbit

equivalence if we can show that the saturations ofX 0
max andY 0

max are conull. To this

end, note that the saturation ofX 0
max equalsK:X 0

max\X
0
0 and hence its complement

in X 0
0 is X 0

0 \ .� nK:Xmax/. By construction N WD � nK:Xmax is a K-invariant

�-null set and applying Claim 1 again we get

1

covol.X0/
.�K � �

0
0/.K � .X

0
0 \N//

D �Z
X

0

0

.¹.k:x0; x0/ j k 2 K; x0 2 X
0
0 \N º/

D

Z

t2�

j��1
l .t / \ ¹.k:x0; x0/ j k 2 K; x0 2 X

0
0 \N ºj d �.t/

D

Z

t2N

j��1
l .t / \ ¹.k:x0; x0/ j k 2 K; x0 2 X

0
0 \N ºj d �.t/

D 0:

Thus �0
0.X

0
0 \ N/ D 0 and the proof is complete. �

The proof of the following lemma is inspired by the one of Theorem 2.3 in [21].

Lemma 3.11. If G andH are unimodular lcsc groups admitting orbit equivalent,

essentially free, ergodic, pmp actions on standard Borel probability spaces then

G and H are measure equivalent.

Proof. Let G Õ .X; �/ and H Õ .Y; �/ be orbit equivalent, essentially free,

ergodic, pmp actions. By [33, Lemma 10] we may assume that both actions

are genuinely free. Choose an orbit equivalence �WX ! Y and denote by

X0 � X and Y0 � Y the conull Borel subsets between which the restriction

�0 WD �jX0
WX0 ! Y0 is a Borel isomorphism mapping orbits to orbits. Denote by

RG D ¹.gx; x/ 2 X�X j g 2 G; x 2 Xº the orbit equivalence relation associated

with the action G Õ X . The Borel map ˛WG �X ! X � X , ˛.g; x/ WD .gx; x/,

is injective, and hence a Borel isomorphism onto its image RG , by Lemma 2.5.

Similarly, we denote the orbit equivalence relation of H Õ Y by RH and obtain

a Borel isomorphism ˇWH � Y ! RH . Yet another application of Lemma 2.5

shows that the map�0��0 restricts to a Borel isomorphism 'WRG jX0
! RH jY0

.

Consider the measure �G �� on G �X and denote its push-forward toH �Y

by � D .ˇ�1ı'ı˛/�.�G��/. We will show that there is a Haar measure �H ofH

such that � D �H ��. First observe that the equality �Y0
ıˇ�1 ı' ı˛ D �0 ı�X0

on ˛�1.RG jX0
/ implies that .�Y /�.�/ � �. Let d WH � Y ! G be the cocycle

associated with� by Lemma 3.4 and denote by Qd WH�X ! G a strict cocycle that

agrees with d ı .id��/ almost everywhere, which exists by [42, Theorem B.9].
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Define anH -action onG�X by h�.g; x/ D . Qd.h; gx/g; x/. For almost all h 2 H

and almost all .g; x/ 2 G �X the equality

.ˇ�1 ı ' ı ˛/.h � .g; x// D h..ˇ�1 ı ' ı ˛/.g; x//

is well defined and holds. For a positive measurable function f WG � X ! R>0,

we have
Z

G�X

f .h � .g; x// d.�G � �/.g; x/ D

Z

G�X

f . Qd.h; gx/g; x/ d.�G � �/.g; x/

D

Z

G�X

f . Qd.h; x/g; g�1x/ d.�G � �/.g; x/

D

Z

G�X

f .g; g�1x/ d.�G � �/.g; x/

D

Z

G�X

f .g; x/ d.�G � �/.g; x/.

Denoting by � D
R

Y �
y d �.y/ the decomposition of � with respect to �Y , the

Fubini theorem combined with the previous calculation implies that for almost all

y 2 Y the subgroup ¹h 2 H j h�y D �yº is conull in H . It is hence equal to H

by [42, Proposition B.1]. So for almost all y 2 Y the measure �y is H -invariant.

By uniqueness of the Haar measure, this implies that there is a Haar measure �H

onH and a measurable function bWY ! R>0 such that � D �H �b�. Making use

of the action .g; x/ 7! .g; d.h;�.x//x/, a short calculation similar to the above-

one shows that b must be H -invariant. By ergodicity it is hence almost surely

constant, so that after rescaling the Haar measure onH , we obtain � D �H � � as

desired.

Let us now consider R D .idX0
��0/.RG jX0

/ D .��1
0 � idY0

/.RH jY0
/ �

X0 � Y0. On R we define a near action of G �H by the formulas

g.x; y/ D

´

.gx; y/ if gx 2 X0;

.x; y/ otherwise,

and

h.x; y/ D

´

.x; hy/ if hy 2 Y0;

.x; y/ otherwise.

Note that both formulas define Borel maps since ¹.g; x/ 2 G �X0 j gx 2 X0º is a

Borel subset ofG�X0 as it is the image of RG jX0
and similarly ¹.h; y/ 2 H �Y0 j

hy 2 Y0º is a Borel subset of H � Y0. By Lemma 2.11, there is a standard Borel



Measure equivalence and coarse equivalence 247

G �H -space � and a measure space isomorphism  W� ! R such that for all

.g; h/ 2 G �H the equality .g; h/ .!/ D  ..g; h/!/ holds for almost all ! 2 �.

We equip � with the measure

� WD . �1 ı .idX0
��0/ ı ˛/�.�G � �/ D . 

�1 ı .��1
0 � idY0

/ ı ˇ/.�H � �/:

The composition of the measure space isomorphisms

i D ˛�1 ı .idX0
���1

0 / ı  W� �! G �X

induces a G-equivariant isomorphism on measure algebras B.�; �/! B.G �X;

�G � �/, which by [30, Theorem 2] implies that it is an isomorphism of measure

G-spaces �! G � X . Similarly, the composition j D ˇ�1 ı  W�! H � Y0 is

an isomorphism of measureH -spaces. This shows that .�; �; X; �; Y; �; i; j / is a

measure equivalence coupling between .G; �G/ and .H; �H /, which finishes the

proof. �

Finally, we gather the results above into a proof of Theorem 3.8.

Proof of Theorem 3.8. Assuming G and H measure equivalent, we may, by

Proposition 2.17, choose a strict, free, ergodic measure coupling .�; �; X; �; Y; �;

i; j /. The induced actions G Õ .X; �/ and H Õ .Y; �/ are then also free and

ergodic and by Lemma 3.10 it follows that the cross section equivalence relations

associated with any choice of cross sections X0 � X and Y0 � Y are stably orbit

equivalent; thus (i) implies (iii). Assuming (iii), we have essentially free, ergodic,

pmp actionsG Õ .X; �/ andH Õ .Y; �/with cross sectionsX0 and Y0 for which

the associated cross section equivalence relations, RX0
and RY0

, are stably orbit

equivalent. Since S1 Õ .S1; �S1/ is free and ergodic so is the diagonal action

G � S1 Õ X � S1 (freeness is clear and any invariant subset is of the form A � S1

for a G-invariant subset A in X) and X0 � ¹1º is a cross section for this action

and the associated cross section equivalence relation is orbit equivalent with RX0
.

So, we obtain essentially free, ergodic, pmp actions of G � S1 and H � S1 with

stably orbit equivalent cross section equivalence relation and by Lemma 3.9 we

conclude that the original actions are orbit equivalent; this shows that (iii) im-

plies (ii). Lastly, assuming (ii) we get that G � S1 is measure equivalent with

H �S1 from Lemma 3.11, and hence (i) holds because any unimodular lcsc group

G is a cocompact subgroup of G � S1 and in particular measure equivalent to it.

Finally we need to address the two special cases. If G and H are discrete, the

equivalence of (i) and (ii)0 is well known [20] and the equivalence of (ii)0 and (iii)

is obvious as the whole space is a cross section for an essentially free action of

a countable, discrete group. If both G and H are non-discrete, the proof given

above goes through without passing to an amplification with S1 before applying

Lemma 3.9, thus showing the equivalence between (i), (ii)00, and (iii). �
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4. Measure equivalence of amenable lcsc groups

In this section we prove Theorem B and show, conversely, that if a unimodular

lcsc group is measure equivalent to a unimodular amenable group, then it is itself

amenable.

Theorem 4.1. All non-compact, amenable, unimodular, lcsc groups are pairwise

measure equivalent.

Proof. By the Ornstein–Weiss theorem [34, Theorem 6] (see also [20, 14, 15]) all

infinite, discrete, countable, amenable groups are measure equivalent, and since

Z is measure equivalent to R we only need to prove that any pair of non-discrete,

non-compact amenable, lcsc unimodular groupsG andH are measure equivalent.

Let therefore G andH be two such groups and pick essentially free, ergodic pmp

actions G Õ .X; �/, H Õ .Y; �/; cf. [1, Proposition 1.2] and [27, Remark 1.1]

for the existence of such actions. Choose cross sections X0 � X and Y0 � Y for

the two actions and recall that the induced cross section equivalence relations are

ergodic and amenable [27, Proposition 4.3], and hence orbit equivalent by [10]

and [14]. Hence G and H are measure equivalent by Theorem 3.8. �

The techniques used in the proof above also provides an explicit proof of the

following well-known consequence of [10] (cf. [6, Theorem B] for a converse

statement): all essentially free, ergodic, probability measure preserving actions

of non-compact, non-discrete, amenable, unimodular, locally compact, second

countable groups on standard Borel probability spaces are pairwise orbit equiv-

alent. Namely, given two such groups G and H with essentially free, ergodic,

pmp action on standard Borel probability spaces .X; �/ and .Y; �/, respectively,

then, as in the proof just given we conclude that the cross section equivalence re-

lations associated with any choice of cross sections for the two actions are orbit

equivalent, and hence the original actions are orbit equivalent by Lemma 3.9.

Theorem 4.2. If G and H are measure equivalent, unimodular, lcsc groups and

one of them is amenable then so is the other.

Proof. Invoking Proposition 2.17, we may choose a strict, free and ergodic mea-

sure coupling .�; �; X; �; Y; �; i; j / for which the induced actionsG Õ .X; �/ and

H Õ .Y; �/ are therefore free and ergodic as well. By Lemma 3.10, we moreover

have that for any choice of cross sectionsX0 � X and Y0 � Y the associated cross

section equivalence relations are stably orbit equivalent. Denoting by �0 and �0

the measures on X0 and Y0 given by Proposition 3.6, we may therefore find Borel

subsets A � X0 and B � Y0 that are non-negligible with respect to �0 and �0,

respectively, and such that the restricted orbit equivalence relation RX0
jA is orbit

equivalent with RY0
jB . However, since the actions G Õ .X; �/ and H Õ .Y; �/
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are ergodic, the sets A and B are also cross sections and as the following compu-

tation shows, the probability measure �A associated with A by proposition Propo-

sition 3.6 is just a re-scaling of �0jA: choosing an identity neighbourhood U for

X0 as in Proposition 3.6 and a Borel set E � A we get

�G.U /�A.E/ D covol.A/�.U:E/ D
covol.A/

covol.X0/
�G.U /�0.E/:

Since �A is a probability measure, it must be equal to �.A/�1�0jA (and similarly

for B). Now, by Proposition 3.6 we have thatG is amenable if and only if the cross

section equivalence relation RA associated with A is amenable andH is amenable

if and only if RB is amenable and since RA and RB are orbit equivalent they are

amenable (cf. [10, Definition 6]) simultaneously. �

5. Measure equivalence and property (T)

The aim of this section is to provide a proof of Theorem C, stating that property (T)

is preserved under measure equivalence. This result may be known to experts in

the field, but to the best of our knowledge has not been stated or proven explic-

itly anywhere. The proof follows the rough outline of the corresponding proof

for discrete groups presented in [3, Theorem 6.3.13], with a few additional mea-

sure theoretical wrinkles. Note that groups with property (T) are automatically

unimodular [3, Corollary 1.3.6].

Proof of Theorem C. Assume towards a contradiction thatG has property (T) and

H does not. ThenH admits a strongly continuous unitary representation � WH !

U.H/with almost invariant vectors which does not contain any finite-dimensional

subrepresentations; see [3, Remark 2.12.11] for this. Before embarking on the

actual proof, we first show that the space H can be chosen separable. Since H

is lcsc, thus in particular hemicompact, we may choose an increasing sequence

Kn � H of compact subsets that is cofinal in the family of all compact subsets

and has union H , and since � has almost invariant vectors, for each Kn there

exists a unit vector �n 2 H such that k�.h/:�n � �nk <
1
n

for all h 2 Kn. As H is

separable, the subspace

H0 WD span¹�.h/:�n j h 2 H; n 2 Nº � H

is separable and H -invariant and the restriction of � to H0 still has almost

invariant vectors and of course no finite dimensional subrepresentations since this

was already the case for � . Thus, by replacing � with its subrepresentation on H0

we may as well assume that H is separable. Let .�; �; X; �; Y; �; i; j / be measure

equivalence coupling betweenG andH and assume, as we may by Theorem 2.12,

that� is strict, and denote by!G WH�Y ! G and!H WG�X ! H the associated
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(strict) measurable cocycles. The representation � can be induced up to a unitary

representation Q� of G on L2.X;H/ given by

Q�.g/.�/.x/ WD �.!H .g
�1; x/�1/�.g�1:x/ D �.!H .g; g

�1:x//�.g�1:x/:

Since !H is a measurable map, it follows that g 7! h Q�.g/�; �i is measurable for

all � 2 L2.X;H/ and since .X; �/ is standard Borel probability space and H is

separable, L2.X;H/ is also separable. Lemma A.6.2 in [3] therefore applies to

show that Q� is a strongly continuous unitary representation. We now prove that

the induced representation Q� also has almost invariant vectors. To this end, note

first that by [12, Theorem 4.1] the cocycle !H WG�X ! H is proper in the sense

of [12, Definition 2.2], meaning that there exists a family A of Borel sets in X

with, among others, the following two properties:

(1) for every compact set K � G and every A;B 2 A there exists a precompact

set L � H such that for all g 2 K and almost all x 2 A \ g�1:B ,

!H .g; x/ 2 LI

(2) for every " > 0 there exists A 2 A such that �.X n A/ < ".

To prove that Q� has invariant vectors, let a compact subset K � G and " > 0 be

given and choose a set A 2 A with �.X n A/ < " and a precompact set L � H

satisfying (1) with respect to the given compact set K and B D A. Since � is

assumed to have almost invariant vectors, there exists a unit vector � 2 H such that

k�.h/�� �k < " for all h 2 L, and since � is finite, the function Q�.y/ WD 1p
�.X/

�

is a unit vector in in L2.X;H/. For g 2 K we therefore have

k Q�.g/ Q� � Q�k2 D

Z

X

k Q�.g/ Q�.x/� Q�.x/k2 d�.x/

D
1

�.X/

Z

X

k�.!H .g; g
�1:x//� � �k2 d�.x/

D
1

�.X/

Z

A\g:A

k�.!H .g; g
�1:x//� � �k2 d�.x/

C
1

�.X/

Z

Xn.A\g:A/

k�.!H .g; g
�1:x//� � �k2 d�.x/

6 "2 C
1

�.X/
4�.X n A/C

1

�.X/
4�.X n g:A/

< "2 C
8"

�.X/
:

As " > 0 was arbitrary this shows that Q� has almost invariant vectors and since G

is assumed to have property (T), this means that Q� must have a non-trivial invariant
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vector L2.X;H/. Thus, any Borel representative �0WX ! H for such an invariant

vector satisfies that for all g 2 G

�.!H .g
�1; x/�1/�0.g

�1:x/ D �0.x/ for almost all x 2 X: (4)

Consider now the unitary representation �WH ! U.L2.Y;H// given by

�.h/.�/.y/ WD �.h/�.h�1:y/:

The representation � is unitarily equivalent with �Y ˝� on L2.Y / x̋H, where �Y

is the unitary representation induced by the measure preserving action H Õ Y .

To reach the desired contradiction, we now prove that � has a non-trivial invariant

vector. Indeed by [3, Proposition A.1.12], this implies that � contains a finite

dimensional subrepresentation contradicting its defining properties. Consider

again the representative �0 for the vector L2.X;H/ fixed by Q� and extend �0 to

a Borel map Q�0WH � X ! H by setting Q�0.h; x/ WD �.h/�0.x/: Note that for any

h0 2 H we have

Q�0.h0h; x/ D �.h0/ Q�0.h; x/:

Considering the G-action onH �X induced by j�1 we therefore have that for all

g 2 G, all h 2 H and almost all x 2 X

Q�0.g:.h; x// D Q�0.h!H .g; x/
�1; g:x/

D �.h/ Q�0.!H .g; x/
�1; g:x/

(4)
D �.h/�0.x/

D Q�0.h; x/;

Since H is separable it is, in particular, a Polish space and hence a standard

Borel space with respect to its Borel �-algebra. Moreover, for any � 2 H the

map H � H ! C given by .h; �/ 7! h�.h/�; �i D h�; �.h�1/�i is jointly

continuous, showing that the action map H �H! H is weakly measurable, and

thus measurable by Pettis’ measurability theorem [35, Theorem 1.1]. Hence, H is

a standard BorelG �H -space for the action .g0; h0/:� WD �.h0/� and considering

H �X as a G �H -space for the action

.g0; h0/:.h; x/ WD .h0h!H .g0; x/
�1; g0:x/;

we obtain that the function Q�0WH�X ! H is almost everywhereG �H -equivari-

ant. An application of [42, Proposition B.5] provides us with a G �H -invariant,

conull, Borel subset S � H � X and a measurable function Q� 0
0WS ! H which

is genuinely G �H -equivariant and agrees with Q�0 almost everywhere. From

G �H -invariance of S it follows that it has the form S D H �X0 for a G-invari-

ant, conull, Borel subsetX0 � X . Thus, by extending Q� 0
0 by zero onH � .X nX0/,
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we obtain a measurable map Q� 0
0WH � X ! H such that

Q� 0
0.h0h; x/D �.h0/ Q�

0
0.h; x/ for all h0 2 H; .h; x/ 2 H �X;

Q� 0
0.h!H .g0; x/

�1; g0:x/D Q�
0
0.h; x/ for all g0 2 G; .h; x/ 2 H �X:

The function Q� 00
0 WD

Q� 0
0 ı j

�1 ı i WG � Y ! H therefore satisfies

Q� 00
0 .g0g; y/D Q�

00
0 .g; y/ for all g0 2 G; .g; y/ 2 G � Y; (5)

Q� 00
0 .g!G.h0; y/

�1; h0:y/D �.h0/ Q�
00
0 .g; y/ for all h0 2 H; .g; y/ 2 G � Y : (6)

Since �0 ¤ 0, the function Q� 00
0 cannot be zero almost everywhere and combining

this with the G-equivariance (5) we infer that the Borel map �WY ! H given by

�.y/ WD Q� 00
0 .eG ; y/ is not �-almost everywhere zero. Hence, for a suitable choice

of M; ı > 0, the set

Y0 WD ¹y 2 Y j ı < k�.y/k < M º

is �-non-negligible. Moreover, for h 2 H and y 2 Y we have

�.h:y/ D Q� 00
0 .eG ; h:y/

(5)
D Q� 00

0 .!G.h; y/
�1; h:y/

(6)
D �.h/ Q� 00

0 .eG ; y/ D �.h/�.y/;

and since � is a unitary representation it follows that Y0 is H -invariant. Thus,

setting �0 WD 1Y0
� we have that �0 2 L

2.Y;H/ n ¹0º. By the previous computation

it follows that

�0.h:y/ D 1Y0
.h:y/�.h:y/

D 1h�1:Y0
.y/�.h/�.y/

D 1Y0
.y/�.h/�.y/

D �.h/�0.y/;

showing that �0 is invariant for the representation �. By the remarks above, this

finishes the proof. �

6. Uniform measure equivalence

Measure equivalence can, via Gromov’s dynamic criterion discussed below, be

seen as a measure theoretic analogue of coarse equivalence, although, in general,

neither of these notions implies the other (cf. [7]). Heuristically, uniform measure

equivalence should provide a notion of simultaneous measure equivalence and

coarse equivalence, but one should note that it is not true that two (even discrete)

groups that are measure equivalent and coarsely equivalent are automatically
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uniformly measure equivalent, as [13] shows. In this section, we provide a

definition of uniform measure equivalence for unimodular lcsc groups extending

the existing definition for finitely generated discrete groups. We begin by recalling

the notion of coarse equivalence, following the presentation in [37].

Definition 6.1. Let X be a set. A coarse structure on X is a collection of subsets

E � P.X � X/ called controlled sets such that the following requirements are

satisfied:

(i) the diagonal is controlled;

(ii) a subset of a controlled set is controlled;

(iii) a finite union of controlled sets is controlled;

(iv) if E 2 E is controlled, then so is ¹.x; y/ 2 X � X j .y; x/ 2 Eº;

(v) if E1; E2 2 E, then so is

¹.x; z/ 2 X � X j there exists y 2 X such that .x; y/ 2 E1; .y; z/ 2 E2º:

A set equipped with a coarse structure is called a coarse space.

Definition 6.2. Let X be a coarse space.

(i) A subset B � X is called bounded if B � B is controlled.

(ii) A subset C � X is cobounded if there is a controlled set E such that for all

x 2 X there exists c 2 C such that .c; x/ 2 E.

Definition 6.3. Let f WX ! Y be a map between coarse spaces. Then f is

bornologous if f � f maps controlled sets to controlled sets and f is proper if

preimages of bounded sets are bounded. If f is bornologous and proper, then it is

said to be a coarse map. Further, a coarse embedding is a map f WX ! Y such that

E � X �X is controlled if and only if .f �f /.E/ � Y �Y is controlled. Finally,

f is a coarse equivalence if it is a coarse map and there is a coarse map gWY ! X

such that ¹.x; g ı f .x// 2 X � X j x 2 Xº and ¹.y; f ı g.y/ 2 Y � Y j y 2 Y º

are controlled.

Remark 6.4. Coarse equivalences between two coarse spaces X and Y can be

characterized as those coarse embeddings f WX ! Y whose image is cobounded.

Let us describe the main examples of coarse spaces relevant in the context of

uniform measure equivalence.

(1) If G is a locally compact group it admits two natural coarse structures. The

controlled sets of the left coarse structure on G are all subsets of sets of the

form

¹.g; h/ 2 G �G j g�1h 2 Kº D ¹.g; h/ 2 G � G j h 2 gKº,
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where K runs through all compact subsets of G. The controlled sets of the

right coarse structure on G are all subsets of sets of the form

¹.g; h/ 2 G �G j hg�1 2 Kº D ¹.g; h/ 2 G �G j h 2 Kgº,

where againK runs through all compact subsets of G. The inversion of G is

a bijective coarse equivalence between these two coarse structures. Note that

the left coarse structure ofG is left-invariant, while the right coarse structure

of G is right-invariant.

(2) Any setX can be turned into a bounded coarse space, by declaring all subsets

of X � X controlled.

(3) IfX , Y are coarse spaces, thenX �Y is a coarse space whose controlled sets

are those subsets of X � Y �X � Y whose projection to X � X and Y � Y

are controlled.

(4) If .X; d/ is a metric space then the bounded coarse structure on X is defined

by declaring a set E � X � X controlled if

sup¹d.x; y/ j x; y 2 Eº <1:

In this situation, a coarse equivalence between metric spaces .X; dX / and

.Y; dY / can be described in terms of the metrics as a map f WX ! Y with

cobounded image (i.e. supy2Y d.f .X/; y/ <1) which satisfies that

lim
n!1

dX .xn; x
0
n/ D1 if and only if lim

n!1
dY .f .xn/; f .x

0
n// D1;

for all sequences .xn/; .x
0
n/ in X .

IfG andH are lcsc groups we say that they are coarsely equivalent if if they are so

when endowed with their left (equivalently right) coarse structures. Equivalently,

G and H are coarsely equivalent if they are so as metric spaces when both are

endowed with any proper, compatible, left (equivalently right) invariant metric.

Recall that a metric onG is compatible if it induces the original topology onG and

proper if closed balls are compact, and that any lcsc group admits a compatible,

proper and left invariant metric [41]. Note also that for compactly generated

lcsc groups, coarse equivalence coincides with the notion of quasi-isometry with

respect to the word metrics arising from some/any compact generating sets [8,

Proposition 4.B.10].

Definition 6.5. LetG andH be unimodular lcsc groups. A strict measure equival-

enceG-H -coupling .�; �; X; �; Y; �; i; j / is said to be uniform if the compositions

i�1 ı j and j�1 ı i are proper maps with respect to the product coarse structure

whenG andH are endowed with the left coarse structure andX andY are declared

bounded. A measure equivalence G-H -coupling .�; �; X; �; Y; �; i; j / is said to

be uniform if there exist conull Borel subsets�0 � �, X0 � X and Y0 � Y such

that .�0; �; X0; �; Y0; �; �; i jG�Y0
; j jH�X0

/ is a strict uniform measure equival-

enceG-H -coupling. Lastly,G andH are said to be uniformly measure equivalent

if they admit a uniform measure equivalence coupling.
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Since bounded sets in G and H are simply pre-compact sets, cf. [37, Exam-

ple 2.24], the condition that a strict measure equivalence G-H -coupling be uni-

form simply amounts to the following:

� for every compact C � G there exists a compact D � H such that j�1 ı

i.C � Y / � D �X ;

� for every compact D � H there exists a compact C � G such that i�1 ı

j.D � X/ � C � Y .

Lemma 6.6. Uniform measure equivalence is an equivalence relation

Proof. Fixing a Haar measure �G on G, it is clear that .G; �G/ is a strict

uniform G-G measure equivalence coupling when endowed with the action

.g1; g2/:g WD g1gg
�1
2 , thus showing reflexivity of the relation. If .�; �/ is

a uniform G-H measure equivalence coupling then the dual coupling .x�; N�/,

which as a measure space is identical to .�; �/ but with the H �G-action

.h; g/ F t WD .g; h/:t , is uniform as well. Hence, the relation is symmet-

ric. To show transitivity, we recall the composition of measure equivalence

couplings as described in Section A.1.3 of [4]: if G1; G2; H are unimodu-

lar lcsc groups, and .�1; �1; X1; �1; Y1; �1; i1; j1/ is a (strict uniform) measure

equivalence G1-H -coupling and .�2; �2; Y2; �2; X2; �2; i2; j2/ is a (strict uni-

form) measure equivalence H -G2-coupling, then their composition is defined as

.�; �/ WD .H �X1 �X2; �H � �1 � �2/ with G1 �G2-action given by

.g1; g2/:.h; x1; x2/ WD .!
.2/
H .g2; x2/h!

.1/
H .g1; x1/

�1; g1:x1; g2:x2/;

where !
.1/
H and !

.2/
H are the cocycles associated with�1 and�2, respectively. By

Section A.1.3 of [4], the following maps witness that� is indeed aG1-G2 measure

equivalence coupling:

G1 � Y1 �X2

.j �1

1
ı i1/�idX2

����������! H �X1 �X2

.inv ��/ı.i�1

2
ı j2�idX1

/

 ���������������� G2 � Y2 �X1;

where inv denotes inversion in H and � denotes the coordinate flip on X1 � X2.

Assuming now that both �1 and �2 are strict uniform measure equivalence

couplings then both j�1
1 ı i1 and i�1

2 ı j2 as well as their inverses are proper

maps, and since .� � inv/ is proper as well, � is also a strict uniform measure

equivalence coupling. �

Lemma 6.7. A strict measure equivalence G-H -coupling .�; �; X; �; Y; �; i; j /

is uniform if and only if

� the sets i�1 ı j.¹eH º � X/ � G � Y and j�1 ı i.¹eGº � Y / � H � X are

bounded, and
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� the associated cocycles !G and !H are locally bounded; i.e. for every com-

pact subset C � G there exists a compact subset D � H such that

¹!H .g; x/ j g 2 C; x 2 Xº � D and similarly for !G .

Proof. First assume that .�; �; X; �; Y; �; i; j / is a strict uniform measure equi-

valence G-H -coupling. Then the sets i�1 ı j.¹eH º � X/ � G � Y and

j�1 ı i.¹eGº � Y / � H � X are bounded by assumption. Further, let a com-

pact subset C � G be given and fix g 2 C and x 2 X . Then we have

.!H .g; x/
�1; g:x/ D j�1.g:j.eH ; x// D .j

�1 ı i/.g:i�1 ı j /.eH ; x/:

Since .i�1 ı j /�1 D j�1 ı i is proper there exists a compact subset C 0 � G such

that i�1 ı j .¹eH º � X/ � C 0 � Y and hence g:.i�1 ı j /.eH ; x/ 2 CC 0 � Y:
Since .j�1 ı i/�1 D i�1 ı j is also proper, there exists a compact subset

D � H such that j�1 ı i.CC 0 � Y / � D � X and we therefore obtain that

¹!H .g; x/ j g 2 C; x 2 Xº � D
�1 as desired. The similar claim about!G follows

by symmetry. So we proved that the cocycles !G and !H are locally bounded.

Vice versa, let us assume that the sets i�1 ı j.¹eH º � X/ � G � Y and

j�1 ı i.¹eGº � Y / � H � X are bounded and the associated cocycles !G and

!H are locally bounded. Let C � G be a compact set and find a compact subset

D � H satisfying !H .C; X/ � D. Let D0 � H be a compact subset such that

.j�1 ı i/.¹eGº � Y / � D
0 � X . Then

.j�1 ı i/.C � Y / � !H .C; X/.j
�1 ı i/.¹eGº � Y / � DD

0 � X

shows that i ı j�1 D .j�1 ı i/�1 is proper. Properness of j ı i�1 follows by

symmetry. �

Remark 6.8. The above lemma shows that the notion of uniform measure equi-

valence introduced in Definition 6.5 agrees with the already established notion for

discrete groups; cf. [38, Definition 2.23 and Lemma 2.24], where the terminology

bounded measure equivalence is used.

Our definition of uniform measure equivalence is motivated by the fact that

two cocompact, unimodular, closed subgroups of the same lcsc group should

be uniformly measure equivalent. This fact was also among the motivations

for introducing uniform measure equivalence in the setting of discrete groups.

Before showing that this is indeed the case, we prove a lemma that describes the

relationship between coarse structures and Haar measures of an lcsc group and its

homogeneous spaces. For its proof we need the existence of certain Borel sections

and since these will appear in a number of instances in the sequel we single this

out in form of the following theorem, definition and example.
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Theorem 6.9 (Arsenin and Kunugui, see [25, Theorem (18.18)]). If X is a

standard Borel space and Y is a Polish space and P � X � Y is a Borel set

for which Px WD ¹y 2 Y j .x; y/ 2 P º is �-compact for every x 2 X , then

the image �X.P / under the projection �X WX � Y ! X is Borel in X and there

exists a Borel function sW�X .P /! Y with the property that .x; s.x// 2 P for all

x 2 �X .P /.

Definition 6.10. Let X and Y be standard Borel spaces and P � X � Y a Borel

set such that �X.P / is Borel. A Borel function sW�X .P / ! Y such that that

.x; s.x// 2 P for all x 2 �X.P / is called a Borel section for P .

Example 6.11. If H 6 G is a closed subgroup of an lcsc group, we obtain Borel

sections G=H ! G and HnG ! G. If furthermore, H is cocompact in G, then

there is a compact subsetK � G that maps surjectively onto G=H and HnG and

the sections may be chosen to have their image in K. More generally, if an lcsc

group G acts continuously, properly and cocompactly on an lcsc Hausdorff space

�, then there exists a Borel section�=G ! �which is bounded, in the sense that

it takes values in a compact set.

Lemma 6.12. Let H be a closed subgroup of an lcsc group G. Assume that

G=H and HnG carry G-invariant measures �G=H and �HnG , respectively. If

sWG=H ! G is a Borel section, then the push-forward of �G=H � �H along the

map G=H � H ! GW .x; h/ 7! s.x/h is a left Haar measure of G. Similarly,

if sWHnG ! G is a Borel section, then the push-forward of �H � �HnG along

H �HnG ! GW .h; x/ 7! hs.x/ is a right Haar measure for G.

Proof. We only prove the cases of right cosets. Let sWHnG ! G be a Borel

section forG ! HnG and let r WG ! H be the retract defined by the requirement

that r.g/s.Hg/ D g for all g 2 G. Define i WH � HnG ! G by i.h;Hg/ WD

hs.Hg/ and note that i is a Borel isomorphism with inverse i�1.g/ D .r.g/;Hg/,

since r.g/s.Hg/ D g for all g 2 G and

.r.hs.Hg//;Hhs.Hg// D .hs.Hg/s.Hs.Hg//�1; Hs.Hg//

D .hs.Hg/s.Hg/�1; Hg/

D .h;Hg/

for all .h;Hg/ 2 H �HnG.

We now assume that HnG admits a G-invariant measure �HnG and denote

by sWHnG ! G a Borel section. Note that �HnG is unique up to scaling by [3,
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Corollary B.1.7]. Let f 2 Cc.G/. Then

Z

G

f .g/ d i�.�H � �HnG/.g/ D

Z

H�HnG

.f ı i/.h;Hg/ d.�H � �HnG/.h;Hg/

D

Z

HnG

Z

H

f .hs.Hg// d �H .h/ d �HnG.Hg/

D

Z

G

f .g/ d �G.g/;

were that last equality follows from [3, Corollary B.1.7] for a suitable choice of

right Haar measure �G . This finishes the proof. �

Proposition 6.13. Let H1 and H2 be two cocompact, unimodular, closed sub-

groups of an lcsc group G. Then H1 and H2 are uniformly measure equivalent.

Proof. By Corollary B.1.8 of [3], the group G is unimodular and H1; H2 6 G

have finite covolume; i.e. there is a finite left-invariant measure �G2=H on G=H2

and a finite right-invariant measure �H1nG on H1nG. After a choice of bounded

Borel sections s1WH1nG ! G and s2WG=H2 ! G, Lemma 6.12 says that the

map i WH1 � H1nG ! G defined by i.h; x/ D hs1.x/ is a Borel isomorphism

such that i�.�H1
� �H1nG/ D �G for a right Haar measure �G . Similarly, the

map j WG=H2 � H2 ! G defined by j.x; h/ D s2.x/h is a Borel isomorphism

which satisfies j�.�G=H2
� �H2

/ D �G for a left Haar measure �G . SinceH1; H2

and G are unimodular their left and right Haar measure agree, so by fixing the

(left) Haar measure �G on G and rescaling the measure �H1nG suitably, we obtain

that .G; �G/ is a strict measure equivalence coupling between H1 and H2 when

endowed with the action .h1; h2/:g WD h1gh
�1
2 and maps

i WH1 �H1nG �! G; .h; y/ 7�! i.h; y/;

j 0WH2 �G=H2 �! G; .h; x/ 7�! j.x; h�1/:

We are therefore done if we can show that i�1 ı j 0 and j 0�1 ı i are proper maps.

To this end, fix a compact subsetD � H2 and note that since s2 is bounded there

exists a compact set K � G such that

j 0.D � G=H2/ WD s2.G=H2/:D
�1 � K:

Now,

i�1.K/ D ¹.h; y/ 2 H1 �H1nG j hs1.y/ 2 Kº

� ¹.h; y/ 2 H1 �H1nG j h 2 Ks1.H1nG/
�1º
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so that

i�1 ı j 0.D �G=H2/ � .H1 \Ks1.H1nG/
�1/ � Y;

and since s1 is bounded this shows that i�1 ı j 0 is proper. Properness of j 0�1 ı i

follows by a similar argument. �

For finitely generated groups, it was shown in [38] that uniform measure

equivalence implies quasi-isometry, and the following proposition shows that this

result extends to lcsc groups. The proof follows that in [38], with a few additional

technicalities stemming from the more general topological setting. They key to

the result is the following lemma.

Lemma 6.14. Let G and H be two lcsc groups. If G � H acts on a set � and

there exists a subset Z � � for which

(i) G:Z D � D H:Z,

(ii) ¹g 2 GW g:Z \Z ¤ ;º and ¹h 2 H W h:Z \Z ¤ ;º are precompact,

(iii) for every compact subset K � G there exists a compact subset LK � H

such that K:Z � LK :Z; and for every compact subset L � H there exists a

compact subsetKL � G such that L:Z � KL:Z;

then G and H are coarsely equivalent.

Proof. Fix a compatible, proper, left-invariant metrics dG and dH on G and H ,

respectively and, for E � H denote sup¹dH .eH ; a/W a 2 Eº by `H .E/ and

similarly for G. Fix z0 2 Z and write ZH WD ¹h 2 H W h:Z \Z ¤ ;º, noting that

KH is bounded with respect to dH so that b WD `H .ZH / < 1. We now proceed

with the actual proof. By (iii) and the axiom of choice there exists a function

f WG ! H for which g�1:z0 2 f .g/:Z. We claim that f W .G; dG/ ! .H; dH /

is a coarse equivalence. We first prove that f .G/ is cobounded. Towards this, fix

h 2 H . Then h�1:z0 2 g:Z for some g 2 G by (i) and since the actions commute

g�1:z0 2 h:Z. Since also g�1:z0 2 f .g/:Z it follows that h�1f .g/ 2 ZH and

hence dH .h; f .g// D dH .eH ; h
�1f .g// 6 b from which it follows that f has

cobounded image. By properness of dG and (iii), for each r > 0 let L.r/ � H

denote a compact set for which xB.eG; r/:Z � L.r/:Z. Clearly this can be done

so that L.r1/ � L.r2/ when r1 6 r2. We now prove that f is a coarse embedding.

Towards this, let g; g0 2 G and put r WD dG.g; g
0/. Since g0�1

:z0 2 f .g
0/:Z and

the actions commute g0�1
f .g/�1:z0 2 f .g/

�1f .g0/:Z; on the other hand

g0�1
f .g/�1:z0 D g

0�1
.gg�1/f .g/�1:z0 D g

0�1
gf .g/�1g�1:z0

2 .g0�1
g/f .g/�1f .g/:Z D .g0�1

g/:Z

� xB.eG ; r/:Z � L.r/:Z
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so .f .g/�1f .g0/:Z/ \ L.r/:Z ¤ ; and hence f .g0/�1f .g/h 2 ZH for for some

h 2 L.r/. Since ZH D Z�1
H it follows that f .g/�1f .g0/ 2 L.r/:ZH and by the

triangle inequality and left-invariance of dH

dH .f .g/; f .g
0// D dH .eH ; f .g/

�1f .g0// 6 `H .L.r/:ZH / 6 `H .L.r//C b:

To see that f is a coarse embedding we need to show that if .gn/ and .g0
n/ are se-

quences in G and limn!1 dH .f .gn/;f .g
0
n//D1, then limn!1 dG.gn; g

0
n/D1.

So suppose limn!1 dG.f .gn/; f .g
0
n// D 1. Then by the above we have

that limn!1 `H .L.dG.gn; g
0
n/// D 1. Towards a contradiction, suppose that

dG.gn; g
0
n/ does not diverge towards infinity, and hence that there exists M > 0

and a subsequences .gnk
/; .g0

nk
/ such that dG.gnk

; g0
nk
/ 6 M . Since L is increas-

ing,L.dG.gnk
; g0

nk
// � L.M/ for all k 2 N and supk `H .L.dG.gnk

; g0
nk
/// <1,

but this contradicts the fact that limn!1 `H .L.dG.gn; g
0
n/// D1. Thus we have

limn!1 dG.gn; g
0
n/ D 1. It remains to prove that if limn!1 dG.gn; g

0
n/ D 1,

then limn!1 dH .f .gn/; f .g
0
n//D1. By properness of dH and (iii) letD.r/ � G

denote a compact set for which xB.eH ; r/:Z � D.r/:Z and D.r1/ � D.r2/ when-

ever r1 6 r2. Consider now f .g/; f .g0/ 2 H and put

r WD dH .f .g/; f .g
0// D r

and note, as above, that g0�1
:f .g/�1:z0 2 f .g/

�1f .g0/:Z so g0�1
:f .g/�1:z0 2

D.r/:Z. On the other hand,

g0�1
:f .g/�1:z0 D g

0�1
:.gg�1/f .g/�1:z0 D g

0�1
gf .g/�1g�1:z0 2 g

0�1
g:Z;

so g0�1
g:Z \D.r/:Z ¤ ; and hence g0�1

g 2 D.r/:Z. So as previously

dG.g; g
0/ 6 `G.D.r//C b

0

where b0 D `G.ZG/ < 1 and now a similar argument as before shows that if

limn!1 dG.gn; g
0
n/ D1 then limn!1 dH .f .gn/; f .g

0
n// D1. �

Proposition 6.15. If G and H are uniformly measure equivalent, unimodular,

lcsc groups then G and H are coarsely equivalent.

Proof. Let .�; �; X; �; Y; �; i; j / be a strict, uniform, measure equivalence cou-

pling and define Z WD i.¹eGº � Y / [ j.¹eH º � X/ � �. We now consider �

simply as a set with commuting, set-theoretical actions of G and H and aim at

proving that Z satisfies the assumptions (i)–(iii) in Lemma 6.14. Condition (i) is

trivially satisfied. To verify (ii), we need to prove that ¹h 2 H j h:Z \ Z ¤ ;º is

precompact in H (the corresponding statement for G then follows by symmetry).

Since j�1ı i is proper, there exists a compact setD � H such thatZ � j.D�X/

and therefore

¹h 2 H j h:Z \ Z ¤ ;º � ¹h 2 H j h:D \D ¤ ;º;
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and the latter is compact since H acts properly on itself. Lastly we need to see

that (iii) is satisfied, which will follow from the cocycles being locally bounded;

more precisely, ifC � G is compact then, by Lemma 6.7, the setD WD ¹!H .g; x/ j

g 2 C; x 2 Xº is precompact and we have

C:j.¹eH º �X/ � j.D �X/ D D:j.¹eHº � X/:

Moreover, we have C:i.¹eGº � Y / D i.C � Y / � j.D0 � X/ for some compact

set D0 � H and hence the closure, D00, of D [D0 satisfies

C:Z � j.D00 �X/ D D00:j.¹eº �X/ � D00:Z: �

For discrete groups, Gromov’s dynamic criterion for quasi-isometry [23,

0.2.C0
2] (see also [40, 38]) plays a prominent role, as it allows one to treat quasi-

isometry within a purely topological framework, and in [5] Bader and Rosendal

generalized this to the locally compact setting by proving the following result.

Theorem 6.16 ([5, Theorem 1]). Two lcsc groups, G andH , are coarsely equiv-

alent if and only if there exists a locally compact Hausdorff space � with com-

muting, continuous, proper, cocompact actions of G and H.

Recall that an action G Õ � on a locally compact Hausdorff space � is said

to be continuous if the action map G �� ! � is continuous, cocompact if it is

continuous and there exists a compact subset C0 � � such that G:C0 D � and

proper if the action map G � � ! � � �, .g; t / 7! .g:t; t /, is proper; i.e. the

inverse image of any compact set is compact. A locally compact Hausdorff space

� with commuting, continuous, proper, cocompact actions of G and H is called

a topological coupling between G and H .

The main result in this section is the following theorem showing that, in

analogy with the discrete case [38, Theorem 2.38], uniform measure equivalence

agrees with coarse equivalence on the class of amenable unimodular lcsc groups.

Theorem 6.17. LetG andH be amenable, unimodular, lcsc groups. Then G and

H are coarsely equivalent if and only if they are uniformly measure equivalent.

For the proof of Theorem 6.17, we need the observation that the topological

coupling by Bader–Rosendal is second countable. We remark that the only novelty

in Lemma 6.18 compared to [5, Theorem 1] is the fact that the topological space

witnessing the coarse equivalence can be chosen to be second countable. This

technicality, however, will allow us to work exclusively within the class of standard

Borel spaces.

Lemma 6.18. IfG andH are coarsely equivalent lcsc groups then there exists an

lcsc Hausdorff space � with commuting, continuous, proper, cocompact actions

of G and H .
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For the proof, recall from [32] that a collection of (not necessarily open)

subsets P � P.Y / of a topological space Y is a pseudobase if whenever K � U

where U � Y is open and K � Y is compact there exists P 2 P for which

K � P � U . The set P is a network for Y if whenever x 2 U where U � Y

is open there exists P 2 P for which x 2 P � U . A regular Hausdorff space Y

is an @0-space if it has a countable pseudobase and cosmic if it has a countable

network.

Proof. From the proof of [5, Theorem 1], there is a topological coupling �

between G and H that is a locally compact closed subspace of C.H;X/, where

X is a certain G-invariant subset of the separable Banach space L1.G; �G/ and

C.H;X/ is the space of continuous functions from H to X with the topology

of pointwise convergence in 1-norm. We now prove that � is second countable

with respect to the subspace topology. AsH andX are second countable, regular,

Hausdorff spaces they are @0-spaces and C.H;X/, with the topology of pointwise

convergence, is cosmic [32, Proposition 10.4]. Now� � C.H;X/ so� is cosmic

as well [32, Condition (E)] (for cosmic spaces, page 994). Since � is locally

compact [5, Proof of Theorem 1, Claim 4] and every locally compact cosmic

space is separable and metrizable [32, Condition (C)] (for cosmic spaces, p. 994),

� is second countable. �

Proof of Theorem 6.17. By Proposition 6.15, we know thatG andH are coarsely

equivalent if they are uniformly measure equivalent, so we have to show the

converse. If G and H are coarsely equivalent then, by [5, Theorem 1] and

Lemma 6.18, they admit an lcsc topological coupling �. There exists is a free

action of G � H on a compact metrizable (and hence second countable) space

by [2, Proposition 5.3], so by amplifying� with such a space we may assume that

the G �H -action is free as well as proper. We now show that � can be endowed

with a measure turning it into a uniform measure equivalence coupling. Let

�X W�! �=H DW X and �Y W�! �=G DW Y denote the quotient maps. Since

the actions of G and H on � are proper and cocompact, X and Y are compact

Hausdorff spaces and since � is separable so are X and Y , and hence they are

metrizable. By Theorem 6.9, there exist bounded Borel sections sX WX ! � and

sY WY ! � for �X and �Y , respectively. Since � is a free topological coupling,

we obtain Borel isomorphisms

i WG � Y �! �; .g; y/ 7�! g:sY .y/;

j WH �X �! �; .h; x/ 7�! h:sX .x/:

Since H acts freely on � a map rX W�! H is defined by the relation

rX .t /�X.sX .t // D t

and similarly we obtain a map rY W� ! G. We have j�1.t / D .rH .t /; �X.t // so

that j�1 ı i.g; y/ D .rH .g:sY .y//; �X.g:sY .y///, and similarly for i�1 ı j
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We now show that i�1 ı j and j�1 ı i are proper, and by symmetry of the

situation it suffices to treat i�1ıj . So, for a given compact subsetD � H we need

to show that there exists a compact subsetC � G such that i�1ıj.D�X/ � C�Y .

Since the action H Õ � is continuous and sX .X/ is precompact there exists a

compact subset K � � such that D:sX.X/ � K. Then i�1.K/ D ¹.g; y/ 2

G � Y j g:sY .y/ 2 Kº; and since the action G Õ � is proper and sY is bounded,

the set ¹g 2 G j g:sY .Y / \ K ¤ ;º is precompact, and its closure, C , therefore

satisfies that

i�1 ı j.D �X/ � i�1.K/ � C � Y;

as desired.

We now endowG�Y with anH -action, by pulling back theH -action from�,

and similarly, we pull back the G-action on � to a G-action on H � X . By

G- and H -equivariance of i and j , respectively, we obtain free Borel actions

of G � H on G � Y and on H � X with respect to which i and j are now, by

design, G �H -equivariant. Hence, there is a BorelH -action on Y defined by the

composition

H � Y
.h;y/7�!.h;eG ;y/
�����������! H �G � Y

id �i
���! H �� �! �

�Y

�! Y;

and a Borel G-action on X defined by the composition

G �X
.g;x/7�!.g;eH ;x/
������������! G �H �X

id �j
���! G �� �! �

�X

�! X:

We next note that the H -action on Y and the G-action on X are continuous,

since they agree with the actions induced by the G � H -action on � via the

continuous projections �Y and�X , respectively. Indeed, for y 2 Y , we have h:y D

�Y .h:i.e; y// D �Y .h:sY .y// so that the action agrees with the natural continuous

action H Õ �=G. So H Õ Y is a continuous action by homeomorphisms on

a compact metrizable space, and since H is amenable, there is an H -invariant

probability measure � on Y (cf. [42, Chapter 4]). Let �G be a Haar measure on G

and put � WD i�.�G � �/. Note that the action H Õ G � Y is given by

h:.g; y/ D i�1.h:i.g; y//

D i�1.hg:sY .y//

D g:i�1.h:sY .y//

D g:.rY .h:sY .y//; �Y .h:sY .y///

D .grY .h:sY .y//; h:y/

and sinceG is unimodular and � isH -invariant it follows that �G�� isG �H -in-

variant. Since both i and j are H -equivariant, the measure � WD .j�1/�� D
.j�1ıi/�.�G��/ onH�X is therefore invariant for the action ofH on the left leg.

For each Borel set B � X we can define a left-invariant Borel measure �B on H
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by setting �B.U / WD �.U�B/ and since j�1ıi is proper and �G�� is finite on sets

of the formK�Y withK � G compact, we have that �B is finite on compact sub-

sets and hence there exists cB 2 Œ0;1Œ so that �B D cB�H . Setting �.B/ WD cB
defines a finite measure on X with the property that �.A � B/ D �H .A/�.B/ for

all Borel sets A � H and B � X , and by uniqueness of the product measure we

conclude that � D �H ��. Since we already saw that j�1ıi and i�1ıj are proper

this shows that .�; �/ is a strict uniform measure equivalence coupling. �

As a consequence of the proof just given, we obtain the following slightly more

specific statement.

Porism 6.19. If G and H are coarsely equivalent, amenable, unimodular lcsc

groups then they admit a free, Hausdorff, lcsc topological coupling and any such

coupling admits a Borel measure with respect to which it is a strict uniform

measure coupling.
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