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Abstract. We compute the group homology, the algebraic K- and L-groups, and the
topological K-groups of right-angled Artin groups, right-angled Coxeter groups, and more
generally, graph products.
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1. Introduction

1.1. Basic setup. Suppose that we are given the following data.

� A finite simplicial graph X on the vertex set V and a collection of groups
W WD ¹Wv j v 2 V º. Denote by W D W.X;W/ the associated graph product,
see Section 3, and by † the flag complex associated to X . Examples of graph
products are right-angled Artin groups and right-angled Coxeter groups.

� A commutative ring with unit ƒ and an equivariant homology theory H‹
�

with values in ƒ-modules, see Definition 2.1. Our main examples will be
those associated to algebraic K- and L-theory or topological K-theory, which
appear in the Farrell–Jones Conjecture or the Baum–Connes Conjecture.

https://creativecommons.org/licenses/by/4.0/
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� A non-empty class C of finite groups which is closed under isomorphisms,
passage to subgroups and passage to quotient groups. Our main example will
be the class of all finite groups.

� A class E of ƒ-modules with the property that for an exact sequence 0 !

V0 ! V1 ! V2 ! 0 the ƒ-module V1 belongs to E if and only if both V0

and V2 belong to E.

1.2. Main result. Fix an integer n. We obtain a covariant functor

HC
n WGroups �! ƒ-Modules; G 7�! HG

n .EC.G//;

where EC.G/ is the classifying space of the family of subgroups of G which
belong to C, see Section 2 and (2.4).

Let S be the poset of full subcomplexes of † and let P be the poset of simplices
of †, both ordered by inclusion, where the empty subcomplex and the empty
simplex are allowed. For an element L in S, we can consider the subgraph X \L

of X . Let W.L/ be the graph product associated to X \ L and the collection of
groups WjV \L D ¹Wv j v is a vertex of Lº. With this notation W.†/ is the graph
product W.X;W/ and W.;/ D ¹1º. We obtain a covariant functor

W�W S �! Groups; L 7�! W.L/:

Let

I WP �! S

be the inclusion which sends a simplex � of † to the corresponding full sub-
complex of †. Sometimes we identify � in P with I.�/ in S. For instance
we will often write W.�/ instead of W.I.�//. Notice that the covariant functor
W� ı I WP! Groups sends a simplex � of † to

Q

v2V \� Wv .
We obtain a covariant functor

HC
n ıW�W S �! ƒ-Modules; L 7�! HW.L/

n .EC.W.L///:

We are interested in the value at †, i.e., in HW
n .EC.W // for W D W.X;W/.

The composite HC
n ıW� ı I WP! ƒ-Modules is given by

� 7�! HC
n

�

Y

v2V \�

Wv

�

D H

Q

v2V \� Wv
n

�

Y

v2V \�

EC.Wv/
�

;

since
Q

v2V \� EC.Wv/ is a model for EC.
Q

v2V \� Wv/.
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Define for a simplex � the quotient ƒ-module of HC
n ıW� ı I.�/ by

S�.HC
n ıW� ı I / WD cok

�

M

�

HC
n ıW� ı I.�/ �! HC

n ıW� ı I.�/
�

;

where � runs through the simplices of I.�/ which are different from � . The idea is
to kill everything in HC

n ıW� ıI.�/ which comes from a proper simplex � of I.�/.
For a simplex � of †, let chn.†; �/ be the set of n-chains �0 < �1 < � � � < �n

in P with �0 D � . Define the integer

ch.†; �/ WD
X

n�0

.�1/n � j chn.†; �/j:

Denote by G0.E/ the Grothendieck group of elements in E, i.e., the abelian
group with the isomorphism classes of elements in E as generators and relations
ŒV1� D ŒV0� C ŒV2� for every short exact sequence 0 ! V0 ! V1 ! V2 ! 0 of
ƒ-modules belonging to E.

Theorem 1.1 (main theorem). (i) The canonical ƒ-homomorphism

T W colim�2P HW.�/
n .EC.W.�///

Š
�! HW.†/

n .EC.W.†///

is an isomorphism.

(ii) For every � 2 P, the canonical projection

p� WH
C
n ıW� ı I.�/ �! S�.HC

n ıW� ı I /

has a section
s� WS�.HC

n ıW� ı I / �! HC
n ıW� ı I.�/:

Any collection of such sections and the canonical maps

HC
n ıW� ı I.�/ �! colim�2P HC

n ıW� ı I

induce an isomorphism

M

�2P

S�.HC
n ıW� ı I /

Š
�! colim�2P HW.�/

n .EC.W.�///:

Moreover, there is an explicit section s� (Lemma 4.4).

(iii) Suppose that each ƒ-module H
W.�/
n .EC.W.�/// belongs to E. Then we

get in G0.E/

ŒHW.†/
n .EC.W.†///� D

X

�2P

ch.†; �/ � ŒHW.�/
n .EC.W.�///�:
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We mention that it is both unusual and fortunate that in assertion (i) the source
and target involve the same degree. In general one would expect that in the source
all degrees m � n occur. The reason for this simplification is that for each simplex
� the inclusion W.�/ ! W is split injective. This leads also to the explicit
splitting in assertion (ii).

Note that the number ch.†; �/ appearing in assertion (iii) depends only on
† and � . It is given by 1 � �.†/ for � D ;. It has the following geometric
interpretation if � is non-empty. Let †0 be the barycentric subdivision of †. Then
chn.†; �/ can be interpreted as a collection of n-simplices in †0. Each simplex in
chn.†; �/ contains the vertex given by � . The collection of the faces of all these
simplices of chn.†; �/ determines a simplicial subcomplex D� of †0 which can
be contracted to the vertex given by � . Its boundary @D� consists of all those faces
of simplices of chn.†; �/ which do not contain � . One easily checks

ch.†; �/ D �.D�/ � �.@D�/ D 1 � �.@D�/:

If † is the triangulation of a closed manifold of dimension d , then @D� is home-
omorphic to Sd�1�dim.�/ and hence ch.†; �/ D .�1/d�dim.�/.

1.3. Computations. We will illustrate the potential of Theorem 1.1 by comput-
ing the group homology of G, the algebraic K- and L-theory of the group ring
of G, and the topological K-theory of the group C �-algebra of G in Sections 6
and 7 if G is a right-angled Artin group or a right-angled Coxeter group. These
computations are based on the Baum–Connes Conjecture and the Farrell–Jones
Conjecture which we will briefly recall in Section 5 and which hold for these
groups. The situation in the Farrell–Jones setting is more complicated since we
have to deal with the family VCY of virtually cyclic subgroups, whereas in The-
orem 1.1 the family FIN of finite subgroups is considered. The passage from
FIN to VCY is discussed in Subsection 5.3. This is different in the Baum–Connes
setting since there the family FIN is used. In order to get full functoriality we
need to consider the maximal group C �-algebra instead of the reduced C �-algebra
which makes no difference for right-angled Artin groups and right-angled Coxeter
groups.

Computation in this context means not only that we identify the corresponding
K- and L-groups of G as abelian groups but we give explicit isomorphisms
identifying them with K- and L-groups of the ground ring. For instance, we show
for a right-angled Coxeter group W associated to the finite flag complex † that
there is for every n 2 Z an isomorphism

M

�

Kn.f�/W
M

�

Kn.C/
Š
�! Kn.C �

r .W //;

where � runs through the simplices of † including the empty simplex and f� WC!

C �
r .W / is an explicit homomorphism of C �-algebras depending on � . If � is
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empty, it is given by the obvious inclusion C! C �
r .W /. If k D dim.�/ � 0, then

� determines a subgroup W.�/ D
QkC1

iD1 Z=2 of W and f� is the composite of the

homomorphism C ! CŒ
QkC1

iD1 Z=2� sending � to 2�k�1 � � �
QkC1

iD1 .1 � ti / for ti
the generator of the i-th factor Z=2 and the homomorphism CŒW.�/�! C �

r .W /

coming from the inclusion W.�/! W , see Remark 7.17. This implies

Kn.C �
r .W // Š

´

Zr if n is even,

¹0º otherwise,

where r is the number of simplices of † including the empty simplex. Moreover,
we can write down an explicit basis B D ¹b� j � 2 Pº for the finitely generated
free Z-module K0.C �

r .W //, namely, for � D ;we take the class of the idempotent
1 in C �

r .W / and for � 6D ;we take the class of the idempotent in C �
r .W / given by

the image of the idempotent 2�k�1 �
QkC1

iD1 .1� ti / 2 CŒW.�/� under the inclusion
CŒW.�/� � C �

r .W /. These computations for right-angled Coxeter groups were
carried out in the second author’s master’s thesis [22].

1.4. Acknowledgments. The paper was financially supported by the ERC Ad-
vanced Grant “KL2MG-interactions” (no. 662400) of the third author granted by
the European Research Council. It was also funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy - GZ 2047/1, Projekt-ID 390685813. We thank the referee for several
useful comments.

2. Equivariant homology theories and classifying spaces of families

In this section we recall the axioms of an equivariant homology theory and the
notion of a classifying space of a family of subgroups. For an amalgamated
product of groups, we deduce a Mayer–Vietoris type sequence for the values of
an equivariant homology theory on classifying spaces.

Fix a discrete group G and a commutative ring ƒ with unit. A G-homology
theoryHG

� with values in ƒ-modules is a collection of covariant functorsHG
n from

the category of G-C W -pairs to the category of ƒ-modules indexed by n 2 Z

together with natural transformations

@G
n .X; A/WHG

n .X; A/ �! HG
n�1.A/ WD HG

n�1.A; ;/

for n 2 Z such that the axioms concerning G-homotopy invariance, the long exact
sequence of a pair, excision, and disjoint unions are satisfied, see [24, Section 1].

Let ˛WH ! G be a group homomorphism. Given an H -space X , define the
induction of X with ˛ to be the G-space ˛�X D G �˛ X which is the quotient
of G � X by the right H -action .g; x/ � h WD .g˛.h/; h�1x/ for h 2 H and
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.g; x/ 2 G �X . The following definition is taken from [24, Section 1] except that
the induction structure in this paper is defined for every group homomorphism ˛.

Definition 2.1. An equivariant homology theory H‹
� with values in ƒ-modules

assigns to each group G a G-homology theory HG
� with values in ƒ-modules

together with the following so called induction structure.
Given a group homomorphism ˛WH ! G and an H -C W -pair .X; A/, there

are for every n 2 Z natural homomorphisms

ind˛WH
H
n .X; A/ �! HG

n .˛�.X; A//

satisfying the following axioms.

� Compatibility with the boundary homomorphisms. @G
n ı ind˛ D ind˛ ı@

H
n .

� Functoriality. Let ˇWG ! K be another group homomorphism. Then we
have for n 2 Z

indˇı˛ D HK
n .f1/ ı indˇ ı ind˛WH

H
n .X; A/! HK

n ..ˇ ı ˛/�.X; A//;

where

f1Wˇ�.˛�.X; A//
Š
�! .ˇ ı ˛/�.X; A/; .k; g; x/ 7�! .kˇ.g/; x/;

is the natural K-homeomorphism.

� Compatibility with conjugation. For n 2 Z, g 2 G and a G-C W -pair .X; A/

the map
indc.g/WG!G WH

G
n .X; A/ �! HG

n .c.g/�.X; A//

agrees with HG
n .f2/ for the G-homeomorphism f2W .X; A/ ! c.g/�.X; A/

which sends x to .1; g�1x/ in G �c.g/ .X; A/.

� Bijectivity. If ker.˛/ acts freely on X n A, then

ind˛WH
H
n .X; A/ �! HG

n .˛�.X; A//

is bijective for all n 2 Z.

We briefly fix some conventions concerning spectra. If X is a space, denote
by XC the pointed space obtained from X by adding a disjoint base point. Let
Spectra be the category of spectra in the following naive sense. A spectrum
E D ¹.E.n/; �.n// j n 2 Zº is a sequence of pointed spaces ¹E.n/ j n 2 Zº

together with pointed maps called structure maps �.n/WE.n/^S1 �! E.nC 1/.
A map of spectra fWE ! E0 is a sequence of maps f .n/WE.n/ ! E 0.n/ which
are compatible with the structure maps �.n/, i.e., we have f .n C 1/ ı �.n/ D

� 0.n/ ı .f .n/ ^ idS1/ for all n 2 Z. Given a spectrum E and a pointed space X ,
we can define their smash product X ^ E by .X ^ E/.n/ WD X ^ E.n/ with the
obvious structure maps.
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It is a classical result that a spectrum E defines a homology theory by setting

Hn.X; AIE/ D �n..XC [AC
cone.AC// ^ E/;

where cone denotes the reduced cone. We want to extend this to equivariant
homology theories.

Let Groupoids be the category of small connected groupoids with covariant
functors as morphisms. Notice that a group can be considered as a groupoid with
one object in the obvious way.

For the proof of the following result we refer to [27, Proposition 157 on p. 796].

Theorem 2.2. Consider a covariant Groupoids-spectrum

EWGroupoids �! Spectra:

Suppose that E respects equivalences, i.e., it sends an equivalence of groupoids
to a weak equivalence of spectra.

Then E defines an equivariant homology theory H ‹
�.�IE/ such that we have

H G
n .G=H IE/ Š H H

n .ptIE/ Š �n.E.H//

for every group G, subgroup H � G and n 2 Z. The construction is natural in E.

Example 2.3 (Borel homology). Let E be a spectrum. Let H�.�IE/ be the (non-
equivariant) homology theory associated to E. Given a groupoid G, denote by EG

its classifying space. If G has only one object and the automorphism group of this
object is G, then EG is a model for EG. We obtain two covariant functors

cEWGroupoids �! Spectra; G 7�! E;

bEWGroupoids �! Spectra; G 7�! EGC ^ E:

Thus we obtain two equivariant homology theories H ‹
�.�I cE/ and H ‹

�.�I bE/

from Theorem 2.2. The second one is called the equivariant Borel homology
associated to H�.�IE/. We get for any group G and any G-C W -complex X

natural isomorphisms

H G
n .X I cE/ Š Hn.GnX IE/;

H G
n .X I bE/ Š Hn.EG �G X IE/:

Let C be a non-empty class of groups which is closed under isomorphisms,
passage to subgroups and passage to quotient groups. Our main examples will be
the class FIN of finite groups and the class VCY of virtually cyclic groups.

Given a group G, denote by EC.G/ the classifying space of G with respect to
the family of subgroups FC.G/ D ¹H � G j H 2 Cº. It is defined to be a terminal
object in the G-homotopy category of G-C W -complexes, whose isotropy groups
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belong to FC.G/. A model for EC.G/ is a G-C W -complex whose H -fixed point
set is contractible if H 2 C and is empty if H … C. With this notation EFIN.G/

is the classifying space of proper actions, sometimes also denoted by
x
EG. We

sometimes denote EVCY.G/ by
xx
EG. For more information about classifying

spaces of families we refer for instance to [26].
Given a group homomorphism f WG ! H , we denote by

EC.f /W f�EC.G/ �! EC.H/

the up to H -homotopy unique H -map coming from the universal property of
EC.H/ and the fact that f�EC.G/ is an H -C W -complex whose isotropy groups
are of the shape f .K/ for K 2 C and hence all belong to C again. Given an
equivariant homology theory H‹

� with values in ƒ-modules, it induces homomor-
phisms of Z-graded ƒ-modules

f�WH
G
� .EC.G//

indf

�! HH
� .f�EC.G//

HH
� .EC.f //
���������! HH

� .EC.H//:

One easily checks that thus we obtain a covariant functor

HC
n WGroups �! ƒ-Modules; G 7�! HG

n .EC.G//: (2.4)

Lemma 2.5. Let G0, G1 and G2 be subgroups of G satisfying G0 � G1; G2.
Suppose that the inclusions ik WGk ! G for k D 0; 1; 2 induce an isomorphism

G1 �G0
G2

Š
�! G. Let jkWG0 ! Gk be the inclusion for k D 1; 2. Suppose that

each element in C is a finite group.
Then we obtain a long exact Mayer–Vietoris sequence

� � �
@nC1

���! HG0
n .EC.G0//

.j1/n��.j2/n

���������! HG1
n .EC.G1//˚HG2

n .EC.G2//

.i1/n˚.i2/n
��������! HG

n .EC.G//
@n
�! H

G0

n�1.EC.G0//
.j1/n�1��.j2/n�1
������������! � � � :

Proof. There is a 1-dimensional G-C W -complex T whose underlying space is a
tree such that the 1-skeleton is obtained from the 0-skeleton by the G-pushout

G=G0 � S0 G=G1 qG=G2

G=G0 �D1 T

 

!
q

 !  !

 

!

where q is the disjoint union of the canonical projections G=G0 ! G=G1 and
G=G0 ! G=G2, see [35, Theorem 7 in §4.1 on p. 32]. If we take the cartesian
product with EC.G/ we obtain another cellular G-pushout. Its associated Mayer–
Vietoris sequence yields the long exact sequence

� � � �! HG
n .G=G0 � EC.G// �! HG

n .G=G1 �EC.G//˚HG
n .G=G2 � EC.G//

�! HG
n .T �EC.G// �! HG

n�1.G=G0 �EC.G// �! � � � :
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There is a G-homeomorphism .jk/�j �
k

EC.G/
Š
�! G=Gk�EC.G/, where j �

k
EC.G/

is the restriction of EC.G/ to Gk by jk. Obviously j �
k

EC.G/ is a model for
EC.Gk/. Using the induction structure of the equivariant homology theory H‹

�

we obtain identifications for k D 0; 1; 2

H
Gk
� .EC.Gk//

Š
�! HG

� .G=Gk �EC.G//:

The K-fixed point set T K is a non-empty subtree and hence contractible for every
finite subgroup K � G, see [35, Theorem 15 in 6.1 on p. 58 and 6.3.1 on p. 60].
Hence the projection T � EC.G/ ! EC.G/ is a G-homotopy equivalence since
every element in C is finite by assumption. Hence we get an identification

HG
� .EC.G//

Š
�! HG

� .T �EC.G//:

Now we obtain the desired long exact sequence from the last long exact sequence
and the identifications above. �

3. Graph products of groups

In this section we give the definition of a graph product of groups. We show that
the value of an equivariant homology theory on the classifying space of a graph
product is the colimit over a certain system of subgroups.

Let X be a finite simplicial graph on the vertex set V and suppose that we
are given a collection of groups W WD ¹Wv j v 2 V º. Then the graph product
W.X;W/ is defined as the quotient of the free product �v2V Wv of the collection
of groups W by introducing the relations

¹Œg; g0� D 1 j v; v0 2 V; there is an edge joining v and v0; g 2 Wv; g0 2 Wv0º:

In other words, elements of subgroups Wv and Wv0 commute if there is an edge
joining v and v0. This notion is due to Green [18].

Let † be the flag complex associated to X . Denote by S D S.†/ the poset
of full subcomplexes of †, ordered by inclusion, where we also allow the empty
subcomplex. Then we can assign to L 2 S the graph product group W.X \ L;

WjV \L/, where X \ L agrees with the 1-skeleton of L and WjV \L D ¹Wv j v 2

V \ Lº is the restriction of W to the vertices in L. Consider L0; L1 2 S with
L0 � L1. Then we obtain group homomorphisms

W�.L0 � L1/WW.L0;WjV \L0
/ �! W.L1;WjV \L1

/;

W �.L0 � L1/WW.L1;WjV \L1
/ �! W.L0;WjV \L0

/

as follows. The morphism W�.L0 � L1/ is induced by the obvious inclusion
�v2V \L0

Wv ! �v2V \L1
Wv, whereas the second one is induced by the projection
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�v2V \L1
Wv ! �v2V \L0

Wv which is given on Wv for v 2 V \L1 by the inclusion
Wv ! �v2V \L0

Wv if v 2 L0, and by the trivial homomorphism if v … L0. One
easily checks that thus we obtain a covariant functor

W�W S �! Groups

and a contravariant functor

W �W S �! Groups:

By construction W� and W � agree on objects and we write

W.L/ WD W�.L/ D W �.L/ WD W.X \ L;WjV \L/

for an object L 2 S.
The elementary proof of the following lemma is left to the reader.

Lemma 3.1. (i) Let L0; L1; L2; L 2 S be elements such that L D L1 [ L2 and
L0 D L1 \ L2. Then we obtain a group isomorphism

W�.L1 � L/ �W�.L0�L/ W�.L2 � L/WW.L1/ �W.L0/ W.L2/
Š
�! W.L/:

(ii) Let L1; L2; L 2 S be elements satisfying L1 � L and L2 � L. Then we
get an equality of group homomorphisms W.L1/! W.L2/

W �.L2 � L/ ıW�.L1 � L/ D W�..L1 \ L2/ � L2/ ıW �..L1 \ L2/ � L1/:

Remark 3.2. Notice that in particular we get from Lemma 3.1 (ii) that for any two
elements L0 and L1 in S with L0 � L1 the composite

W �.L0 � L1/ ıW�.L0 � L1/

is the identity on W.L0/. Hence W�.L0 � L1/ is split injective and W �.L0 � L1/

is split surjective.

Let H‹
� be an equivariant homology theory with values in ƒ-modules. Let C

be a non-empty class of groups which is closed under isomorphisms, passage to
subgroups and passage to quotient groups. We have defined a covariant functor
HC

� and studied its main properties in Section 2.
We want to study the covariant ƒS-module

HC
n ıW�W S �! ƒ-Modules; L 7�! HW.L/

n .EC.W.L///;

and are in particular interested in its value at † itself.
Viewing a simplex as a full subcomplex yields for every L 2 S a map of posets

ILWP.L/ �! S.L/:
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For two elements L and L0 in S with L � L0 let

J P.L � L0/WP.L/ �! P.L0/;

J S.L � L0/W S.L/ �! S.L0/

be the maps of posets induced by the inclusion L � L0. Define the ƒ-module

Cn.L/ WD colimP.L/ H
C
n ıW� ı J S.L � †/ ı IL

to be the colimit of the covariant functor

HC
n ıW� ı J S.L � †/ ı ILWP.L/ �! ƒ-Modules:

Given elements L and L0 in S with L � L0, we obtain a map of ƒ-modules

Cn.L � L0/WCn.L/ �! Cn.L0/

from J P.L � L0/ because of J S.L0 � †/ ı IL0 ıJ P.L � L0/ D J S.L � †/ ı IL.
One easily checks that thus we obtain a covariant ƒS-module

CnW S �! ƒ-Modules; L 7�! Cn.L/:

For every object L 2 S there is an obvious ƒ-homomorphism

Tn.L/WCn.L/ D colimP.L/ H
C
n ıW� ı J S.L � †/ ı IL �! HC

n ıW�.L/

coming from the various ƒ-maps HC
n ı W�.�/ ! HC

n ı W�.L/ induced by the
inclusions IL.�/ � L for � running through the simplices of L. One easily
checks that the collection of the ƒ-homomorphisms Tn.L/ fits together to a map
of covariant ƒS-modules

TnWCn �! HC
n ıW�: (3.3)

Theorem 3.4. Suppose that each element in C is a finite group.
Then the map of ƒS-modules Tn of (3.3) is an isomorphism. In particular its

evaluation at † yields a ƒ-isomorphism

Tn.†/W colim�2P HW.�/
n .EC.W.�///

Š
�! HW.†/

n .EC.W.†///:

Proof. Notice that Tn.L/ is obviously an isomorphism if L lies in the image of
I WP! S, since then L is a terminal object in P.L/ and hence under the obvious
identification Cn.L/ D colimP.L/ H

C
n ıW� ı J S.L � †/ ı IL Š HC

n ıW�.L/ the
ƒ-homomorphism Tn.L/ becomes the identity.

We show for any L 2 S that Tn.L/ is an isomorphism by induction over the
number of vertices of L. If L is the empty subcomplex, then L is in the image
of I WP ! S and the claim has already been proved. The induction step is done
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as follows. We only have to consider the case, where L is not in the image of
I WP ! S. Since L is itself a flag complex, there must be two vertices v1 and
v2 in L which are not connected by an edge. Let L1 be the full subcomplex of
L spanned by v1 and all vertices in L which are connected to v1 by an edge. In
particular v2 is not a vertex of L1. Let L0 be the full subcomplex of L which is
spanned by all vertices v for which there exists an edge whose terminal points
are v and v1. Notice that v1 does not belong to L0 and L1 is the cone over
L0 with cone point v1. Let L2 be the full subcomplex of L spanned by all
vertices except v1. Then L D L1 [ L2 and L0 D L1 \ L2 and the number
of vertices of L0, L1 and L2 is smaller than the number of vertices of L. The
induction hypothesis applies to Lk and hence Tn.Lk/ is an isomorphism for
k D 0; 1; 2. Since P.L/ D P.L1/ [ P.L2/ and P.L0/ D P.L1/ \ P.L2/,
P.L/ is the pushout of P.L1/  P.L0/ ! P.L2/. Hence Cn.L/ is the pushout
of Cn.L1/  Cn.L0/ ! Cn.L2/ along the maps induced by the inclusions
P.L0/ � P.Lk/ and P.Lk/ � P.L/ for k D 1; 2. This can be seen as follows.
A morphism out of the pushout to a ƒ-module X is an element in the pullback
of Homƒ.Cn.L1/; X/ ! Homƒ.Cn.L0/; X/  Homƒ.Cn.L2/; X/. These are
homomorphisms of ƒ-modules indexed over P.L1/ and P.L2/ that agree on
P.L0/. Hence this is the same as a ƒ-module homomorphism from Cn.L/ to X .
In particular,

Cn.L0/ �! Cn.L1/˚ Cn.L2/ �! Cn.L/ �! 0

is exact. Since the group homomorphism W�.L0/ ! W�.L1/ is split injective, a
retraction is given by W �.L1/! W �.L0/, the ƒ-homomorphism

HC
n ıW�.L0 � L1/WHC

n ıW�.L0/ �! HC
n ıW�.L1/

is split injective by functoriality. We get from Lemma 2.5 and Lemma 3.1 (i) an
exact sequence

HC
n ıW�.L0/ �! HC

n ıW�.L1/˚HC
n ıW�.L2/ �! HC

n ıW�.L/ �! 0:

One easily checks that we obtain a commutative diagram with exact rows

Cn.L0/ Cn.L1/˚ Cn.L2/ Cn.L/ 0

HC
n ıW�.L0/ HC

n ıW�.L1/˚HC
n ıW�.L2/ HC

n ıW�.L/ 0

 

!

 ! Tn.L0/Š

 

!

 ! Tn.L1/˚Tn.L0/Š

 

!

 ! Tn.L/

 

!

 

!

 

!

Now the induction step follows from the Five-Lemma. �

We have proven part (i) of the main Theorem 1.1.
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4. Mackey modules

In this section we prove the remaining parts of the main Theorem 1.1. More
generally, we show that the colimit of any Mackey module splits as a direct sum
over its index category.

Let † be a finite simplicial complex. Denote by P D P.†/ the poset of its
simplices ordered by inclusion, where we allow the empty simplex as well. The
dimension of the empty simplex is defined to be �1. Notice that for two elements
� and � in P the intersection � \ � is again an element in P which is uniquely
determined by the property that it is maximal among all those elements � in P

satisfying both � � � and � � � .
Let ƒ be a commutative ring with unit. A Mackey ƒP-module M D .M�; M �/

is a bifunctor P! ƒ-Modules, i.e., a covariant functor M� and a contravariant
functor M � from P to ƒ-Modules such that M� and M � agree on objects and
for objects �1, �2, � of P satisfying �k � � for k D 1; 2, we get

M �.�2 � �/ ıM�.�1 � �/ DM�.�1 \ �2 � �2/ ıM �.�1 \ �2 � �1/: (4.1)

The name Mackey ƒP-module comes from the analogy to the classical notion
of a Mackey functor, where (4.1) replaces the double coset formula, see [37,
Section 6.1].

Example 4.2 (Mackey modules coming from graph products). Our main example
comes from Section 3. Let X be a finite simplicial graph on the vertex set V

and suppose that we are given a collection of groups W WD ¹Wv j v 2 V º. Let
F WGroups ! ƒ-Modules be a covariant functor, e.g. the functor HC

� defined
in (2.4). Define M� D F ıW� ıI and M � D F ıW � ıI . Then the pair .M�; M �/

defines a Mackey ƒP-module by Lemma 3.1 (ii).

Fix elements � in P and d 2 ¹�2;�1; 0; 1; 2; : : :º. Consider a covariant
ƒP-module N , i.e., a covariant functor N WP! ƒ-Modules. Define the ƒ-sub-
modules Ld

� N and L� N of N.�/ to be the images of the maps

M

�2P;�<�

dim.�/�d

N.� � �/W
M

�2P;�<�

dim.�/�d

N.�/ �! N.�/

and
M

�2P;�<�

N.� � �/W
M

�2P;�<�

N.�/ �! N.�/;

respectively. Define ƒ-quotient modules of N.�/ by

Sd
� N D N.�/=Ld

� .N /; S�N D N.�/=L� .N /:
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Then we obtain a sequence of inclusions of ƒ-modules

¹0º D L�2
� N � L�1

� N � L0
� N � L1

� N � � � � � Ldim.�/�1
� N D Ldim.�/

� N D L�N;

and a sequence of epimorphisms of ƒ-modules

N.�/ D S�2
� N �! S�1

� N �! S0
� N �! S1

� N �! � � � �! Sdim.�/�1
� N

D Sdim.�/
� N D S�N:

Note that

L�1
� N D im.N.;/ �! N.�// and S�1

� N D cok.N.;/ �! N.�//

for � 6D ; and L�1
; N D ¹0º and S�1

; N D N.;/.
Consider a Mackey ƒP-module M D .M�; M �/. Define a ƒ-homomorphism

sd
� WM�.�/ �!M�.�/

by
sd

� WD idM�.�/�
X

�2P;�<�

dim.�/Dd

M�.� � �/ ıM �.� � �/:

Lemma 4.3. For d 2 ¹�1; 0; 1; 2; : : :º,

sd
�

�

Ld
� M�

�

� Ld�1
� M�:

Proof. If d � dim.�/ we have sd
� D idM�.�/ and Ld�1

� M� D Ld
� M� D L� M�.

Therefore the claim is true in this case. Assume that d < dim.�/. We compute
for � 2 P satisfying � < � and dim.�/ � d

sd
� ıM�.� � �/

DM�.� � �/ �
X

�2P;�<�

dim.�/Dd

M�.� � �/ ıM �.� � �/ ıM�.� � �/

(4.1)
DM�.� � �/ �

X

�2P;�<�

dim.�/Dd

M�.� � �/ ıM�.� \ � � �/ ıM �.� \ � � �/

DM�.� � �/ �
X

�2P;�<�

dim.�/Dd

M�.� \ � � �/ ıM �.� \ � � �/

DM�.� � �/ �
X

�2P;�<�

dim.�/Dd;dim.�\�/Dd

M�.� \ � � �/ ıM �.� \ � � �/

�
X

�2P;�<�

dim.�/Dd;dim.�\�/�d�1

M�.� \ � � �/ ıM �.� \ � � �/:
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Suppose that dim.� \ �/ D d . Since dim.�/ D d and dim.�/ � d , we conclude
� D � \ � D � and hence because of � < �

¹� 2 P j � < �; dim.�/ D d; dim.� \ �/ D dº D ¹�º:

This implies

M�.� � �/ �
X

�2P;�<�

dim.�/Dd;dim.�\�/Dd

M�.� \ � � �/ ıM �.� \ � � �/ D 0;

and hence

sd
� ıM�.� � �/ D �

X

�2P;�<�

dim.�/Dd;dim.�\�/�d�1

M�.� \ � � �/ ıM �.� \ � � �/:

We conclude for every � 2 P satisfying � < � and dim.�/ � d

im.sd
� ıM�.� � �// � Ld�1

� M�:

Now the assertion follows. �

Define a map
s� WM�.�/ �!M�.�/

to be the composite s�1
� ı s0

� ı � � � ı s
dim.�/�1
� . Then we conclude by induction

from Lemma 4.3 that s� restricted to L�M� is trivial and hence induces a ƒ-
homomorphism

Ns� WS�M� �!M�.�/:

Lemma 4.4. Let M D .M�; M �/ be a Mackey ƒP-module. Consider an element
� 2 P. Let p� WM�.�/! S�M� be the projection. Then

p� ı Ns� D idS� M�
:

Proof. Obviously each map sd
� satisfies p� ı sd

� D p� . �

For every element � 2 P the restriction

RES� WƒP-Modules �! ƒ-Modules

has a left adjoint E� by [23, Lemma 9.31 on p. 171]. Explicitly, the functor
E� Wƒ-Modules ! ƒP-Modules is given by E� .N / D N ˝ƒ ƒ morP.�; ‹/,
where ‹ runs through the objects of P and ƒ morP.�; ‹/ is the free ƒ-module with
the set morP.�; ‹/ as basis. Equivalently, N˝ƒ ƒ morP.�; ‹/ assigns to an object ‹

the ƒ-module N if � � ‹, and ¹0º otherwise. Functoriality in ‹ is given by the
identity on ¹0º or N , or by the inclusion ¹0º ! N .
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We get for every element � 2 P and every map of covariant ƒ-modules
uWS�M� ! M�.�/ a map of covariant ƒP-modules

ad.u/WE� .S�M�/ �!M�

by the adjoint of u under the adjunction .E� ; RES� /. For ‹ 2 P the map ad.u/.‹/

is given by the composite

S�M�
u
�!M�.�/

M�.��‹/
������!M�.‹/

if � � ‹ and by the inclusion ¹0º ! M�.‹/ otherwise.

Lemma 4.5. Consider any collection of homomorphisms Os� WS�M� ! M�.�/

satisfying p� ı Os� D idS� M�
, where � runs through the elements in P.

Then the homomorphism of covariant ƒP-modules

ad.Os/ WD
M

�2P

ad.Os� /W
M

�2P

E� .S�M�/ �!M�

is an isomorphism.

Proof. We start with injectivity. Suppose that ad.Os/ is not injective. Then
there exists an element � 2 P and a non-trivial element a D .a� /�2P 2
L

�2P E� .S�M�/.�/ such that ad.Os/.�/.a/ D 0. Choose �0 2 P with a�0
6D 0

such that for all � 2 P with a� 6D 0 we have dim.�/ � dim.�0/. If � 2 P satisfies
a� 6D 0 and hence E� .S�M�/.�/ 6D 0, we use the explicit description of E� .S�M�/

to conclude � � � . The composite

M

�2P

E� .S�M�/.�/
ad.Os/.�/
�����! M�.�/

M �.�0��/
�������! M�.�0/

p�0
��! S�0

M� (4.6)

sends a to 0 since ad.Os/.�/.a/ D 0.
Consider an element � 2 P with a� 6D 0. Then dim.�/ � dim.�0/ and hence

we get � \ �0 < �0 if � 6D �0 and � \ �0 D �0 if � D �0. The composite

M�.�/
M�.���/
������!M�.�/

M �.�0��/
�������!M�.�0/

p�0
��! S�0

M�

agrees because of (4.1) with the composite

M�.�/
M �.�\�0��/
���������! M�.� \ �0/

M�.�\�0��0/
���������!M�.�0/

p�0
��! S�0

M�:

Hence it is zero if � 6D �0 and it is p�0
if � D �0. This implies that the restriction of

the composite (4.6) to the summand associated to � is trivial if � 6D �0 and is the
identity under the obvious identification E�0

.S�0
M�/.�/ D S�0

M� if � D �0. We
conclude that the composite (4.6) sends a to a�0

under the obvious identification
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E�0
.S�0

M�/.�/ D S�0
M�. Since this implies a�0

D 0, we get a contradiction.
This finishes the proof that ad.Os/ is injective.

Next we show by induction for d D �1; 0; 1; 2; : : : that ad.Os/.�/ is surjective
for all � 2 P with dim.�/ � d . The induction beginning is obvious since ; is
the unique initial object, hence S;M� D M�.;/ holds and therefore ad.Os/;.;/

is bijective. The induction step from .d � 1/ to d � 0 is done as follows. The
composite

E� .S� M�/.�/
ad.Os/�

����!M�.�/ �! S�M�

is surjective. Hence it suffices to show that L� M� is contained in the restriction
of ad.Os/.�/ to

L

�2P;� 6D� E� .S�M�/.�/. It suffices to show that for every � 0 with
� 0 < � the image of M�.� 0/! M�.�/ is contained in the restriction of ad.Os/.�/

to
L

�2P;� 6D� E� .S�M�/.�/. By induction hypothesis ad.Os/.� 0/ is surjective. Now
Lemma 4.5 follows from naturality of ad.Os/ and the fact that E� .S�M�/.� 0/

vanishes. �

For a covariant ƒP-module N , denote by Hn.PIN / its homology. This is
Hn.P� ˝ƒP N / for the ƒ-homology of the ƒ-chain complex P� ˝ƒP N for any
projective ƒP-resolution P� of the constant ƒP-module

x
ƒ with value ƒ. In the

notation of [23, Chapter 17] this is TorƒP
n .
x
ƒ; N /.

Theorem 4.7. Let M D .M�; M �/ be a Mackey ƒP-module. Then,

(i) Hn.PIM�/ vanishes for n � 1,

(ii) we obtain an isomorphism

colimP M� Š H0.PIM�/ Š
M

�2P

S� M�;

(iii) S�M� is a direct summand in the ƒ-module M�.�/.

Proof. (i) From Lemma 4.5, we obtain an isomorphism

M

�2P

Hn.PIE�.S�M�// Š Hn

�

PI
M

�2P

E� .S�M�/
�

Š Hn.PIM�/:

Since the automorphism group of the object � in P is the trivial group ¹1º, we get
for any ƒ-module N an isomorphism

Hn.PIE�.N // Š Hn.¹1ºIN / Š

´

¹0º if n � 1;

N if n D 0:

This follows from the adjunction .E� ; RES� / of [23, Lemma 9.31 on p. 171] and
the fact that RES� .P�/ is a projective ƒ-resolution of ƒ.
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(ii) For every covariant ƒP-module N , there are canonical ƒ-isomorphisms

colimP N Š
x
ƒ˝ƒP N Š H0.PIN /;

where
x
ƒ is the constant ƒP-module with value ƒ. This follows from the adjunc-

tion between tensor product and the hom-functor and the fact that � ˝ƒP N is
right-exact, see [23, 9.21 and 9.23 on p. 169].

(iii) This follows from Lemma 4.4. �

Let chn.†; �/ be the set of n-chains �0 < �1 < � � � < �n in P with �0 D � .
Define the integer

ch.†; �/ WD
X

n�0

.�1/n � j chn.†; �/j:

Fix a class of ƒ-modules E with the property that for an exact sequence
0! V0 ! V1 ! V2 ! 0 the ƒ-module V1 belongs to E if and only if both V0 and
V2 belong to E. An example is the class E of ƒ-modules whose underlying set is
finite, and for a Noetherian ring ƒ the class E of finitely generated ƒ-modules.
Denote by G0.E/ the Grothendieck group of elements in E, i.e., the abelian
group with the isomorphism classes of elements in E as generators and relations
ŒV1� D ŒV0� C ŒV2� for every short exact sequence 0 ! V0 ! V1 ! V2 ! 0 of
ƒ-modules belonging to E.

Theorem 4.8. Let M D .M�; M �/ be a Mackey ƒP-module. Suppose that M�.�/

lies in E for all � 2 P.
Then we get in G0.E/

ŒcolimP M�� D
X

�2P

ch.†; �/ � ŒM�.�/�:

Proof. The bar-resolution yields a finite free ƒP-resolution C� of the constant
ƒP-module

x
ƒ with value ƒ such that

Cn D
M

�2P

M

chn.†;�/

ƒ morP.‹; �/;

see [11, Section 3]. Since C� is a finite free ƒP-chain complex, the ƒ-chain
complex C�˝ƒP M� is a finite-dimensional ƒ-complex whose ƒ-chain modules
belong to E, and we get in G0.E/

X

n�0

.�1/n � ŒHn.C� ˝ƒP M�/�

D
X

n�0

.�1/n � ŒCn ˝ƒP M�� D
X

n�0

.�1/n �
�

X

�2P

X

chn.†;�/

ŒM�.�/�
�

D
X

�2P

�

X

n�0

.�1/n � j chn.†; �/j
�

� ŒM�.�/� D
X

�2P

ch.†; �/ � ŒM�.�/�:
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Since Hn.C� ˝ƒP M�/ agrees with Hn.PIM�/, the claim follows from Theo-
rem 4.7. �

4.1. Proof of Theorem 1.1. We defined the functorHC
n WGroups!ƒ-Modules

in (2.4). We conclude from Example 4.2 that .HC
n ı W� ı I;HC

n ı W � ı I / is a
Mackey ƒP-module. Now Theorem 1.1 follows from Theorem 3.4, Theorem 4.7,
and Theorem 4.8.

5. Isomorphism Conjectures in K - and L-theory

In this section we review the Isomorphism Conjectures of Baum–Cones and
Farrell–Jones and recollect the most important results on the passage from FIN

to VCY in the Farrell–Jones setting.
Let C be a non-empty class of groups which is closed under isomorphisms,

passage to subgroups and passage to quotient groups. Recall that given a group
G, we denote by EC.G/ the classifying space of G with respect to the family of
subgroups FC.G/ D ¹H � G j H 2 Cº. Consider a covariant Groupoids-
spectrum

EWGroupoids �! Spectra

which respects equivalences. We obtain an equivariant homology theory H ‹
�.�IE/

associated to E from Theorem 2.2.
Then the Meta-Isomorphism Conjecture for E and the class C predicts that the

projection prWEC.G/! G=G induces for all n 2 Z an isomorphism

H G
n .prIE/WH G

n .EC.G/IE/
Š
�! H G

n .G=GIE/ D �n.E.G//:

If we make the appropriate choices for E and C, this becomes the Baum–
Connes Conjecture or it becomes the Farrell–Jones Conjecture for algebraic
K-theory, for algebraic L-theory, for Waldhausen’s A-theory, or for topological
Hochschild homology.

5.1. The Baum–Connes Conjecture. Given a discrete group G, denote by
C �

r .G/ and C �
r .GIR/ its reduced complex and reduced real group C �-algebra

and by C �
m.G/ and C �

m.GIR/ its maximal complex and maximal real group C �-al-
gebra. There are covariant functors

KC �
m
WGroupoids �! Spectra; (5.1)

KC �
mIRWGroupoids �! Spectra; (5.2)

which send equivalences of groupoids to weak equivalences of spectra and satisfy
�n.KC �

m
.G// D Kn.C �

m.G// and �n.KC �
mIR.G// D KOn.C �

m.GIR// for n 2 Z.
Here K� and KO� denote topological K-theory. If we consider the class of
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finite groups, the Meta-Isomorphism Conjecture reduces to the Baum–Connes
Conjecture for the maximal group C �-algebra. It predicts the bijectivity of the
assembly maps for n 2 Z

KG
n .
x
EG/ �! Kn.C �

m.G//;

KOG
n .
x
EG/ �! KOn.C �

m.GIR//;

where the source is given by equivariant K-homology for which we have the
identifications KG

n .
x
EG/ D H G

n .
x
EGIKC �

m
/ and KOG

n .
x
EG/ D H G

n .
x
EGIKC �

mIR/.
We can apply K-theory to the natural maps of C �-algebras C �

m.G/! C �
r .G/

and C �
m.GIR/ ! C �

r .GIR/ to obtain maps fnWKn.C �
m.G// ! Kn.C �

r .G//

and f R
n WKOn.C �

m.GIR// ! KOn.C �
r .GIR//. The Baum–Connes Conjecture

predicts that the composites

KG
n .
x
EG/ �! Kn.C �

m.G//
fn
�! Kn.C �

r .G//;

KOG
n .
x
EG/ �! KOn.C �

m.GIR//
f R

n
�! KOn.C �

r .GIR//

are bijective for all n 2 Z.
There are counterexamples to the Baum–Connes Conjecture for the maximal

group C �-algebra, but no counterexamples to the Baum–Connes Conjecture are
known. We want to consider the Baum–Connes Conjecture for the maximal
group C �-algebra since Kn.C �

m.G// and KOn.C �
m.GIR// are functorial in G

for all group homomorphisms, whereas Kn.C �
r .G// and KOn.C �

r .GIR// are
functorial for injective group homomorphisms, but not in general for any group
homomorphism. Moreover the covariant functors (5.1) and (5.2) are defined on
Groupoids. This ensures that the induction structure is available for all group
homomorphisms and not only for injective group homomorphisms as it is the case
if we replace (5.1) and (5.2) by their versions for the reduced C �-algebras. We
later want to apply the induction structure also to certain split surjective group
homomorphisms, see Remark 3.2.

There is a more general Baum–Connes Conjecture with coefficients, which is
known to be true for a large class of groups and which has good inheritance prop-
erties. In particular, the class of groups satisfying the Baum–Connes Conjecture
with coefficients is closed under taking graph products, since it is stable under
finite direct products and amalgamated products, see [31] and [32].

5.2. The Farrell–Jones Conjecture. Given a ring R (with involution), there are
covariant functors

KRWGroupoids �! Spectra;

L
h�1i
R WGroupoids �! Spectra;
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which send equivalences of groupoids to weak equivalences of spectra and satisfy
�n.KR.G// D Kn.RG/ and �n.L

h�1i
R .G// D L

h�1i
n .RG/. Here K� denotes

non-connective algebraic K-theory and L
h�1i
� denotes algebraic L-theory with

decoration h�1i. If we consider the class of virtually cyclic groups, the Meta-
Isomorphism Conjecture reduces to the K-theoretic or the L-theoretic Farrell–
Jones Conjecture which predicts that for all n 2 Z the corresponding map

H G
n .
xx
EGIKR/ �! H G

n .G=GIKR/ D Kn.RG/;

H G
n .
xx
EGIL

h�1i
R / �! H G

n .G=GIL
h�1i
R / D Lh�1i

n .RG/

is bijective.
There is a more general Full Farrell–Jones Conjecture which allows additive

G-categories as coefficients. It is known to be true for a large class of groups
and has good inheritance properties. In particular, the class of groups satisfying
the Full Farrell–Jones Conjecture is closed under taking graph products, which
is a result of Gandini–Rüping [17]. There also is a version of the Farrell–Jones
Conjecture for Waldhausen’s A-theory which we will not discuss here. It satis-
fies similar inheritance properties as the Full Farrell–Jones Conjecture, see [15]
and [38]. Also the following Theorem 5.3 (i) holds in this setting, see [6].

5.3. The passage from FIN to VCY. The Farrell–Jones Conjecture is more
complicated than the Baum–Connes Conjecture since for the Farrell–Jones Con-
jecture the class of virtually cyclic groups has to be considered, whereas for the
Baum–Connes Conjecture the class of finite groups suffices. Hence one has to
understand the passage from

x
EG to

xx
EG in the Farrell–Jones setting.

Theorem 5.3. (i) Let G be any group and R be a ring. Then the relative assembly
maps

H G
n .
x
EGIKR/ �! H G

n .
xx
EGIKR/;

H G
n .
x
EGIL

h�1i
R / �! H G

n .
xx
EGIL

h�1i
R /

are split injective for all n 2 Z.

(ii) Let G be any group and R be a regular ring. Then the relative assembly
map

H G
n .
x
EGIKR/ �! H G

n .
xx
EGIKR/

is rationally bijective for all n 2 Z.

(iii) Let G be any group and R be a regular ring. Suppose that for any finite
subgroup H � G its order jH j is invertible in R. Then the relative assembly map

H G
n .
x
EGIKR/ �! H G

n .
xx
EGIKR/

is bijective for all n 2 Z.
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(iv) Let R be a regular ring. Let W D W.X;W/ be a graph product and d

be a natural number. Suppose that for any vertex v 2 V the group Wv is either
torsionfree or a finite group whose order divides d . Then the relative assembly
map

H W
n .
x
EW IKR/ �! H W

n .
xx
EW IKR/

is bijective after inverting d for all n 2 Z.

(v) Let G be any group and R be a ring with involution. Then the relative
assembly map

H G
n .
x
EGIL

h�1i
R / �! H G

n .
xx
EGIL

h�1i
R /

is bijective after inverting 2 for all n 2 Z.

(vi) Let G be any group and R be a ring with involution such that 2 is invertible
in R. Then the relative assembly map

H G
n .
x
EGIL

h�1i
R / �! H G

n .
xx
EGIL

h�1i
R /

is bijective for all n 2 Z.

(vii) Let R be a ring with involution. Let W D W.X;W/ be a graph product.
Suppose that for any vertex v 2 V the group Wv is either torsionfree or a finite
group of odd order. Then the relative assembly map

H W
n .
x
EW IL

h�1i
R / �! H W

n .
xx
EW IL

h�1i
R /

is bijective for all n 2 Z.

Proof. (i) See [3] and [28].

(ii) This is proved in [28, Theorem 0.3].

(iii) See [27, Proposition 70 on p. 744].

(iv) LetVCYI be the class of virtually cyclic groups of type I, i.e., groups which
admit a homomorphism to Z with finite kernel. Then the relative assembly map

H W
n .EVCYI

.W /IKR/ �! H W
n .EVCY.W /IKR/

is bijective for all n 2 Z by [12, Theorem 1.1]. Hence it suffices to show that

H W
n .EFIN.W /IKR/ �! H W

n .EVCYI
.W /IKR/

is bijective for all n 2 Z. By the same argument as it appears in [28, Proof
of Theorem 0.3 on p. 370] the claim is reduced to showing that for any infinite
virtually cyclic subgroup H � W of type I we get

NKn.RKH I �/Œ1=d � D 0;

where KH � H is a finite subgroup such that H=KH is infinite cyclic and
�WKH ! KH is given by conjugation with an element h 2 H which is sent
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under the projection H ! H=KH to a generator. Any finite subgroup of W is
conjugated into a group W.�/ for some simplex � of † such that Wv is finite for
every v 2 V \ � . (Indeed, this is obvious if † is a simplex. Otherwise, we can
express W as an amalgamated product and use the fact that a finite subgroup of
an amalgamated product is conjugated into one of the factors, see [35, Theorem 8
in 4.3 on p. 36]. Then conclude via induction on the number of vertices.) Hence
we can assume that there exists a simplex � of † such that KH � W.�/ and W.�/

is finite. There is a group homomorphism r WW ! W.�/ whose restriction to
W.�/ is the identity, see Remark 3.2. Consider w 2 KH . Then hwh�1 belongs to
KH again. We compute

�.w/ D hwh�1 D r.hwh�1/ D r.h/r.w/r.h/�1 D r.h/wr.h/�1:

Hence � is given by conjugation with r.h/ 2 W.�/. The order of r.h/ and thus
also of � divides d . We conclude from [28, Theorem 9.4] that

NKn.RKH I �/Œ1=d � D 0:

(v) This is proved in [25, Lemma 4.2].

(vi) The proof is analogous to the first part of the proof of (iv) using the fact
that UNil-groups vanish, if 1=2 is contained in R, see [7, Corollary 3] and that the
map

H G
n .EFIN.G/IL

h�1i
R / �! H G

n .EVCYI
.G/IL

h�1i
R /

is bijective for all n 2 Z, see [25, Lemma 4.2].

(vii) Any finite subgroup of W is conjugated into a group W.�/ for some
simplex � of † such that Wv is finite for every v 2 V \ � . Hence every finite
subgroup has odd order and thus every infinite virtually cyclic subgroup of W is
of type I. Now the claim follows from [25, Lemma 4.2]. This finishes the proof of
Theorem 5.3. �

6. Right-angled Artin groups

In this section we want to compute the group homology, the algebraic K- and L-
theory, and the topological K-theory of a right-angled Artin group W . Recall
that a right-angled Artin group is a graph product W D W.X;W/ for which
each of the groups Wv is infinite cyclic. Right-angled Artin groups satisfy the
Baum–Connes Conjecture and the Baum–Connes Conjecture for the maximal
group C �-algebra, which follows from [13] and [19]. Both the K-theoretic and the
L-theoretic Farrell–Jones Conjecture are satisfied for right-angled Artin groups,
see [2] and [40]. For general information about right-angled Artin groups we refer
for instance to Charney [9].
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In the sequel we denote by rk the number of k-simplices in P D P.†/ and
put r D jPj D

Pdim.†/

kD�1
rk . Recall that the empty simplex is allowed in P and has

dimension �1.
Note that W is torsionfree and that therefore a model for

x
EW is given by EW .

For an equivariant homology theory H‹
� and any group G the induction structure

along the trivial homomorphism G ! ¹1º yields an isomorphism

HG
� .EG/

Š
�! H¹1º

� .BG/:

Let K� be a (non-equivariant) generalized homology theory with values in
ƒ-modules. Let X be a C W -complex. It follows from the axioms of a generalized
homology theory that there is an isomorphism, natural in X

Bn.X/ WD Kn.pr/ � .sn ıKn.idX �i//WKn.X � S1/
Š
�! Kn.X/ �Kn�1.X/;

where we denote by
prWX � S1 �! X

the projection, by
i WS1 D .S1; ;/ �! .S1; pt/

the inclusion, and by

snWKn.X � .S1; ¹ptº//
Š
�! Kn�1.X/

the suspension isomorphism.
By induction over k � 0 we obtain an isomorphism

Bk
n WKn.T k/

Š
�!

k
Y

iD0

.k
i /

Y

j D1

Kn�i .pt/; (6.1)

where we denote by T k the k-dimensional torus
Qk

iD1 S1. Note that T 0 D pt.
For i D 1; 2; : : : ; k, let T k

i � T k be the subspace consisting of elements of
the form .z1; z2; : : : ; zk/ with zi D �, where � is a fixed base point in S1. Let
j k

i WT
k
i ! T k be the inclusion. We will identify T k

k
D T k�1.

Lemma 6.2. For every k � 0 and n 2 Z there is an isomorphism

ck
n W cok

�

k
M

iD1

Kn.j k
i /W

k
M

iD1

Kn.T k
i / �! Kn.T k/

�

Š
�! Kn�k.pt/:

Its inverse is induced by the restriction of the inverse of the isomorphism Bk
n

of (6.1) to the factor Kn�k.pt/ for the index i D k.



K- and L-theory of graph products of groups 293

Proof. We use induction over k D 0; 1; 2; : : :. If k D 0, take c0
n D idKn.pt/. The

induction step from .k � 1/ to k � 1 is done as follows. We have the following
commutative diagram of ƒ-modules

Lk
iD1 Kn.T k

i / Kn.T k/

Kn.T k
k

/˚
Lk�1

iD1 Kn.T k
i /

Kn.T k�1/˚
Lk�1

iD1 Kn.T k�1
i � S1/ Kn.T k�1 � S1/

Kn.T k�1/˚
Lk�1

iD1 .Kn.T k�1
i /˚Kn�1.T k�1

i //

�

Kn.T k�1/˚
Lk�1

iD1 Kn.T k�1
i /

�

˚
Lk�1

iD1 Kn�1.T k�1
i /

Kn.T k�1/

˚

Kn�1.T k�1/

 

!

Lk
iD1 Kn.j k

i
/

 !id Š  

!

idŠ
 !id ˚

Lk�1
iD1 id Š

 !id ˚
Lk�1

iD1 Bn.T k�1
i

/ Š  

!

Bn.T k�1/Š

 !f Š

 

!�

f0 0
0 f1

�

where f is the obvious isomorphism, f0 WD idKn.T k�1/˚
Lk�1

iD1 Kn.j k�1
i /, and

f1 WD
Lk�1

iD1 Kn�1.j k�1
i /. Since f0 is surjective, the diagram above induces an

isomorphism

cok
�

k
M

iD1

Kn.j k
i /

�

Š
�! cok.f0/˚ cok.f1/ D ¹0º ˚ cok

�

k�1
M

iD1

Kn�1.j k�1
i /

�

:

By induction hypothesis we have an isomorphism

ck�1
n�1 W cok

�

k�1
M

iD1

Kn�1.j k�1
i /

�

Š
�! Kn�k.pt/:

This finishes the induction step and hence the proof of Lemma 6.2. �

6.1. Group homology. Let K� be any generalized homology theory with values
in ƒ-modules. Notice that for any group G the C W -complex EG �G

x
EG is a

model for BG since
x
EG is contractible after forgetting the G-action. We have

introduced the equivariant homology theory given by the Borel construction and
K� in Example 2.3. We conclude from Theorem 1.1 and Lemma 6.2 that there is
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an explicit ƒ-isomorphism

M

�2P

Kn�dim.�/�1.pt/
Š
�! Kn.BW /:

If we take for K� singular homology H�.�Iƒ/ with coefficients in ƒ, this
boils down to the well-known, see for example [21, Corollary 11], isomorphism
of ƒ-modules

ƒrn�1
Š
�! Hn.BW Iƒ/:

In particular we get the following relation for the Euler characteristics

�.BW / D 1 � �.†/:

6.2. Algebraic K -theory. Let R be a regular ring. We conclude from Theo-
rem 1.1, Theorem 5.3 (iv), Lemma 6.2, and the validity of the K-theoretic Farrell–
Jones Conjecture for right-angled Artin groups that there is an explicit isomor-
phism of abelian groups

M

�2P

Kn�dim.�/�1.R/
Š
�! Kn.RW /:

Its restriction to the summand belonging to � is the composite of the map
Kn.RW.�// ! Kn.RW / coming from the inclusion Zdim.�/C1 D W.�/ ! W

with the restriction of the inverse of the iterated Bass-Heller-Swan isomorphism

dim.�/C1
M

iD0

.dim.�/C1
i /

M

j D1

Kn�i .R/
Š
�! Kn.RŒZdim.�/C1�/

to the summand Kn�dim.�/�1.R/ belonging to i D dim.�/C 1.
Since for a regular ring R its negative K-theory vanishes, we conclude

Kn.RW / D 0 for n � �1. If we take R D Z, we conclude that Kn.ZW / for
n � �1, zK0.ZW /, and Wh.W / vanish what is actually true if we replace W by
any torsionfree group satisfying the Farrell–Jones Conjecture.

6.3. Algebraic L-theory. Let R be a ring with involution. We conclude from
Theorem 1.1, Theorem 5.3 (vii), Lemma 6.2, and the validity of the L-theoretic
Farrell–Jones Conjecture for right-angled Artin groups that there is an explicit
isomorphism of abelian groups

M

�2P

L
h�1i
n�dim.�/�1

.R/
Š
�! Lh�1i

n .RW /:

Its restriction to a summand comes from the Shaneson splitting.
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6.4. Topological K -theory. We conclude from Theorem 1.1, Lemma 6.2, and
the validity of the Baum–Connes Conjecture for right-angled Artin groups that
there are explicit isomorphisms of abelian groups

M

�2P

Kn�dim.�/�1.C/
Š
�! Kn.C �

m.W // Š Kn.C �
r .W //;

M

�2P

KOn�dim.�/�1.R/
Š
�! KOn.C �

m.W IR// Š KOn.C �
r .W IR//:

In particular we get an isomorphism of abelian groups

Kn.C �
m.W // Š Kn.C �

r .W // Š Ztn ;

if we put
tn D

X

k2¹�1;0;1;2;:::;dim.†/º

.n�k/ odd

rk:

7. Right-angled Coxeter groups

In this section we want to compute the group homology, the algebraic K- and
L-theory, and the topological K-theory of a right-angled Coxeter group W . Recall
that a right-angled Coxeter group is a graph product W D W.X;W/ for which
each of the groups Wv is cyclic of order two. Right-angled Coxeter groups satisfy
the Baum–Connes Conjecture and the Baum–Connes Conjecture for the maximal
group C �-algebra, which follows from [13] and [19]. Both the K-theoretic and the
L-theoretic Farrell–Jones Conjecture are satisfied for right-angled Coxeter groups,
see [2] and [40].

In the sequel we denote by rk the number of k-simplices in P D P.†/ and
put r D jPj D

Pdim.†/

kD�1
rk . Recall that the empty simplex is allowed in P and has

dimension �1.
During this section we denote by C2 the cyclic group of order two. Fix an

integer k � 1. We will identify C k
2 D C k�1

2 � C2 and put C 0
2 D ¹1º. For

i D 1; 2; : : : ; k, let .C k
2 /i be the subgroup of C k

2 consisting of those elements
.a1; a2; : : : ; ak/ satisfying ai D 0 and denote by j k

i W .C
k
2 /i ! C k

2 the inclusion.

7.1. Group homology. Define for n � 0 and k � 0 an integer

�n;k WD

n�1
X

j Dk

.�1/n�1�j �

�

j

k

�

;

where here and in the sequel we use the convention
Pb

j Da cj D 0 for a > b.
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Theorem 7.1. We have for n � 1

Hn.W IZ/ Š
M

�2P
� 6D;

�n;dim.�/
M

j D1

C2:

Its proof needs some preparation. Firstly, the numbers �n;k satisfy the follow-
ing:

�n;0 D

´

1 for n � 1; n odd,

0 for n � 0; n even,
(7.2)

�n;k D �n�1;k�1 C �n�1;k for k; n � 1; (7.3)

�n;k D

n�1
X

iD1

�i;k�1 for n � 0 and k � 1: (7.4)

Equation (7.2) follows directly from the definition and equation (7.3) follows from
an easy calculation. Then equation (7.4) follows by induction from equation (7.3).

Lemma 7.5. We have for n � 1 and k � 0

Hn.C k
2 IZ/ Š

tn;k
M

iD1

C2

with tn;k D
Pk

j D1

�

k
j

�

� �n;j �1.

Proof. The assertion is obviously true for k D 0. The induction step from k � 1

to k � 1 is done as follows. Recall that Hn.C2IZ/ is Z if n D 0, C2 if n � 1 and
n is odd, and ¹0º otherwise. The Künneth formula gives the following short exact
sequence of Z-modules, which is natural in C k�1

2

0 �!
M

iCj Dn

Hi.C
k�1
2 IZ/˝Z Hj .C2IZ/ �! Hn.C k�1

2 � C2IZ/

�!
M

iCj Dn�1

TorZ1 .Hi .C
k�1
2 IZ/; Hj .C2IZ// �! 0:

It splits but the splitting is not natural in C k�1
2 . Computing the Tor- and tensor-

products and rearranging the summands we obtain an isomorphism of Z-modules

Hn.C k
2 IZ/ Š Hn.C2IZ/˚

n
M

iD1

Hi .C
k�1
2 IZ/:
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Using the induction hypothesis we calculate

tn;k D tn;1 C

n
X

iD1

ti;k�1

(7.2)
D �n;0 C

n
X

iD1

k�1
X

j D1

�

k � 1

j

�

� �i;j �1

D �n;0 C

k�1
X

j D1

�

k � 1

j

�

�

n�1
X

iD1

�i;j �1 C

k�1
X

j D1

�

k � 1

j

�

� �n;j �1

(7.4)
D �n;0 C

k�1
X

j D1

�

k � 1

j

�

� �n;j C

k�1
X

j D1

�

k � 1

j

�

� �n;j �1

D �n;0 C

k
X

j D2

�

k � 1

j � 1

�

� �n;j �1 C

k�1
X

j D1

�

k � 1

j

�

� �n;j �1

D

k
X

j D1

�

k � 1

j � 1

�

� �n;j �1 C

k
X

j D1

�

k � 1

j

�

� �n;j �1

D

k
X

j D1

��

k � 1

j � 1

�

C

�

k � 1

j

��

� �n;j �1

D

k
X

j D1

�

k

j

�

� �n;j �1:

This finishes the proof of Lemma 7.5. �

For n � 1 and k � 0 define

SkHn WD cok
�

k
M

iD1

Hn.j k
i IZ/W

k
M

iD1

Hn..C k
2 /i IZ/ �! Hn.C k

2 IZ/
�

:

Note that in the notation of Subsection 1.2 the group SkHn coincides with
S� .Hn.�IZ/ ı W� ı I / for � a .k � 1/-simplex. Let the integer sn;k � 0 be
defined by

SkHn Š

sn;k
M

j D1

C2:

Lemma 7.6. For n � 1 and k � 1 we have

sn;k D �n;k�1

and sn;0 D 0.
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Proof. Since Hn.¹1ºIZ/ D ¹0º for n � 1, we have sn;0 D 0. The induction step
from k � 1 to k � 1 is done as follows. Theorem 1.1 yields an isomorphism

k
M

j D0

.k
j/

M

iD1

Sj Hn Š Hn.C k
2 IZ/:

Using the induction hypothesis and Lemma 7.5 we conclude

sn;k D tn;k �

k�1
X

j D0

�

k

j

�

� sn;j

D

k
X

j D1

�

k

j

�

�n;j �1 �

k�1
X

j D1

�

k

j

�

� �n;j �1

D �n;k�1:

This finishes the proof of Lemma 7.6. �

Now Theorem 7.1 follows from Theorem 1.1 applied to the equivariant homol-
ogy theory given by Borel homology and singular homology with Z-coefficients,
see Example 2.3, and from Lemma 7.6. Here we use the fact that for any group G

the space EG �G
x
EG is a model for BG.

Remark 7.7. If we replace in this subsection C2 D Z=2 everywhere by Z=pl for
some prime number p and some natural number l , then Theorem 7.1 remains true.
This follows from two facts. Since Z=pl is a local ring, we conclude from [29,
Lemma 1.2 on p. 5] that for every natural number a, every summand of the abelian
group

La
iD1 Z=pl is isomorphic to

Lb
j D1 Z=pl for some natural number b. The

group homology Hn.Z=pl IZ/ is isomorphic to Z=pl if n is odd and vanishes for
even n with n � 2.

7.2. Negative K -groups for R D Z

Theorem 7.8. We have Kn.ZW / D ¹0º for n � �1.

Proof. Since right-angled Coxeter groups satisfy the Farrell–Jones Conjecture,
we get Kn.ZW / D 0 for n � �2 and an isomorphism

colimH2SubFIN.W / K�1.ZH/ �! K�1.ZW /

from [27, p. 749].
Since any finite subgroup of W is isomorphic to .Z=2/k for some natural

number k, and K�1.ZA/ D 0 holds for a finite abelian group whose order is a
prime power, see [4, Theorem 10.6 on p. 695] or [8], the claim follows. �
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7.3. Projective class group for R D Z

Theorem 7.9. (i) There is an isomorphism

K0.Z/˚
M

�2P

Z=.2dim ��1/
Š
�! H W

0 .
x
EW IKZ/:

(ii) The map
H W

0 .
x
EW IKZ/ �! H W

0 .
xx
EW IKZ/

is an isomorphism after inverting 2.

(iii) The canonical map

H W
0 .
xx
EW IKZ/ �! K0.ZW /

is an isomorphism.

(iv) We have zK0.ZW /˝Z ZŒ1=2� D ¹0º.

Proof. (i) We have for every group G the obvious splitting

K0.ZG/ Š K0.Z/˚ zK0.ZG/:

By [39, Theorem 12.9], zK0.ZŒC k
2 �/ Š

Lk
iD3

�

k
i

�

Z=.2i�2/. Using naturality of
this isomorphism, we conclude that the inclusions .C k

2 /i � C k
2 collectively hit

everything except the top summand Z=.2k�2/. This implies that for H ‹
�.�IKZ/

the groups S� in Theorem 1.1 are given byZ=.2dim ��1/. Now the assertion follows
from Theorem 1.1 applied to the equivariant homology theory H ‹

�.�IKZ/.

(ii) This follows from Theorem 5.3 (iv).

(iii) This follows from the fact that a right-angled Coxeter group satisfies the
Farrell–Jones Conjecture.

(iv) This follows from assertions (i)–(iii). �

7.4. Whitehead group

Theorem 7.10. (i) The canonical map

H W
1 .EW IKZ/ �! H W

1 .
x
EW IKZ/

is an isomorphism and we have an isomorphism

H W
1 .EW IKZ/ Š H1.W IZ/˚K1.Z/:

(ii) The map
H W

1 .
x
EW IKZ/ �! H W

1 .
xx
EW IKZ/
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is an isomorphism after inverting 2.

(iii) The canonical map

H W
1 .
xx
EW IKZ/ �! K1.ZW /

is an isomorphism.

(iv) We have K1.ZW /˝Z ZŒ1=2� D ¹0º.

Proof. (i) Notice that we have isomorphisms

H W
1 .EW IKZ/ Š H1.BW IK.Z//

Š H1.BW; K0.Z//˚H0.BW; K1.Z//

Š H1.W IZ/˚K1.Z/

Š W=ŒW; W �˚ ¹˙1º:

Hence it remains to show that the canonical map H W
1 .EW IKZ/!H W

1 .
x
EW IKZ/

is bijective. The Whitehead group Wh.C k
2 / vanishes for all natural numbers k

by [30, Theorem 14.1 on p. 328]. Hence the obvious map H1.C k
2 IZ/�K1.Z/!

K1.ZŒC k
2 �/ is an isomorphism. Now apply Theorem 1.1 to the equivariant homol-

ogy theories given by the Borel construction, see Example 2.3, and to H ‹
�.�IKZ/.

(ii) This follows from Theorem 5.3 (iv).

(iii) This follows from the fact that a right-angled Coxeter group satisfies the
Farrell–Jones Conjecture.

(iv) This follows from Theorem 7.1 and assertions (i)–(iii). �

7.5. Rationalized K -groups. Let R be a ring. For any non-empty simplex � of
† we have the diagonal embedding

�� WC2 ! W.�/ D
Y

v2V \�

Wv D
Y

v2V \�

C2:

Let j� WW.�/ ! W be the inclusion. Then j� ı �� WC2 ! W induces a
homomorphisms .j� ı�� /�WKn.RŒC2�/! Kn.RW /. Denote by

i�;nW ker.Kn.RŒC2�/ �! Kn.R// �! Kn.RW /

its composite with the inclusion ker.Kn.RŒC2�/! Kn.R//! Kn.RŒC2�/, where
Kn.RŒC2�/! Kn.R/ is the homomorphism induced by the projection C2 ! ¹1º.
Let i;;nWKn.R/! Kn.RW / be the map induced by the inclusion ¹1º ! W .
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Theorem 7.11. Let R be a regular ring.

(i) The map

i;;n ˚
M

�2P
� 6D;

i�;nWKn.R/˚
M

�2P
� 6D;

ker.Kn.RŒC2�/ �! Kn.R// �! Kn.RW /

is rationally an isomorphism for all n 2 Z.

(ii) For R D Z,

Q˝Z Kn.ZW / Š

8

ˆ

<

ˆ

:

Qr if n D 4k C 1 with k � 1;

Q if n D 0;

¹0º otherwise.

Proof. (i) Notice that any non-trivial finite cyclic subgroup C of C k
2 is isomorphic

to C2 and that the obvious composite

ker.Q˝Z Kn.RC / �! Q˝Z Kn.R// �! Q˝Z Kn.RC /

�! cok
�

Q˝Z Kn.R/ �! Q˝Z Kn.RC /
�

is an isomorphism. The isomorphism appearing in [1, (2.11)], which exists
for ƒ D Q and the equivariant homology theory H ‹

�.�IKR/ because of [1,
Lemma 4.1 (e)], which in turn follows from [36, Corollary 4.2], boils down to
an isomorphism

j¹1º ˚
M

C�C k
2

CŠC2

jC WQ˝Z Kn.R/˚
M

C�C k
2

CŠC2

ker."QC WQ˝Z Kn.RC / �! Q˝Z Kn.R//

Š
�! Q˝Z Kn.RŒC k

2 �/;

where "
Q

C WQ˝Z Kn.RC /! Q˝Z Kn.R/ is induced by the projection C ! ¹1º,
the map j¹1º is induced by the inclusion ¹1º ! C , and jC is the composite

of the inclusion ker."QC / ! Q ˝Z Kn.RC / with the map Q ˝Z Kn.RC / !

Q ˝Z Kn.RŒC k
2 �/ coming from the inclusion C ! C k

2 . By naturality we get a
commutative diagram

k
M

iD1

�

Q˝Z Kn.R/˚
M

C�.C k
2

/i

CŠC2

ker."QC /
�

k
M

iD1

Q˝Z Kn.RŒ.C k
2 /i �/

Q˝Z Kn.R/˚
M

C�C k
2

CŠC2

ker."QC / Q˝Z Kn.RŒC k
2 �/

 

!
Š

 !

 

!

 

!
Š
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where the vertical arrows come from the inclusions .C k
2 /i ! C k

2 . Notice that a
cyclic subgroup of C k

2 belongs to .C k
2 /i for some i 2 ¹1; 2; : : : ; kº if and only if it

is different from the diagonal subgroup .C k
2 /� WD ¹.a; a; : : : ; a/ j a 2 C2º � C k

2 .
Hence the composite

ker.Kn.RŒ.C k
2 /��/ �! Kn.R// �! Kn.RŒ.C k

2 /��/ �! Kn.RŒC k
2 �/

�! cok
�

k
M

iD1

Kn.RŒ.C k
2 /i �/ �! Kn.RŒC k

2 �/
�

is rationally bijective.
Now assertion (i) follows from Theorem 1.1, Theorem 5.3 (iv), and the validity

of the K-theoretic Farrell–Jones Conjecture for right-angled Coxeter groups.

(ii) Due to Borel [5] we know for R D Z that

Q˝Z Kn.Z/ Š

8

ˆ

<

ˆ

:

Q if n D 4k C 1 with k � 1;

Q if n D 0;

¹0º otherwise.

We get from [20, Theorem 2.2] for C Š C2

Q˝Z Kn.ZŒC �/ Š

8

ˆ

<

ˆ

:

Q2 if n D 4k C 1 with k � 1;

Q if n D 0;

¹0º otherwise.

Hence we get

ker.Q˝Z Kn.ZC / �! Q˝Z Kn.Z// Š

´

Q if n D 4k C 1 with k � 1;

¹0º otherwise.

Now assertion (ii) follows from assertion (i). �

7.6. L-groups after inverting 2. The maps appearing in the result below are
defined analogously to the maps appearing in Theorem 7.11.

Theorem 7.12. Let R be a ring with involution.

(i) The map

i;;n ˚
M

�2P
� 6D;

i�;nWL
h�1i
n .R/˚

M

�2P
� 6D;

ker.Lh�1i
n .RŒC2�/ �! Lh�1i

n .R//

�! Lh�1i
n .RW /

is an isomorphism after inverting 2 for all n 2 Z.
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(ii) We have for R 2 ¹Z;Q;Rº

Lh�1i
n .RW /Œ1=2� Š

´

ZŒ1=2�r if n D 4k for k 2 Z;

¹0º otherwise.

Proof. (i) Note that any non-trivial subgroup of the form C � P of C k
2 for a

cyclic group C and a p-group P for an odd prime number p is isomorphic to C2.
The isomorphism appearing in [1, (2.11)] which exists for ƒ D ZŒ1=2� and the
equivariant homology theory H ‹

�.�IL
h�1i
R / because of [14, Theorem 2], boils

down to an isomorphism

j¹1º ˚
M

C�C k
2

CŠC2

jC WL
h�1i
n .R/Œ1=2�

˚
M

C�C k
2

CŠC2

ker.Lh�1i
n .RC /Œ1=2� �! Lh�1i

n .R/Œ1=2�/

Š
�! Lh�1i

n .RŒC k
2 �/Œ1=2�;

where the map j¹1º is induced by the inclusion ¹1º ! C , and jC is the

composite of the inclusion of ker.Lh�1i
n .RC /Œ1=2� ! L

h�1i
n .R/Œ1=2�/ into

L
h�1i
n .RC /Œ1=2� with the map L

h�1i
n .RC /Œ1=2�! L

h�1i
n .RŒC k

2 �/Œ1=2� coming
from the inclusion C ! C k

2 . Now Theorem 7.12 follows completely analogous
to the argument appearing in the proof of Theorem 7.11 (i) and the validity of the
L-theoretic Farrell–Jones Conjecture for right-angled Coxeter groups.

(ii) This follows from assertion (i) using [33, Proposition 22.34 on p. 254]. �

7.7. K - and L-groups for R containing 1=2

Theorem 7.13. For all n 2 Z there are explicit isomorphisms

(i)
L

�2P Kn.R/
Š
�! Kn.RW / if R is regular and contains 1=2,

(ii)
L

�2P L
h�1i
n .R/

Š
�! L

h�1i
n .RW / if R contains 1=2.

Its proof needs some preparations. In the sequel we will write C k
2 multiplica-

tively and we denote by ti the generator of the i-th factor C2 viewed as an element
in C k

2 for i D 1; 2; : : : ; k.
Let R be a ring in which 2 is invertible. We get a decomposition of rings,

natural in R,

RŒC2�
Š
�! R �R; aC bt 7�! .aC b; a � b/:
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Its inverse sends .c; d/ to 1
2
� ..c C d/C .c � d/ � t /. Since algebraic K-theory is

compatible with products, we obtain an isomorphism, natural in R,

Sn.R/WKn.RŒC2�/
Š
�! Kn.R/ �Kn.R/:

One can iterate this using the obvious ring isomorphism .RŒC k�1
2 �/ŒC2� Š RŒC k

2 �

and thus obtains an isomorphism

Sk
n .R/WKn.RŒC k

2 �/
Š
�!

Y

�2homZ.C k
2

;¹˙1º/

Kn.R/; (7.14)

which comes from the isomorphism of rings

RŒC k
2 �

Š
�!

Y

�2homZ.C k
2

;¹˙1º/

R;
X

g2C k
2

�g � g 7�!
�

X

g2C k
2

�g � �.g/
�

�
:

Its inverse is given by

.��/� 7�! 2�k �
X

g2C k
2

�

X

�

�.g/ � ��

�

� g:

Lemma 7.15. (i) Suppose that 2 is invertible in R. Then there is an isomorphism

d k
n W cok

�

k
M

iD1

Kn.RŒj k
i �/W

k
M

iD1

Kn.RŒ.C k
2 /i �/ �! Kn.RŒC k

2 �/
�

Š
�! Kn.R/:

Its inverse is the composite of the homomorphism

ˇWKn.R/ �! Kn.RŒC k
2 �/

coming from the ring homomorphism R! RŒC k
2 � sending � to 2�k ���

Qk
iD1.1�ti/

with the projection Kn.RŒC k
2 �/ ! cok

�
Lk

iD1 Kn.RŒj k
i �/

�

. The homomorphism
ˇ agrees with the restriction of the inverse of the isomorphism Sk

n .R/ of (7.14) to
the factor Kn.R/ which belongs to � given by �.ti/ D �1 for i D 1; 2; : : : k.

(ii) The same assertion holds if we replace algebraic K-theory by algebraic
L-theory with the decoration h�1i.

(iii) The same assertion is true if we take R to be R or C and we replace
algebraic K-theory by topological K-theory.

Proof. We give the proof for algebraic K-theory only, the one for the other cases
is completely analogous.

We use induction over k. If k D 0, the map d 0
n comes from the identification

Kn.RŒC 0
2 �/ D Kn.RŒ¹1º�/ D Kn.R/:
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The induction step from .k�1/ to k � 1 is done as follows. We have the following
commutative diagram of Z-modules

Lk
iD1 Kn.RŒ.C k

2 /i �/ Kn.RŒC k
2 �/

Kn.RŒ.C k
2 /k �/˚

Lk�1
iD1 Kn.RŒ.C k

2 /i �/

Kn.RŒC k�1
2 �/˚

Lk�1
iD1 Kn.RŒ.C k�1

2 /i �ŒC2�/ Kn.RŒC k�1
2 �ŒC2�/

Kn.RŒC k�1
2 �/

˚
Lk�1

iD1

�

Kn.RŒ.C k�1
2 /i �/˚Kn.RŒ.C k�1

2 /i �/
�

Kn.RŒC k�1
2 �/

˚
Lk�1

iD1 Kn.RŒ.C k�1
2 /i �/

˚
Lk�1

iD1 Kn.RŒ.C k�1
2 /i �/

Kn.RŒC k�1
2 �/

˚

Kn.RŒC k�1
2 �/

 

!

Lk
iD1 Kn.j k

i
/

 !id Š  

!

idŠ

 !id ˚
Lk�1

iD1 id Š
 ! id ˚

Lk�1
iD1 Sn.RŒ.C k�1

2
/i �/Š  

!

Sn.RŒC k�1
2

�/ Š

 !f Š

 
!

�

id u 0
id 0 u

�

where f is the obvious isomorphism and u WD
Lk�1

iD1 Kn.j k�1
i /. The diagram

above induces an isomorphism

cok
�

k
M

iD1

Kn.j k
i /

�

Š
�! cok

�

id u 0

id 0 u

�

:

If k D 1, then
�

id u 0
id 0 u

�

reduces to Kn.R/! Kn.R/˚Kn.R/; x 7! .x; x/ and the

desired isomorphism d 1
n is induced by Kn.R/˚Kn.R/! Kn.R/; .x; y/ 7! x�y.

Suppose k � 2. Since the first and third map in the composite

�

id 0

� id id

�

�

�

id u 0

id 0 u

�

�

0

@

id 0 0

0 id 0

0 id id

1

A

are isomorphisms and the composite is given by
�

id u 0
0 0 u

�

, we obtain an isomor-
phism

cok

�

id u 0

id 0 u

�

Š
�! cok

�

id u 0

0 0 u

�

:
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Since .id u/WKn.RŒC k�1
2 �/˚

Lk�1
iD1 Kn.RŒ.C k�1

2 /i �/! Kn.RŒC k�1
2 �/ is surjec-

tive, we obtain an isomorphism

cok

�

id u 0

0 0 u

�

Š
�! cok.u/:

Its inverse is induced by the composite

Kn.RŒC k�1
2 �/

�

0
id

�

���! Kn.RŒC k�1
2 �/˚Kn.RŒC k�1

2 �/
Sn.RŒC k�1

2
�/�1

�����������! Kn.RŒC k
2 �/;

which is the homomorphism Kn.RŒC k�1
2 �/ ! Kn.RŒC k

2 �/ induced by the ring
homomorphism RŒC k�1

2 �! RŒC k
2 � sending x to 1

2
�x �.1�tk/. Since the induction

hypothesis applies to u, Lemma 7.15 follows. �

Now Theorem 7.13 follows from Theorem 1.1, Theorem 5.3 (iii, vi), and
Lemma 7.15, and the validity of the Farrell–Jones Conjecture for right-angled
Coxeter groups.

7.8. Topological K -theory

Theorem 7.16. There are for every n 2 Z isomorphisms

M

�2P

Kn.C/
Š
�! Kn.C �

m.W // Š Kn.C �
r .W //;

M

�2P

KOn.R/
Š
�! KOn.C �

m.W IR// Š KOn.C �
r .W IR//:

In particular there are isomorphisms of abelian groups

Kn.C �
m.W // Š Kn.C �

r .W // Š

´

Zr if n is even,

¹0º otherwise,

KOn.C �
m.W IR// Š KOn.C �

r .W IR// Š

8

ˆ

<

ˆ

:

Zr if n � 0 mod 4;

.Z=2/r if n � 1; 2 mod 8;

¹0º otherwise.

Proof. This follows from Theorem 1.1, Lemma 7.15, and the validity of the
Baum–Connes Conjecture for right-angled Coxeter groups. �

The result for complex coefficients was already obtained by Sánchez-García
using the Davis complex as a model for

x
EW in [34]. In special cases, the topo-

logical K-theory of
x
EW was computed in Fuentes Rumí’s masters’s thesis [16].
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Remark 7.17. In Subsection 1.3 we have given an explicit description of the
isomorphism

M

�2P

Kn.C/
Š
�! Kn.C �

r .G//

above which actually carries over to many of the other situations. In order to prove
the description, one has to go through the construction of the isomorphism and to
make in the application of Lemma 4.5 the right choice for Os� . Namely, one takes
for Os� the composite of the homomorphism ˇ with the isomorphism d k

n appearing
in assertion (i) of Lemma 7.15.

8. An example

In this section, we want to apply the computations from the previous sections to a
concrete example. For this we picked the group W WD Z=2�Z=2�D1�Z. Note
that it is a graph product with vertex groups Z=2 and Z. In [10, Example 3.28]
Davis, Khan and Ranicki showed that the Whitehead group of W is infinitely
generated due to Nil elements.

It will be useful to consider W as W0 � Z, where W0 D Z=2 � Z=2 �D1 is
the right-angled Coxeter group associated to the simplicial graph X with vertex
set V D ¹1; 2; 3; 4º whose edges are ¹1; 2º, ¹2; 3º, ¹3; 4º, ¹1; 4º, and ¹1; 3º. Then
the flag complex † associated to X is the suspension of a one-simplex so that in
the notation of Section 7 we have r�1 D 1, r0 D 4, r1 D 5, r2 D 2, and r D 12.

We conclude from Theorem 7.1 for n � 2

Hn.W IZ/ Š Hn.W0IZ/˚Hn�1.W0IZ/ Š

un
M

iD1

C2;

H1.W IZ/ Š Z˚

4
M

iD1

C2;

where

un D

2
X

kD0

rk � �n;k C

2
X

kD0

rk � �n�1;k

D 4 � .�n;0 C �n�1;0/C 5 � .�n;1 C �n�1;1/C 2 � .�n;2 C �n�1;2/

D

´

4C 5.k C k � 1/C 2.k.k � 1/C .k � 1/2/ if n D 2k for k � 1;

4C 5.k C k/C 2.k2 C k.k � 1// if n D 2k C 1 for k � 1;

D

´

4k2 C 4k C 1 if n D 2k for k � 1;

4k2 C 8k C 4 if n D 2k C 1 for k � 1:
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Note that the group W satisfies the Baum–Connes Conjecture and the Farrell–
Jones Conjecture since it is a graph product of abelian groups. Hence for every
regular ring R the assembly map

H W
n .
x
EW IKR/ �! Kn.RŒW �/

is bijective after inverting 2 by Theorem 5.3 (iv).
The proof of Theorem 7.8 applies verbatim to the group W so that we obtain

Kn.ZW / D ¹0º for n � �1:

For any equivariant homology theory we have

HW
n .
x
EW / Š HW0

n .
x
EW0 � S1/ Š HW0

n .
x
EW0/˚H

W0

n�1.
x
EW0/: (8.1)

Using (8.1), we have

ZŒ1=2�˝Z
zK0.ZW / D ¹0º

by Theorem 7.9 and Theorem 7.8.
By (8.1), Theorem 7.9 and Theorem 7.10, we have

ZŒ1=2�˝Z K1.ZW / Š ZŒ1=2� and ZŒ1=2�˝Z Wh.W / D ¹0º:

Note that without inverting two, the Whitehead group Wh.W / contains a non-
trivial Nil term by [10, Example 3.28] as mentioned above.

By (8.1) and Theorem 7.11

Q˝Z Kn.ZW / Š

8

ˆ

<

ˆ

:

Q12 if n D 4k C 1 or n D 4k C 2 for k � 1;

Q if n D 0; 1;

¹0º otherwise.

The Shaneson splitting yields for all n 2 Z an isomorphism

Lh�1i
n .ZW / Š Lh�1i

n .ZW0/˚ L
h�1i
n�1 .ZW0/:

Hence by Theorem 7.12 we find

ZŒ1=2�˝Z Lh�1i
n .ZW / Š

´

ZŒ1=2�12 if n D 4k or n D 4k C 1 for k 2 Z;

¹0º otherwise.

By (8.1), we get from Theorem 7.16 for all n 2 Z

Kn.C �
r .W // Š Z12:
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