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Abstract. A group G is (finitely) co-Hopfian if it does not contain any proper (finite-

index) subgroups isomorphic to itself. We study finitely generated groups G that admit a

descending chain of proper normal finite-index subgroups, each of which is isomorphic

to G. We prove that up to finite index, these are always obtained by pulling back a

chain of subgroups from a free abelian quotient. We give two applications: first, we

show any proper self-embedding of G with finite-index characteristic image arises by

pulling back an endomorphism of the abelianization; secondly, we prove special cases

(for normal subgroups) of conjectures of Benjamini and Nekrashevych–Pete regarding the

classification of scale-invariant groups.
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1. Introduction

1.1. Main result. A group � is co-Hopfian if it does not contain any proper

subgroup isomorphic to itself. A classification of groups that are not co-Hopfian

seems extremely difficult because a free group is not co-Hopfian, and similarly,

any nontrivial free product � D A � B is not co-Hopfian. Indeed, � contains the

subgroup A � .gBg�1/ which is isomorphic to A � B but is a proper subgroup

whenever g … A [ B . See e.g. [2, 6, 10] and references therein for further

information on and examples of co-Hopfian groups.

Following [4], we say a group � is finitely co-Hopfian if � does not contain

any proper finite-index subgroup isomorphic to �. The finite co-Hopf property

seems far more tractable than the co-Hopf property in general, at least when � is

finitely generated. Indeed it seems failure of the finite co-Hopf property is closely

related to the presence of nilpotent subgroups. De Cornulier has studied which

finitely generated nilpotent groups are finitely non-co-Hopfian [5].

In part this is suggested by an analogous problem of topological nature.

Namely, if M is a closed manifold, we say M is self-covering if there exists a

https://creativecommons.org/licenses/by/4.0/
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finite cover M 0 ! M with degree greater than 1 and such that M 0 is homeomor-

phic to M . If M is self-covering, then �1.M/ is not finitely co-Hopfian. See [18]

for more information on self-covering manifolds.

Historically, a situation of particular interest has been the classification of

expanding maps. A map f WM ! M is expanding if there is a Riemannian

metric on M such that kDf.v/k > kvk for any unit tangent vector v 2 T 1M .

Franks observed that ifM admits an expanding map, then �1.M/ has polynomial

growth [7]. Gromov proved that a group with polynomial growth is virtually

nilpotent, and used this to prove that any manifold admitting an expanding map

is infranil [9]. Monod has informed me by personal communication that the

group-theoretic analogue is true: if � is a finitely generated group that admits

an endomorphism ' that is expanding with respect to the word metric, in the

sense that there exists L > 1 and C � 0 such that for all g; h 2 �, we have

jd.'.g/; '.h// � Ld.g; h/j � C , then � is virtually nilpotent.

Finitely non-co-Hopfian groups have a self-similarity structure: if �1 ¨ � is

a proper finite-index subgroup isomorphic to �, then by fixing an isomorphism

� Š �1, we obtain a self-embedding � ,! �. The images of iterates of this map

give a chain

� D �0 © �1 © �2 © � � � (1.1)

of finite-index subgroups of �, each of which is isomorphic to �.

In this paper we initiate the study of finitely co-Hopfian groups without dy-

namical conditions on the self-embeddings. Instead, we assume the chain (1.1)

consists of normal subgroups. The obvious examples of groups � admitting such

chains are free abelian groups. Our main result is that any example arises in this

way.

Theorem 1.1. Let � be a finitely generated group that admits a decreasing chain
of subgroups

� D �0 © �1 © �2 © � � �

where �k are finite-index normal subgroups with �k Š �. Set �1 WD
T

k �k .
Then �=�1 is nilpotent and, modulo torsion, it is free abelian.

Remark 1.2. Equivalently, �=�1 is nilpotent and virtually abelian (see Proposi-

tion 3.16).

In light of Theorem 1.1, it is natural to ask if the assumption that the chain (1.1)

consists of normal subgroups can be removed.

Question 1.3. Can one classify finitely non-co-Hopfian groups in terms of nilpo-

tent groups in a manner similar to Theorem 1.1?
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In any example we know of, a finitely non-co-Hopfian group � admits a

quotient that contains a nontrivial normal nilpotent subgroup. It seems plausible

that this is the case for any finitely generated finitely non-co-Hopfian group. It is

not difficult to see that any self-embedding � ,! � induces a self-embedding of

the profinite completion y� of �. In this case, work of Reid easily implies that the

profinite completion y� contains a nontrivial pronilpotent normal subgroup [14]

(see Theorem 3.10 and Proposition 3.12). We give examples of � where the

normal nilpotent subgroup can only be found in a quotient and ones where it is

not finitely generated (see Example 2.2).

Let us now return to the setting of Theorem 1.1. It is immediate from Theo-

rem 1.1 that any chain of subgroups as in Theorem 1.1 comes from pullback of a

chain of subgroups of a virtually abelian group.

Corollary 1.4. Let � be finitely generated and suppose � admits a decreasing
chain of .�k/k�0 of finite-index normal subgroups with �k Š �. Then there exist

� a finitely generated nilpotent group N such that N=Tor.N / is abelian,

� a surjection � W� ! N , and

� finite-index normal subgroups Nk � N ,

such that �k D �
�1.Nk/ for every k � 1.

Further, it is not necessarily true that N D �=�1 is torsion-free (see Exam-

ple 2.1). However, in this example the torsion in N D �=�1 already appears in

�=�1 but does not increase thereafter. This is a general phenomenon: since the

torsion subgroup of any finitely generated nilpotent group is finite, and the chain

of subgroups .Nk/k of N in Corollary 1.4 is decreasing with trivial intersection,

we see that for k � 1, the group Nk is free abelian. Hence the torsion can be

avoided by passing to a finite-index subgroup of � that is compatible with the

chain of subgroups.

Corollary 1.5. Let � be a finitely generated group that admits a chain of finite-
index normal subgroups .�k/k�0 with �k Š �. Set �1 WD

T

k �k . Then for
l � 1, the group �l=�1 is free abelian.

In particular �l admits a surjection � W�l � A onto a free abelian group A
such that there are finite-index subgroups Ak � A with �k D ��1.Ak/ for any
k � l .

Remark 1.6. In general, one may not be able to realize the free abelian group A

as a direct factor of any finite-index subgroup of � (see Example 2.2). In that

example, � is given by a semi-direct product � Ì A, and the self-embedding

respects this decomposition. We do not know whether it is always the case that a

finite-index subgroup of � decomposes as a semi-direct product.
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Remark 1.7. In [18], we studied a topological analogue of a special case of

Theorem 1.1, namely self-covers f WM 0 ! M of a closed manifold M such that

every iterate f nWM ! M is a regular cover. We proved that any such self-cover

is induced by a linear endomorphism AWT ! T of a compact torus T in the

following sense: there is a map hWM ! T such that h ı f is homotopic to A ı h.

This is proved using a mixture of the theory of topological transformation groups

and structural results for locally finite groups. Unfortunately, neither of these is

applicable in the setting of Theorem 1.1.

1.2. Characteristic self-embeddings. Recall that a subgroup of � is character-
istic if it is invariant under all automorphisms of �. In particular, a characteristic

subgroup is invariant under all inner automorphisms, and hence it is normal.

Obvious examples of groups � with characteristic finite-index subgroups iso-

morphic to � are given by free abelian groups. The following result shows that all

examples come from free abelian groups.

Corollary 1.8. Let� be a finitely generated group. If � admits a finite-index char-
acteristic copy � 0 of itself, then there is a free abelian group A with characteristic
finite-index subgroup A0, and a surjection � W� ! A such that � 0 D ��1.A0/. In
particular, we have b1.�/ > 0.

Remark 1.9. Note that Corollary 1.8 applies as soon as one has a single finite-

index characteristic subgroup isomorphic to �, whereas in the setting of normal

subgroups, we need a chain for Theorem 1.1 to hold.

1.3. Scale-invariant groups. Benjamini proposed the following algebraic ana-

logue to the existence of an expanding map on a closed manifold [3].

Definition 1.10 (Benjamini). A finitely generated group � is scale-invariant if

there exists a nested decreasing sequence

� D �0 � �1 � �2 � � � �

such that �n Š � for all n, and
T

n �n is finite.

Remark 1.11. The motivation for the introduction of scale-invariant groups

comes from percolation theory on graphs. In the traditional setting of percolation,

the underlying graph is the grid Zd , and one has access to the very powerful renor-

malization method. Unfortunately this does not generalize to the Cayley graph of

a general group �, but it seems plausible that renormalization techniques general-

ize to Cayley graphs of scale-invariant groups. See [12] for more information on

the relationship between percolation theory and scale-invariant groups.

Recall that Gromov proved that any closed manifoldM admitting an expanding

map is infranil, and in particular �1.M/ is virtually nilpotent [9]. Similarly,
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Benjamini conjectured scale-invariant groups are virtually nilpotent [3]. Many

counterexamples to this conjecture were produced by Nekrashevych and Pete [12].

Theorem 1.12 (Nekrashevych and Pete [12]). There exist scale-invariant groups
that are not virtually nilpotent. Indeed, if ƒ is a scale-invariant group with a
nested decreasing sequence .ƒn/n as in Definition 1.10, and Q � Aut.ƒ/ is a
group of automorphisms such that each ƒn is Q-invariant, then � D ƒ Ì Q is
scale-invariant.

For example, for any subgroup Q � SL.n;Z/, the group Zn Ì Q is scale-
invariant.

In these examples, the sequence of subgroups .�n/n is never generated by

a single self-embedding, such as an expanding map. To recapture this aspect,

Nekrashevych–Pete proposed the following definition.

Definition 1.13 (Nekrashevych and Pete [12]). A finitely generated group � is

strongly scale-invariant if there exists an embedding 'W� ,! � with image of

finite index and such that
T

n '
n.�/ is finite.

Any strongly scale-invariant group is clearly scale-invariant. However, the

counterexamples to Benjamini’s conjecture produced in Theorem 1.12 are not

strongly scale-invariant. Indeed, these groups � are produced using a self-similar

action on a rooted tree, and the subgroups �n are constructed by fixing a suitable

geodesic ray c and taking �n to be the vertex stabilizer at the nth level. The self-

similarity of the action implies that �n Š � and since these trees have finite

degree, it follows that Œ� W �n� < 1. In their examples, it is essential that the

geodesic ray is aperiodic. This implies that there is no embedding 'W� ,! � such

that �n D 'n.�/. Based on this observation, Nekrashevych–Pete proposed the

following variant of Benjamini’s conjecture.

Conjecture 1.14 (Nekrashevych and Pete [12]). Any strongly scale-invariant

group is virtually nilpotent.

We observe that Theorem 1.1 implies both Benjamini’s conjecture and Nekra-

shevych–Pete’s conjecture 1.14 under the additional assumption that �n are all

normal.

Corollary 1.15. Let � be a finitely generated group that admits a descending
chain .�n/n of finite-index normal subgroups such that �n Š � and

T

n �n is
finite. Then � is virtually abelian.

1.4. Outline of the proof of Theorem 1.1. Let � be a finitely generated group

with a descending chain .�k/k of normal finite-index subgroups, each of which

is isomorphic to �. We start by observing that the profinite completion y� of �
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admits proper open self-embeddings (Proposition 3.3). Work of Reid implies that
y� contains a normal pronilpotent subgroup, and that each of the finite groups

�=�k is nilpotent. Most of the proof is devoted to obtaining a uniform bound on

the nilpotency class of �=�k .

To this end, we first prove Theorem 1.1 assuming � is nilpotent. This is done

in Section 4, and relies on Lie theoretic considerations.

In the general case, we write the nilpotent group�=�k as a product ofp-groups

.�=�k/
.p/ where p runs over the set of primes. Hence the problem of uniformly

bounding the nilpotency class separates out into a problem over each prime p. In

Section 5, we give a uniform bound at almost every prime. Roughly, the idea is to

apply the nilpotent case of Theorem 1.1 to suitable nilpotent quotients of �=�1

and conclude that modulo torsion, these are abelian. We will show the torsion is

concentrated at a finite set of primes, away from which this argument yields the

desired uniform bound on nilpotency class.

In Section 6 we bound the nilpotency class of .�=�k/
.p/ for a fixed prime p.

Combined with the above bound at almost every prime, this yields a uniform

bound on the nilpotency class of �=�k. We finish the proof by once again ap-

pealing to the nilpotent case of the main theorem (Section 7). Finally we establish

the applications to characteristic finite-index subgroups and scale-invariant groups

at the end of Section 7.

Acknowledgments. I would like to thank Ralf Spatzier for countless helpful

discussions. I am thankful to David Fisher for making me aware of the notion

of scale-invariant groups and the results of [12].

2. Two examples

In this section we discuss two examples. The first shows that in Theorem 1.1, the

quotient �=�1 is not necessarily abelian or torsion-free.

Example 2.1. Let � be the three-dimensional integer Heisenberg group, i.e. the

group with presentation

� WD hx; y; z j Œx; y� D z; Œx; z� D Œy; z� D ei:

Write 'W� ,! � for the dilation defined by '.x/ WD 2x and '.y/ WD 2y

and '.z/ WD 4z. It is easy to see that '.�/ is not normal in �. However,

set ƒ WD h2x; 2y; 2zi. Then '.ƒ/ � ƒ is a normal subgroup and ƒ='.ƒ/ is

nonabelian.

Now define � WD ƒ�Z and set �k WD '.ƒ/� 2
kZ for any k � 1. Then .�k/k

form a chain of finite-index normal subgroups of �, each of which is isomorphic

to �, and we have

�=�1 Š .ƒ='.ƒ// � Z:
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In the above example � has a free abelian factor. However, in general, even

though �=�1 is virtually free abelian, we may not be able to realize it as a factor

of any finite-index subgroup of �, as the next example shows.

Example 2.2. Let d > 1 and consider the corresponding Baumslag-Solitar group

ƒ WD hx; t j txt�1 D xd i:

Take two copiesƒi ; i D 1; 2; ofƒwith generators xi ; ti . Define an automorphism

'x of the free product ƒ1 �ƒ2 by

'x.gi / WD xigix
�1
i

whenever gi 2 ƒi for i D 1; 2. Likewise define the automorphism 't . Now

consider the group

� WD .ƒ1 �ƒ2/ Ì'x
Z:

Write y for the generator of Z that acts by 'x . Finally, define  W� ,! � by

 jƒ1�ƒ2
WD 't and  .y/ WD yd . Using that 't'x'

�1
t D 'd

x ; it is easy to verify

that  is a homomorphism. For any k � 1, set �k WD  
k.�/. We have

�k D .ƒ1 �ƒ2/ Ì dkZ � �:

Hence the group � admits a decreasing chain of finite-index normal subgroups,

each of which is isomorphic to �. However, it is easy to see � has no free abelian

factor.

3. Preliminaries

3.1. Profinite groups. We briefly review basic definitions and facts related to

profinite groups, and establish notation. For a more thorough discussion, see for

example [15, 19]. A group G is profinite if it is the inverse limit of an inverse

system of finite groups. By equipping each of the finite groups with the discrete

topology, we obtain the profinite topology on G.

The profinite topology makes G into a compact Hausdorff space. A local base

for the profinite topology ofG at the identity e is given by open subgroups of finite

index. This gives rise to a useful finiteness property for profinite groups.

Definition 3.1. A profinite group G is said to be of type (F) if for every n � 1,

there are only finitely many open subgroups of G of index n.

If � is any group, we denote by � the profinite completion of �. There is a

natural map j� W� ! y� with dense image. The map j� is universal for maps of �

to profinite groups. IfG is any profinite group and 'W� ! G is a homomorphism,

then there is a unique homomorphism O'W y� ! G such that ' D O' ı j� .
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We will be particularly interested in finitely generated groups �. Even though

an infinite profinite group is never finitely generated (because it is uncountable),

there is a useful concept of finite generation.

Definition 3.2. We say a profinite group G is finitely generated if G is topologi-

cally finitely generated, i.e. there exists a finite set S � G that generates a dense

subgroup of G.

Any finitely generated profinite group is of type (F), see e.g. [15, 2.5.1].

Further, because the map j� W� ! y� has dense image, we see that if � is finitely

generated, then y� is finitely generated as a profinite group.

The universal property of the profinite completion has the following conse-

quence in the context of finitely non-co-Hopfian groups.

Proposition 3.3. Let � be a finitely generated group and suppose ƒ � � is a
finite-index subgroup of � with ƒ Š �. Fix such an isomorphism and consider
the composition

'W� �! ƒ ,�! �:

Then there exists a unique open embedding O'W y� ! y� with O' ı j� D j� ı '.

Proof. By the universal property of profinite completions, the composition

'W�
Š
�! '.�/ ,�! �

(where the first map is ') gives rise to a map

O'W y�
Š
�! b'.�/ �! y�:

Here the first map is an isomorphism of profinite groups and in particular a home-

omorphism. Therefore we only need to show the second map is an open embed-

ding. But if G is any finitely generated group and H is a finite-index subgroup

of G, then the map yH ! yG (induced by inclusion) is an open embedding. This is

immediate from the fact that there exists a normal finite-index subgroup N � G
such that N � H . �

3.2. Contraction groups. We are therefore led to study open self-embeddings

of profinite groups. To give a good description of these, we will first recall the

notion of a contraction groups, originally introduced by Müller-Römer [11]. Here

we will follow [1], who give a slightly different definition that is less general.

Definition 3.4. Let G be a locally compact topological group and ˛WG ! G be

an automorphism. Then the pair .G; ˛/ is a contraction group if for any g 2 G,

we have ˛n.g/! e.
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We have the following three essential examples:

Example 3.5. (1) Let G D R. Then multiplication by some � 2 R with

0 < j�j < 1 is a contraction.

(2) Let G D Qp . Then multiplication by p is a contraction.

(3) Let p be a prime and consider the ring of formal Laurent seriesG D Fp..t //

overFp . We viewG as an additive group. Then multiplication by t is a contraction.

The classification of contraction groups began with the work of Siebert [17],

who separated the classification into a problem for connected groups and totally

disconnected groups, and completely classified connected contraction groups. In

the connected case, G is a simply-connected real unipotent Lie group (compare

Example 3.5(1)).

The totally disconnected case was further developed by the work of Baum-

gartner and Willis [1] and solved by Glöckner and Willis [8].

Theorem 3.6 (Glöckner and Willis [8]). Let .G; ˛/ be a totally disconnected
contraction group. Then the set of torsion elements Tor.G/ and the set of divisible
elements Div.G/ are ˛-invariant closed subgroups of G, and

G Š Tor.G/ � Div.G/:

Further the divisible part is described as follows: there exists a finite set of primes
¹piºi and unipotent pi -adic Lie groups Upi

such that

Div.G/ Š
Y

i

Upi
:

3.3. Endomorphisms of profinite groups. The above work on contraction

groups was used in the context of open self-embeddings of profinite groups by

Reid [14]. However, note that if .G; ˛/ is a contraction group, then G is never

compact. Therefore we make the following analogous definition in the setting of

compact groups.

Definition 3.7. Let G be a compact topological group and ˛WG ,! G be a

morphism. We say ˛ is contracting if for any g 2 G, we have ˛n.g/! e.

For the totally disconnected contraction groups of Examples 3.5(2) and (3),

we can take compact subgroupsK that are preserved by ˛ and ˛ restricts to a con-

tracting endomorphism of K, e.g. K D Zp in Example 3.5(2) and K D FpŒŒt ��

in Example 3.5(3). In the case of open contracting embeddings, it is straightfor-

ward that one can also recover the contraction group from the embedding of the

compact subgroup.
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Proposition 3.8. Let G be a compact topological group and ˛WG ,! G be an
open contracting embedding. Set

H WD lim
�!
.G

˛
,�! G

˛
,�! � � � /:

Then H is a locally compact group and ˛ naturally induces an automorphism of
H such that .H; ˛/ is a contraction group.

Remark 3.9. Instead of constructingH as an inductive limit, we can also consider

the ascending HNN-extension

G�˛ WD hG; t j for all g 2 G such that tgt�1 D ˛.g/i:

The group H is then obtained as

H D
[

n�0

t�nGtn:

Using the theory of contraction groups, we have the following result by Reid

that describes open embeddings of finitely generated profinite groups.

Theorem 3.10 (Reid [14]). LetG be a profinite group of type (F) and O'WG ,! G

an open embedding. Then there exist closed subgroups C and Q of G such that

� G Š C ÌQ;

� C is O'-invariant and O' restricts to an open contracting embedding on C ;

� we can write C D N �F where N is a compact open subgroup of a product
of finitely many p-adic unipotent Lie groups ( for finitely many primes p) and
F is a bounded exponent solvable group that is residually nilpotent;

� Q is O'-invariant and O' restricts to an automorphism on Q.

Remark 3.11. C and Q are explicitly given in terms of O', namely we have

C WD ¹g 2 G j O'n.g/
n!1
����! eº

and Q WD
\

n�0

O'n.G/:

In fact Reid proves a more general version of the decomposition of Theo-

rem 3.10, where one can considers a collection of endomorphisms G ! G. We

will need a stronger conclusion than Theorem 3.10 provides in the restricted case

of a single endomorphism, which however is immediate from the proof of Theo-

rem 3.10 in [14].

To state this stronger version, recall that a group G is pronilpotent if it is the

inverse limit of a system of finite nilpotent groups. In particular, any pronilpotent

group is residually nilpotent. The stronger version of Theorem 3.10 that we need

is as follows.
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Proposition 3.12. Let G be a profinite group of type (F) and O'WG ,! G an open
embedding. Let C be as constructed in Theorem 3.10. Then C is pronilpotent.

Proof. This slightly stronger result is immediate from Reid’s proof of [14, Theo-

rem 4.3.(i)]. Indeed, after the reduction to the case G D Con. O'/, Reid proceeds

to construct a sequence of finite-index open normal subgroups Ni with \Ni D 1

and such that G=Ni is nilpotent for each i . Hence G is pronilpotent. �

3.4. Nilpotent groups. The previous result leads us from open embeddings of

profinite groups to pronilpotent groups. To exploit this connection later, we will

now recall some classical facts about nilpotent groups. Recall that the lower
central series of a groupG is inductively defined by 0.G/ WD G and kC1.G/ WD
Œk.G/; G� for any k � 0. We say G is nilpotent of class c if c is the first term

of the lower central series such that c.G/ D 1. We say G is nilpotent if G is

nilpotent of class c for some c.

We start by recalling the following elementary result that gives a splitting of a

finite nilpotent group over primes.

Proposition 3.13 (see e.g. [16, 5.2.4]). Let G be a finite nilpotent group. Then

(i) for any prime p dividing jGj, there exists a unique p-Sylow subgroup G.p/

of G;

(ii) we have G Š
Q

p G
.p/, where the product is over all primes.

The corresponding result holds for profinite groups.

Proposition 3.14 (see e.g. [15, 2.3.8]). Let G be a pronilpotent group. Then for
any prime p, there exist closed pro-p subgroups G.p/ of G such that

G Š
Y

p

G.p/;

where the product is over all primes.

In the above setting, G.p/ is called the localization of G at the prime p. We

continue by studying finitely generated nilpotent groups. The following result

allows us to reduce to the torsion-free case.

Proposition 3.15 (see e.g. [16, 5.2.7]). Let � be a finitely generated nilpotent
group. Then the set of torsion elements Tor.�/ is a finite normal subgroup of �.

Therefore the study of a finitely generated nilpotent group � breaks up into

studying its torsion subgroup Tor.�/ and the torsion-free part �.1/ WD �=Tor.�/.

Occasionally it will be useful to us to work with a finite-index torsion-free sub-

group rather than the torsion-free quotient �.1/. We can do so by the following
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result, which follows immediately from Proposition 3.15 and the fact that nilpotent

groups are residually finite, a result of Gruenberg (see e.g. [16, 5.2.21]).

Proposition 3.16. Let� be a finitely generated nilpotent group. Then� is virtually
torsion-free. In particular, �=Tor.�/ is abelian if and only if � is virtually
abelian.

The theory of finitely generated torsion-free nilpotent groups is intimately

connected to Lie theory because of the following result of Mal’cev.

Theorem 3.17 (Mal’cev, see e.g. [13, Corollary 2 of 2.11 and 2.18]). Let � be a
finitely generated torsion-free nilpotent group. Then there exists a unique simply-
connected nilpotent Lie group N such that there is an embedding � ,! N as a
cocompact lattice.

Given a finitely generated torsion-free nilpotent group �, we say the simply-

connected nilpotent Lie groupN given by Theorem 3.17 is the real Mal’cev com-
pletion of � and use the notation N D � ˝R. The real Mal’cev completion cap-

tures an incredible amount of the algebraic structure of �. One of the strongest

instances is the following superrigidity result of Mal’cev, showing that homomor-

phisms of � to other simply-connected nilpotent Lie groups are controlled by N .

Theorem 3.18 (Mal’cev, see e.g. [13, 2.17]). Let� be a finitely generated torsion-
free nilpotent group. Then for any simply-connected nilpotent Lie group H and
any homomorphism �W� ! H , the map � uniquely extends to a homomorphism
N�W� ˝ R! H .

4. Nilpotent case of the main theorem

The goal of this section is to prove Theorem 1.1 under the additional assumption

that � is nilpotent, i.e. the following result.

Theorem 4.1. Suppose � is a finitely generated and nilpotent group and admits
a descending chain of finite-index normal subgroups �k with �k Š �. Set
�1 D

T

k �k. Then modulo its torsion, �=�1 is abelian.

This result will be used several times in the subsequent sections to establish

the general version of Theorem 1.1. Before starting the proof, we provide a brief

outline.

First we reduce the statement to the case of torsion-free nilpotent groups (Step

1 below). Any such group is a lattice in its real Mal’cev completionG. Using that

the real Mal’cev completion G is the same for � and its subgroup �k , we obtain

automorphisms 'k of G with 'k.�/ D �k (Step 2).
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Then ��k WD '
�1
k
.�/ are cocompact lattices in G contained inH WD

S

k ��k .

This allows us to consider an (archimedean) limit of�=�k Š ��k=�, namelyH=�.

Contrary to the profinite limit lim
 �

�=�k , we can controlH=� because it is a com-

pact nilpotent Lie group. We use this to show that �=�k have normal abelian

subgroups of uniformly bounded index (Step 3). Finally we conclude from this

that �=�1 is abelian modulo torsion (Step 4).

Proof of Theorem 4.1. We proceed in four steps.

Step 1: reduction to torsion-free case. We claim that it suffices to establish the

theorem for torsion-free nilpotent groups. Indeed, let � be any finitely generated

group with a descending chain of finite-index normal subgroups �k with �k Š �.

Choose such isomorphisms and view these as embeddings 'k W� ,! � (with

image �k). Recall that the set Tor.�/ of � form a finite normal subgroup, and

likewise for �k (see Proposition 3.15).

For any k � 1, we clearly have

'k.Tor.�// � Tor.�k/ � Tor.�/: (4.1)

On the other hand, since �k Š �, we have Tor.�k/ Š Tor.�/. Since Tor.�/ is fi-

nite, both inclusions in Equation 4.1 are equalities. Hence 'k W� ,! � descends to

an embedding 'k W�=Tor.�/! �=Tor.�/. Further note that �.1/ WD �=Tor.�/

is torsion-free and nilpotent, and if it is abelian modulo its torsion, then so is �.

This completes Step 1.

For the remainder of the proof, we assume � satisfies the hypotheses of

Theorem 4.1 and is torsion-free. We choose isomorphisms 'k as above, and view

them as self-embeddings 'k W� ,! � with image �k .

Step 2: constructing automorphisms of the Mal’cev completion. Let G WD
� ˝ R be the real Mal’cev completion of �, so that � embeds as a cocompact

lattice in G (see Theorem 3.17). Henceforth we will identify � with its image

in G.

By Mal’cev’s Superrigidity Theorem 3.18, the embeddings 'k W� ,! �

uniquely extend to continuous homomorphisms G ! G, which we will also de-

note by 'k . We claim each 'k is an automorphism of G.

Indeed, since 'k.�/ is of finite index in �, we know that 'k.�/ is also a lattice

in G. Therefore we can also apply Mal’cev’s Superrigidity Theorem 3.18 to the

inverse map

'�1
k j'k.�/W 'k.�/ �! �:

The uniqueness in Mal’cev’s superrigidity theorem implies that the extension of

the inverse is inverse to 'k WG ! G. Hence 'k extends to an automorphism of G.
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Step 3: control on �=�k. We claim that there exists C � 1 such that for any

k � 1, the group �=�k has a normal abelian subgroup of index at most C .

To see this, set ��k WD '
�1
k
.�/ (as a subgroup of G), where k � 1. Set

H WD
[

k�0

��k :

Since � � G is cocompact and is contained in the closed subgroup H � G, we

must have that � is also cocompact in H . Further since �k is a normal subgroup

of � for any k � 1, we have that � is a normal subgroup of ��k for any k � 1.

Since � is closed, it follows that H also normalizes �.

Hence K WD H=� is a compact nilpotent Lie group containing ��k=� for

any k � 1. Note that K has finitely many connected components and its identity

component K0 is a compact connected nilpotent group and hence is a torus. Let

C WD jK=K0j be the number of connected components of K.

Let k � 1 and consider the composition

f W�=�k

'�1

k

�! ��k=� � H=� D K �� K=K0:

Note that ker.f / has index at most C . Further ker.f / embeds into the compact

torusK0 (by omitting the last map in the above composition) and hence is abelian.

This proves the claim.

Step 4: end of the proof. We claim that x� WD �=�1 is virtually abelian, which

will finish the proof (using Proposition 3.16). Let C � 1 be as in Step 3. Since

� is finitely generated, it has only finitely many subgroups of index at most C .

Define ƒ to be the intersection of all of these subgroups. We will show that the

image of ƒ in x� is abelian.

To see this, note that ƒ is a finite-index normal subgroup of � with the

following property: wheneverL is a finite group of order at mostC and f W� ! L

is a homomorphism, ƒ � ker.f /.

Hence for any k � 1, the image of the composition

ƒ �! x� �! �=�k

'�1

k

�! ��k=� ,�! K

is contained in K0 (because ƒ maps trivially to K=K0). We conclude that the

image of ƒ in �=�k is abelian, so that Œƒ;ƒ� � �k for all k. Hence

Œƒ;ƒ� �
\

k

�k D �1:

Therefore the image of ƒ in x� is abelian, as desired. �
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5. Almost global bound on nilpotency class

We will now start the proof of the general case of Theorem 1.1. Let � be a finitely

generated group with a descending chain of finite-index normal subgroups ¹�kºk
such that �k Š �. We start by using the structure of the profinite completion of

� to obtain information about the finite groups �=�k.

Proposition 5.1. �=�k is nilpotent for every k � 1.

Proof. Fix isomorphisms � Š �k and view these as self-embeddings

'k W� ,�! �

with image �k . These maps induce

O'k W y� �! y�;

on the profinite completion of �. By Proposition 3.3, the map O'k is an open

embedding for each k. By Reid’s work on open self-embeddings of profinite

groups (see Theorem 3.10), there are closed subgroups Ck � y� and Qk � y�

such that
y� D Ck ÌQk

and O'k restricts to a contracting endomorphism ofCk and an automorphism ofQk.

In particular, we have

�=�k Š y�= O'k.y�/ D Ck= O'k.Ck/:

By Proposition 3.12, the group Ck is pronilpotent, and since O'.Ck/ � Ck is open,

it follows that the finite quotient Ck= O'k.Ck/ Š �=�k is nilpotent. �

In order to use the nilpotency of �=�k to obtain information about �, we

will show the nilpotency class of �=�k is uniformly bounded. Most of the next

two sections is devoted to the proof of this. Once this uniform bound has been

established, the proof of Theorem 1.1 will be finished in Section 7.

To bound the nilpotency class of �=�k , write it as a product over primes (see

Proposition 3.13):

�=�k D
Y

p

.�=�k/
.p/;

where .�=�k/
.p/ is a finite p-group. In this way, the problem of uniformly

bounding the nilpotency class of �=�k separates out into a problem over each

prime. The desired uniform bound on nilpotency class will be obtained in two

steps. First we give a uniform bound on the nilpotency class of .�=�k/
.p/ for

almost all primes p (see Theorem 5.2 below). Finally, in Theorem 6.1, we will

obtain a local bound on nilpotency class at any fixed prime p. The rest of this

section will be devoted to obtain the bound at almost all primes.
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Theorem 5.2. There is a finite set of primes S and c � 1 such that for any p … S
and k � 1, the group .�=�k/

.p/ is nilpotent of class at most c.

Let us first introduce some notation. Recall that c.�/ is the cth term in the

lower central series of �. Set Nc WD �=c.�/. Note that Nc is a finitely generated

nilpotent group of class at most c. SetN
.1/
c D Nc=Tor.Nc/, so N

.1/
c is a finitely

generated torsion-free nilpotent group.

Let us now give an outline of the proof of Theorem 5.2. We will first show

that 'k W� ,! � descend to self-embeddings of N
.1/
c (Claims 5.3 and 5.4). We

can therefore apply the nilpotent case of the Main Theorem 1.1, i.e. Theorem 4.1.

This easily shows that any nonabelian subgroup of �=�k comes from the torsion

of a certain nilpotent group of class c, where c is the nilpotency class of �=�k . We

will show that if a prime contributes nonabelian torsion at some class c0, then it

already did so at c D 2 (Lemma 5.11), and hence nonabelian subgroups of �=�k

are only located at the finite set of primes visible at c D 2. We will use this to

complete the proof of Theorem 5.2 at the end of the section.

Claim 5.3. 'k W� ,! � descend to embeddings N'
.1/

k
WN

.1/
c ,! N

.1/
c .

Proof. It is clear each 'k descends to a map

N'k WNc �! Nc

such that the image N'k.Nc/ is normal and finite-index in Nc . Since the image of

any torsion element is torsion, we see that each N'k in turn descends to a map

N'
.1/

k
WN .1/

c �! N .1/
c

with finite-index and normal image. It remains to show N'
.1/

k
is injective.

Let G D N
.1/
c ˝ R be the real Mal’cev completion of N

.1/
c , i.e. the unique

simply-connected nilpotent Lie group containingN
.1/
c as a cocompact lattice (see

Theorem 3.17). By Mal’cev’s Superrigidity Theorem 3.18, the maps N'
.1/

k
extend

to continuous homomorphisms

N'
.1/

k
WG �! G:

We claim these are isomorphisms. Indeed, N'
.1/

k
.N

.1/
c / is a finite-index subgroup

of N
.1/
c and hence a cocompact lattice in G. Therefore N'

.1/

k
.G/ is a connected

closed cocompact subgroup of G. But since G is a simply-connected nilpotent

Lie group, the only connected closed cocompact subgroup of G is G itself (see

e.g. [13, 2.1]). It follows that N'
.1/

k
is surjective.

By a dimension count, we see that dim ker N'
.1/

k
D 0, i.e. ker N'

.1/

k
is discrete,

so that N'
.1/

k
is a covering map. Since N'

.1/

k
.G/ D G is simply-connected, it follows

that N'
.1/

k
is an automorphism of G, as desired. �
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Consider the set P of primes p such that for some k � 1, we have that

.�=�k/
.p/ ¤ 1. If P is finite, then the conclusion of Theorem 5.2 is immediately

satisfied. Henceforth we assume P is infinite.

Claim 5.4. For any c � 1, we have ŒN
.1/
c W N'

.1/

k
.N

.1/
c /�

k!1
����! 1:

Remark 5.5. At this point we do not even know that Nc is infinite, but this will

follow from the above claim.

Proof. Since the map Nc ! N
.1/
c has finite kernel Tor.Nc/, we have for any c

and k that

ŒN .1/
c W N'

.1/

k
.N .1/

c /� �
1

jTor.Nc/j
ŒNc W N'k.Nc/�:

Therefore it suffices to show that for any k � 1, we have

ŒNc W N'k.Nc/�
k!1
����! 1: (5.1)

Further, it suffices to establish (5.1) for c D 1 because the abelianization map

abWNc ! N1 D �
ab satisfies ab . N'k.Nc// D N'k.N1/; so that

ŒNc W N'k.Nc/� � ŒN1 W N'k.N1/�:

It remains to show that ŒN1 W N'k.N1/�!1. It is straightforward to see that

N1= N'k.N1/ D .�=�k/
ab

so ŒN1 W N'k.N1/� D j.�=�k/
abj: Let Pk be the set of prime divisors of j�=�k j.

Since �=�k splits as a product of nontrivial p-groups for p 2 Pk, and any

nontrivial p-group has nontrivial abelianization, we find

j.�=�k/
abj �

Y

p2Pk

p:

By assumption, P D
S

k Pk is infinite, so we have j.�=�k/
abj ! 1, as desired.

�

Since ŒN
.1/
c W N'

.1/

k
.N

.1/
c /�!1, we can assume (after passing to a subse-

quence if necessary) that

N .1/
c � N'

.1/
1 .N .1/

c / � N'
.1/
2 .N .1/

c / � � � �

is a descending chain of subgroups. By Theorem 4.1 (the nilpotent case of

Theorem 1.1), we see that xN
.1/
c WD N

.1/
c =

T

k N'
.1/

k
.N

.1/
c / is abelian modulo

torsion. In fact, we can conclude the following slightly stronger result.
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Lemma 5.6. xNc WD Nc=
T

k N'k.Nc/ is abelian modulo its torsion.

Proof. Taking the quotient by Tor.Nc/ gives a surjective map

�.1/
c WNc �! N .1/

c

that maps
T

k N'k.Nc/ to
T

k N'
.1/

k
.N

.1/
c /. Hence �

.1/
c descends to a surjective

map
xNc �! xN .1/

c

with finite kernel Tor.Nc/=.Tor.Nc/\
T

k N'k.Nc//. Since xN
.1/
c is abelian modulo

its torsion, the same holds for xNc . �

Next we show the torsion-free part xN
.1/
c of xNc does not depend on c.

Lemma 5.7. Let c > d � 1. Then the natural maps N�c W xNc ! xNd descend to
isomorphisms

N�.1/
c W xN .1/

c

Š
�! xN

.1/

d
:

In particular, ker. N�c/ is torsion.

Proof. Surjectivity of the quotient map Nc ! Nd immediately yields that N�c is

surjective. To show it is injective, it suffices to consider the case d D 1. Consider

the composition

� �! xNc �! xN .1/
c : (5.2)

Since �1 is contained in the kernel of (5.2) and xN
.1/
c is torsion-free abelian, we

see (5.2) factors through the quotient � ! xN
.1/
1 and hence descends to a map

xN
.1/
1 ! xN

.1/
c , which is easily checked to be inverse to N�

.1/
c . �

Our next step is most conveniently phrased in terms of subvarieties of groups

and verbal subgroups associated to the lower central series. Let us therefore first

recall these notions and fix some notation.

Definition 5.8. Let V be a collection of words on some collection of sym-

bols. Let V.G/ denote the corresponding verbal subgroup of G, and write

V.G/ WD G=V.G/ for the largest quotient of G that satisfies all the group laws

given by V .

Note that terms of the lower central series of a group give examples of verbal

subgroups. For the cth term, we can consider the verbal subgroup V.G/ D d .G/,

and we will write Nilc.G/ WD V.G/ D G=d .G/. For example, in the special case

G D � we have been writing Nc D Nilc.�/. We need the following general fact,

the proof of which is straightforward.
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Lemma 5.9. Let G be any group and suppose H � G is a normal subgroup.
Write VG.H/ for the image of H in V.G/. Then

V.G/=VG.H/ Š V.G=H/:

Our goal will now be to show that any nonabelian subgroup of �=�k is located

at divisors of Tor. xN2/. More precisely, if �=�k is nilpotent of class c, we have �=

�k D Nc= N'k.Nc/. The latter surjects onto N
.1/
c = N'

.1/

k
.N

.1/
c /, which is abelian

by Lemma 5.6. Therefore any nonabelian subgroup of �=�k is located at divisors

of jTor.Nc/j. Our goal is to show such a subgroup in fact needs to be located at

divisors of jTor. xN2/j.

Unfortunately in general the torsion ofNc can grow as c !1. We remedy this

in the following way. Since xNc is finitely generated and nilpotent, xNc is virtually

torsion-free (See Proposition 3.16). Let xN
.tf/
c be a finite-index normal torsion-free

subgroup of xNc . Write
xN .fin/

c WD xNc= xN
.tf/
c

for the quotient. Set xTc WD Tor. xNc/. Since xN
.tf/
c is torsion-free, xTc projects

isomorphically onto its image in xN
.fin/
c .

Consider the image of xN
.tf/
c under N�c W xNc ! xN2. Since ker N�c is torsion (by

Lemma 5.7), we see that xN
.tf/
2 WD x�c. xN

.tf/
c / is a torsion-free finite-index normal

subgroup of xN2. Write
xN

.fin/
2 WD xN2= xN

.tf/
2

for the quotient. Unlike the situation for torsion groups of xNc at different values

of c, there is an easy description of the relationship between xN
.fin/
c and xN

.fin/
2 as

follows.

Lemma 5.10. (i) xNc D Nilc.x�/.

(ii) Nil2. xN
.fin/
c / Š xN

.fin/
2 :

Proof. We apply Lemma 5.9 to the group � with normal subgroup �1 and verbal

subgroup c.�/. Since
T

k N'k.Nc/ is the image of �1 in Nc , we obtain that

xNc D Nc=
\

k

N'k.Nc/ D Nilc.�=�1/:

This proves (i).

It follows that Nil2. xNc/ D xN2. Applying Lemma 5.9 again to the group xNc

with normal subgroup xN
.tf/
c and verbal subgroup given by the second term 2 of

the lower central series (so V.G/ D Nil2.G/ for any group G), we find

xN2= xN
.tf/
2 Š Nil2. xNc= xN

.tf/
c /: �
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Write
xN .fin/

c D
Y

p

xN .fin;p/
c

as a product of p-groups. We show that any nonabelian contributions are located

at a finite set of primes that does not depend on c.

Lemma 5.11. Let p be a prime that does not divide j xT2j. Then xN .fin;p/
c is abelian.

Proof. By Lemma 5.10(ii), we have xN
.fin;p/
2 D Nil2. xN

.fin;p/
c /. Note that a nilpo-

tent group G is abelian if and only if Nil2.G/ is abelian. Therefore it suffices to

show that xN
.fin;p/
2 is abelian.

Since p does not divide j xT2j, we see that xN
.fin;p/
2 intersects xT2 trivially (in-

side xN
.fin/
2 ) and hence projects isomorphically onto its image in xN

.fin/
2 =xT2. But

the latter group is abelian because

xN
.fin/
2 =xT2 D xN2=h xN

.tf/
2 ; xT2i

is a quotient of xN2=xT2, which is abelian because xN2 is abelian modulo torsion (see

Lemma 5.6). Therefore xN
.fin;p/
2 is abelian, as desired. �

We can now complete the proof of Theorem 5.2.

Proof of Theorem 5.2. We need to show that there is a finite set of primes S and

c � 1 such that for any p … S and k � 1, the group .�=�k/
.p/ is nilpotent of

class at most c. Let S be the set of divisors of j xT2j. We will show that for p … S
and k � 1 arbitrary, .�=�k/

.p/ is nilpotent of class at most 2, which will prove

Theorem 5.2.

Let c be the nilpotency class of �=�k . Since �=�k is a quotient of x� D �=�1,

we can realize �=�k as a quotient of Nilc.x�/. By Lemma 5.10(i), we have

Nilc.x�/ D xNc . Then we must have

.�=�k/
.p/ Š . xNc= N'k. xNc//

.p/:

Since xNc is abelian modulo torsion, xNc=h N'k. xNc/; xTci is abelian. Therefore the

commutator subgroup 1..�=�k/
.p// is contained in the image of xT

.p/
c

in xNc='k. xNc/. Hence to prove the claim it suffices to show that xT
.p/
c is central

in xNc .

Since xTc intersects xN
.tf/
c trivially, it suffices to show that xT

.p/
c is central

in xNc= xN
.tf/
c . To see this, write

xN2= xN
.tf/
2 Š

Y

`

. xNc= xN
.tf/
c /.`/

where ` runs over primes. Since p does not divide j xT2j, we know by Lemma 5.11

that . xNc= xN
.tf/
c /.p/ is abelian, so xT

.p/
c is indeed central. �
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6. Local bound on nilpotency class

We will start by obtaining a local bound on nilpotency class of �=�k at a fixed

prime p. Afterwards, we will finish the proof of Theorem 1.1.

Theorem 6.1. Letp be a prime. Then the nilpotency class of .�=�k/
.p/ is bounded

independently of k.

Before starting the proof, let us first prepare the stage. Recall that the embed-

dings 'k W� ,! � induce open embeddings O'k W y� ,! y�, which by Theorem 3.10,

give rise to a O'k-invariant decomposition

y� D Ck ÌQk :

Further we can write

Ck D Uk � Sk;

whereUk is a compact open subgroup of a product of unipotent p-adic Lie groups,

and Sk is a solvable group of finite exponent. Of course Uk is nilpotent. By

Proposition 3.12, we also know that Sk is pronilpotent. Pronilpotent groups split

as a product over primes (see Proposition 3.14), so we can write

Ck D
Y

p

C
.p/

k

where C
.p/

k
is pro-p.

Let us sketch the proof of the bound of Theorem 6.1. Fix a prime p. We obtain

some initial control on .�=�k/
.p/ by showing that for sufficiently large K, the

obvious quotient map y� ! �=�k restricts to a surjection of C
.p/
K onto .�=�k/

.p/

(Lemma 6.2 below).

In particular, .�=�k/
.p/ is a quotient of C

.p/
K . If C

.p/
K is nilpotent rather than

pronilpotent (e.g. if SK D 1), then this immediately yields a uniform bound on the

nilpotency class of .�=�k/
.p/, which proves Theorem 6.1. To obtain such a bound

in the general case where C
.p/
K is merely pronilpotent, a more careful analysis of

the image of S
.p/
K in �=�k is needed. More precisely, we will see that modulo the

image of U
.p/
K , there are only finitely many (necessarily nilpotent) possibilities for

the image of S
.p/
K , independent of k. This will enable us to complete the proof of

Theorem 6.1. Let us now carry out this strategy.

Lemma 6.2. Fix a prime p. Then for sufficiently large K, the quotient map
y� ! �=�k restricts to a surjection C .p/

K � .�=�k/
.p/:

Proof. Let us study the abelianization .�=�k/
.p/;ab of .�=�k/

.p/. Clearly the

group .�=�k/
.p/;ab surjects onto .�=�l /

.p/;ab whenever k � l . Hence we deduce

that rank.�=�k/
.p/;ab is nondecreasing in k.
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On the other hand, since � is finitely generated, we have

rank.�=�k/
.p/;ab � rank �ab <1

for any k. Therefore rank.�=�k/
.p/;ab is eventually constant. Let K � 1 such that

rk.�=�K/
.p/;ab is maximal. We claim that for any k � 1, the composition

C
.p/
K ,�! y� �� .�=�k/

.p/

is surjective.

This is clear for k � K because �=�k is a quotient of

�=�K Š CK= O'K.CK/;

and hence .�=�k/
.p/ is a quotient of C

.p/
K = O'K.C

.p/
K /.

Let k > K. Consider the image H of the composition

C
.p/
K ,�! y� �� .�=�k/

.p/:

We argue by contradiction, so assume thatH ¨ .�=�k/
.p/. Note thatH is normal

in .�=�k/
.p/ because C

.p/
K is normal in y� . The quotient

F WD .�=�k/
.p/=H

is a nontrivial p-group and hence there is a nontrivial map F ! Fp . Consider the

composition

f W .�=�k/
.p/ �! F �! Fp :

Since .�=�k/
.p/;ab and .�=�K/

.p/;ab have the same rank, any map .�=�k/
.p/;ab !

Fp factors through

.�=�k/
.p/;ab �! .�=�K/

.p/;ab:

On the one hand, f vanishes on the image H of C
.p/
K in .�=�k/

.p/. On the

other hand, C
.p/
K surjects onto .�=�K/

.p/. It follows that f is trivial. This is a

contradiction. �

To complete the proof of Theorem 6.1 in the case that S
.p/
K is not nilpotent but

merely solvable, we need the following finiteness result for finite solvable groups.

It is easily proved by induction on the length of the derived series.

Lemma 6.3. Let r; d; N � 1. There are only finitely many solvable groups that
are generated by at most r elements, have exponent at mostN , and whose derived
series has length at most d .

We can now finish the proof of Theorem 6.1.
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Proof of Theorem 6.1. Fix a prime p. We need to bound the nilpotency class of

.�=�k/
.p/ independently of k. ChooseK � 1 as in Lemma 6.2, i.e. such that C

.p/
K

surjects onto .�=�k/
.p/. Recall that CK D UK � SK where UK is nilpotent and

SK is a pronilpotent solvable group with bounded exponent.

Let k � 1 and let HU be the image of U
.p/
K in .�=�k/

.p/. Likewise let HS be

the image of S
.p/
K . Note thatHU is a normal subgroup, and Lemma 6.3 applies to

the quotient

.�=�
.p/

k
/=HU Š HS=.HU \HS/:

Namely its number of generators is at most the number of generators of �, and its

exponent and length of derived series are bounded by those of S
.p/
K . Hence there

are only finitely many possibilities (independently of k) for the isomorphism type

of

HS=.HU \HS/:

Further since S
.p/
K is pronilpotent, each of the finitely many options for HS=

.HU \HS / is nilpotent, say of class at most c2.

Finally, let c1 be the nilpotency class of U
.p/
K , so that HU is nilpotent of

class at most c1. Since HU and HS are nilpotent subgroups of .�=�k/
.p/ that

are mutually centralizing and that together generate .�=�k/
.p/, we easily see that

.�=�k/
.p/ D hHU ; HSi can be written as a central extension

1 �! HU \HS �! hHU ; HSi �! .HU=.HU \HS//�.HS=.HU \HS// �! 1:

In particular .�=�k/
.p/ is nilpotent of class at most 1Cmax¹c1; c2º. �

7. Proofs of main results

Having obtained a uniform bound on the nilpotency class of �=�k by Theo-

rems 5.2 and 6.1, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Theorems 5.2 and 6.1, there exists c � 1 such that �=

�k is nilpotent of class at most c, and hence so is x�. Again set Nc WD �=c.�/,

so x� is a quotient of Nc . More precisely, 'k descend to maps

N'k WNc �! Nc

and setting
xNc WD Nc=

�
T

k N'k.Nc/
�

;

we have x� Š xNc . But using Theorem 4.1, the nilpotent case of Theorem 1.1, we

have already shown that xNc is abelian modulo torsion (see Lemma 5.6). Hence x�

is abelian modulo torsion, as desired. �
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We prove Corollary 1.8 showing that finite-index characteristic subgroups of

� that are isomorphic to �, come from free abelian quotients.

Proof of Corollary 1.8. Choose an embedding 'W� ,! � with image � 0. An

easy argument by induction shows that �n WD 'n.�/ is normal for all n � 0.

Indeed, if 'n.�/ is normal in �, then � acts on 'n.�/ by automorphisms. But

'nC1.�/ is characteristic in 'n.�/, and hence is �-invariant. The result now

follows immediately from Theorem 1.1. �

Finally we establish Corollary 1.15 showing that if � is scale-invariant and

the chain of subgroups .�n/n consists of normal subgroups, then � is virtually

abelian.

Proof of Corollary 1.15. Set �1 WD
T

n �n as before. By Theorem 1.1, we have

that �=�1 is abelian modulo torsion. Therefore there is a finite-index subgroup

ƒ � � and some abelian group A such that ƒ is an extension

1 �! �1 �! ƒ �! A �! 1:

Since ƒ is residually finite (because it is abelian-by-finite) and �1 is finite (by

scale-invariance of �), there exists a finite-index subgroup � � ƒ such that

� \ �1 D 1 and hence � is abelian. �
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