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Abstract. For group actions on hyperbolic CAT.0/ square complexes, we show that

the acylindricity of the action is equivalent to a weaker form of acylindricity phrased

purely in terms of stabilisers of points, which has the advantage of being much more

tractable for actions on non-locally compact spaces. For group actions on general CAT.0/

square complexes, we show that an analogous characterisation holds for the so-called WPD

condition. As an application, we study the geometry of generalised Higman groups on at

least 5 generators, the first historical examples of finitely presented infinite groups without

non-trivial finite quotients. We show that these groups act acylindrically on the CAT.�1/

polygonal complex naturally associated to their presentation. As a consequence, such

groups satisfy a strong version of the Tits alternative and are residually F2-free, that is,

every element of the group survives in a quotient that does not contain a non-abelian free

subgroup.
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Introduction

Acylindrical actions were first considered by Sela for groups acting on simplicial

trees [30]. In Sela’s terminology, given a (minimal) action of a group on a

simplicial tree, the action is said to be acylindrical if there exists an integer k � 1

such that no non-trivial element of the group fixes pointwise two points at distance

at least k. This definition was extended to actions on arbitrary geodesic metric

spaces by Bowditch [4], in his study of the action of the mapping class group of a

closed hyperbolic surface on its associated curve complex. Recall that an action

of a group G on a metric space X is acylindrical if for every r � 0 there exist

constants L.r/; N.r/ � 0 such that for every pair of points x; y ofX at distance at

leastL.r/, there are at mostN.r/ elements h ofG such that d.x; hx/; d.y; hy/ � r .

For r D 0, one recovers Sela’s definition of acylindricity, at least for torsion-free

groups. As noticed by Bowditch [4], in the case of group actions on simplicial

trees, acylindricity is equivalent to this weaker acylindricity condition at r D 0.

Groups that act acylindrically on a hyperbolic space share many features with

relatively hyperbolic groups (see [27]), and techniques from dynamics in negative

curvature are available to study them. While acylindrical actions on hyperbolic

spaces seldom appear naturally, weaker but more frequent forms of “hyperbolic

behaviour” implying acylindrical hyperbolicity have been investigated, see [2, 31,

17, 26, 11, 9]. To date, one of the most general criteria to show the acylindrical

hyperbolicity of a group is the following:

Theorem (see [1, Theorem H]). Let G be a group acting by isometries on a geo-
desic metric space X . Let g be an infinite order element with quasi-isometrically
embedded orbits and assume that the following holds:

� g is a strongly contracting element, that is, there exists a point x of X such
that the closest-point projections on the orbit hgix of the balls of X that are
disjoint from hgix have uniformly bounded diameter;

� g satisfies the WPD condition, that is, for every r � 0 and every point x ofX ,
there exists an integer m such that there are only finitely many elements h of
G such that d.x; hx/; d.gmx; hgmx/ � r .

Then G is either virtually cyclic or acylindrically hyperbolic.

However, checking the acylindricity of an action, or checking that a given

hyperbolic element satisfies the WPD condition, is generally tedious. Indeed,

these conditions require us to understand “coarse” stabilisers of pairs of points,

which can be particularly challenging for actions on non-locally compact spaces.

In this article, we introduce a weaker notion of acylindricity (and of the WPD

condition), which still implies the usual notion of acylindricity for large classes

of complexes. This new notion has the advantage of being phrased purely in

terms of stabilisers of points, and is thus much easier to handle in general. Other

weak forms of acylindricity have been considered by various authors, for instance
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Delzant [15] and Hamenstädt [20]. In this article, we will be interested in the

following weak form of acylindricity, which is the case r D 0 mentioned earlier

in the usual definition of acylindricity:

Definition (weak acylindricity). Let G be a group acting on a geodesic metric

space X . We say that the action is weakly acylindrical if there exist constants

L;N � 0 such that two points of X at distance at least L are pointwise fixed by

at most N elements of G.

This notion can be further generalised to non-uniform weak acylindricity, that

is, to actions such that there exists a constantL such that pairs of points at distance

at least L are pointwise fixed by only finitely many group elements. It should be

noted that for groups with a uniform bound on the size of their finite subgroups,

these two notions coincide.

While acylindricity is a priori stronger than the weak acylindricity considered

here, the main goal of this paper is to show that these notions are in fact equiva-

lent when dealing with actions on particularly well behaved spaces, generalising

Bowditch’s observation for actions on simplicial trees. Our first result is the fol-

lowing:

Theorem A. Let G be a group acting weakly acylindrically on a hyperbolic
CAT.0/ square complex. Then the action is acylindrical.

As an application, we consider generalised Higman groups, as introduced by

Higman [21]. The generalised Higman groupsHn; n � 4, were defined by Higman

by generators and relations:

Hn WD hai ; i 2 Z=nZ j aiaiC1a
�1
i D a2

iC1; i 2 Z=nZi;

These groups are historically the first examples of finitely presented infinite groups

without non-trivial finite quotients [21]. In [23], the author studied the action of

H4 on a (non-hyperbolic) CAT.0/ square complex naturally associated to its pre-

sentation. For n � 5,Hn acts cocompactly on a CAT.�1/ polygonal complex Xn,

and in particular on a hyperbolic CAT.0/ square complex by taking an appropriate

subdivision. Such an action is easily shown to be weakly acylindrical. In particu-

lar, we obtain the following result:

Theorem B. For n � 5, the action of Hn on Xn is acylindrical.

The acylindrical hyperbolicity of generalised Higman groups was first proved

by Minasyan and Osin [26], using prior work of Schupp [29]. While acylindrical

hyperbolicity alone implies strong consequences for the group (see [27] and details

therein), having this well understood acylindrical action of Hn on a hyperbolic

complex allows us to obtain results which do not follow solely from the abstract

acylindrical hyperbolicity of the group. In particular, we obtain the following:
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Corollary C (strong Tits alternative for generalised Higman groups). For n � 5, a
non-cyclic subgroup ofHn is either contained in a vertex stabiliser, hence embeds
in BS.1; 2/, or is acylindrically hyperbolic.

Corollary D. For n � 5, the group Hn is residually F2-free, that is, every
element of the group survives in a quotient that does not contain a non-abelian
free subgroup.

Let us now turn to groups acting on CAT.0/ square complexes that are not

necessarily hyperbolic. Paralleling what we just did for acylindricity, we will be

interested in the following weakening of the WPD condition, which again has the

advantage of dealing only with stabilisers of pairs of points:

Definition. Let G be a group acting on a geodesic metric space X and let g be

an infinite order element with quasi-isometrically embedded orbits. We say that

g satisfies the weak WPD condition (or that the action is (non-uniformly) weakly
acylindrical in the direction of g) if for every point x of X , there exists an integer

m such that there exists only finitely many group elements fixing both x and gmx.

Our second main result is the following:

Theorem E. Let G be a group acting by isometries on a CAT.0/ square com-
plexX . Let g be a strongly contracting element for the CAT.0/metric and suppose
that g satisfies the weak WPD condition. Then g satisfies the WPD condition. In
particular, G is either virtually cyclic or acylindrically hyperbolic.

As a non-uniformly weakly acylindrical action is non-uniformly weakly acylin-

drical in the direction of each of its strongly contracting elements, we obtain the

following corollary:

Corollary F. Let G be a group acting non-uniformly weakly acylindrically on a
CAT.0/ square complex X . If g is a strongly contracting element of G for the
CAT.0/ metric, then g satisfies the WPD condition. In particular, G is either
virtually cyclic or acylindrically hyperbolic.

Notice that the Rank Rigidity Theorem for CAT.0/ cube complexes of Caprace

and Sageev [10, Theorem A] provides us with a way to show the existence of

strongly contracting isometries. In particular, we obtain the following corollary:

Corollary G. Let G be a group acting non-uniformly weakly acylindrically on a
CAT.0/ square complex X such that

� the action is essential,

� the action does not have a fixed point in X [ @1X ,

� the complex X is not the product of two unbounded trees.
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Then G contains strongly contracting elements for the CAT.0/ metric, and every
such element satisfies the WPD condition. In particular,G is either virtually cyclic
or acylindrically hyperbolic.

For instance, this corollary can be used to recover the acylindrical hyperbolic-

ity of the Higman group on 4 generators directly from the action on its associated

(non-hyperbolic) CAT.0/ square complex [23]. Indeed, such an action is weakly

acylindrical [23, Corollary 3.6], and the Rank Rigidity Theorem of Caprace and

Sageev can be applied to show the existence of strongly contracting group ele-

ments [23, Remark 2.2].

Since these results first appeared, this weak notion of acylindricity has been

used in other contexts. Genevois [16, Thm 8.33] proved that weak acylindricity

implies acylindricity for actions on finite-dimensional CAT.0/ cube complexes.

Chatterji and Martin [12] used a related weakening of the WPD condition to

show the acylindrical hyperbolicity of many groups acting on general CAT.0/

cube complexes, with applications to certain Artin groups. Finally, recent work

of Martin and Przytycki proved that weak acylindricity implies acylindricity for

action on two-dimensional piecewise hyperbolic CAT(�1) complexes with finitely

many types of shapes [24], which was used to show the Tits alternative for large

classes of Artin groups. In light of these developments, it is natural to ask

for what other classes of spaces this notion of weak acylindricity (weak WPD

element respectively) implies the usual notion of acylindricity (WPD element

respectively).

Organisation of the article. The strategy we follow is the following: for a given

r > 0, to every pair of points x; y inX and every group element g moving x and y

by at most r , we associate a geodesic quadrangle between the points x; y; gx; gy,

and we fill this loop by using an appropriate disc diagram. The aim is then to

show that, if x and y are sufficiently far apart, then such “filling surfaces” must

have large portions in common. In particular, the associated group elements will

necessary act the same way on a very long common geodesic segment, which is

where the weaker forms of acylindricity considered in this paper enter the picture.

Thus, after recalling standard results about the geometry of CAT.0/ square

complexes and disc diagrams in Section 1, we study in detail the combinatorial

geometry of disc diagrams in Section 2. Section 3 studies the way grids (that is,

CAT.0/ square complexes isometric to Euclidean rectangles tiled by unit squares)

can be mapped to a given CAT.0/ square complex. With these tools at hand, we

prove the main theorems in Section 4. Finally, Section 5 is devoted to the geometry

of generalised Higman groups.

Acknowledgements. The author thanks his former colleagues at the University

of Vienna, and in particular Federico Berlai and Markus Steenbock, for discus-

sions on Higman’s group that motivated this work. The author also thanks An-

thony Genevois for useful comments.
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1. Preliminaries on CAT.0/ square complexes

This section contains standard results about CAT.0/ square complexes which

will be used in this article. Throughout this section, X will be a CAT.0/ square

complex.

1.1. Disc diagrams and the combinatorial Gauß–Bonnet Theorem. A disc
diagram D over X is a contractible planar square complex endowed with a com-

binatorial map D ! X that is an embedding on each square. A disc diagram D

over X is called reduced if no two distinct squares of D that share an edge are

mapped to the same square of X . We start by an elementary observation.

Lemma 1.1. Let 'WD ! X be a reduced disc diagram. Then D is a CAT.0/

square complex.

Proof. Since the disc diagram is reduced, the restriction to the link of any vertex

is a local isometry. In particular, it sends a simple closed loop of that look to a

simple closed loop in the link of the image. As X is a CAT.0/ square complex

by assumption, simple closed loops in the links of vertices have at least 4 edges.

Thus simple closed loops in the links of vertices ofD have at least 4 edges, hence

D is a CAT.0/ square complex. �

A disc diagram is non-degenerate if its boundary is homeomorphic to a circle,

and is degenerate otherwise. Recall that, by the Lyndon–van Kampen Theorem,

one can associate to every non-backtracking loop S ! X a reduced disc diagram

whose restriction to the boundary is the given loop.

Definition 1.2 (disc diagram between geodesics, quadrangle). Let �, C be two

geodesics of X , with vertices u�; v� and uC; vC respectively. A disc diagram
between � and C consists of the following data:

� geodesic paths in u, v in X between u�; uC and v�; vC respectively,

� a reduced disc diagram 'WD ! X whose boundary decomposes as the

concatenation of 4 paths PC; Pv; P�; Pu such that ' sends PC; Pv; P�; Pu

bijectively to C; v; �; u.

The boundary paths PC; P� are called the upper side and lower side ofD respec-

tively. The boundary paths Pv; Pu are called the gates of D. A non-degenerate

disc diagram between two geodesics is called a quadrangle.

More generally, given a planar CAT.0/ square complexD homeomorphic to a

disc and a decomposition of its boundary into geodesic segments PC; Pv; P�; Pu

as above, we say that D is a square complex between P� and PC.
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Figure 1. A quadrangle.

We now explain our main tool in controlling the geometry of reduced disc

diagrams. Given a planar contractible square complexD, the curvature of a vertex

v of D is given by

�D.v/ D 2� � � � �.link.v//� nv

�

2
;

where nv denotes the number of squares of D containing v. A vertex of D is

internal if its link is connected and is called a boundary vertex otherwise. The

curvature of an internal vertex ofD is non-positive by Lemma 1.1. The curvature

of a boundary vertex is �
2

if it is contained in a single square ofD, and non-positive

otherwise. We call a boundary vertex of D a corner if it has non-zero curvature.

The following version of the combinatorial Gauß–Bonnet Theorem follows the

presentation of McCammond and Wise [25, Theorem 4.6].

Theorem 1.3 (combinatorial Gauß-Bonnet Theorem). Let D be planar con-
tractible square complex. Then,

X

v vertex of D

�D.v/ D 2�:

1.2. Hyperplanes in a CAT.0/ square complex. We briefly recall some nota-

tions and an elementary results about hyperplanes in a CAT.0/ square complex.

A hyperplane is a connected subspace of X which intersects each square of X ,

isometrically identified with Œ�1; 1� � Œ�1; 1�, either in the empty set or in a seg-

ment of the form ¹0º � Œ�1; 1� or Œ�1; 1�� ¹0º. An edge of X intersecting a given

hyperplane is said to be dual to that hyperplane. Reciprocally, one can associate

to every edge e ofX a unique hyperplane meeting e, and such a hyperplane is said

to be dual to e. The combinatorial hyperplane associated to a given hyperplane

(also referred to in the literature as the carrier of the hyperplane) is the minimal

subcomplex of X containing that hyperplane. Equivalently, it is the reunion of all

the faces ofX containing an edge dual to that hyperplane. A hyperplane separates

X in exactly two connected components. A minimal subcomplex ofX containing

one of these components is called a combinatorial half-space.
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In this article, we will only deal with combinatorial hyperplanes, and by a slight

abuse of notations, we will denote byH combinatorial hyperplanes and byHe the

combinatorial hyperplane (associated to the hyperplane) dual to a given edge e

of X . We recall the following standard result (see for instance [19, Lemma 13.4]).

Lemma 1.4. Combinatorial hyperplanes and combinatorial half-spaces of a
CAT.0/ square complex are combinatorially convex.

We also have the following:

Lemma 1.5. Combinatorial half-spaces are convex for the CAT.0/ metric.

Proof. They are locally convex for the CAT.0/ metric, and locally convex con-

nected subsets of a CAT.0/ space are globally convex (see for instance [8, Theo-

rem 1.10] for a proof of this fact). �

The following useful result is well known, see for instance [19, Lemma 13.1].

Lemma 1.6. A combinatorial geodesic of a CAT.0/ square complex does not
contain two distinct edges that define the same hyperplane.

If 'WD ! X is a reduced disc diagram, then D is a CAT.0/ square complex

by Lemma 1.1. The rails of a combinatorial hyperplane ofD are the two maximal

subcomplexes of that combinatorial hyperplane which we do not contain an edge

dual to the associated hyperplane.

1.3. Combinatorial intervals. Recall that the combinatorial interval between

two vertices v, v0 of the CAT.0/ square complexX , which we denote IntX .v; v
0/, is

the minimal subcomplex ofX containing all the combinatorial geodesics between

v and v0. Equivalently, it is the full subcomplex of X associated to the reunion

of all the combinatorial geodesics between v and v0. The following is a direct

consequence of Lemma 1.6:

Lemma 1.7. The combinatorial interval between two vertices of X is the inter-
section of all the combinatorial half-spaces containing these two vertices.

Thus, Lemma 1.5 implies the following:

Corollary 1.8. Combinatorial intervals are convex for the CAT.0/ metric.

We also recall the following result (see [7, Theorem 1.16]):

Lemma 1.9. A combinatorial interval of a CAT.0/ square complex isometrically
embeds in R

2 with its standard square tiling.
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2. Disc diagrams and isometric embeddings in the Euclidean plane

As disc diagrams will be our main tool in proving the results presented in the intro-

duction, this section is devoted to study the combinatorial geometry of a reduced

disc diagram 'WD ! X . The goal of this section is threefold: to obtain a use-

ful criterion ensuring that the CAT.0/ square complexD isometrically embeds in

R
2 with its standard square tiling (Proposition 2.3), to obtain a criterion ensuring

that the disc diagram 'WD ! X is an isometric embedding (Proposition 2.4), and

to prove that for a sufficiently well behaved disc diagram, the map restricts to an

isometric embedding on a large subcomplex (Proposition 2.7). Throughout this

section again, X will be a given CAT.0/ square complex.

2.1. Singularities and (almost) Euclidean quadrangles

Definition 2.1 (singularities, almost Euclidean and Euclidean quadrangles). A sin-
gularity of a quadrangle 'WD ! X is one of the following:

� an internal vertex of negative curvature,

� a corner of curvature at most �� ,

� a pair of consecutive corners of curvature ��
2

in the interior of one of the

sides PC and P�.

A quadrangle is called almost Euclidean if it contains no singularity. It is called

Euclidean if in addition the boundary of D does not contain two consecutive

corners of curvature ��
2
.

More generally, a planar square complex homeomorphic to a disc is Euclidean
if it contains no internal vertex of negative curvature, no boundary vertex of

curvature at most �� , and no pair of consecutive corners of curvature ��
2
.

The following lemma, which shows that a given quadrangle cannot be “too far”

from being almost Euclidean, will be used in Section 4.

Lemma 2.2. Let 'WD ! X be a quadrangle. Then D contains at most 4
singularities.

Proof. Let us denote by Pi ; i D 1; : : : ; 4; the four geodesic sides of the boundary

of D. Since each Pi is a combinatorial geodesic, its interior does not contain two

consecutive corners of positive curvature (see [23, Lemma 3.8] and its proof ). In

particular, it follows that
X

v2 VPi

�D.v/ �
�

2
;

and if Pi contains ni singularities in its interior, a similar argument yields
X

v2 VPi

�D.v/ �
�

2
� ni

�

2
:
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Since an internal vertex ofD has negative curvature if and only if it is a singularity,

we have
X

v2 VD

�D.v/ � �n
�

2
;

where n is the number of internal singularities ofD. Finally, each of the remaining

four vertices corresponding to the intersection of two adjacent sidesPi ; Pj brings a

curvature of at most �
2
. The combinatorial Gauß–Bonnet Theorem 1.3 thus yields

the following inequality:

2� � 4 �
�

2
C 4 �

�

2
�

�

X

1�i�4

ni

��

2
� n

�

2

and the number nC
P

i ni of singularities of D is thus bounded above by 4. �

2.2. Embeddability in the Euclidean plane

Proposition 2.3. LetD be a Euclidean square complex. Then D embeds isomet-
rically in R

2 with its standard square tiling.

Proof. Let H be a (combinatorial) hyperplane of D. Let LC; L� be the two rails

of H . We say that another hyperplane H 0 osculates H if H \ H 0 is non-empty

but does not contain any square of D.

Claim 1. There exists at most one hyperplane of D that osculates H along LC.

Proof of Claim 1. In order to prove this claim, first notice that if a square of D

meetsH , it meets it along an edge, by the curvature condition on Euclidean square

complexes. For every hyperplane H 0 of D osculating H along LC, set

JH 0 WD H 0 \H:

By combinatorial convexity of hyperplanes in a CAT.0/ square complex complex

(Lemma 1.4), it follows that each JH 0 is a sub-segment of LC. Moreover, if

two such osculating hyperplanes H 0, H 00 define sub-segments of LC that meet

along a single vertex, then the curvature condition on almost Euclidean complex

implies thatH 0 D H 00. Suppose now by contradiction that there exist at least two

hyperplanes ofD osculatingH along LC. It follows from the previous discussion

that we can choose a maximal non-empty sub-segment J of LC such that no

edge of J is contained in a hyperplane of D osculating H along LC, and such

that the extremities v1 and v2 of J are contained in two hyperplanes H1 and

H2 respectively which osculate H along LC. By maximality of J , the curvature

condition on almost Euclidean quadrangles implies that each vi is boundary vertex

with curvature ��
2
. By definition of J , there exists no corner of D between

v1 and v2, which contradicts the fact that a Euclidean square complex does not

contain two consecutive corners of curvature ��
2

. This concludes the proof of

Claim 1. 4
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Let HC and H� be the hyperplanes of D osculating H along LC and L�

respectively (the argument is similar if there exists only one or zero such osculating

hyperplane). Choose isometric embeddings

 WH ,�! R
2;  CWHC ,�! R

2;  �WH� ,�! R
2

such that the images of  ,  � and  C are contained in distinct horizontal

hyperplanes of R2 and such that

 .H \H�/ D  �.H \H�/;  .H \HC/ D  C.H \HC/:

From the previous discussion on curvature in almost Euclidean quadrangles, it

also follows that

 .H/ \  �.H�/ D  �.H \H�/;  .H/\  C.HC/ D  C.H \HC/:

Thus, we can glue these maps together into a combinatorial embedding

H� [H [HC ,�! R
2

that is a local isometry, and which sends each of these combinatorial hyperplanes

inside a horizontal hyperplane of R2 (with its usual square tiling). Reasoning by

induction, we have thatD is covered by a finite sequenceHi of hyperplanes, which

we call horizontal, such that, for distinct i and j , we have thatHi \Hj is empty if

j ¤ i ˙ 1 and is contained in the (unique) rail common to Hi and Hj otherwise.

By induction, we thus obtain a combinatorial embedding WD ,! Z
2 where each

Hi is mapped isometrically into some horizontal hyperplane of Z2.

Claim 2. The map  WD ,! Z
2 is an isometric embedding.

Proof of Claim 2. To prove this claim, let P be a combinatorial geodesic in D,

which we can write as a finite concatenation

P D P0e1P1e2P2 : : :

where each ei is an edge ofD defining one of the horizontal hyperplanes, and Pi

is a segment contained in one of the rails of some horizontal hyperplane of D.

Thus,  .P / consists of the concatenation

 .P / D  .P0/ .e1/ .P1/ .e2/ .P2/ : : :

of horizontal segments  .Pi / of Z
2 and vertical edges  .ei/. Choosing an

orientation for P yields an orientation for each ei and Pi and hence for their

images under  . Showing that  .P / is an oriented geodesic of Z2 thus amounts

to showing that all the  .ei / have the same orientation (up or down) and that all

the  .Pi/ have the same orientation (left or right). By contradiction let us assume

that this is not the case. Up to an isometry of Z2 preserving the set of its horizontal

hyperplanes, we thus have two cases to consider.
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Case 1. P contains a sub-segment eiPieiC1 such that  .ei / and  .eiC1/ have

different orientations (one up, one down, as depicted on the left in Figure 2). But

by construction of  , this implies that both ei and eiC1 define the same horizontal

hyperplane of D, which contradicts Lemma 1.6.

Case 2. P contains a sub-segment of the form PieiC1eiC2 : : : ekPk, for some

i < k, such that  .Pi/ and  .Pk/ have different orientations (one left, one right,

as depicted on the right in Figure 2). For i C 1 � j � k, if the square of Z2 to

the left of  .ej / is not contained in  .D/, then ej is contained in the boundary

of D. If such a square is contained in  .D/ for every i C 1 � j � k, then the

last edge of Pi and the first edge ofPk define the same (hyperplane), contradicting

Lemma 1.6. Otherwise, choose a maximal sub-segment of eiC1 : : : ek such that for

each edge of it, the square of Z2 on its left is not in  .D/. Then its endpoints are

boundary vertices of curvature ��
2

asD is a non-degenerate disc diagram, and no

other corner is between these two corners, contradicting the fact that a Euclidean

square complex does not contain two consecutive corners of curvature ��
2
. This

concludes the proof of Claim 2. 4

This concludes the proof of Proposition 2.3. �

ei

Pk

eiC1

Pi

Pi

Figure 2. Two impossible configurations.

2.3. Isometric embeddings

Proposition 2.4. A Euclidean disc diagram 'WD ! X is an isometric embedding.

We will need the following result [19, Lemma 2.11]:

Lemma 2.5. Let 'WX1 ! X2 be a combinatorial immersion between two CAT.0/

square complexes, and assume that the link of a vertex v ofX1 is sent (injectively)
to a full subgraph of the link of '.v/. Then ' is an isometric embedding.
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Proof of Lemma 2.4. By Proposition 2.3, we can assume that D is a subcomplex

of R
2. We now describe an algorithm to complete the Euclidean disc diagram

'WD ! X into a Euclidean disc diagram '0WD0 ! X , where D0 is a subcomplex

of R2 containing D such that the inclusion D ,! D0 is an isometric embedding,

and such that for every vertexw ofD0, the induced map on the link of w sends the

link of w in D0 to a full subgraph of X .

We proceed by induction and construct maps 'i WDi ! X where .Di / is an

increasing sequence of non-degenerate sub-diagram of R2, such no Di contains

two consecutive corners of negative curvature, and such that each inclusionDi ,!

DiC1 is an isometric embedding. Set D0 WD D and '0 WD 'WD0 ! X . Suppose

that D0; : : : ; Dn and '0; : : : ; 'n have been constructed. If Dn contains a vertex w

such that the map 'n sends the link of w to a non-full subgraph of X , then, since

the disc diagram is non-degenerate, necessarilyw is a corner of curvature ��
2
. Let

C be the unique square of R2 containing w which is not contained in Dn. Then

C \Dn consists of exactly two edges, sinceDn does not contain two consecutive

corners of negative curvature by the inductive hypothesis. Thus, there is a unique

way to extend 'nWDn ! X to 'nC1WDnC1 ! X , where DnC1 WD Dn [ C .

Moreover, the inclusion Dn ,! DnC1 is an isometric embedding, DnC1 does not

contain two consecutive corners of negative curvature, and 'nC1WDnC1 ! X is

reduced.

This algorithm eventually stabilises at some stageN � 0. Indeed, if we choose

a big square of R2 containingD, then it contains also everyDi . The mapD ! X

thus factorises as D ,! DN

'N
! X . Moreover, as 'N is reduced by construction,

it is automatically an immersion, as DN is a subcomplex of R2. Thus, 'N is an

isometric embedding by Lemma 2.5, and the same holds for D ! X . �

2.4. Euclidean quadrangles in disc diagrams

Definition 2.6 (width). A quadrangle 'WD ! X between geodesic segments

�; C of X is of width at most r if its sides are at Hausdorff distance at most

r in D.

Analogously, a planar CAT.0/ square complex D, homeomorphic to a disc,

between segments P� and PC is of width at most r if P� and PC are at Hausdorff

distance at most r in D.

Proposition 2.7. For every r � 0 , there exists a constant Lemb.r/ � 0 such
that the following holds. Let 'WD ! X be an almost Euclidean quadrangle, of
width at most r , between two geodesics � and C, and let  0

� � � be a sub-
segment at distance at least Lemb.r/ from the endpoints of �. Then there exists
a Euclidean sub-quadrangle D0 of D, of width at most r , between  0

� and a sub-
segment  0

C � C.
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Proof. Since vertices of almost Euclidean quadrangles have uniformly bounded

valence by definition, there exists a constant N.r/ such that every combinatorial

ball of radius r in a non-degenerate almost Euclidean quadrangle contains at most

N.r/ edges. Moreover, there exists a constantL1.r/ such that the following holds.

Let 'WD ! X be an almost Euclidean disc diagram of width at most r . Let

v1; v2 be the vertices of � at distance 2N.r C 1/ C 1 from the endpoints u1; u2

of �. Since D has width at most r , the combinatorial ball of radius r around v1

or v2 disconnects D. In particular, a rail of a hyperplane crossing an edge of �

between ui and vi which does not cross an edge ofB.vi ; r/ contains at mostL1.r/

edges.

Now set

Lemb.r/ WD .2N.r C 1/C 1/C L1.r/:

Let 'WD ! X be a non-degenerate almost Euclidean (reduced) disc diagram

of width at most r , between two geodesics � and C, with j�j � 2Lemb.r/. Let

v1; v2 be the vertices of � at distance 2N.rC 1/C 1 from the endpoints u1; u2 of

�. By Lemma 1.6, for each i D 1; 2, there exists an edge ai of � between ui and

vi such that the combinatorial hyperplane Hai
does not meet B.ui ; r/[ B.vi ; r/.

In particular, each Hai
crosses C. Moreover, Ha1

and Ha2
are disjoint as in

addition each B.vi ; r/ disconnects D. Thus, Ha1
and Ha2

defines a Euclidean

sub-quadrangleD0 of D whose gates are contained in the rails of some combina-

torial hyperplanes (see Figure 3).

PC

P

DD0

a1
a2

Ha1

Ha2

Figure 3. The construction of the Euclidean sub-quadrangle D0.

In particular, the restriction 'jWD
0 ! X is a Euclidean quadrangle, and the

restriction of ' to D0 isometrically embeds in R
2 by 2.3. Since the rails of each

Hai
have length at most L1.r/, and � is at distance at least L1.r/ from a1 and

a2, we can choose a sub-quadrangle '00WD00 ! X of width at most r between  0
�

and a sub-segment  00
C � C, which concludes the proof. �
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3. Grids and their combinatorial geometry

In this section, we study the way certain subcomplexes of the Euclidean plane with

its standard tiling can be mapped to a given CAT.0/ square complex. Throughout

this section, X is a given CAT.0/ square complex.

Definition 3.1 (grid). A grid ofD is a CAT.0/ square complex isometric to Il �Ih,

l � 1, h � 0, where Il and Ih denote a simplicial segment on l and h edges

respectively. Such a grid is said to be of length l and width h.

A grid of X is a reduced disc diagram 'WD ! X .

Remark 3.2. It follows from Lemma 2.5 that a grid of X is an isometric embed-

ding. Therefore, we will sometimes use the term “grid of X” to denote the image

of such a disc diagram.

Proposition 3.3. Let 'W Im � In ! X be a combinatorial map such that 'Im�¹0º

is a combinatorial geodesic. Then ' factorises as

Im � In

id �'n

����! Im � Tn

h
,�! X;

where Tn is a simplicial tree, 'nW In !Tn is a combinatorial map, and Im�Tn ,!X

is an isometric embedding.

Proof. We prove the result by induction on n, for m fixed. The result for n D 1 is

immediate as combinatorial hyperplanes embed isometrically in a CAT.0/ cube

complex [28, Theorem 4.10]. Suppose the result is true at rank n � 1 and consider

a map 'W Im �InC1 ! X satisfying the assumptions of the lemma. The restriction

of ' to Im � In factorises by the induction hypothesis. Denote by Ci;j the square

of Im � InC1 on the i-th column (starting from the left) and the j -th line (starting

from the bottom).

If there exists a 1 � i0 � m such that '.Ci0;nC1/ D '.Ci0;j0
/, then '.Ci;nC1/ D

'.Ci;j0
/ for every 1 � i � m. Indeed, this follows by induction, by starting from

Ci0;j0
and moving through adjacent squares in the j0-th line, since, in the CAT.0/

square complex X , two squares sharing two adjacent edges are the same. Thus, if

there exists a 1 � i0 � m such that '.Ci0;nC1/ D '.Ci0;j0
/, then ' factorises as

Im � InC1

id �'nC1

������! Im � Tn ,�! X;

where Im � Tn ,! X comes from the induction hypothesis, 'nC1W InC1 ! Tn is

the unique combinatorial map such that id � 'nC1 restricts to id � 'n on Im � In

and is such that .id �'nC1/.Ci;nC1/ D .id �'n/.Ci;j0
/ for every 1 � i � m.

If there does not exist a 1 � i0 � m such that '.Ci0;nC1/ D '.Ci0;j0
/, then

write InC1 as the reunion of In and an edge e glued along a vertex v, and consider



350 A. Martin

the tree Tn ['n.v/ e
0 obtained by attaching to Tn an edge e0 along 'n.v/. Then '

factorises as

Im � InC1

id �'nC1

������! Im � .Tn ['n.v/ e
0/

h0

�! X;

where 'nC1W InC1 ! Tn ['n.v/ e
0 is the unique combinatorial map that restricts to

'n on In and sends e to e0, and h0 restricts to h on Im � Tn. By construction, the

map Im � .Tn ['n.v/ e
0/

h0

�! X is a local isometry, i.e. it is injective on the link of

vertices, as h already is. Moreover, as links of vertices of X have girth at least 4,

it follows that for every vertex v of Im � .Tn ['n.v/ e
0/, the image of the link of v

under h0 is a full subgraph of the link of h0.v/. Thus, h0 is an isometric embedding

by Lemma 2.5. �

4. Proof of the main theorems

This section is devoted to the proof of Theorems A and E. The proofs being

extremely similar, we start with the slightly more technical Theorem E and explain

in Section 4.5 how to adapt the proof to deduce Theorem A.

4.1. Strongly contracting axes. A CAT.0/ square complex has two metrics

naturally associated it, depending on whether we are considering the `1- or

`2-metric on its squares. In the `1-case, we recover the combinatorial distance on

the set of vertices, and in the `2-case we recover the CAT.0/ metric. In what fol-

lows, we will indicate with subscripts which metric is being considered, whether

talking about the translation length j � ji , the distance di .�; �/, etc.

For the rest of Sections 4.1, 4.3, and 4.4, we assume that we are given a

CAT.0/ square complex X , a group G acting on it by isometries, and an ele-

ment g 2 G which is strongly contracting (for the `2-metric) and satisfies the

weak WPD condition. An `2-axis of g will mean a geodesic line of X (for the

`2-metric) on which g acts by translation. An `1-axis (or combinatorial axis) of

g will mean a geodesic line of the 1-skeleton of X (for the `1-metric) on which g

acts by translation. Combinatorial axes of hyperbolic isometries of CAT.0/ square

complexes were shown to exist by Haglund [18]. We choose, for i D 1 or 2, an

`i -axis ƒi for g.

Lemma–Definition 4.1 (tubular constant). Since ƒ2 is strongly contracting by
assumption, [3, Corollary 3.4] implies that we can choose a tubular constant C2

such that for every two points x; y of X which project to two points of ƒ2 at
distance at least C2, then any geodesic from x to y meets the C2-neighbourhood
of ƒ.
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Lemma–Definition 4.2 (the constant ı). There exists a constant ı > 0 such that
ƒ1 andƒ2 are at Hausdorff distance at most ı from one another ( for both the `1-
and the `2-metric).

Proof. By [3, Lemma 3.8], there exists a constant C 0
2 such that for every pair

of points u; v in the C2-neighbourhood of ƒ2, a ball disjoint from the CAT.0/

geodesic Œu; v� projects on Œu; v� to a subset of diameter strictly less than C 0
2.

Choose integersm;m0 � 1 such thatmjgj2 > C2 andm0jgj2 > C
0
2 C jgj1 C 2. Let

x1 be a point of ƒ1 and let x2 be its projection on ƒ2 (and thus g2mCm0

x2 is the

projection of gnC2mx1 on ƒ2).

Let u be a point of the CAT.0/ geodesic between x1 and gm0C2mx1 which

projects to the point gmx2 2 ƒ2. Since d2.x2; g
mx2/ D mjgj2 > C2, there

exists a point y in the sub-segment between x and u and a point y2 2 ƒ2 in

between x2 and gmx2 such that d2.y; y2/ � C2. Analogously, let v be a point of

the geodesic between x and gmC2m0

x1 which projects to the point gmCm0

x2 2 ƒ2.

Since d2.g
m0Cmx2; g

m0C2mx2/ D mjgj2 > C2, there exists a point z in the sub-

segment between v and gm0C2mx and a point z2 2 ƒ2 in between gm0Cmx2 and

gm0C2mx2 such that d2.z; z2/ � C2. By convexity of the CAT.0/metric, it follows

that the geodesic between y and z is contained in the C2-neighbourhood of ƒ2.

Let us now consider the combinatorial interval IntX.x1; g
m0C2mx1/ between x1

and gm0C2mx1. By Corollary 1.8 and Lemma 1.9, it is a convex subcomplex (for

the CAT.0/metric) and we can think of it as a subcomplex of R2 with its standard

tiling. Let K be the subset of R
2 consisting of those points whose orthogonal

projection on the bi-infinite line generated by the segment Œy; z� is contained in

Œy; z�. It follows from the definition ofC 0
2 that IntX .x1; g

m0C2mx1/\K is contained

in the C 0
2-neighbourhood of Œy; z�. Thus, every combinatorial geodesic from x1

to gm0C2mx1 contains a sub-interval of `2-length at least d2.y; z/ � jgj1 C 2,

and thus a sub-segment of `1-length at least jg1j, which is C 0
2-close to Œy; z�. In

particular, the axis ƒ1 contains a sub-segment of `1-length at least jg1j which is

.C 0
2 C C2/-close to ƒ2 for the `2-metric, and thus ƒ1 and ƒ2 are at Hausdorff

distance at most C 0
2 C C2. �

An immediate corollary is the following:

Corollary–Definition 4.3 (the constant C�). There exists a constant C� such
that every grid whose interior is disjoint from the axis ƒ1 projects onƒ1 ( for the
`1-metric) with a diameter strictly smaller than C�.

Lemma 4.4. Let 1 be a geodesic segment contained in ƒ1 and let h be a
group element that moves the endpoints of 1 by a distance of at most r ( for the
`1-metric). Let  0

1 be a sub-segment of 1. Then  0
1 and h 0

1 are at Hausdorff
distance at most 2r C 8ı ( for the `1-metric).
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Proof. By lemma 4.2, ƒ1 and ƒ2 are at Hausdorff distance at most ı for the

`1-metric and for the `2-metric. Let 2; 
0
2 be the `2-projections, of 1,  0

1 on the

convex subsetƒ2. The subsets 1 and 2 ( 0
1 and  0

2 respectively) are at Hausdorff

distance at most ı for the `2-metric by construction. We thus have

d1.
0
1; h

0
1/ � d1.

0
1; 

0
2/C d1.

0
2; h

0
2/C d1.h

0
2; h

0
1/;

� 4d2.
0
1; 

0
2/C d1.

0
2; h

0
2/;

� 4ı C 2d2.
0
2; h

0
2/

� 4ı C 2.r C 2ı/

� 2r C 8ı;

the last inequalities following from the convexity of the CAT.0/ metric, since h

moves the endpoints of 1 by at most r . �

4.2. Staircases

Definition 4.5. A Euclidean CAT.0/ square complex D D D.P�; PC/ between

geodesic segments P� and PC is called a staircase if P� contains at least one

corner of D in its interior.

Lemma 4.6. Let D D D.P�; PC/ be a Euclidean CAT.0/ square complex of
width at most r between geodesic segments P� and PC of D, and 'i WD ! X a
family of combinatorial maps that all coincide on P�. Let k � 1. If P� contains
at least 2r C 2k corners, then the 'i coincide on a sub-geodesic of PC of length
at least k.

Proof. Recall thatD embeds in R
2 with its standard square tiling by Lemma 1.9.

Thus, we will assume that D is a subcomplex of R2.

Up to an isometry of R2, we can assume that the following holds. For every

horizontal (respectively vertical) edge of P�, the unique square above it (respec-

tively to its left) is in D (see Figure 4).

Let v and v0 be the first and last corners of P� of curvature ��
2
. We will prove

that the 'i coincide on

K WD D \ IntR2.v; v0/;

where IntR2.v; v0/ is the combinatorial interval between v and v0. We order the

squares ofK into a sequenceC1; C2 : : : by starting from the downmost horizontal

hyperplane of K and reading from right to left; Once a horizontal hyperplane has

been exhausted, move to the one above it and apply the same procedure.
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C2 C1

ClC1

Cl CkC1

Ck

D

K

v

v0

Figure 4. Ordering the squares of K. The subcomplex K is the shaded region.

We now show by induction that the 'i coincide on Kn WD
S

1�i�nCi . This

holds for n D 1. Indeed, two edges of C1 are in P�. As the 'i coincide on P�,

the CAT.0/ condition implies that they also coincide on C1. Suppose that the 'i

coincide on Kn for n � 1. Then the right and bottom edges of CnC1 belong to

P� [Kn, and the same reasoning thus implies that the 'i coincide on CnC1.

Since P� contains at least 2r C 2k corners, we can choose a vertex w in P�

such that there exist at least r C k corners between w and v, and between w and

and v0. It thus follows that

K � D \ BR2.w; r C k/;

where BR2.�/ denotes the ball in R
2 for the combinatorial distance. As the

geodesic PC meets the r-neighbourhood of w by assumption, it follows that K

contains a sub-geodesic of PC of length at least k, and the 'i thus coincide on a

sub-geodesic of PC of length at least k. �

4.3. Corridors over the axis ƒ1

Definition 4.7 (corridor). LetD D D.�; C/ be a Euclidean quadrangle. We say

thatD is a corridor if every vertex in the interior of P� and PC has zero curvature

in D.

Remark–Definition 4.8 (the constants L and N ). The WPD condition for g

implies that there exist constants L and N such that there do not exist N distinct

group elements that fix pointwise two points ofƒ1 at distance at least L. We thus

choose two such constants L;N � 0 for the remaining of this section.
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The aim of this section is to prove the following intermediate result:

Proposition 4.9. For every r > 0, there exist constantsL0.r/; N0.r/ such that the
following holds. For every x; y in ƒ1, for every sub-segment  of ƒ1 contained
in the sub-segment of ƒ1 between x and y, for every sub-segment � � 

of length at least L0.r/, there exist at most N0.r/ elements h of G such that
d.x; hx/; d.y; hy/ < r , and such that there exist a quadrangle between  and h
together with a sub-quadrangle between � and a sub-segment C � h which is
a corridor of width at most 4r C 4C� C 16ı.

The reason for the constant 4r C 4C� C 16ı will become apparent in the next

section. A key tool in controlling such quadrangles is the following operations of

“concatenating” and “piling up” disc diagrams.

Definition 4.10 (concatenation of disc diagrams). Let 'WD!X (resp. '0WD0 !X)

be a quadrangle between two combinatorial geodesic � and C (resp.  0
� and  0

C).

Assume that C and  0
� intersect along a non-empty geodesic sub-segment.

The two disc diagrams 'WD ! X and '0WD0 ! X can be concatenated into a

disc diagramˆWD �D0 ! X whereD �D0 is the planar contractible square complex

obtained from the disjoint union ofD andD0 by identifying a point x in the upper

side of D with a point x0 in the lower side of D0 precisely when '.x/ D '0.x0/.

Definition 4.11 (piling up of disc diagrams). Let  be a combinatorial geodesic

of X . Let .hi / a sequence of group elements and denote by 'hi
WD.hi/ ! X a

quadrangle between  and hi . For each integer i 2 Z, the map h1 : : : hi'hiC1

defines a disc diagram between h1 : : : hi and h1 : : : hiC1 . Thus, for each n we

can successively concatenate the disc diagrams h1 : : : hi'hiC1
into a disc diagram

between  and h1 � � �hn . We say that this disc diagram is obtained by piling up
the sequence of disc diagrams .'hi

WD.hi/ ! X/1�i�n.

We now start the proof of Proposition 4.9, which in splits in several steps.

Throughout this proof, whenever x; y are vertices ofƒ1,  � ƒ1 is a sub-segment,

and � �  is a sub-segment, we will say that an element g of G satisfies the

property .Pr/ with respect to x; y; ; � if d.x; gx/; d.y; gy/ < r , and there exists

a quadrangleD.g/ between  and g and a sub-quadrangleD0.g/ between � and

a sub-segment C � g which is a corridor. The proof is split in several steps.

Step 1. Let x; y be vertices of ƒ1 at distance at least 2.4r C 4C� C 16ı/,

 a sub-segment ofƒ1 between them, and � �  a subsegment of length at least

2.4r C 4C� C 16ı/. Let h be an element of G satisfying the property .Pr/ with

respect to x; y; ; �, and denote by 'hWD.h/ ! X an associated quadrangle and

D0.h/ the associated sub-quadrangle which is a corridor. Let k; n � 1 be constants

that will be chosen later. Let ˆnWDn.h/ ! X be the disc diagram between  and

hn obtained by piling up n copies of the disc diagram 'hWD.h/ ! X .
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By Lemma 2.3, D0.g/ contains a sub-quadrangle which is a grid G1.g/, of

length j�j � 2.4r C 4C� C 16ı/ and width l � 4r C 4C� C 16ı. We call this

integer l the width of g. Moreover, by Lemma 4.4, the upper side of G1.g/ and

the h-translate of the bottom side of G1.g/ are at Hausdorff distance at most

.4r C 4C� C 16ı/C .2r C 8ı/ D 6r C 4C� C 24ı:

If j�j > 2.4r C 4C� C 16ı/C 2.i � 1/.6r C 4C� C 24ı/ for some i � 1, then

D0.g/ contains a sub-quadrangle which is a grid Gi .g/, of length

j�j � .2.4r C 4C� C 16ı/C 2.i � 1/.6r C 4C� C 24ı//

and width l � 4r C 4C� C 16ı, over the maximal sub-segment of � at distance

at least 4r C 4C� C 16ı C .i � 1/.6r C 4C� C 24ı/ of the extremities of �.

As a consequence, if j�j > kC2.4rC4C�C16ı/C2.n�1/.6rC4C�C24ı/,

then Dn.g/ contains a sub-quadrangle Gn.g/ between a sub-segment of � and a

sub-segment of gn�, which is a grid k � nl . Such a grid Gn.g/ is obtained as

the concatenation of sub-grids Gn;i .g/ , where each Gn;i .g/ is a sub-grid k � l of

Gn�1�i .g/ between a sub-segment of  and a sub-segment of g . We also choose

a vertical path Pn.g/ of length nl in Gn.g/, which we write as the concatenation

of n vertical paths Pn;i .g/ of length l , each Pn;i .g/ belonging to Gn;i .g/ (see

Figure 5).

P n.g/

Gn.g/

Dn.g/

ˆn

g3

g2

Figure 5. Piling up n D 3 copies of a sub-corridor of D.g/ of width 3. Here, the

(impossible) case where the paths ˆn.Pn;i .g// and ˆn.Pn;iC1.g// backtrack on exactly

one edge.

By Proposition 3.3, the restriction of ˆn to Gn.g/ Š Ik � Inl factorises as

Ik � Inl

id �‰n
����! Ik � Tnl ,�! X:

Note that for every 0 � i < n, the paths ˆn.Pn;i .g// and ˆn.Pn;iC1.g//

backtrack on the same number l 0 of edges because of Proposition 3.3. If we had

l 0 < l
2
, then the image ˆn.Pn/ would contain an isometrically embedded path,

and the length of such paths grows linearly with n. In particular for some constant
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n0 � 1 that is independent of x and y, this length would be bigger than the constant

C� (Definition 4.3). If k is bigger than C�, then it would follow that X would

contain an embedded square of side C� whose projection on  has diameter C�,

contradicting Lemma 4.3.

Step 2. We thus start by defining the following constant:

L0.r/ WD .max.L; C�; jgj1/C 36r C 24C� C 144ı/

C 2.4r C 4C� C 16ı/C 2.n0 � 1/.6r C 4C� C 24ı C jgj1/:

Let x; y be vertices of ƒ1 at distance at least L0.r/,  be the sub-segment of

ƒ1 between them, and � �  a subsegment of length at least L0.r/. Let h be a

group element that satisfies the property .Pr/with respect to x; y; ; and �. From

the previous paragraph, and using the same notations, it follows that ˆn.Pn;i .h//

and ˆn.Pn;iC1.h// backtrack on at least l
2

edges. For ˛ a real number between 0

and the width of h, we denote by `˛.h/ the horizontal line of G1.h/ at distance

˛ from P�, and by `0
˛.h/ the sub-segment `˛.h/ \G2.h/. Since ˆn.Pn;i.h// and

ˆn.Pn;iC1.h// backtrack on at least l
2

edges for each i , it follows that

h'.`0
l
2

.h// � '.` l
2
.h//:

Thus, both h'.`0
l
2

.h// and '.`0
l
2

.h// are contained in the segment '.` l
2
.h//:

We claim that h'.`0
l
2

.h// and '.`0
l
2

.h// are at Hausdorff distance at most

6r C 4C� C 24ı. Indeed, this follows from the triangular inequality, as '.`0
l
2

.h//

is .2r C 6C�/-close to the segment '.`0
0.h// by the width assumption, the same

holds for h`0
l
2

.h/ and h`0
0.h/, and `0

0.g/ and h`0
0.g/ are at most .2r C 8ı/-close by

Lemma 4.4.

Thus, h'.`0
l
2

.h// and '.`0
l
2

.h// are contained in the segment '.` l
2
.h// and are

at Hausdorff distance at most 6r C 4C� C 24ı from one another. In particular,

the two sub-segments share an edge, as they have a length of at least LC 36r C

24C� C 144ı.

Step 3. Let us show that, for an element h as in the previous step, the subset

'.`0
l
2

.h// is contained in a combinatorial axis of gwhich is parallel toƒ1, meaning

that there exists an isometric embedding R� Ik ,! X such that R� ¹0º is sent to

ƒ1 and R � ¹kº is sent to the aforementioned combinatorial axis of g containing

'.`0
l
2

.h//.

Note that hg has translation length at most jgj1 C r . By concatenating the

disc diagrams .hg/i'hWD.h/ ! X for i � 0, the same reasoning as before

shows that hg'h.`
0
l=2
.h// and 'h.`

0
l=2
.h// are contained in a common segment

and are at Hausdorff distance at most jgj1 C 6r C 4C� C 24ı. As we already
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now that h'h.`
0
l=2
.h// and 'h.`

0
l=2
.h// are contained in a segment and are at

Hausdorff distance at most 6r C 4C� C 24ı, it follows that hg'h.`
0
l=2
.h// and

h'h.`
0
l=2
.h//, and thus g'h.`

0
l=2
.h// and 'h.`

0
l=2
.h//, are contained in a segment

and are at Hausdorff distance at most jgj1 C 12r C 8C� C 48ı. As the length of

`0
l=2
.h/ is strictly greater than jgj1 C 12r C 8C� C 48ı by construction, it follows

that these two segments share at least an edge. Moreover, they cannot coincide

as g is a hyperbolic isometry of X . Thus, the same argument as before shows

that ƒh WD
S

i2Z g
i'h.`l=2.h// is a combinatorial axis for g, and it contains

'.`0
l
2

.h// by construction. Furthermore, by definition of L0.r/, there exists a

sub-quadrangle between a fundamental domain of ƒ1 for the action of hgi and

a fundamental domain of ƒh for the action of hgi which is a grid. This in turn

implies that ƒ1 and ƒh are parallel.

Step 4. Let x; y be vertices of ƒ1, let  be the sub-segment of ƒ1 between

them, and � �  a sub-segment of length at least L0.r/. Let us now con-

sider two elements h and h0 satisfying .Pr/ with respect to x; y;  and � and

having the same width l � 4r C 4C� C 16ı. Denote by 'hWD.h/ ! X and

'h0 WD.h0/ ! X the associated disc diagrams. Consider elements hi of G, i � 1,

such that hi D h if i is odd and hi D h0 otherwise. As before, we can construct

the disc diagram ˆnWDn.h; h0/ ! X obtained by piling up the disc diagrams

.'hi
WD.hi/ ! X/1�i�n. As before, Dn.h; h0/ contains a sub-diagram Gn.h; h0/

between a sub-segment of � and a sub-segment of h1 � � �hn�, which is a grid

k �nl . Moreover, this map factorises by Proposition 3.3, and we have to consider

the image underˆn of a vertical path Pn.h; h
0/ of length nl , which is the concate-

nation of paths Pn;i .hi / � h1 � � �hiD.hi/. Here again, note that for every i , the

paths ˆn.Pn;2i�2.h2i�1// and ˆn.Pn;2i�1.h2i // backtrack on the same number

leven of edges, while ˆn.P2i�1.h2i // and ˆn.P2i .h2iC1// backtrack on the same

number lodd of edges. Using the same reasoning, at least one of the two integers

leven and lodd is at least l
2
. Let us assume for instance that this holds for leven. As

before, it then follows that 'h.`
0
l
2

.h// and .h0/�1'h0.`0
l
2

.h0// are at Hausdorff dis-

tance at most 6r C 4C� C 24ı. But as .h0/�1'h0.`0
l
2

.h0// and 'h0.`0
l
2

.h0// are also

at Hausdorff distance at most 6rC 4C� C 24ı by Step 2, it follows that 'h.`
0
l
2

.h//

and 'h0.`0
l
2

.h0// are at Hausdorff distance at most 12r C 8C� C 48ı.

Step 5. We define the following constant:

N0.r/ WD .4r C 4C� C 16ı C 1/.12r C 8C� C 48ı C 1/.N C 1/:

Let x; y be vertices of ƒ1,  the sub-segment of ƒ1 between them, and � �  a

subsegment of length at least L0.r/. Suppose by contradiction that there at least

N0.r/ distinct elements satisfying the property .Pr/with respect to x; y;  and �.

For each such element h we consider an associated corridor 'hWD.h/ ! X and
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use the same notations as above. From Step 4, it follows that for every two such

elements h; h0 with the same width l , the segments 'h.`
0
l
2

.h// and 'h0.`0
l
2

.h0// are

at Hausdorff distance at most 12rC8C�C48ı from one another, and are contained

in a segment ofX . Choose .12rC8C�C48ıC1/.NC1/ such elements of the same

width. It follows that the intersection ` of all the segments 'h.`
0
l
2

.h// has length

at leastLC12rC8C� C48ı D .LC36rC24C� C144ı/�2.12rC8C� C48ı/.

Let `0 be the maximal sub-segment of ` at distance 6r C 4C� C 24ı from the

endpoints of `. Each of the .12r C 24C� C 16ıC 1/.N C 1/ elements send `0 to a

translate contained in ` by Step 2. Thus, we can choose at leastN C1 distinct such

elements whose action on `0 coincide. As `0 is of length at leastL and is contained

in a combinatorial axis of g parallel to ƒ1 by Step 3, we obtain N group elements

which stabilise points ofƒ1 at distance L, a contradiction. This finishes the proof

of Proposition 4.9.

4.4. Finishing the proof of Theorem E

Lemma 4.12. Let  be a segment of ƒ1 of length at least 2C�, and let h be a
group element that moves the endpoints of  by at most r . Suppose that there
exists a reduced disc diagram 'WD ! X between  and h . ThenD has width at
most 2r C 4C�.

Proof. Recall that D is a CAT.0/ square complex by Lemma 1.1. Let I be the

combinatorial interval between the endpoints of the lower path ofD, and consider

the restriction 'jW I ! X . If 'jW I ! X is non-degenerate, then it is a Euclidean

disc diagram, as I isometrically embeds in R
2 by Lemma 1.9. In such a case,

'j is an isometric embedding by Lemma 2.4. If 'jW I ! X is degenerate, then

the restriction of 'j to each of the maximal subcomplexes of I homeomorphic

to a 2-disc is an isometric embedding by the same argument. It follows from

Proposition 2.3 and Lemma 4.3 that two combinatorial geodesics of X between

the endpoints of  are at Hausdorff distance at most 2C� from another. Thus, any

two combinatorial geodesics of D between the endpoints of the upper path of D

are at Hausdorff distance at most 2C�.

Recall that combinatorial intervals are convex for the CAT.0/metric by Corol-

lary 1.8. Thus, the CAT.0/ geodesic P 0
C between the endpoints of the upper path

PC ofD is at Hausdorff distance at most 2C� from PC. Analogously, the CAT.0/

geodesic P 0
� between the endpoints of the lower path P� of D is at Hausdorff

distance at most 2C� from P�. But by convexity of the CAT.0/ metric, P 0
� and

P 0
C are at Hausdorff distance at most r for the `2-metric. Thus, P� and PC are at

Hausdorff distance at most 2r C 4C� for the `1-metric. �

Recall that the interval between two vertices of a CAT.0/ square complex

embeds isometrically in R
2 endowed with its square tiling (Lemma 1.9). We can

thus define the following constant:
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Definition 4.13. For every R � 0, we choose a constant Nint.R/ such that

there exist at most Nint.R/ combinatorial geodesics between two vertices of X

at distance at most R.

Further recall that a Euclidean quadrangle D D D.�; C/ isometrically

embeds in Z
2 by Lemma 1.9. We can thus define the following constant:

Definition 4.14. For everyR � 0, we choose a constantNquad.R; r/ on the number

of Euclidean quadrangles D D D.�; C/ of width at most 4r C 4C� C 16ı and

such that j�j � R, up to isometries which preserve pointwise the upper lower

sides of the quadrangles.

We are now ready to prove Theorem E. We split the proof in several steps. The

first 7 steps deal with points on the axisƒ1. Note that, for such points, the acylin-

dricity condition amounts to proving that there exist constants Laxis.r/; Naxis.r/

such that for every two points x; y of ƒ1 at least Laxis.r/ apart, at most Naxis.r/

group elements move x and y by at most r .

Let r > 0. We start by defining the following constants:

L1.r/ WD 2Lemb.4r C 4C� C 16ı/C .24r C 8C� C 78ı C 2L/.L0.r/C 2/;

L2.r/ WD 5 � L1.r/;

N1.r/ WD .8r C 32ı C 1/Nquad.L1.r//N;

N2.r/ WD max.N0.r/; N1.r//;

N3.r/ WD .8r C 32ı C 1/L.r/2Nint.L.r//N;

N4.r/ WD 5 � 224rC8C�C78ıC2LN2.r/:

Finally, we define the two constants:

Laxis.r/ WD 3 � L2.r/;

Naxis.r/ WD 4max.N3.r/; N4.r//:

We now show that, for every vertices x; y of ƒ1 at distance at least Laxis.r/,

there do not existNaxis.r/ distinct elements h ofG such that d.x; hx/; d.y; hy/�r .

This will be done in seven steps.

By contradiction, suppose that there exist vertices x; y ofƒ1 at distance at least

Laxis.r/ andNaxis.r/ distinct group elements h ofG such that d.x;hx/; d.y;hy/�r.

For simplicity, we arrange these elements as a finite sequence .hi/. Choose a taut

geodesic  between x and y.

Step 1. Decompose  as the concatenation of geodesic segments

 WD ˛ [ 1 [ 2 [ 3 [ ˇ;
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such that each of the segments i has length L2.r/. We sort the chosen group

elements into four classes, depending on the nature of both hi \1 and hi \3:

empty or non-empty. Since N.r/ D 4max.N3.r/; N4.r//, we can choose at least

max.N3.r/; N4.r// such elements in the same class.

Assume by contradiction that all the hi \ 1 and gi \ 3 are non-empty.

Then since we are considering at least L.r/2 � .8r C 32ı C 1/Nint.L.r//N group

elements, we can choose at least .8rC32ıC1/Nint.L.r//N such elements such that

the hi all contain two fixed vertices v1 2 1 and v3 2 3. Now the sub-segment

of hi between v1 and v3 is in IntX.v1; v3/, which contains at most Nint.L.r// by

construction, so we can find at least .8r C 32ı C 1/N elements such that the hi

all contain a chosen combinatorial geodesic  0 between v1 and v3. It thus follows

that the segments h�1
i  0 are contained in  and are at Hausdorff distance at most

4r C 16ı of one another by Lemma 4.4. Since there are at least .8r C 32ı C 1/N

such elements h�1
i , it thus follows that the action of at least N of them coincide

on  0, and thus N distinct elements of G fix pointwise  0, which is of length at

least L2.r/ � L, a contradiction.

Step 2. From the previous step, we can thus assume that, for each of the given

elements hi , the segments hi and 1, and in particular hi1 and 1, are disjoint.

Moreover, hi1 and 1 are at Hausdorff distance at most 2r C 8ı by Lemma 4.4.

Thus, we choose for each i a quadrangleD.hi/, of width at most 4r C 4C� C 16ı

by Lemma 4.12, between 1 and hi1.

Decompose 1 as the concatenation of geodesic segments

1 WD 1;1 [ � � � [ 1;5;

such that each of the 5 segments i has length L1.r/. We subdivide each hi1 into

a concatenation

hi1 WD  i
1;1 [ � � � [  i

1;5;

such that one can subdivide the non-degenerate quadrangleD.hi/ into a concate-

nation of 5 non-degenerate quadrangles:

D.hi/ WD D1.hi / � � �D5.hi /;

where each Dk.hi / is a non-degenerate sub-quadrangle between 1;k and  i
1;k

which has width at most 4r C 4C� C 16ı.

Step 3. By Lemma 2.2, for each i at least one of these non-degenerate sub-

quadrangles is almost Euclidean. Now, since we have at least Nnon�deg.r/ D

5 � 224rC8C�C78ıC2LN2.r/ such elements, there exists an integer 1 � k � 5

such that, for at least 224rC8C�C78ıC2LN2.r/ of these group elements, the sub-

quadrangle Dk.hi / is almost Euclidean.
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Step 4. Since 1;k is of length

L1.r/ D 2Lemb.4r C 4C� C 16ı/C .24r C 8C� C 78ı C 2L/.L0.r/C 2/;

we can choose a subsegment Q1;k of 1;k , of length

.24r C 8C� C 78ı C 2L/.L0.r/C 2/

and at distance Lemb.4r C 4C� C 16ı/ from the endpoints of 1;k . For each i ,

Proposition 2.7 allows us to choose a sub-segment Q i
1;k

of  i
1;k

and a Euclidean

sub-quadrangle zDk.hi / ofDk.hi / of width at most 4r C 4C� C 16ı between Q1;k

and Q i
1;k

.

Step 5. Write Q1;k as the concatenation of 24rC 8C� C 78ıC 2L sub-segments

Q1;k;l of lengthL0.r/C2. For each i and each l , we can choose a sub-segment Q i
1;k;l

of Q i
1;k;l

and a sub-quadrangle zDk;l.hi / of zDk.hi / of width at most 4rC4C� C16ı

between Q1;k;l and Q i
1;k;l

. Among the given 224rC8C�C78ıC2LN2.r/N group

elements, we can now then choose N2.r/N of them such that for each l , the

associated sub-quadrangles . zD1;k;l.hi //i are all of the same shape: corridor or

staircase.

Step 6. If for some l , all the . zD1;k;l .hi//i were corridors, then the fact that

N2.r/ � N0.r/ would yield a contradiction with Proposition 4.9, so let us assume

that they all are staircases. In particular, for each such i , zD1;k.hi / contains at least

24rC 8C� C 78ıC 2L corners on Qk;1. Since we have at least .4rC 2/Nquad.r/N

group elements, at least .4r C 2/N of them define isometric sub-quadrangles.

Since zD1;k.hi / has width at most 4r C 12C� and contains at least

24r C 8C� C 78ı C 2L D 2.4r C 4C� C 16ı/C 2.LC 2.4r C 16ı//

corners, it follows from Lemma 4.6 that there exists a geodesic segment P of

length LC 2.4r C 16ı/ contained in all the gi .

Step 7. It now follows that the segments g�1
i P are contained in  and are at

Hausdorff distance at most 4r C 16ı of one another by Lemma 4.4. Since there

are at least .8rC32ıC1/N such elements g�1
i , it follows that the action of at least

N of them coincide on a geodesic segment of length L, henceN distinct elements

of G fix pointwise a sub-segment of length L of ƒ1, a contradiction.

This concludes the proof that for vertices x; y of the axisƒ1 at distance at least

Laxis.r/, at most Naxis.r/ elements of G move x and y by a distance of at most r .

In the final step, we deal with arbitrary points of X .
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Step 8. Recall that the tubular constant C2 was introduced in Definition 4.1.

Let m be an integer such that mjgj2 > C2. Let n be an integer that will be

fixed later, let x be a vertex of X , and let h be a group element such that

d1.x; hx/; d1.g
nC2mx; hgnC2mx/ � r . Consider the (unique) CAT.0/ geodesic

between x and gnC2mx. Let also x2 be the projection of x on ƒ2 (and thus

gnC2mx2 is the projection of gnC2mx on ƒ2).

Let u be a point of the geodesic between x and gnC2mx which projects to

the point gmx2 2 ƒ2. Since d2.x; g
mx/ D mjgj2 > C2, there exists a point

y in the sub-segment between x and u and a point y2 2 ƒ2 in between x2

and gmx2 such that d2.y; y2/ � C2. Analogously, let v be a point of the geo-

desic between x and gnC2mx which projects to the point gmCnx2 2 ƒ2. Since

d2.g
nCmx2; g

nC2mx2/ D mjgj2 > C2, there exists a point z in the sub-segment

between v and gnC2mx and a point z2 2 ƒ2 in between gnCmx2 and gnC2mx2

such that d2.z; z2/ � C2. Since ƒ1 and ƒ2 are at Hausdorff distance at most ı by

Definition-Lemma 4.2, choose points y1, z1 onƒ1 which are ı-close from y2 and

z2 respectively.

Since d1.y; hy/; d1.g
nC2mz; hgnC2mz/ � r by convexity of the `2-metric, it

follows that

d1.y1; hy1/; d1.z1; hz1/ � 2r C 2ı C 4C2:

Moreover, we have

d2.y1; z1/ � d2.x2; g
nC2mx2/ � d2.x2; y2/ � d2.y2; y1/

� d2.z1; z2/ � d2.z2; g
nC2mx2/

� �njgj2 � 2ı;

and thus d1.y1; z1/ � njgj2 � 2ı. Thus, we first choose an integer n.r/ (which is

independent of the point x) such that n.r/jgj2 � 2ı � Laxis.2r C 2ıC 4C2/. Now

set:

mfinal WD n.r/C 2m;

Nfinal WD Naxis.2r C 2ı C 4C2/:

It thus follows that for every x of X , there exist at most Nfinal group elements that

move x and gmfinalx by at most r , for otherwise we could find two points of ƒ1 at

distance at least Laxis.2r C 2ıC 4C2/ which are moved by at most 2r C 2ıC 4C2

by Naxis.2r C 2ı C 4C2/ distinct group elements, a contradiction.

4.5. Deducing Theorem A. In this section, we explain how to modify the proof

of Theorem E to obtain Theorem A. The proof is almost identical: The proof of

Theorem E took place “along the axis” of a strongly contracting WPD element,

which displays features of hyperbolic geometry. Under the hypotheses of The-

orem A, the whole complex X is hyperbolic, and the following lemmas can be
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adapted to deal with arbitrary geodesics of X , rather than sub-segments of the

combinatorial axis considered in the previous section.

Lemma 4.1 still holds in general hyperbolic metric spaces: For any geodesic 

of length at least 8ı0, ı0 the hyperbolicity constant of the space, and any two points

x; y of the space that project on  at distance at least 8ı0, then any geodesic from

x to y meets the 8ı0-neighbourhood of  (this follows for instance from the Tree

Approximation Theorem for hyperbolic spaces [13, Theorem 8.1]).

Lemma 4.2 is reformulated as follows: For every combinatorial geodesic  of

the hyperbolic CAT.0/ square complex X , the unique CAT.0/ geodesic between

the endpoints of  stays 2C�-close to  , where the no-square constant C� is

reinterpreted as a constant such that X does not contain isometrically embedded

C� � C� grids.

Analogously, Lemma 4.4 is reformulated as follows. Let  be a geodesic

segment and let h be a group element that moves the endpoints of  by a distance

of at most r (for the `1-metric). Let  0 be a sub-segment of  . Then  0 and h 0 are

at Hausdorff distance at most 2r C 16C� (for the `1-metric).

Finally, Lemma 4.12 is reformulated as follows. Let  be a combinatorial ge-

odesic of X of length at least 2C�, and let h be a group element that moves the

endpoints of  by at most r . Suppose that there exists a quadrangle 'WQ ! X

between  and h . Then Q has width at most 2r C 4C�.

With these modifications, we can prove Theorem A by adapting the proof of

Theorem E presented in Sections 4.3 and 4.4.

We first start by proving the analogue of Proposition 4.9, namely: for every

r > 0, there exist constants L0.r/; N0.r/ such that, for every combinatorial

geodesic  between two points x; y of X and for every sub-segment � � 

of length at least L0.r/, there exist at most N0.r/ elements h of G such that

d.x; hx/; d.y; hy/ < r , and such that there exist a quadrangle between  and h

and a sub-quadrangle between � and a sub-segment C � h which is a corridor

of width at most 4r C 36C� D 2.2r C 16C�/C 4C�.

The proof, for abritrary points ofX instead of points ofƒ1, is almost identical

to the proof presented in Section 4.3, up to modifying the constants according to

the aforementioned changes (in particular, the constant jgj1 is no longer needed

in the definition of L0.r/ and N0.r/ ). The only notable difference is that Step 3

is no longer needed. Indeed, Steps 1-2 and 4-7 yield a geodesic segment of X of

length L pointwise fixed by N group elements, which is sufficient to contradict

the weak acylindricity of the action (in Section 4.3, Step 3 was there to show that

such a geodesic segment is actually contained in a combinatorial axis of the WPD

element g, which was necessary to contradict the weak WPD condition).

We then adapt the results of Section 4.4 for abritrary points of X instead of

points ofƒ1, namely, we prove the following: for every r > 0, there exist constants



364 A. Martin

L.r/; N.r/ such that, for every two points x; y ofX at distance at leastL.r/, there

exist at most N.r/ elements h of G such that d.x; hx/; d.y; hy/ < r .

The proof of Steps 1-7 is identical, and yield a geodesic segment ofX of length

L pointwise fixed by N group elements, which is sufficient to contradict the weak

acylindricity of the action (in Section 4.4, Steps 1-7 only dealt with points of the

axis ƒ1 and Step 8 dealt with arbitrary points of X).

5. The geometry of generalised Higman groups

The generalised Higman groups Hn, n � 5 were defined in [21], as the groups

with the following presentation:

Hn WD hai ; i 2 Z=nZ j aiaiC1a
�1
i D a2

iC1; i 2 Z=nZi:

These groups can naturally be seen as negatively curved polygons of groups

(see for instance [6, Theorem 12.28 and Section 12.29]). The local group asso-

ciated to the polygon is trivial. Order cyclically the edges of the polygon into a

sequence .ei /. The local group associated to each edge ei of the polygon is a copy

of Z with a chosen generator ai . The local group associated to each vertex of the

polygon is the Baumslag–Solitar group BS.1; 2/. Finally, for each vertex v con-

tained in edges ei and eiC1, the local maps Gei
! Gv , GeiC1

! Gv send the

generators ai ; aiC1 respectively to generators bi ; biC1 of BS.1; 2/ satisfying the

relation bibiC1b
�1
i D b2

iC1.

Thus, Hn, n � 5 acts cocompactly on a CAT(�1) polygonal complex with

strict fundamental domain an n-gon. Stabilisers of faces are trivial, stabilisers of

edges are infinite cyclic, and stabilisers of vertices are isomorphic to BS.1; 2/.

Moreover, for every edge e of Xn with vertices v and v0, one of the morphisms

Ge ,! Gv, Ge ,! Gv0 is conjugated to hai ,! ha; b j aba�1 D b2i while the

other one is conjugated to hbi ,! ha; b j aba�1 D b2i.

Lemma 5.1. If v and v0 are vertices ofXn at distance at least 3, then the stabilisers
of v and v0 intersect trivially. In particular, Hn acts weakly acylindrically on Xn

for every n � 5.

Proof. Since Hn acts on the CAT.0/ polygonal complex Xn with trivial face

stabilisers, fixed point sets of subgroups of Hn are trees in the 1-skeleton of

Xn. If an element h of Hn stabilises a sequence e1; e2; e3 of three adjacent

edges, then for some vertex v of e2, the inclusion Ge ,! Gv is conjugated to

hai ,! ha; b j aba�1 D b2i. It then follows that for every edge e0 ¤ e

containing v, the intersectionGe \Ge0 is trivial. Indeed, this is exactly Lemma 2.1

of [23] in the case of 4 generators; the proof being purely about links of vertices,

it generalises without any change to n � 5 generators. Thus, the intersection

Ge1
\Ge2

\ Ge3
is trivial. �
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Notice that, for n � 5, the CAT.�1/ polygonal complex Xn can be naturally

subdivided into a hyperbolic CAT.0/ square complex. Indeed, the subgraph of

the one-skeleton of the first barycentric subdivision of Xn, obtained by removing

edges corresponding to the inclusion of a vertex of Xn in a polygon of Xn, is

naturally the one-skeleton of a CAT.0/ square complex. Moreover, such a CAT.0/

square complex is quasi-isometric to Xn, and thus hyperbolic. In particular,

Theorem A implies the following:

Corollary 5.2. For n � 5, the action of Hn on Xn is acylindrical.

We now give two consequences of the acylindricity of the action, which do not

follow automatically from the abstract acylidrical hyperbolicity of the group.

Corollary 5.3 (Strong Tits alternative for generalised Higman groups). For n � 5,
the groupHn satisfies the following form of Tits alternative: a non-cyclic subgroup
of Hn is either contained in a vertex stabiliser, hence embeds in BS.1; 2/, or is
acylindrically hyperbolic.

Proposition 5.4. For n � 5, Hn is residually F2-free, i.e. each element of Hn

survives in a quotient ofHn which does not contain a non-abelian free subgroup.

Proof. Let h be an element of Hn . We construct by induction a sequence of

quotients of Hn

Hn

�1
�! Q1

�2
�! Q2 �! � � �

such that at each stage, Qk acts acylindrically on a hyperbolic metric space Yk,

and h projects to a non-trivial element ofQk. Such a construction uses the theory

of rotating families of Dahmani–Guirardel–Osin and follows the construction in

the proof of [14, Theorem 8.9]; we refer the reader there for additional details. The

groupQ0 WD Hn acts acylindrically on Y0 WD Xn. Let us order all the elements of

Hn that act hyperbolically on Xn in a sequence .hk/k�1. Let us assume that the

quotients Q0; Q1; : : :Qk and hyperbolic spaces Y0; : : : ; Yk are defined. We look

at the projection NhkC1 of hk inQk. SinceQk acts acylindrically on the hyperbolic

space Yk, such an element acts either hyperbolically or elliptically on Yk by a result

of Bowditch [4, Lemma 2.2].

If hkC1 projects to a an element ofQk acting hyperbolically on Yk, we choose

an integer ˛kC1 � 1 such that

� the coned-off space associated to the action of � Nh
˛kC1

kC1
� on Yk is hyper-

bolic,

� the quotientQk=� Nh
˛kC1

kC1
� acts acylindrically on the aforementioned coned-

off space,

� the projection map Qk ! Qk=� Nh
˛kC1

kC1
� embeds a chosen metric ball of

Qk containing the projection Nh of h.
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We then define QkC1 WD Qk=� Nh
˛kC1

kC1
� and YkC1 is the associated coned-off

space.

If hkC1 projects to a torsion NhkC1 element of Qk , we set QkC1 WD Qk,

YkC1 WD Yk, and ˛kC1 � 1 be an integer such that Nh
˛kC1

kC1
is trivial.

It thus follows that the quotient

Q WD Hn=�h
˛k

k
; k � 1�

of Hn is such that h projects to a non-trivial element.

Let us prove by contradiction that Q does not contain a non-abelian free

subgroup. IfQ contained such a subgroup, the preimage of such a subgroup under

the projection Hn ! Q would be a free subgroup F of Hn. As elements acting

hyperbolically on Xn are mapped to torsion elements of Q by construction, we

will derive a contradiction if we can prove that F necessarily contains an element

acting hyperbolically. We thus prove the following:

Claim. The subgroup F contains an element acting hyperbolically on Xn.

If that was not the case, then every element of F acts elliptically on Xn (since

Xn has only finitely many isometry types of cells [5]). If the fixed point sets of

elements of F pairwise intersect, they globally intersect by a version of the Helly

Theorem [22, Proposition 5.3], hence F is contained in a vertex stabiliser, which

is absurd as BS.1; 2/ does not contain non-abelian free subgroups. Thus, there

must exist two elements a; b of F with disjoint fixed point sets. One could adapt

the proof of [23, Proposition 3.2] to show that this implies that there exists an

element acting hyperbolically onXn in the subgroup generated by a and b. In order

to remain as self-contained as possible, we give a direct proof that the subgroup

ha; bi contains an element acting hyperbolically, using the CAT.0/ geometry of

the space.

By Lemma 5.1, the fixed point sets of a and b are subcomplexes of diameter at

most 2. Let xa, xb be points of the fixed point sets of Fix.a/, Fix.b/ which realise

the distance ˛ > 0 between these fixed point sets. Let L be the CAT.0/ geodesic

between va and vb.

We now show that the angle at xa (respectively xb) betweenL and aL (respec-

tively L and bL) is at least � . Let � be the (unique) minimal face of X containing

the “germ of L” at xa, that is, the minimal face of X such that sufficiently small

neighbourhoods of xa in L are contained in � . If � is an edge (and thus, xa is a

vertex), then the result follows immediately. Indeed, for every edge e of X and v

one of its vertices, an element in the stabiliser of v either fixes e or sends it to an

edge making an angle of at least � with e, by definition of the action. So let us

assume that � is a square. If xa is in the interior of an edge of � , then L must be

perpendicular to that edge since L realises the distance between the fixed point

sets, and the result follows immediately. If xa is a vertex of � , then no edge of
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� is in Fix.a/ since L realises the distance between the two fixed point sets. In

particular, for the two edges e; e0 of � containing xa, the angle at xa between e

and ae (respectively e0 and ae0) is at least � by the previous remark, whence the

angle at xa between L and aL is at least � .

As the angle at xa (respectively xb) betweenL and aL (respectivelyL and bL)

is at least � , the pathsL[aL andL[bL are geodesics. In particular, the distance

between Fix.a/ and baFix.a/ is at least 2˛�2. Reasoning analogously, one shows

that, for every k � 2, the distance between Fix.a/ and .ba/kFix.a/ is at leastk˛�2.

In particular, ba does not have bounded orbits, so it does not act elliptically, a

contradiction. �
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