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Relative entropy

and the Pinsker product formula

for sofic groups
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Abstract. We continue our study of the outer Pinsker factor for probability measure-

preserving actions of sofic groups. Using the notion of local and doubly empirical con-

vergence developed by Austin we prove that in many cases the outer Pinsker factor of a

product action is the product of the outer Pinsker factors. Our results are parallel to those

of Seward for Rokhlin entropy. We use these Pinsker product formulas to show that if X

is a compact group, and G is a sofic group with GÕX by automorphisms, then the outer

Pinsker factor of GÕ.X;mX / is given as a quotient by a G-invariant, closed, normal sub-

group ofX . We use our results to show that ifG is sofic and f 2 Mn.Z.G// is invertible as

a convolution operator `2.G/˚n ! `2.G/˚n; then the action of G on the Pontryagin dual

of Z.G/˚n=Z.G/˚nf has completely positive measure-theoretic entropy with respect to

the Haar measure.
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1. Introduction

The goal of this paper is to continue the investigation set out in [24] on structural

properties of the outer Pinsker factor for actions of sofic groups and apply them

to the entropy theory of algebraic actions. Recall that for an amenable group G

and a probability measure-preserving action GÕ.X; �/; there is a largest factor

GÕ.Z; �/ of GÕ.X; �/ so that GÕ.Z; �/ has zero entropy. We call GÕ.Z; �/

the Pinsker factor of GÕ.X; �/: We say that GÕ.X; �/ has completely positive

entropy if its Pinsker factor is trivial. For notational purposes, we often write

GÕ.X; �/ ! GÕ.Y; �/ to mean that GÕ.Y; �/ is a factor of GÕ.X; �/; and we

will also say that GÕ.X; �/ ! GÕ.Y; �/ is an extension in situations where we

want to keep track of X; Y and the factor map X ! Y:

Since the Pinsker factor is so natural, one expects that it inherits much of

the structure that the original action has. For instance, it has been shown, first

by [21] if the actions are free and by [16] in general, that if G is amenable

and GÕ.Xj ; �j /; j D 1; 2 are two probability measure-preserving actions with

Pinsker factors GÕ.Zj ; �j /; then the Pinsker factor of GÕ.X1 � X2; �1 ˝ �2/

is GÕ.Z1 � Z2; �1 ˝ �2/: This shows that products of actions with completely

positive entropy have completely positive entropy, but this result has many more

applications. For instance, using this it can be shown that if G is an amenable

group, ifX is a compact group with Haar measuremX ; and ifGÕX by continuous

automorphisms, then there is a closed, G-invariant Y G X so that the Pinsker

factor of GÕ.X;mX / is GÕ.X=Y;mX=Y / (see [42] and Theorem 8.1 of [12]).

Thus in this case the Pinsker factor inherits the algebraic structure thatGÕX has.

Moreover, it is shown in Section 8 of [12] that this reduces the question as to

whether or not an action of G on a compact, metrizable group X by continuous

automorphisms has completely positive measure-theoretic entropy to whether

GÕX has completely positive topological entropy. As we have already given

similar examples in the sofic case of actions with completely positive topological

entropy in [23], we wish to carry over the techniques to the sofic world and show

that these actions have completely positive measure-theoretic entropy. Thus in

this paper we will give product formulas for Pinsker factors for actions of sofic

groups similar to the ones in [21] and [16].

Entropy for measure-preserving actions of sofic groups was defined in pioneer-

ing work of Bowen in [8] under the assumption of a generating partition with finite

entropy. Work of Kerr and Li in [28] removed this assumption and defined topo-

logical entropy as well. The class of sofic groups includes all amenable groups,

all residually finite groups, all linear groups, all residually sofic groups, all locally

sofic groups, and is closed under free products with amalgamation over amenable

subgroups (see [41], [18], and [40]). Thus sofic entropy is a vast generalization

of entropy for amenable groups as defined by Kieffer in [31]. Since we will need

to refer to it later, we roughly describe the definition of soficity and sofic entropy.



Relative entropy 415

Roughly, G is sofic if there is a sequence of functions (not assumed to be homo-

morphisms) �i WG ! Sdi
which give “almost free almost actions.” By “almost

action” one just means that for each g; h 2 G the set of points 1 � j � di for

which the action hypothesis �i .gh/.j / D �i .g/�i .h/.j / fails has very small size

as i ! 1; and by “almost free” one means that for all g 2 G n ¹eº and “most”

1 � j � di we have �i .g/.j / ¤ j: Given a probability measure-preserving ac-

tion GÕ.X; �/; the sofic entropy of GÕ.X; �/ (with respect to .�i /i ) measures

the exponential growth rate as i ! 1 of “how many” finitary approximations

�W ¹1; : : : ; diº ! X of GÕ.X; �/ there are which are compatible with this sofic

approximation. We call such approximations microstates. Analogous to the defi-

nition for amenable groups, one can define the Pinsker factor for actions of sofic

groups (we remark that the Pinsker factor depends on the sofic approximation).

Though this definition of entropy ends up being satisfactory for many purposes,

there are properties of entropy for actions of amenable groups (e.g. decrease of en-

tropy under factor maps) which necessarily fail for actions of sofic groups. There

are examples due to Ornstein and Weiss which show that, under any reasonable

definition of entropy for actions of nonamenable groups, entropy will increase un-

der certain factor maps. Thus there could be factors of the Pinsker factor which

have positive entropy. One can “fix” this by considering entropy in the presence.

Implicit in work of Kerr in [26], entropy in the presence measures for a given

factor GÕ.Y; �/ of GÕ.X; �/ “how many” finitary approximations of GÕ.Y; �/

there are which “lift” to finitary approximations of GÕ.X; �/: If GÕ.Z; �/ is a

factor of GÕ.Y; �/; then the entropy of GÕ.Z; �/ in the presence of GÕ.X; �/

is at most the entropy of GÕ.Y; �/ in the presence of GÕ.X; �/. Entropy in

the presence leads us to define the outer Pinsker factor which is the largest factor

GÕ.Y; �/ ofGÕ.X; �/which has zero entropy in the presence ofGÕ.X; �/with

respect to .�i/i :We remark again that the definition of the outer Pinsker factor de-

pends on the choice of a sofic approximation. In our opinion, the outer Pinsker

factor is a more natural object and it is this version of the Pinsker factor we give a

product formula for. We do not know of general conditions under which a product

formula holds for the (non-outer) Pinsker factor. We remark that there are coun-

terexamples for the Pinsker product formula (for either outer or non-outer Pinsker

factors), but none of the known counterexamples are entirely satisfactory. All cur-

rently known counterexamples to a Pinsker product formula involve something

akin to considering actions GÕ.X; �/; GÕ.Y; �/; so that GÕ.X; �/; G Õ .Y; �/

have microstates with respect to .�i /i ; but G Õ .X � Y; � ˝ �/ does not ad-

mit microstates with respect to .�i /i : It would be interesting to find an example

where GÕ.X � Y; �˝ �/ has microstates with respect to .�i /i ; but for which the

Pinsker factor of G Õ .X � Y; �˝ �/ is not the product of the Pinsker factors of

G Õ .X; �/; G Õ .Y; �/; or which has the analogous property for outer Pinsker

factors.

Even once we consider the correct version of the Pinsker factor, there are

still delicate issues that occur in the investigation of product actions for sofic
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entropy. As mentioned in the preceding paragraph, even if one assumes that we

have microstates �j W ¹1; : : : ; diº ! Xj ; j D 1; 2 for GÕ.Xj ; �j /; j D 1; 2; there

is still no way to ensure that GÕ.X1 � X2; �1 ˝ �2/ has microstates. Because

of this, even if GÕ.Xj ; �j /; j D 1; 2 have completely positive entropy, it may

still be the case that GÕ.X1 � X2; �1 ˝ �2/ has entropy �1: To deal with this,

we use the notion of local and doubly empirical convergence developed by Austin

in [3]. We briefly describe local and doubly empirical convergence. Suppose that

GÕ.X; �/ is a probability measure-preserving action where X is compact, � is

a completed Borel probability measure, and GÕX by homeomorphisms. Given

a sequence �i 2 Prob.Xdi /; the assertion that �i locally and doubly empirically

converges to � is a combination of three assumptions. The first is that �i is mostly

supported, asymptotically as i ! 1; on the space of microstates. Secondly, we

require that �i has the property that for every f 2 C.X/ and for “most” j in

¹1; : : : ; diº we have Z

Xdi

f .x.j // d�i.x/ �

Z

X

f d�:

Lastly, we require that�i˝�i is also almost supported on the space of microstates

for X � X: One of the main results of [3] is that the existence of a sequence of

measures �i with �i
lde
! � implies that there is a way to produce (at random)

a microstate for GÕ.X � Y; � ˝ �/ for any other action GÕ.Y; �/ (assuming

GÕ.Y; �/ has microstates to begin with). We thus defineGÕ.X; �/ to be strongly

sofic (with respect to .�i /i ) if there is some compact model for GÕ.X; �/ so

that there is a sequence �i 2 Prob.Xdi / which locally and doubly empirically

converges to �: By [3, Corollary 5.18], this does not depend upon the choice of

compact model for GÕ.X; �/: Strong soficity ends up being a crucial property

which allows us to prove a product formula for Pinsker factors.

Theorem 1.1. Let G be a countable, discrete, sofic group with sofic approxi-

mation �i WG ! Sdi
: Let .Xj ; �j /; j D 1; 2, be Lebesgue probability spaces

and GÕ.Xj ; �j /; j D 1; 2 probability measure-preserving actions which are

strongly sofic with respect to .�i /i : Let .Zj ; �j / be the outer Pinsker factor of

GÕ.Xj ; �j /; j D 1; 2 with respect to .�i /i : Then the outer Pinsker factor of

GÕ.X1 �X2; �1 ˝ �2/ with respect to .�i /i is GÕ.Z1 �Z2; �1 ˝ �2/:

We remark that it follows from [3, Proposition 8.4] that G Õ .X; �/ is

strongly sofic if and only if every microstate �W ¹1; : : : ; diº ! Y for another

action G Õ .Y; �/ lifts to a microstate  W ¹1; : : : ; diº ! X � Y: In this sense,

the assumption of strong soficity of G Õ .X; �/ is natural for the existence of a

Pinsker product formula (for example, it is currently the only way to guarantee

that G Õ .X � Y; �˝ �/ has positive entropy if one of G Õ .X; �/; G Õ .Y; �/

do).
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We in fact prove something more general than Theorem 1.1, namely we prove

a product formula for “relative outer Pinsker factors”. We refer the reader to

Corollary 4.4 for the precise statement. One can also consider Rokhlin en-

tropy as investigated by Seward in [44] and in a similar manner define the outer

Rokhlin Pinsker factor (see [45] for the definition). Seward has shown in [45]

that if GÕ.Xj ; �j / are two free, probability measure-preserving actions, then the

outer Rokhlin Pinsker factor of GÕ.X1 � X2; �1 ˝ �2/ is the product of the

outer Rokhlin Pinsker factors for GÕ.X1; �1/; GÕ.X2; �2/; assuming that each

GÕ.Xj ; �j /; j D 1; 2 is weakly contained in a Bernoulli shift action. Motivated

by these results, we prove the following permanence properties of strong soficity.

Theorem 1.2. LetG be a countable, discrete, sofic group with sofic approximation

�i WG ! Sdi
:

(i) If GÕ.X; �/ is a probability measure-preserving action with .X; �/ Le-

besgue, and if GÕ.X; �/ is an inverse limit of actions which are strongly

sofic with respect to .�i /i ; then G Õ .X; �/ is strongly sofic with respect

to .�i /i :

(ii) Suppose that GÕ.Y; �/; GÕ.X; �/ are two probability measure-preserving

actions with .X; �/; .Y; �/ Lebesgue, and thatGÕ.Y; �/ is weakly contained

in GÕ.X; �/: If GÕ.X; �/ is strongly sofic with respect to .�i /i , then so

is GÕ.Y; �/:

Theorems 1.2 and 1.1 give us a Pinsker product formula for actions weakly

contained in Bernoulli shift actions, and so our results are parallel to those of

Seward in [45]. To prove Theorem 1.2, we rephrase local and doubly empirical

convergence in functional analytic terms in a way which avoids specifying a

dynamically generating pseudometric.

Following arguments of [6] and [12] we can prove that if X is a compact,

metrizable group, if G Õ X by continuous automorphisms, and if G Õ .X;mX/

is strongly sofic with respect to a fixed sofic approximation of G; then the outer

Pinsker factor is given by the action on a quotient of X by a G-invariant, closed,

normal subgroup.

Theorem 1.3. LetG be a countable, discrete, sofic group with sofic approximation

�i WG ! Sdi
: Let X be a compact, metrizable group with G Õ X by automor-

phisms. If G Õ .X;mX / is strongly sofic with respect to .�i /i , then there exists

a closed, normal, G-invariant subgroup Y � X so that the outer Pinsker factor

(with respect to .�i /i ) is given by the map X ! X=Y:

In [24] we gave a formula, analogous to the Kerr–Li formulation of measure-

theoretic entropy in [28], for measure-theoretic entropy in the presence in terms

of a topological model for the factor GÕ.X; �/ ! GÕ.Y; �/ (see [24, Defini-

tion 2.7]). Li and Liang then gave a similar formulation for topological entropy
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in the presence (see [33, Definition 9.3]). Both of these definitions are recalled

in Definitions 5.2 and 5.3 of this paper. Topological entropy in the presence is

analogous to measure-theoretic entropy in the presence in that it measures, for a

given topological factor GÕY of GÕX; how many microstates GÕY has which

“lift” to microstates for GÕX: In Theorem 1.1 of [25] we related topological en-

tropy in the presence to measure-theoretic entropy in the presence for strongly

sofic actions on compact groups. To do this, we used the similarity between our

definition of measure-theoretic entropy in the presence in terms of a given com-

pact model, and Li and Liang’s definition of topological entropy in the presence.

If X is a compact, metrizable space and GÕX by homeomorphisms, then we

say that GÕX has completely positive topological entropy in the presence if the

topological entropy of GÕY in the presence of GÕX is positive whenever Y

is a nontrivial topological factor of X . As with measure-theoretic entropy, com-

pletely positive topological entropy in the presence implies completely positive

topological entropy. Using Theorem 1.1 of [25], we have the following corollary

of Theorem 1.3 connecting completely positive topological entropy in the pres-

ence to completely positive measure-theoretic entropy in the presence.

Corollary 1.4. Let G be a countable, discrete, sofic group with sofic approxi-

mation �i WG ! Sdi
: Let X be a compact, metrizable group with G Õ X by

automorphisms. If G Õ .X;mX / is strongly sofic with respect to .�i /i , then the

following are equivalent:

(i) GÕ.X;mX / has completely positive measure-theoretic entropy in the pres-

ence with respect to .�i /i ;

(ii) GÕX has completely positive topological entropy in the presence with re-

spect to .�i /i ;

(iii) for any closed, normal, G-invariant subgroup Y � X with Y ¤ X the

topological entropy of GÕX=Y in the presence of GÕX (with respect

to .�i /i) is positive.

We now consider specific actions on compact groups. For a countable groupG

and f 2 Mm;n.C.G//; write

fsl D
X

x2G

cfsl .x/x for 1 � s � m; 1 � l � n:

We define �.f /W `2.G/˚n ! `2.G/˚m and r.f /W `2.G/˚m ! `2.G/˚n by

.�.f /�/.l/.g/D
X

1�s�m

X

x2G

cfls.x/�.s/.x�1g/; for 1 � l � m; g 2 G;

.r.f /�/.l/.g/D
X

1�s�n

X

x2G

cfsl .x/�.s/.x�1g/; for 1 � l � n; g 2 G:
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We denote by Xf the Pontryagin dual of Z.G/˚n=r.f /.Z.G/˚m/: We have an

action GÕXf given by

.gx/.a/ D x.g�1a/; x 2 Xf ; a 2 Z.G/˚n=r.f /.Z.G/˚m/:

In particular, by [22] (see Proposition 2.15 of [25]) we know that Theorem 1.1 ap-

plies to GÕ.Xf ; mXf
/ when f 2 Mn.Z.G// and �.f / is injective. We combine

this with our previous results in [23] to give examples of algebraic actions which

have completely positive measure-theoretic entropy in the presence (i.e. their outer

Pinsker factor is trivial). Note that completely positive measure-theoretic entropy

in the presence implies completely positive measure-theoretic entropy.

Corollary 1.5. Let G be a countable, discrete, sofic group with sofic approxi-

mation �i WG ! Sdi
: Let f 2 Mn.Z.G//; and suppose that �.f / is invertible.

Then GÕ.Xf ; mXf
/ has completely positive entropy in the presence. That is, if

GÕ.Y; �/ is a measure-theoretic factor of GÕ.Xf ; mXf
/ and � is not a point

mass, then the entropy of GÕ.Y; �/ in the presence of GÕ.Xf ; mXf
/ (with re-

spect to .�i /i) is positive.

We remark that Kerr in [27] showed that Bernoulli actions have completely

positive entropy. Our result covers his, since it follows from [10] that every

Bernoulli action is a factor of an algebraic action of the above form. The above

result is of interest to us because it furthers the connections between the er-

godic theoretic properties of GÕ.Xf ; mXf
/ and the operator theoretic proper-

ties of �.f / as shown in e.g. [17], [32], [34], and [35]. Another interesting as-

pect of Corollary 1.5 is that it has long been asked whether GÕ.Xf ; mXf
/ is

Bernoulli if f 2 Mn.Z.G// is invertible as an operator `1.G/˚n ! `1.G/˚n (see

e.g. [37] Conjecture 6.8). We believe that we should in fact have many Bernoulli-

like properties of GÕ.Xf ; mXf
/ when �.f / is invertible (i.e. f is invertible as

a convolution operator `2.G/˚n ! `2.G/˚n). It is easy to see that being in-

vertible as an operator `1.G/˚n ! `1.G/˚n implies invertibility as an opera-

tor `2.G/˚n ! `2.G/˚n: The above corollary provides further evidence of the

Bernoulli-like behavior of these actions by showing that they have completely pos-

itive entropy. Another result on completely positive entropy for actions of sofic

groups is the work of Austin and Burton in [5]. They show that ifG has an element

of infinite order, then it has continuum many actions with completely positive en-

tropy, none of which factor onto each other. Thus any group with an element of

infinite order has many actions with completely positive entropy.

We mention here a few examples of f 2 Z.G/ which have �.f / invertible.

First, if f is invertible in the convolution algebra `1.G/; then �.f / is invertible.

By standard Banach algebra arguments, this applies for example if

f D b �
X

x2G

axx
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for .ax/x2G 2 cc.G;Z/ and b 2 Z with
P
x2G jaxj < jbj: In the case that f is

invertible in Mn.`
1.G//; Corollary 1.5 follows from Theorem 1.3, Theorem 1.1

of [25], and Theorem 6.7 of [30]. However, if we only assume that �.f / is

invertible (and not that f is invertible in Mn.`
1.G//), then we need to use the

full strength of [23] instead of Theorem 6.7 of [30].

Now consider f as above, but now suppose b ¤ 0; and that

X

x2G

jax j D b:

Then, if ¹y�1xW x; y 2 G; ax ¤ 0; ay ¤ 0º generates a nonamenable group, it is

well known that 



X

x

ax�.x/



 < b:

This again (by standard Banach algebra arguments) implies that �.f / is invertible.

We do not know if there are certain choices of ax in this case which make f

invertible in `1.G/: However, if ax � 0 for every x 2 G; then one can show that

f is not invertible in `1.G/ in this example (this follows from the same argument

as Theorem A.1 of [11]). If ax � 0 for every x 2 G; this example is called the

harmonic model, as Xf in this case may be regarded as the space of �-harmonic

functions f WG ! R=Z (i.e. functions with � � f D bf ) where � is the measureP
x2G axıx : The entropy theory of the harmonic model for nonamenable G was

first studied in [11], and is related to wired spanning forests and tree entropy as

defined by Lyons in [38]. Similar examples can be given by considering

f D b C
X

x2G

axx:

Suppose that there exist g; h 2 G so that the semigroup generated by g; h (but not

necessarily the group generated by g; h) is a free semigroup. Then by Example A.1

of [32] we know that

f D 3e C .e � g � g2/h

has �.f / invertible, but is not invertible in `1.G/:

We make a few brief remarks on the proof of Theorem 1.1. Important in the

proof is the new notion of relative sofic entropy. Given an extensionGÕ.X; �/ !

GÕ.Y; �/; relative entropy roughly measures the maximal number of ways there

are to “lift” any fixed microstate for Y to one for X: Note that this is different

than entropy in the presence, which roughly measures “how many” microstates

there are for Y which have a “lift” to X: We show in Appendix A that this agrees

with relative entropy when the group acting is amenable. The method involves a

language translation of results of Paunescu [41] and Popa [40] into an ultrafilter-

free form, as well as the main results of [9] and [29]. By the Appendix of [24],

when the acting group is amenable the entropy of Y in the presence of X is just
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the entropy of Y (and is thus not the relative entropy). Relative entropy is defined

in Section 2 and its main properties are established. These properties allows us to

define the relative outer Pinsker factor of Y relative to Z in the presence of X for

extensions

GÕ.X; �/ �! GÕ.Y; �/ �! GÕ.Z; �/:

We then proceed to follow the methods of Glasner-Thouvenot-Weiss in [21] to

prove our Pinsker product formula. We make a minor modification to these

methods by noting that every action GÕ.Y; �/ can be written as a factor of an

action with a large automorphisms group, and that we can take this action to

be strongly sofic if GÕ.Y; �/ is. Strong soficity ends up being crucial in this

argument in the following way: if GÕ.Y; �/ is strongly sofic, and GÕ.Z; �/

is a factor of GÕ.X; �/; then the entropy of GÕ.X � Y; � ˝ �/ relative to

GÕ.Z�Y; �˝ �/ (in the presence of X �Y ) is the entropy ofGÕ.X; �/ relative

to GÕ.Z; �/: This is the crucial step (along with the construction of an extension

with large automorphism group) in the argument that the outer Pinsker factor of

X � Y relative to Y is the product of the outer Pinsker factor of X and the whole

system Y:

We make some brief comments on the organization of the paper. In Section 2,

we define relative entropy for actions of sofic groups and prove its basic properties.

We also define the relative outer Pinsker algebra in this section. Because of the

duality between factors and sigma-algebras this also defines the Pinsker factor. We

will prefer to (mostly) state the results in the paper in terms of sigma-algebras as it

makes the results clearer and avoids any issues with the fact that the Pinsker factor

is only well-defined up to isomorphism. In Section 3, we give some preliminaries

on local and doubly empirical convergence and state the definition of strong

soficity. In this section we also prove Theorem 1.2. We then prove that ifGÕ.Y; �/

is strongly sofic, then the entropy ofGÕ.X�Y; �˝�/ relative toGÕ.Z�Y; �˝�/

is the entropy of GÕ.X; �/ relative to GÕ.Z; �/. In Section 4, we follow the

methods in [21] and prove Theorem 1.1. In Section 5, we give applications to

actions on compact groups by automorphisms including the proof of Theorem 1.3

and Corollary 1.5.
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2. Relative sofic entropy

We begin by recalling the definition of a sofic group. For a set A and n 2 N; we

identify An with all functions ¹1; : : : ; nº ! A: For a finite setA;we use uA for the

uniform measure on A: If A D ¹1; : : : ; nº for some n 2 N; then we use un instead

of u¹1;:::;nº: We use Sn for the group of all bijections ¹1; : : : ; nº ! ¹1; : : : ; nº:

Definition 2.1. Let G be a countable, discrete group. A sequence of maps

�i WG ! Sdi
is said a sofic approximation if

� for every g; h 2 G, we have udi
.¹j W �i.g/�i .h/.j / D �i .gh/.j /º/ ! 1;

and

� for every g 2 G n ¹eº, we have udi
.¹j W �i.g/.j / D j º/ ! 1:

We say that G is sofic if it has a sofic approximation.

Examples of sofic groups include all amenable groups, all residually finite

groups, all linear groups, all residually sofic groups, and all locally sofic groups.

The class of sofic groups is also closed under free products with amalgamation

over amenable subgroups (see [41], [18], and [40]).

Throughout the paper, we use the convention that a Lebesgue probability

space is a probability space .X;X; �/ which is isomorphic modulo null sets to a

completion of a probability space .Y;Y; �/;where .Y;Y/ is a standard Borel space.

In essentially every setting for this paper, probability spaces will be complete

and we will adopt notational conventions to account for this. For example, if

.X;X; �/ is a complete probability space, and .A˛/˛2I are complete sub-sigma-

algebras, we use
W
˛2I A˛ for the smallest complete sub-sigma-algebra of X

containing all theA˛: Similarly, if .X;X; �/; .Y;Y; �/are two complete probability

spaces, we will use X ˝ Y for the completion of the sigma-algebra generated by

¹A � B WA 2 X; B 2 Yº with respect to the usual product measure. We will also

use �˝ � for the completion of the usual product measure.

Recall that if .X; �/ is a Lebesgue probability space, and A is a measurable

space, then a measurable map ˛WX ! A is called an observable. We say that ˛

is finite if A is a finite set and all subsets of A are measurable. If S is a subalgebra

(not necessarily a sub-sigma-algebra) of measurable subsets of X; we say that ˛

is S-measurable if ˛�1.¹aº/ 2 S for all a 2 A: If G is a countable, discrete group

acting by probability measure-preserving transformations on X and F is a finite

subset of G; we define ˛F WX ! AF by

˛F .x/.h/ D ˛.h�1x/ for all h 2 F; x 2 X:

If � WG ! Sd is a function (not assumed to be a homomorphism) and � 2 Ad ; we

define .�F� /W ¹1; : : : ; dº ! AF by

.�F� /.j /.g/ D �.�.g/�1.j //:
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If � is a set and � is a measure defined on a sigma-algebra of subsets of �; we

use k�k for the total variation norm of �:We will need this only when� is a finite

set and the sigma-algebra in question is all subsets of X; in which case this norm

is just the `1-norm of � (with respect to the counting measure on �). We recall

some basic notions related to measurable observables.

Definition 2.2. Let ˛WX ! A; ˇWX ! B be two measurable observables. Define

˛ _ ˇWX ! A � B by .˛ _ ˇ/.x/ D .˛.x/; ˇ.x//: We say that ˇ refines ˛; and

write ˛ � ˇ; if there is a measurable map �WB ! A so that �.ˇ.x// D ˛.x/ for

almost every x 2 X:

For the rest of the paper (except the appendix), we fix a sofic group G and a

sofic approximation �i WG ! Sdi
: For the rest of this section, we fix a Lebesgue

probability space .X;X; �/ with G Õ .X;X; �/ by measure-preserving transfor-

mations.

Definition 2.3. Suppose that ˛WX ! A is a finite, measurable observable. For

ı> 0; and a finite F �G; we let AP.˛; F; ı; �i/ be the set of all �W ¹1; : : : ; diº!A

so that

k.�F�i
/�.udi

/ � .˛F /��k < ı:

Definition 2.4. Assume that ˛WX ! A; ˇWX ! B; 
 WX ! C are finite,

measurable observables with 
 � ˛ _ ˇ: Let �AWC ! A; �BWC ! B be such

that �A.
.x// D ˛.x/; �B.
.x// D ˇ.x/ for almost every x 2 X: For a finite

F � G and a ı > 0; set

AP.ˇW 
; F; ı; �i/ D �B ı .AP.
; F; ı; �i//:

Given  2 AP.ˇW 
; F; ı; �i/; set

AP.˛ j  W 
; F; ı; �i/ D ¹�A ı �W� 2 AP.
; F; ı; �i/; �B ı � D  º:

Define

h.�i /i ;�.˛ j ˇW 
; F; ı/ D lim sup
i!1

1

di
log sup

 2AP.ˇ W
;F;ı;�i /

j AP.˛ j  W 
; F; ı; �i/j:

Definition 2.5. Let F1;F2 be G-invariant sub-sigma-algebras of X: Suppose

that ˛ is a finite F1-measurable observable and that ˇ is a finite F2-measurable

observable. Suppose that 
 is a finite observable with 
 � ˛ _ ˇ: Define

h.�i /i ;�.˛ j ˇW 
/ D inf
F�G finite;

ı>0

h.�i /i ;�.˛ j ˇW 
; F; ı/;

h.�i /i ;�.˛ j ˇWX/ D inf


h.�i /i ;�.˛ j ˇW 
/;
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where the infimum over all finite measurable observables 
 with 
 � ˛ _ ˇ: We

then define

h.�i /i ;�.˛ j F2WX/ D inf
ˇ
h.�i /i ;�.˛ j ˇWX/;

h.�i /i ;�.F1 j F2WX/ D sup
˛
h.�i /i ;�.˛ j F2WX/;

where the infimum is over all finite F2-measurable observables ˇ and the supre-

mum is over all finite F1-measurable observables ˛: We call h.�i /i ;�.F1 j F2WX/

the relative sofic entropy of F1 given F2 in the presence of X:

We will often blur the lines between sub-sigma-algebras and factors in the

notation. Thus if Y is the factor corresponding to F2 we will often write

h.�i /i ;�.F1 j Y WX/ for h.�i /i ;�.F1 j F2WX/:

Let us recall the usual definition of relative entropy of observables. Take two

finite measurable observables ˛WX ! A; ˇWX ! B . The relative entropy of ˛

given ˇ; denoted H.˛ j ˇ/ is defined by

H.˛ j ˇ/ D �
X

a2A;

b2B

�.˛�1.¹aº/\ ˇ�1.¹bº// log
��.˛�1.¹aº/\ ˇ�1.¹bº//

�.ˇ�1.¹bº//

�
:

The above formula is an information theoretic definition of relative entropy. The

following proposition is implied by Lemma 2.13 of [15] and shows that relative

entropy can also be thought of as a statistical mechanics quantity: it measures how

many approximations of ˛ _ ˇ there are which extend any given approximation

of ˇ:

Proposition 2.6. Let ˛WX ! A; ˇWX ! B two finite, measurable observables.

Let �AWA � B ! A; �B WA � B ! B be the projection maps �A.a; b/ D a;

�B.a; b/ D b: For ı > 0 and n 2 N; let„.˛_ˇ; ı; n/ be the set of all � 2 .A�B/n

so that

k.�/�.un/ � .˛ _ ˇ/��k < ı:

For  2 Bn; let

„.˛j ; ı; n/ D ¹� 2 AnW .�;  / 2 „.˛ _ ˇ; ı; n/º:

Then

H.˛jˇ/ D inf
ı>0

lim sup
n!1

sup
 2�B ı„.˛_ˇ;ı;n/

1

n
log j„.˛j ; ı; n/j:

We prove some easy properties of relative sofic entropy.
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Proposition 2.7. Fix finite, measurable observables ˛; ˇ; 
 with domain X and

so that 
 � ˛ _ ˇ: We have the following properties of relative sofic entropy:

(i) h.�i /i ;�.˛ j ˇW 
/ � H.˛ j ˇ/;

(ii) h.�i /i ;�.˛ j ˇW 
/ � h.�i /i ;�.˛
0 j ˇW 
/ C h.�i /i ;�.˛ j ˛0W 
/ if ˛0 is a finite,

measurable observable and 
 � ˛0 _ ˇ;

(iii) h.�i /i ;�.˛ j ˇW 
/ � h.�i /i ;�.˛ j ˇ0W 
/ C h.�i /i ;�.ˇ
0 j ˇW 
/ if ˇ0 is a finite,

measurable observable and 
 � ˛ _ ˇ0;

(iv) for every finite F �G; every ı>0; every i 2N; and all  2AP.ˇW 
; F; ı; �i/;

j AP.˛ j  W 
; F; ı; �i/j D j AP.˛ _ ˇ j  W 
; F; ı; �i/j

and, in particular,

h.�i /i ;�.˛ j ˇW 
; F; ı/ D h.�i /i ;�.˛ _ ˇ j ˇW 
; F; ı/

and

h.�i /i ;�.˛ j ˇW 
/ D h.�i /i ;�.˛ _ ˇ j ˇW 
/I

(v) if ˛0 is a measurable observable with domain X and with ˛0 � ˛; then, for

any g 2 G,

h.�i /i ;�.˛ _ g˛0 j ˇWX/ D h.�i /i ;�.˛ j ˇWX/I

(vi) if ˇ0 is a measurable observable with domain X and ˇ0 � ˇ; then, for any

g 2 G,

h.�i /i ;�.˛ j ˇWX/ D h.�i /i ;�.˛ j ˇ _ gˇ0WX/:

Proof. Item (i) is a direct application of Proposition 2.6. For the remaining items,

let A;A0; B; C be the codomains of ˛; ˛0; ˇ; 
 respectively.

(ii) Let �AWC ! A; �A0 WC ! A0; and �B WC ! B be such that

�A.
.x// D ˛.x/; �A0.
.x// D ˛0.x/; �B.
.x// D ˇ.x/

for almost every x2X: Fix a finite F �G and a ı>0; and let 2AP.ˇW 
; F; ı; �i/:
We have that

j AP.˛ j  W 
; F; ı; �i/j �
X

�02AP.˛0j W
;F;ı;�i /

j¹� 2 AP.˛ j  W 
; F; ı; �i/W .�; �
0/

2 AP.˛ _ ˛0 j  W 
; F; ı; �i/ºj:
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Observe that

.�; �0/ 2 AP.˛ _ ˛0 j  W 
; F; ı; �i/ H) .�; �0/ 2 AP.˛ _ ˛0W 
; F; ı; �i/;

and so � 2 AP.˛ j �0W 
; F; ı; �i/: We thus see that

j AP.˛ j  W 
; F; ı; �i/j � j AP.˛0 j  W 
; F; ı; �i/j sup
Q�

j AP.˛ j Q�W 
; F; ı; �i/j;

where the supremum is over all Q� 2 AP.˛0W 
; F; ı; �i/: Taking the supremum

over  ; applying 1
di

log to both sides, and letting i ! 1 proves that

h.�i /i ;�.˛ j ˇW 
; F; ı/ � h.�i /i ;�.˛
0 j ˇW 
; F; ı; �i/C h.�i /i ;�.˛ j ˛0W 
; F; ı/:

Now taking the infimum over F; ı completes the proof.

(iii) This is proved in the same way as (ii).

(iv) Let �AWC ! A; and �B WC ! B be such that �A ı 
 D ˛; �B ı 
 D ˇ

almost everywhere. Define �A�B WC ! A � B by �A�B.c/ D .�A.c/; �B.c// for

all c 2 C: Then �A�B ı 
 D ˛ _ ˇ almost everywhere. Define �AWA � B ! A;

�B WA � B ! B by �A.a; b/ D a; �B.a; b/ D b for all .a; b/ 2 A � B:

Suppose that  2 AP.ˇW 
; F; ı; �i/; and let � 2 AP.˛_ˇ j  W 
; F; ı; �i/: Let
Q� 2 AP.
; F; ı; �i/ be such that �B ı Q� D  ; �A�B ı Q� D �: Then,

�B ı � D �B ı �A�B ı Q� D �B ı Q� D  :

In other words, the projection of � onto the second coordinate must be : From this

it follows that composing with �A induces a bijection AP.˛_ˇ j  W 
; F; ı; �i/ !
AP.˛ j  W 
; F; ı; �i/ with inverse � 7! � _  :

(v) As ˛ � ˛ _ g˛0;

h.�i /i ;�.˛ j ˇWX/ � h.�i /i ;�.˛ _ g˛0 j ˇWX/:

By (ii) and (iv),

h.�i /i ;�.˛ _ g˛0 j ˇWX/ � h.�i /i ;�.˛ j ˇWX/C h.�i /i ;�.g˛0 j ˛WX/

� h.�i /i ;�.˛ j ˇWX/C h.�i /i ;�.g˛ j ˛WX/;

so we only have to show that

h.�i /i ;�.g˛ j ˛WX/ � 0:

To prove this, suppose we are given finiteF � G with g 2 F and a ı 2 .0; 1=2/:
Let �AWA � A ! A, �

g
A WA � A ! A be the projections onto the first and second

factors, respectively. Fix a  2 AP.˛W g˛ _ ˛; F; ı; �i/. Suppose we are given
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a � 2 AP.g˛ _ ˛; F; ı; �i/ and that �A ı � D  : Set � D �
g
A ı �: We start by

estimating the size of

udi
.¹j W �.j / ¤  .�i.g/

�1.j //º/:

We have that

udi
.¹j W �.j / ¤  .�i .g/

�1.j //º/ D udi
.¹j W �

g
A.�

F
�i
.j /.e// ¤ �A. 

F
�i
.j /.g//º/

� ı C �.¹xW �
g
A.


F .x/.e// ¤ �A.

F .x/.g//º/

D ı C �.¹xW �
g
A.
.x// ¤ �A.
.g

�1x//º/

D ı C �.¹xW .g˛/.x/ ¤ ˛.g�1x/º/

D ı:

Thus, given  ; we can determine � on a subset of ¹1; : : : ; diº of size at least

.1 � ı/di : The number of subsets of ¹1; : : : ; diº of size at most ıdi is at most

bıdi cX

rD1

�
di
r

�
� ıdi

�
di

bıdic

�
;

as ı < 1=2: Thus

j AP.g˛ j  IF; ı; �i/j � ıdi

�
di

bıdic

�
jAjıdi :

As  was arbitrary,

h.�i /i ;�.g˛ j ˛W g˛ _ ˛; F; ı/ � ı log jAj C lim sup
i!1

1

di
log

�
di

bıdic

�

D ı log jAj � ı log.ı/� .1� ı/ log.1� ı/;

where in the last line we apply Stirling’s formula. Letting ı ! 0 and taking the

infimum over F shows that

h.�i /i ;�.g˛ j ˛WX/ � h.�i /i ;�.g˛ j ˛W g˛ _ ˛/ � 0:

(vi) It is clear that h.�i /i ;�.˛ j ˇ_gˇ0WX/ � h.�i /i ;�.˛ j ˇWX/:By (iii) and (iv),

h.�i /i ;�.˛ j ˇWX/ � h.�i /i ;�.˛ j ˇ _ gˇ0WX/C h.�i /i ;�.gˇ0 j ˇWX/

� h.�i /i ;�.˛ j ˇ _ gˇ0WX/C h.�i /i ;�.gˇ j ˇWX/:

We saw in the last step that h.�i /i ;�.gˇ j ˇWX/ � 0; so this completes the

proof. �
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From Proposition 2.7 one can directly show the following.

Proposition 2.8. FixG-invariant sigma-algebras F1;F2�X:We have the follow-

ing properties of relative sofic entropy:

(i) h.�i /i ;�.F2WX/ � h.�i /i ;�.F1WX/C h.�i /i ;�.F2 j F1WX/I

(ii) h.�i /i ;�.˛ j F1WX/ � H.˛ j F1/ for any finite X-measurable observable ˛I

(iii) h.�i /i ;�.˛ j F1WX/ � H.˛ j F2/ C h.�i /i ;�.F2 j F1WX/ for any finite

X-measurable observable ˛:

We can now show that relative entropy can be computed by restricting our

observables to live in a generating subalgebra.

Proposition 2.9. Let S1; S2 be subalgebras (not necessarily sigma-algebras) of X;

and let F1;F2 be the smallest, G-invariant, complete sub-sigma-algebras of X

containing S1; S2: Suppose that T � S1 [ S2 is a subalgebra of X so that X is the

smallest G-invariant, complete sub-sigma-algebra of X containing T:

(i) For any T-measurable observables ˛; ˇ we have

h.�i /i ;�.˛ j ˇWX/ D inf


h.�i /i ;�.˛ j ˇW 
/;

where the infimum is over all T-measurable observables 
 with domain X

and 
 � ˛ _ ˇ:

(ii) For any T-measurable observable ˛ we have

h.�i /i ;�.˛ j F2WX/ D inf
ˇ
h.�i /i ;�.˛ j ˇWX/;

where the infimum is over all S2-measurable observables ˇ.

(iii) We have

h.�i /i ;�.F1 j F2WX/ D sup
˛
h.�i /i ;�.˛ j F2WX/;

where the supremum is over all S1-measurable observables ˛:

Proof. (i) Fix a measurable observable 
 0; a finite F 0 � G; and a ı0 > 0: Since

X is the smallest G-invariant, complete sub-sigma-algebra containing T; we may

find a T-measurable observable 
0 with 
0 � ˛ _ ˇ; a finite F � G; and a ı > 0

so that for all large i;

AP.˛ _ ˇW 
0; F; ı; �i/ � AP.˛ _ ˇW 
 0; F 0; ı0; �i/:

So for every  2 AP.ˇW 
0; F; ı; �i/ and all sufficiently large i;

AP.˛ j  W 
0; F; ı; �i/ � AP.˛ j  W 
 0; F 0; ı0; �i /:
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Thus,

h.�i /i ;�.˛ j ˇW 
0/ � h.�i /i ;�.˛ j ˇW 
0; F; ı; �i/ � h.�i /i ;�.˛ j ˇW 
 0; F 0; ı0; �i /:

So

inf


h.�i /i ;�.˛ j ˇW 
/ � h.�i /i ;�.˛ j ˇW 
 0; F 0; ı0; �i /;

where the infimum is over all finite T-measurable observables 
: Infimizing over


 0; F 0; ı0 proves (i).

(ii) It is clear that

inf
ˇ
h.�i /i ;�.˛ j ˇWX/ � h.�i /i ;�.˛ j F2WX/

where the infimum is over all S2-measurable observables ˇ: To prove the reverse

inequality, fix an " > 0 and a finite F2-measurable observable ˇ0WX ! B 0: Since

S2 generates F2; we may find a finite F � G containing the identity, and an

S2-measurable observable ˇ0WX ! B0 such that

H
�
ˇ0

ˇ̌
ˇ

_

g2F

gˇ0

�
< ":

By Proposition 2.7 (i) and (iii),

h.�i /i ;�.˛ j ˇ0WX/ � �"C h.�i /i ;�

�
˛

ˇ̌
ˇ

_

g2F

gˇ0WX
�
:

By repeated applications of Proposition 2.7 (vi), it follows that

h.�i /i ;�

�
˛

ˇ̌
ˇ

_

g2F

gˇ0WX
�

D h.�i /i ;�.˛ j ˇ0WX/:

So

h.�i /i ;�.˛ j ˇ0WX/ � �"C h.�i /i ;�.˛ j ˇ0WX/ � �"C inf
ˇ
h.�i /i ;�.˛ j ˇWX/;

where the infimum is over all S2-measurable observables ˇ: Letting " ! 0 and

taking the infimum over ˇ0 completes the proof.

(iii) This is proved in the same way as (ii) using Proposition 2.7 (v). �

Proposition 2.10. Fix a G-invariant sub-sigma-algebra F � X: The following

properties of relative entropy in the presence of X hold.

(i) If Gj ; j D 1; 2 are two G-invariant sub-sigma-algebras of X; then

h.�i /i ;�.G1 _ G2 j FWX/ � h.�i /i ;�.G1 j FWX/C h.�i /i ;�.G2 j FWX/:
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(ii) If Gn are an increasing sequence of sub-sigma-algebras of X and G is the

sigma-algebra generated by their union, then

h.�i /i ;�.G j FWX/ � lim inf
n!1

h.�i /i ;�.Gn j FWX/:

(iii) If F0;G are G-invariant sub-sigma-algebras of X with F0 � F; then

h.�i /i ;�.G j F0WX/ � h.�i /i ;�.G j FWX/:

(iv) If G;G0 are G-invariant sub-sigma-algebras of X with G0 � G; then

h.�i /i ;�.G j FWX/ � h.�i /i ;�.G
0 j FWX/:

(v) If G is a G-invariant sub-sigma-algebra of X; then

h.�i /i ;�.G j FWX/ D h.�i /i ;�.G _ F j FWX/:

Proof. (i) Fix finite Gj -measurable observables j̨ for j D 1; 2: Let ǰ ; j D 1; 2

be finite F-measurable observables and 
 a finite X-measurable observable so that


 � ˛1 _ ˛2 _ ˇ1 _ ˇ2: Then

h.�i /i ;�.˛ j FWX/ � h.�i /i ;�.˛1 _ ˛2 j ˇ1 _ ˇ2W 
/

� h.�i /i ;�.˛1 j ˇ1 _ ˇ2W 
/C h.�i /i ;�.˛2 j ˇ1 _ ˇ2W 
/

� h.�i /i ;�.˛1 j ˇ1W 
/C h.�i /i ;�.˛2 j ˇ1W 
/:

Infimizing over 
; ˇ1; ˇ2;

h.�i /i ;�.˛1 _ ˛2 j FWX/ � h.�i /i ;�.˛1 j FWX/C h.�i /i ;�.˛2 j FWX/:

Since G1 _G2 is generated by the set of all observables of the form ˛1 _˛2 where

j̨ ; j D 1; 2 are any finite, Gj -measurable observables, the proof is completed by

invoking Proposition 2.9 (iii).

(ii) Suppose ˛ is a finite G-measurable observable. By Proposition 2.8 (iii) we

deduce that

h.�i /i ;�.˛ j FWX/ � h.�i /i ;�.Gn j FWX/CH.˛ j Gn/:

Letting n ! 1 we see that

h.�i /i ;�.˛ j FWX/ � lim inf
n!1

h.�i /i ;�.Gn j FWX/:

Now taking the supremum over ˛ completes the proof.

(iii) and (iv) These are exercises in understanding the definitions.

(v) This is automatic from Proposition 2.7 (iv) and Proposition 2.9 (iii). �
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Having established these general properties of relative entropy, we can show

the existence of the relative outer Pinsker factor.

Corollary 2.11. Fix a G-invariant sub-sigma-algebra F � X: Let

… D ¹A 2 XW h.�i /i ;�.�A j FWX/ � 0º;

where we regard �A as a map X ! ¹0; 1º. Then … is the unique, complete,

maximal, G-invariant sub-sigma-algebra of X containing F with

h.�i /i ;�.… j FWX/ � 0:

Proof. We first show that… is a G-invariant sub-sigma-algebra containing F and

that h.�i /i ;�.… j FWX/ � 0: Given A 2 X; let SA D ¹¿; A; Ac; Xº; and let GA
be the smallest G-invariant sub-sigma-algebra generated by SA: If !WX ! B is a

finite SA-measurable observable, then ! is constant on A;Ac; and so takes on at

most 2 values. Thus ! � �A; and so h.�i /i .! j FWX/ � h.�i /i .˛ j FWX/: Hence by

Proposition 2.9 (iii),

h.�i /i ;�.�A j FWX/ D h.�i /i ;�.GA j FWX/:

From this, it is easy to derive that… is aG-invariant sub-sigma-algebra containing

F as follows. First, the fact that… is closed under complements and that… � F is

tautological. The fact that … is G-invariant follows from the fact that GA D GgA
for g 2 G: Lastly, suppose that .An/

1
nD1 is a sequence of sets in …; and let

A D

1[

nD1

An:

Observe that

GA �

1_

nD1

GAn
:

From Proposition 2.10 (i), (ii), (iv), we have

h.�i /i ;�.GA j FWX/ � lim inf
n!1

h.�i /i ;�

� n_

jD1

GAj

ˇ̌
ˇ FWX

�

� lim inf
n!1

nX

jD1

h.�i /i ;�.GAj
j FWX/

� 0:

We now show that h.�i /i ;�.… j FWX/ � 0: Since .X;X; �/ is Lebesgue, we can

find a countable collection of sets An 2 … so that … D
W1
nD1 GAn

: Using

Proposition 2.10 (i), (ii), (iv) again shows that h.�i /i ;�.… j FWX/ � 0:
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Now suppose that G is anotherG-invariant, sub-sigma-algebra of X containing

F with h.�i /i ;�.G j FWX/ � 0: For any A 2 G; we have that GA � G: Hence by

Proposition 2.10 (iv),

h.�i /i ;�.GA j FWX/ � h.�i /i ;�.G j FWX/ � 0:

So A 2 …; and since A was an arbitrary element of G; we have that G � …: �

We will call … defined in Corollary 2.11 the outer Pinsker sigma-algebra

of X relative to F with respect to .�i/i : Typically we will drop “with respect

to .�i/i” if the sofic approximation is clear from the context. Note that if F D
¹A � X W�.X n A/ D 0 or �.A/ D 0º; then … coincides with the outer Pinsker

sigma-algebra, which we will denote by ….�i /i .�/. We denote the outer Pinsker

sigma-algebra of X relative to F by ….�i /i .� j F/. If ….�i /i .�/ is the algebra of

sets which are null or conull, then we say that GÕ.X; �/ has completely positive

measure-theoretic entropy in the presence (with respect to .�i /i ). The following

are some of the most important properties of the outer Pinsker algebra.

Proposition 2.12. (i) Suppose that GÕ.Y;Y; �/ is a factor of GÕ.X;X; �/; and

identify Y � X: Then for any complete, G-invariant sub-sigma-algebra F � Y we

have

….�i /i .� j F/ � ….�i /i .� j F/:

(ii) If F � G are G-invariant, complete sub-sigma-algebras of X; then

….�i /i .� j F/ � ….�i /i .� j G/:

Proof. (i) Let A 2 ….�i /i .� j F/: Then

h.�/i ;�.�A j FWX/ � h.�i /i ;�.�A j FWY/ � 0;

so A 2 ….�i /i .� j F/:

(ii) This is obvious from Proposition 2.10 (iii). �

We end this section by comparing relative entropy to relative Rokhlin entropy

as defined by Seward. Let K be a countable, discrete group, let .X0;X0; �0/

be a Lebesgue probability space, and KÕ.X0;X0; �0/ a probability measure-

preserving action. If F2;F1 are two complete, K-invariant, sub-sigma-algebras

of X0; then Seward in [44] (see the remarks after Question 11.1 of [44]) defined

the outer Rokhlin entropy of F2 relative to F1 by

hKRok.F1 j F2WX0; �0/ D inf¹H.˛ j F2/º;

where the infimum is over all finite measurable observables ˛WX0 ! A such

that the complete sigma-algebra generated by ¹k˛�1.¹aº/W k 2 K; a 2 Aº and F2
contains F1:
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Proposition 2.13. For any complete,G-invariant, sub-sigma-algebrasF1;F2�X

we have

h.�i /i ;�.F1 j F2WX/ � hGRok.F1 j F2WX; �/:

Proof. Let ˛ be a finite measurable observable, let Y be the smallest complete,

G-invariant sub-sigma-algebra of X which makes ˛ measurable, and suppose that

Y _ F2 � F1: By Proposition 2.10 (iv), (v),

h.�i /i ;�.F1 j F2WX/ � h.�i /i ;�.Y _ F2 j F2WX/ D h.�i /i ;�.Y j F2WX/:

By Proposition 2.9 (iii) and Proposition 2.8 (ii), we have

h.�i /i ;�.F1 j F2WX/ � h.�i /i ;�.Y j F2WX/ D h.�i /i ;�.˛ j F2WX/ � H.˛ j F2/:

Taking the infimum over all ˛ completes the proof. �

We mention that it is automatic from Proposition 2.13 and Proposition 2.8 (i)

that if F � X is a complete, G-invariant sub-sigma algebra and G Õ .Y; �/ is the

factor corresponding to F; then

h.�i /i ;�.X;G/ � h.�i /i ;�.Y; G/C hGRok.X j FWX; �/:

After our paper appeared on the arXiv in preprint form, Alpeev and Seward

obtained a different proof of the above formula in [2, Proposition 1.10].

3. Preliminaries on local and double empirical convergence

3.1. Preliminaries in the topological case. In order to prove our product for-

mula for outer Pinsker factors, we will need the notion of local and doubly empir-

ical convergence defined in [3] (where it is referred to as doubly quenched conver-

gence). We will use the reformulation given in [25]. Throughout this subsection,

we fix a compact, metrizable spaceZ and an actionG Õ Z by homeomorphisms.

Recall that if K is a compact, metrizable space and G Õ K by homeomor-

phisms, then a pseudometric � on K is dynamically generating if for all x; y 2 K
with x ¤ y; there is a g 2 G with �.gx; gy/ > 0: If � is as above and n 2 N; we

define �2 on Kn by

�2.x; y/
2 D

1

n

nX

jD1

�.x.j /; y.j //2:

Throughout this subsection, we will also fix a dynamically generating pseudomet-

ric � on Z:

For a compact, metrizable spaceX;we use Prob.X/ for the space of completed

Borel probability measures onX: IfGÕX by homeomorphisms, we let ProbG.X/
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be the space of G-invariant elements of Prob.X/: We begin by recalling the

microstates space for measure-theoretic entropy in terms of a given compact

model.

Definition 3.1. For a finite F � G and a ı > 0; we let Map.�; F; ı; �i/ be the set

of all � 2 Zdi so that

�2.g�; � ı �i .g// < ı:

We think of Map.�; F; ı; �i/ as a space of “topological microstates” in the

sense that � 2 Map.�; F; ı; �i/ gives a finitary model of G Õ Z (i.e. it is approx-

imately equivariant with approximate being measured in the topology on Z). For

a finite L � C.Z/; a ı > 0; and a � 2 Prob.Z/; set

UL;ı.�/ D
\

f 2L

²
� 2 Prob.Z/W

ˇ̌
ˇ̌
Z

Z

f d� �

Z

Z

f d�

ˇ̌
ˇ̌ < ı

³
:

Note that UL;ı.�/ ranging over all L; ı gives a basis of neighborhoods of � in the

weak-� topology on Prob.Z/:

Definition 3.2. Let� 2 ProbG.Z/: For finite setsF � G;L � C.Z/; and a ı > 0;

set

Map�.�; F; L; ı; �i/ D ¹� 2 Map.�; F; ı; �i/W��.udi
/ 2 UL;ı.�/º:

We think of Map.�; F; L; ı; �i/ as a space of “measure-theoretic microstates”

for G Õ .Z; �/:

Definition 3.3. Fix a � 2 ProbG.Z/: We say that a sequence �i 2 Prob.Zdi /

locally and empirically converges to �, and write �i
le
! �; if we have

� udi

�®
j W

ˇ̌ R
Zdi

f .x.j // d�i .x/�
R
Z
f d�

ˇ̌
< �

¯�
! 1 for all f 2C.Z/; �>0;

and

� �i.Map�.�; F; L; ı; �i// ! 1 for all finite F � G;L � C.Z/; and ı > 0:

We say that �i locally and doubly empirically converges to �, and write �i
lde
! �;

if �i ˝ �i
le
! �˝ �:

In [25] we equated this notion of local and empirical convergence to the

original one defined by Austin in [3] (originally called quenched convergence).

It thus follows from the results in [3] that the notion of local and doubly empirical

convergence does not depend upon �:
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Definition 3.4. Let G be a countable, discrete, sofic group with sofic approxima-

tion �i WG ! Sdi
: Let .X; �/ be a Lebesgue probability space with GÕ.X; �/

by measure-preserving transformations. We say that GÕ.X; �/ is strongly sofic

(with respect to .�i/i ) if there is some compact model GÕ.Y; �/ for GÕ.X; �/

and a sequence �i 2 Prob.Y di / with �i
lde
! �:

The results of [3] imply that local and empirical convergence is independent of

the choice of topological model. Thus in the preceding definition we may replace

“some compact model” with “for any compact model.”

We mention that by work of [8], [22], and [20] we have many examples of

strongly sofic actions (these are all proved in Proposition 2.15 of [25] so we will

not repeat the proof ). Recall that if G is a countable, discrete group, then an

algebraic action ofG is an actionGÕX by automorphisms whereX is a compact,

metrizable, abelian group.

Example 1. Let G be a countable, discrete, sofic group. The following actions

are all strongly sofic with respect to any sofic approximation of G:

(1) all Bernoulli actions (by [8] and [3]),

(2) any algebraic action of the form GÕ.Xf ; mXf
/where f 2 Mm;n.Z.G// and

�.f / has dense image (by [22]),

(3) any algebraic action of the form GÕ.Xf ; mXf
/ where f 2 Mn.Z.G// and

�.f / is injective (by [22]),

(4) any algebraic action of the form GÕ.X;mX / where X is a profinite group

and the homoclinic group of GÕX is dense (by [20]).

We prove a few permanence properties of strong soficity. For the proofs, it

will be useful to phrase local and doubly empirical convergence in functional

analytic terms, for which we introduce some notation. For f 2 C.Z/; we define

ag .f / 2 C.Z/ by ag.f /.z/ D f .g�1z/: If � 2 Prob.Z/ and f 2 C.Z/

we will often use �.f / for
R
Z f d�: For k 2 N and 1 � j � k; we define

�j WC.Z/ ! C.Zk/ by �j .f /.z/ D f .z.j //: If X; Y are compact spaces and

f 2 C.X/; g 2 C.Y /;we define f ˝g 2 C.X�Y / by .f ˝g/.x; y/ D f .x/g.y/:

Lastly, for an integer k we identify .Z � Z/k with Zk � Zk in the natural way.

With this notation, we can now phrase our functional analytic reformulation of

local and doubly empirical convergence.

Proposition 3.5. A sequence �i 2 Prob.Zdi / locally and doubly empirically

converges to � 2 C.Z/ if and only if

� 1
di

Pdi

jD1 j�i .�j .f // � �.f /j2 ! 0; for all f 2 C.Z/;

� �i˝�i
�ˇ̌
�.f1/�.f2/�

1
di

Pdi

jD1 �j .f1/˝ �j .f2/
ˇ̌2�

!0; for all f1;f22C.Z/;

� 1
di

Pdi

jD1 �i .j�j .ag.f // � ��i .g/.j /.f /j
2/ ! 0; for all f 2 C.Z/; g 2 G:
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Proof. It is clear that if �i
lde
! �; then the three items in the proposition hold.

Conversely, suppose that the three items in the proposition hold. Fix a compatible

metric � on Z: Define a metric z� on Z �Z by

z�..x1; y1/; .x2; y2//
2 D

�.x1; y1/
2 C�.x2; y2/

2

2
:

The first two items imply, by density of span¹f1˝f2W f1; f2 2 C.Z/º inC.Z�Z/,

that

udi

�²
j W

ˇ̌
ˇ̌
Z

Zdi �Zdi

f .x.j /; y.j // d.�i ˝ �i /.x; y/

�

Z

Z�Z

f d.�˝ �/

ˇ̌
ˇ̌ < �

³�
�! 1;

for all f 2 C.Z �Z/, and

�i ˝ �i

�²
.x; y/W

ˇ̌
ˇ̌ 1
di

diX

jD1

f .x.j /; y.j // �

Z

Z�Z

f d.�˝ �/

ˇ̌
ˇ̌ < �

³�
�! 1

for all f 2 C.Z �Z/: Hence it suffices to show that for all g 2 G
Z

Zdi �Zdi

z�2..g
�1x; g�1y/; .x ı �i .g/

�1; y ı �i .g/
�1//2 d.�i ˝ �i /.x; y/ �! 0;

which is equivalent to
Z

Zdi

�2.g
�1x; x ı �i .g/

�1/2 d�i .x/ ! 0: (1)

Following the arguments of Lemma A.1 of [24], we see that the third item in the

hypotheses proposition implies (1). �

Proposition 3.6. The set of � 2 ProbG.Z/ so that G Õ .Z; �/ is strongly sofic

with respect to .�i /i is weak�-closed.

Proof. Suppose .�.n//n is a sequence of elements of ProbG.Z/ so that G Õ

.Z; �.n// is strongly sofic with respect to .�i /i for every n: Additionally, assume

that there is a � 2 ProbG.Z/ with �.n/ !wk�
� as n ! 1: Let L be a countable,

dense subset of C.Z/ and write L D
S1
nD1Ln; where Ln are finite sets. For

each natural number n; choose a sequence �
.n/
i 2 Prob.Zdi / so that �

.n/
i

lde
! �.n/

as i ! 1: By Proposition 3.5, we may choose a strictly increasing sequence of

integers in so that



Relative entropy 437

� 1
di

Pdi

jD1 j�
.k/
i .�j .f // � �.k/.f /j2 < 2�n for all i � in; 1 � k � n; f 2 Ln;

� �
.k/
i ˝ �

.k/
i

�ˇ̌
�.k/.f1/�

.k/.f2/ � 1
di

Pdi

jD1 �j .f1/ ˝ �j .f2/
ˇ̌2�

< 2�n for all

i � in, 1 � k � n, f 2 Ln;

� 1
di

Pdi

jD1 �
.k/
i .j�j .ag.f // � ��i .g/.j /.f /j

2/ < 2�n for all i � in; 1 � k � n;

f 2 Ln:

Given i 2 N; let n.i/ 2 N be defined by in.i/ � i < in.i/C1: Now define

�i 2 Prob.Zdi / by �i D �
.n.i//
i : Since �.n/ !wk�

� as n ! 1 and n.i/ ! 1

as i ! 1; it is a simple application of Proposition 3.5 to see that �i
lde
! �: �

3.2. Applications to strong soficity for actions on Lebesgue spaces. We apply

the results in the previous subsection to actions on Lebesgue spaces, even ones

that are not given in terms of a topological model. We start with the following

consequence of Proposition 3.6.

Corollary 3.7. Suppose that G acts on an inverse system

� � � �! .XnC1; �nC1/ �! .Xn; �n/ �! .Xn�1; �n�1/ �! � � � �! .X1; �1/

of Lebesgue probability spaces and that G Õ .Xn; �n/ is strongly sofic with

respect to .�i /i for every n: Then the inverse limit action of this inverse system

is also strongly sofic with respect to .�i /i :

Proof. For natural numbers n � m; let �n;mWXm ! Xn be the equivariant

connecting maps. By choosing appropriate topological models, we may assume

that

� for each n; the set Xn is a compact, metrizable space and �n is a completed

Borel probability measure on Xn;

� for each n; the action G Õ Xn is by homeomorphisms;

� for each m � n; the map �n;m is continuous;

� for every n; there is a point x�
n 2 Xn which is fixed by the action of G.

Let

Z D

1Y

nD1

Xn;

and let Q�n be the unique Borel probability measure on Z which satisfies

Z
f d Q�n.x/ D

Z
f .�1;n.x/; �2;n.x/; : : : ; x; x

�
nC1; x

�
nC2; : : : / d�n.x/

for every f 2 C. zX/. It is easy to check that
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� for each n; G Õ .Z; Q�n/ is isomorphic, as a measure-preserving system, to

G Õ .Xn; �n/;

� the measures Q�n converge in the weak�-topology to a measure Q�;

� G Õ .Z; Q�/ is isomorphic, as a measure-preserving system, to the inverse

limit of G Õ .Xn; �n/:

From the first item we see that G Õ .Z; Q�n/ is strongly sofic with respect

to .�i /i : By the above three items and Proposition 3.6 we see that the inverse limit

of G Õ .Z; �n/ is strongly sofic. �

Corollary 3.8. Suppose that .X; �/ is a Lebesgue probability space and that

G Õ .X; �/ by measure-preserving transformations. If G Õ .X; �/ is strongly

sofic with respect to .�i /i ; then so is any other measure-preserving action on a

Lebesgue probability space which is weakly contained in G Õ .X; �/:

Proof. We may assume that X is a compact, metrizable space, that G Õ X

by homeomorphisms, and that � 2 ProbG.X/: Let G Õ .Y; �/ be a measure-

preserving action weakly contained in G Õ .X; �/; and with .Y; �/ a Lebesgue

probability space. Choosing an appropriate compact model, we may assume that

� Y D ¹0; 1ºN�G;

� G Õ Y by .gy/.n; h/ D y.n; g�1h/ for all y 2 Y; n 2 N; g; h 2 G;

For .s; j; g/ 2 ¹0; 1º�N�G; letAj;g.s/ D ¹y 2 Y W y.j; g/ D sº:SinceG Õ .Y; �/

is weakly contained in .X; �/; for each .s; j / 2 ¹0; 1º �N we may find a sequence

B
.n/
j .s/ of Borel subsets of X; so that

� B
.n/
j .1/c D B

.n/
j .0/ for all .j; n/ 2 N � N;

� �
� Tk

lD1 glB
.n/
jl
.sl/

�
�!
n!1

�
� Tk

lD1Ajl ;gl
.sl /

�
for all k 2N; g1; : : : ; gk 2G;

j1; : : : ; jk 2 N; and s1; : : : ; sk 2 ¹0; 1º:

Define a sequence of Borel maps �.n/WX ! Y by

�.n/.x/.j; g/ D 1
B

.n/

j
.1/
.g�1x/:

Set �.n/ D .�.n//�.�/: It is direct to show, from our choice of Bn; that for all

k 2 N; all g1; : : : ; gk 2 G; all j1; : : : ; jk 2 N; and all s1; : : : ; sk 2 ¹0; 1º we have

�.n/
� k\

lD1

Ajl ;gl
.sl /

�
�! �

� k\

lD1

Ajl ;gl
.sl /

�
:

By the Stone–Weierstrass theorem, the set

1[

kD1

¹1Tk
lD1 Ajl ;gl

.sl /
W g1; : : : ; gk 2 G; s1; : : : ; sk 2 ¹0; 1º; j1; : : : ; jk 2 Nº
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has dense linear span in C.X/; so �.n/ !n!1 � in the weak� topology. By

construction, the actionG Õ .Y; �.n// is a factor ofG Õ .X; �/ and so is strongly

sofic with respect to .�i /i :We now apply Proposition 3.6 with Y D Z to complete

the proof. �

If X; Y; A are sets and ˇWY ! A; we define ˇ ˝ 1WY �X ! A by

.ˇ ˝ 1/.y; x/ D ˇ.y/:

For maps ˛WX ! A; ˇWY ! B we define ˇ ˝ ˛WY � X ! B � A by

.ˇ ˝ ˛/.y; x/ D .ˇ.y/; ˛.x//:

If .X;X; �/; .Y;Y; �/ are Lebesgue probability spaces, and F � Y; we identify F

with the sub-sigma-algebra of Y ˝ X which is the completion of ¹A�X WA 2 Fº:

Local and doubly empirical convergence has the following implication for relative

entropy, which will be one of the crucial facts used in our proof of a Pinsker

product formula.

Proposition 3.9. Let .X;X; �/; .Y;Y; �/ be Lebesgue probability spaces and both

GÕ.X;X; �/ and G Õ .Y;Y; �/ measure-preserving actions. Suppose that

GÕ.X;X; �/ is strongly sofic with respect to .�i /i : Then, for any G-invariant,

complete, sub-sigma-algebras F1;F2 � Y,

h.�i /i ;�.F1 j F2WY/ D h.�i /i ;�˝�.F1 j F2 ˝ XWY ˝ X/

D h.�i /i ;�˝�.F1 ˝ X j F2 ˝ XWY ˝ X/:

Proof. It follows from Proposition 2.10 (iv) and (iii) that

h.�i /i ;�.F1 j F2WY/ � h.�/i ;�˝�.F1 j F2 ˝ XWY ˝ X/;

h.�/i ;�˝�.F1 j F2 ˝ XWY ˝ X/ � h.�i /i ;�˝�.F1 ˝ X j F2 ˝ XWY ˝ X/:

Let N be the algebra of null sets in Y: By Proposition 2.10 (i),

h.�i /i ;�˝�.F1 ˝ X j F2 ˝ XWY ˝ X/ � h.�/i ;�˝�.F1 j F2 ˝ XWY ˝ X/

C h.�i /i ;�˝�.N ˝ X j F2 ˝ XWY ˝ X/

� h.�/i ;�˝�.F1 j F2 ˝ XWY ˝ X/:

So we only have to prove that

h.�i /i ;�.F1 j F2WY/ � h.�i /i ;�˝�.F1 j F2 ˝ XWY ˝ X/:

For j D 1; 2; fix finite Fj -measurable observables j̨ WY ! Aj : Fix a Y-mea-

surable observable ˛WY ! A with ˛ � ˛1 _ ˛2: For j D 1; 2 let �Aj
WA ! Aj

be such that �Aj
ı ˛ D j̨ almost everywhere. Let ˇWX ! B; 
 WX ! C be
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measurable observables with ˇ � 
: Let qWC ! B be such that q ı 
 D ˇ almost

everywhere. Define �C WX ! CG by

�C .x/.g/ D 
.g�1x/;

and let � D .�C /��: Since GÕ.X;X; �/ is strongly sofic with respect to .�i /i ;

so is the factor .CG ; �/: So we may find a sequence �i 2 Prob.C di / with �i
lde
! �:

Fix a finite F 0 � G and a ı0 > 0: Since �i
lde
! � we may find, by Theorem A

of [3], a finite F � G; a ı > 0; and an I 2 N so that

�i .¹ W� _  2 AP.˛ ˝ 
; F 0; ı0; �i /º/ �
1

2

for i � I and all � 2 AP.˛; F; ı; �i/. Now fix i � I and �2 2 AP.˛2W ˛; F; ı; �i/:
Choose a

S � ¹� 2 AP.˛; F; ı; �i/W �A2
ı � D �2º

with

jS j D j AP.˛1 j �2W ˛; F; ı; �i/j

and

¹�A1
ı �W� 2 Sº D AP.˛1 j �2W ˛; F; ı; �i/:

From our choice of F; ı we have that

uS ˝ �i .¹.�;  /W� _  2 AP.˛ ˝ 
; F 0; ı0; �i /º/ �
1

2
;

by Fubini’s theorem. Applying Fubini’s theorem, we find a  2 AP.
; F 0; ı0; �i/

so that

j¹� 2 S W� _  2 AP.˛ ˝ 
; F 0; ı0; �i /ºj �
1

2
jS j D

1

2
j AP.˛1 j �2W ˛; F; ı; �i/j:

Set  B D q ı  : By construction, for all i � I

j AP.˛1 ˝ 1 j �2 _  B W ˛ ˝ 
; F 0; ı0; �i/j �
1

2
j AP.˛1 j �2W ˛; F; ı; �i/j;

and so

sup
�22AP.˛2W˛;F;ı;�i /

1

2
j AP.˛1 j �2W ˛; F; ı; �i/j

� sup
!2AP.˛2˝ˇ W˛˝
;F 0;ı0;�i /

j AP.˛1 ˝ 1 j !W ˛ ˝ 
; F 0; ı0; �i/j:

Thus

h.�i /i ;�.˛1 j ˛2W ˛; F; ı/ � h.�i /i ;�˝�.˛1 ˝ 1 j ˛2 ˝ ˇW ˛ ˝ 
; F 0; ı0; �i /:
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A fortiori,

h.�i /i ;�.˛1 j F2WY/ � h.�i /i ;�˝�.˛1 ˝ 1 j ˛2 ˝ ˇW ˛ ˝ 
; F 0; ı0; �i/:

Taking the infimum over all ˇ; ˛2; ˛; 
; F
0; ı0 and applying Proposition 2.9 (ii)

shows that

h.�i /i ;�.˛1 j F2WY/ � h.�i /i ;�˝�.˛1 ˝ 1 j F2 ˝ XWY ˝ X/:

Taking the supremum over all ˛1 completes the proof. �

4. A product formula for outer Pinsker factors

4.1. Preliminary results on relative entropy. Throughout this subsection, we

fix a Lebesgue space .X;X; �/ and an action G Õ .X;X; �/ by measure-

preserving transformations.

In this section, we prove a product formula for outer Pinsker factors of strongly

sofic actions. We shall mostly follow the methods in [21] by analyzing actions with

large automorphism group. By the automorphism group of an action we mean the

following: ifH is a countable discrete group, if .X0; �0/ is a Lebesgue probability

space, and HÕ.X0; �0/ is a probability measure preserving action, then we let

Aut.HÕ.X0; �0// be all measure-preserving transformations �WX0 ! X0 so that

�.hx/ D h�.x/ for almost every x 2 X0 and all h 2 H: The main new technique

in this section is Lemma 4.2. It turns out that this lemma allows us to remove

the freeness assumption present in [21] without passing to orbit equivalence as

in [16].

We need some notation for operators. If H is a Hilbert space, we use B.H/

for the algebra of bounded, linear operators on H: If .X0; �0/ is a Lebesgue

probability space and f 2 L1.X0; �0/; we define mf 2 B.L2.X0; �0// by

.mf �/.x/ D f .x/�.x/: If .Y; �/ is another Lebesgue probability space and T 2

B.L2.Y; �//; we define 1˝ T 2 B.L2.X0 � Y; �0 ˝ �// by

.1˝ T /.f /.x/ D T .f .x//;

where in the above formula we are using the identification L2.X0 � Y; �˝ �/ Š

L2.X0; �; L
2.Y; �//:We also use (albeit very briefly) the strong operator topology

on B.L2.X0�Y; �˝ �/: The strong operator topology on B.L2.X0�Y; �˝ �/ is

simply the topology of pointwise convergence in norm (i.e. the product topology)

on B.L2.X0 � Y; �˝ �//: We often abbreviate strong operator topology by SOT.

The following argument follows closely that of Lemma 3.2 in [21].
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Lemma 4.1. Let F � X be a complete,G-invariant sub-sigma-algebra of X: Sup-

pose that GÕ.Y;Y; �/ is a probability measure-preserving action on a Lebesgue

probability space. Assume that GÕ.Y;Y; �/ is strongly sofic with respect to .�i/i .

If Aut.GÕ.Y;Y; �// acts ergodically on .Y;Y; �/; then

….�i /i .�˝ � j F ˝ Y/ D ….�i /i .� j F/˝ Y:

Proof. Let Z D ….�i /i .� j F/ and U D ….�i /i .�˝ � j F ˝ Y/: We claim that

U D yU˝Y for some sigma-algebra yU � X: If we grant this claim, then by Propo-

sition 3.9

h.�i /i ;�.
yU j ZWX/ D h.�i /i ;�˝�.yU ˝ Y j Z ˝ YWX ˝ Y/ � 0:

By definition of….�i /i .� j F/; this implies that yU � Z and this proves the lemma.

So it is enough to show that U D yU ˝ Y:

For this, consider the conditional expectation EU as a projection operator

EUWL2.X � Y; �˝ �/ �! L2.X � Y; �˝ �/:

For ˛ 2 Aut.GÕ.Y; �//; define a unitary operator U˛WL2.Y; �/ ! L2.Y; �/ by

.U˛�/ D � ı ˛�1: Recall that if E � B.H/ for some Hilbert space H; then

E 0 D ¹T 2 B.H/WTS D ST for all S 2 Eº:

We first show the following claim.

Claim 1. If we have T 2 B.L2.Y; �// and T 2 .¹mf W f 2 L1.Y; �/º [ ¹U˛W ˛ 2
Aut.GÕ.Y; �//º/0; then T 2C1:

To see this, first note that since T 2 ¹mf W f 2 L1.Y; �/º0; we have T D mk
for some k 2 L1.Y; �/ by Proposition 12.4 of [14]. As U �

˛mkU˛ D mkı˛�1 for

any ˛ 2 Aut.GÕ.Y; �//; we see that k D k ı ˛�1 for all ˛ 2 Aut.GÕ.Y; �//:

By ergodicity of the action of Aut.GÕ.Y; �//; we see that T 2 C1: This shows

Claim 1.

Note that

EU 2 .¹1˝mf W f 2 L1.Y; �/º [ ¹1˝ U˛W ˛ 2 Aut.GÕ.Y; �//º/0:

By [46] Theorem IV.5.9, this implies that

EU 2 span.¹T ˝ S WT 2 B.L2.X; �//;

S 2 .¹mf W f 2 L1.Y; �/º [ ¹U˛W ˛ 2 Aut.GÕ.Y; �//º/0º/
SOT

D B.L2.X; �//˝ C1;
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the last equality following from Claim 1. So EU D P ˝ 1 for some projection

P 2 B.L2.X; �//:

Let yU D ¹U 2 XWU �Y 2 Uº: If we show thatP.L2.X;X; �// D L2.X; yU; �/;
we will be done. It is clear that P.L2.X;X; �// � L2.X; yU; �/; so it is enough to

show that P.L2.X;X; �// � L2.X; yU; �/: To show this, it is enough to show that

if � 2 P.L2.X; �// and A � C is Borel, then ��1.A/ 2 yU: Fix such a �; A: Since

EU D P ˝ 1; and P.�/ D �; we know that � ˝ 1 is U-measurable, because U is

complete. So 1A ı .� ˝ 1/ is U-measurable. Since 1��1.A/�Y D 1A ı .� ˝ 1/; it

follows that ��1.A/ � Y is U-measurable, so ��1.A/ 2 yU: �

We will, in fact, show that if G Õ .Y; �/ is strongly sofic with respect to .�i /i ;

then

….�i /i .�˝ � j F ˝ Y/ D ….�i /i .� j F/˝ Y

without assuming that Aut.GÕ.Y; �// acts ergodically. We reduce the general

claim to the above lemma by showing that every strongly sofic action is a factor

of an action which is both strongly sofic and has a large automorphism group.

Lemma 4.2. Let .Y; �/ be a Lebesgue probability space with GÕ.Y; �/ by

measure-preserving transformations. Suppose that GÕ.Y; �/ is strongly sofic

with respect to .�i /i : Then there are a Lebesgue probability space .Z; �/; and

a measure-preserving action GÕ.Z; �/ which factors onto GÕ.Y; �/ such that

G Õ .Z; �/ has the following properties:

� G Õ .Z; �/ is strongly sofic with respect to .�i/i I

� Aut.G Õ .Z; �// Õ .Z; �/ ergodically.

Proof. Let .Z; �/ D .Y; �/Z; and let GÕ.Z; �/ diagonally. If �k 2 Prob.Y dk /

and �k
lde
! �; then it follows from [3, Theorem A] that �˝n

k

lde
! �˝n for all

n 2 N: By Proposition 3.7, the action GÕ.Z; �/ is strongly sofic with respect

to .�i /i :LetZÕ.Z; �/ be the Bernoulli action. It is clear thatZÕ.Z; �/ commutes

with GÕ.Z; �/ and that ZÕ.Z; �/ is ergodic. Thus the action Aut.GÕ.Z; �// Õ

.Z; �/ is ergodic. �

We now remove the assumption that Aut.GÕ.Y; �// Õ .Y; �/ is ergodic from

Lemma 4.1.

Theorem 4.3. Let .Y;Y; �/ be a Lebesgue probability space. Suppose that

GÕ.Y;Y; �/ is a strongly sofic action with respect to .�i /i : If F � X is a G-in-

variant, complete sub-sigma-algebra, then

….�i /i .�˝ � j F ˝ Y/ D ….�i /i .� j F/˝ Y:



444 B. Hayes

Proof. By Lemma 4.2, we may find an extension GÕ.Z;Z; �/ ! GÕ.Y;Y; �/;

where .Z;Z; �/ is a Lebesgue probability space, so that Aut.GÕ.Z;Z; �// acts

on .Z;Z; �/ ergodically, and so that GÕ.Z;Z; �/ is strongly sofic with respect to

.�i /i : If we regard Y as a subalgebra of Z; then by Proposition 2.12

….�i /i .�˝ � j F ˝ Y/ � ….�i /i .�˝ � j F ˝ Y/ � ….�i /i .�˝ � j F ˝ Z/:

By Lemma 4.1,

….�i /i .�˝ � j F ˝ Y/ � ….�i /i .� j F/˝ Z:

Since ….�i /i .�˝ � j F ˝ Y/ � X ˝ Y; we have that

….�i /i .�˝ � j F ˝ Y/ � .….�i /i .� j F/˝ Z/ \ .X ˝ Y/ D ….�i /i .� j F/˝ Y:

We remark that since we take completions everywhere we only have that

.….�i /i .� j F/˝ Z/ \ .X ˝ Y/ D ….�i /i .� j F/˝ Y

because we are using product measures. Because the inclusion….�i/i .� j F/˝Y �

….�i /i .�˝ � j F ˝ Y/ is trivial, we are done. �

4.2. Proof of the Theorem 1.1. We now prove Theorem 1.1, but first we restate

it in terms of sub-sigma-algebras.

Corollary 4.4. Let .X;X; �/; .Y;Y; �/ be Lebesgue spaces. Suppose that both

GÕ.X;X; �/ and GÕ.Y;Y; �/ are actions which are strongly sofic with respect

to .�i /i : Then for any complete, G-invariant, sub-sigma-algebras F � X, G � Y;

we have

….�i /i .�˝ � j F ˝ G/ D ….�i /i .� j F/˝….�i /i .� j G/:

In particular, taking F;G to be the sigma-algebras of sets which are null or conull

in X; Y we have

….�i /i .�˝ �/ D ….�i /i .�/˝….�i /i .�/:

Proof. By Proposition 2.12,

….�i /i .�˝ � j F ˝ G/ � ….�i /.�˝ � j F ˝ Y/ \….�i /i .�˝ � j X ˝ G/:

By Theorem 4.3,

….�i /.�˝ � j F ˝ Y/ D ….�i /i .� j F/˝ Y:

The action G Õ .X;X; �/ was arbitrary throughout Section 4.1, so Theorem 4.3

applies with the roles of .X;X; �/; .Y;Y; �/ reversed. We thus have that

….�i /i .�˝ � j X ˝ G/ D X ˝….�i /i .� j G/:
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Thus,

….�i /i .�˝ � j F ˝ G/ � .….�i /.� j F/˝ Y/ \ .X ˝….�i /i .� j G//

D ….�i /i .� j F/˝….�i /i .� j G/:

As in the proof of Theorem 4.3, we remark that the conclusion

….�i /.� j F/˝ Y/ \ .X ˝….�i /i .� j G// D ….�i /i .� j F/˝….�i /i .� j G/

is only valid because we take the product measure on �˝ �: Since the inclusion

….�i /i .� j F/˝….�i /i .� j G/ � ….�i /i .�˝ � j F ˝ G/: �

5. Applications to complete positive entropy of algebraic actions

5.1. Generalities for an arbitrary algebraic action. In this section we apply

our product formula for outer Pinsker factors to the study of algebraic actions.

Throughout this subsection, X is a compact, metrizable group and G Õ X

by continuous automorphisms. Following arguments of [6] and [12] we have

the following description of the outer Pinsker factor for strongly sofic algebraic

actions.

Corollary 5.1. Suppose that GÕ.X;mX/ is strongly sofic with respect to .�i/i .

Then there exists a closed, normal, G-invariant subgroup Y of X so that the al-

gebra….�i /i .mX / is the completion of ¹q�1
Y .A/WA � X=Y is mX=Y -measurableº;

where qY WX ! X=Y is the quotient map.

Proof. By [36] (see also [43] Lemma 20.4), it is enough to show that

x�1….�i /i .mX / � ….�i /i .mX / for all x 2 X

and that

A�1 2 ….�i /i .mX / whenever A 2 ….�i /i .mX /:

Let us first show that x�1….�i /i .mX / � ….�i /i .mX / for all x 2 X: Fix A 2

….�i /i .mX /; and let

E D ¹x 2 X W x�1A 2 ….�i /i .mX /º:

Observe that, since ….�i /i .mX / is complete, we know that E is closed in X; so it

is enough to show that E is dense in X: Let pWX �X ! X be the multiplication

map p.x; y/ D xy: Then by Proposition 2.12 and Corollary 4.4,

p�1.A/ 2 ….�i /i .mX ˝mX / D ….�i /i .mX /˝….�i /i .mX /:
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By Fubini’s Theorem, we have that �x�1A D �p�1.A/.x; �/ is ….�i /i .mX /-

measurable for almost every x 2 X . Thus x�1A 2 ….�i /i .mX / for almost every

x 2 X; so E has full measure in X and is thus dense. A similar argument shows

that A�1 2 ….�i /i .mX / (by considering the map x ! x�1). �

For the next corollary we recall the definition of topological entropy in the

presence due to Li and Liang in [33]. We recall some terminology. Let A be a set

equipped with a pseudometric �: For n 2 N; we define �2 on An by

�2.x; y/ D
�1
n

nX

jD1

�.x.j /; y.j //2
�1=2

:

Given " > 0; we say that a subset B of A is "-separated with respect to � if for

every pair of unequal elements b; b0 in B we have �.b; b0/ > ":We let N".A; �/ be

the largest cardinality of an "-separated subset of A with respect to �:

Definition 5.2 (Definition 9.3 in [33]). Suppose that Z is a compact, metrizable

space with GÕZ by homeomorphisms. Let GÕY be a topological factor with

factor map � WZ ! Y . Let �Z; �Y be dynamically generating pseudometrics on

Z; Y respectively. For a finite F � G and a ı > 0; we set

Map.Y W �Z; F; ı; �i/ D ¹� ı �W� 2 Map.�Z ; F; ı; �i/º:

Set

h.�i /i ;top.�Y W �Z ; F; ı; "/D lim sup
i!1

1

di
logN".Map.Y W �Z; F; ı; �i/; �Y;2/;

h.�i /i ;top.�Y W �Z; "/ D inf
finiteF�G;
ı>0

h.�i /i ;top.�Y W �Z; F; ı; "/;

h.�i /i ;top.Y WZ;G/ D sup
">0

h.�i /i ;top.�Y W �Z; "/:

We call h.�i /i ;top.ZWY;G/ the topological entropy of Y in the presence of Z:

By [33, Lemma 9.5], (see also [24, Theorem 2.10] for a similar result) we

know that h.�i /i .Y WZ;G/ does not depend upon the pseudometrics �Z ; �Y : Thus

h.�i /i .Y WZ;G/ is an isomorphism invariant of the factor map � WZ ! Y (where

isomorphism of factor maps is formulated in the obvious way).

If Y D Z with factor map id; then this is just the topological entropy. We also

recall the formulation of measure-theoretic entropy in the presence in terms of a

topological model we gave in [24].
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Definition 5.3 (Definition 2.7 in [24]). Let G be a countable, discrete, sofic

group with sofic approximation �i WG ! Sdi
: Suppose that Z is a compact,

metrizable space with GÕZ by homeomorphisms and that � 2 ProbG.Z/: Let

GÕY be a topological factor with factor map � WZ ! Y and set � D ���: Let

�Z ; �Y be dynamically generating pseudometrics on Z; Y respectively. For finite

F � G;L � C.Z/; and a ı > 0; we set

Map�.Y W �Z; F; L; ı; �i/ D ¹� ı �W� 2 Map�.�Z; F; L; ı; �i/º:

We define

h.�i /i ;�.�Y W �Z; F; L; ı; "/D lim sup
i!1

1

di
logN".Map�.Y W �Z ; F; L; ı; �i/; �Y;2/;

h.�i /i ;�.�Y W �Z; "/ D inf
finiteF�G;

finiteL�C.Z/;

ı>0

h.�i /i ;�.�Y W �Z; F; L; ı; "/;

h.�i /i ;�.�Y W �Z; G/ D sup
">0

h.�i /i ;�.�Y W �Z; "/:

By Theorem 2.10 of [24], we know that h.�i /i ;�.�Z W �X ; G/ agrees with the

measure-theoretic entropy ofGÕ.Y; �/ in the presence ofGÕ.Z; �/:We showed

in [25] that if GÕ.X;mX / is strongly sofic, then for any closed, normal, G-

invariant subgroup Y � X we have htop.X=Y WX;G/ D h.�i /i ;mX
.X=Y WX;G/:

This and Corollary 5.1 will give us examples of algebraic actions with completely

positive measure-theoretic entropy.

If Z is a compact, metrizable space with GÕZ by homeomorphisms, we say

that GÕZ has completely positive topological entropy in the presence relative to

.�i /i if for any topological factor GÕY of GÕZ we have

h.�i /i ;top.Y WZ;G/ > 0:

Recall that if .Z; �/ is a Lebesgue probability space andGÕ.Z; �/ is a probability

measure-preserving action, then we say that GÕ.Z; �/ has completely positive

measure-theoretic entropy in the presence relative to .�i/i if for every measure-

theoretic factor GÕ.Y; �/ we have

h.�i /i ;�.Y WZ;G/ > 0:

Proof of Corollary 1.4. The implications (i) H) (ii) and (ii) H) (iii) are clear

from the definitions.

Suppose that (iii) holds. By Corollary 5.1, we may find a closed, normal,

G-invariant subgroup Y of X so that the outer Pinsker factor of GÕ.X;mX / is

given byGÕ.X=Y;mX=Y / (with the factor map being the natural homomorphism

X ! X=Y ). By Theorem 3.6 of [25],

0 D h.�i /i ;mX
.X=Y WX;G/ D h.�i /i ;top.X=Y WX;G/:
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By (iii), it follows that Y D X: Thus the outer Pinsker factor of GÕ.X;mX/ is

trivial, and so GÕ.X;mX / has completely positive measure-theoretic entropy in

the presence. �

For the next corollary we use the IE-tuples developed by Kerr-Li (see [30] for

the definition). The following may be regarded as an analogue of Corollary 8.4

of [12].

Corollary 5.4. If G Õ .X;mX/ is strongly sofic with respect to .�i /i and

IE2.�i /i
.X;G/ D X2; then GÕ.X;mX / has completely positive measure-theoretic

entropy in the presence (relative to .�i /i ).

Proof. It is clear from the definitions that if IE2.�i /i
.X;G/ D X2; then G has

completely positive topological entropy in the presence (relative to .�i /i ). �

5.2. Proof of Corollary 1.5. Combining with our previous results in [23] we

may produce a large class of algebraic actions with completely positive measure-

theoretic entropy.

Proof of Corollary 1.5. Since X was arbitrary in the previous subsection, Corol-

lary 5.4 applies to X D Xf : The Corollary now follows from Corollary 5.4 and

Corollary 4.10 of [23]. �

Appendix A. Agreement of relative entropy with the amenable case

In this section we show that our definition of (upper) relative entropy for actions

of sofic groups agrees with the usual definition when the group is amenable.

Throughout the appendix, we suppose thatG is an amenable group, that .X;X; �/

is a Lebesgue probability space, and thatG Õ .X;X; �/ is a probability measure-

preserving action. We also fix a sofic approximation �i WG ! Sdi
of G:

Suppose that F � X is a G-invariant, complete, sub-sigma-algebra of X and

that ˛WX ! A is a finite measurable observable. Recall that the relative dynamical

entropy of ˛ given F is defined by

h�.˛ j F; G/ D lim
n!1

H
�W

g2Fn
g˛ j F

�

jFnj
;

where Fn is a Følner sequence (this was first defined in [47]). It is shown in [47]

that the above limit exists and is independent of the Følner sequence. IfG is another

complete, G-invariant, sub-sigma algebra of X; then we define

h�.G j F; G/ D sup
˛
h�.˛ j F; G/;
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where the supremum is over all finite, G-measurable observables ˛: By [47], we

know that if ˛ is a finite measurable observable and G is the smallest complete,

G-invariant sub-sigma-algebra of X containing ˛; then

h�.G j F; G/ D h�.˛ j F; G/:

We use the following simple combinatorial lemma whose proof is left as an

exercise to the reader.

Lemma A.1. Let K be a finite set and " > 0: Then there is a � > 0 (depending

only upon jKj; ") with the following property. Suppose we are given

� a natural number d;

� K-tuples .Bk/k2K ; .Ck/k2K of subsets of ¹1; : : : ; dº with

jud .Bk/ � ud .Ck/j < � for all k 2 K,

and so that

max.ud .Bk \ Bl/; ud .Ck \ Cl // < � for all k; l 2 K with k ¤ l;

and

� functions pk WBk ! Ck ; for k D 1; : : : ; n; with ud .pk.Bk// � ud .Ck/ � �

for all k D 1; : : : ; n:

Then there is a p 2 Sd so that

ud

� [

k2K

¹j 2 Bk Wp.j / ¤ pk.j /º
�

� ":

The following lemma, roughly speaking, says the following: given a microstate

� of a probability measure-preserving action of an amenable group G, one can

obtain any other microstate for the same action by pre-composing � with a per-

mutation that almost commutes with the sofic approximation of G:

Lemma A.2. Let ˇWX ! B be a finite measurable observable. For every " > 0

and every finite E � G; there exist a finite F � G; a ı > 0; and an I 2 N so that

if i � I and �;  2 AP.ˇ; F; ı; �i/; then there is a p 2 Sdi
with

udi
.¹j W .p.j // ¤ �.j /º/ � "

and

max
g2E

udi
.¹j Wp.�i.g/.j // ¤ �i .g/p.j /º/ � ":
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Before jumping into the proof let us make a few comments about Lemma A.2

. If G Õ .X; �/ is free, then an alternate way to say Lemma A.2 is in terms of

the full pseudogroup of the action G Õ .X; �/; and sofic approximations of the

full pseudogroup. For the precise definition of a sofic approximation of the full

pseudogroup see the discussion preceding Definition 2.1 of [18]. Any pair .�; �/

consisting of a sufficiently almost free almost homomorphism � WG ! Sd ; and a

microstate � for G Õ .X; �/ with respect to � gives rise, in a completely natural

way, to an almost trace-preserving, almost homomorphism ŒŒG Õ .X; �/�� !

ŒŒSd Õ ¹1; : : : ; dº��: This gives a sofic approximation of the full pseudogroup.

By Connes, Feldman, and Weiss [13], the orbit equivalence relation of every

free action of amenable group is hyperfinite. The lemma is then asserting that

if R is a hyperfinite equivalence relation, then any two sofic approximations of

the full pseudogroup of R are approximately conjugate. This is precisely what

Proposition 1.20 of [41] asserts. Intuitively, that any two sofic approximations

of a full pseudogroup of a hyperfinite equivalence relation R are approximately

conjugate should be obvious, since this fact is easy to establish when almost every

equivalence class of R is finite. If the reader is familiar with the appropriate

background on orbit equivalence relations, then we invite them to check that there

is indeed a straightforward proof along these lines. This is the proof that [41] gives.

One can give a similar formulation of “uniqueness up to approximate conjugacy”

when G Õ .X; �/ is not free, using the transformation groupoid instead of the

full pseudogroup. Under this formulation, Lemma A.2 is equivalent to a result of

Popa (see Corollary 5.2 of [40]), who proved it in the framework of ultraproducts

of operator algebras (also relying on the Connes-Feldman-Weiss theorem). At the

request of the referee, we have included a proof that does not use ultrafilters as

in [41] and [40].

It is worth mentioning that our proof is essentially an application of the quasi-

tiling machinery developed by Ornstein and Weiss in [39]. The Connes–Feldman–

Weiss result also ultimately relies on this quasi-tiling machinery. In this sense, the

proof that we give below is not even different than the proofs given in [41],[40],

it is just a language translation of their proofs into an ultrafilter-free version.

Proof of Lemma A.2. Without loss of generality, we may assume that ˇ is a

generating observable. We prove the lemma in two cases.

Case 1. When G Õ .X; �/ is free. We use the quasi-tiling machinery devel-

oped by Ornstein-Weiss. Let " > 0, then we may find an integer L; measurable

subsets zV1; : : : ; zVL of X , and .E; "/-invariant subsets T1; : : : ; TL of G so that

� ¹h zVrºh2Tr ;1�r�L is a disjoint family of sets

and

� �
� SL

rD1 Tr
zVr

�
� 1� ":
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By perturbing zVr slightly, we may assume that there is a finite F0 � G so that

h zVr is ˇF0-measurable for all 1 � r � L and h 2 Tr : We may also assume

that F0 �
SL
rD1 T

�1
r : For 1 � r � l and h 2 Tr ; find zBr � BF0 so that

zVr D .ˇF0/�1. zBr /: Set K D ¹.h; r/W h 2 Tr ; 1 � r � Lº; and let � > 0 be

as in Lemma A.1 for this K; ": Let Ji � ¹1; : : : ; diº be the set of j so that

� for all ˛1; ˛2 2 ¹�1; 1º; and every h1; h2 2
SL
rD1.E[ ¹eº [E�1/.Tr [ ¹eº [

T �1
r / we have �i .h

˛1

1 h
˛2

2 /.j / D �i .h1/
˛1�i .h2/

˛2.j /; and

� for all h1; h2 2
SL
rD1.E [ ¹eº [ E�1/.Tr [ ¹eº [ T �1

r / with h1 ¤ h2; we

have �i .h1/.j / ¤ �i .h2/.j /:

We then have that udi
.Ji / ! 1; so there is an I0 2 N so that udi

.Ji / � 1 � " for

all i � I0:

We may choose a sufficiently small positive number ı 2 .0; �=2/; a sufficiently

large finite subset F of G; and a sufficiently large natural number I1 so that for all

i � I1 and any � 2 AP.ˇ; F; ı; �i/ we have

� judi
..�

F0
�i
/�1. zBr// � �. zVr/j < �=2 for r D 1; : : : ; L;

� udi
.�i .h/.�

F0
�i
/�1. zBr/\�i .k/.�

F0
�i
/�1. zBs// < � for all .h; r/; .k; s/ 2 K with

.h; r/ ¤ .k; s/;

� udi

�SL
rD1 �i .Tr/.�

F0
�i
/�1. zBr/

�
� 1 � 2";

� ı
PL
rD1 jTr n g�1Tr j < ".

Set I D max.I0; I1/: Fix an i � I and �;  2 AP.ˇ; F; ı; �i/: For 1 � r � L,

h 2 Tr n ¹eº; and Qb 2 zBr ; let

B
Qb
e;r D .�F0

�i
/�1.¹ Qbº/; C

Qb
e;r D . F0

�i
/�1.¹ Qbº/;

Be;r D .�F0
�i
/�1. zBr/; Ce;r D . F0

�i
/�1. zBr/;

Bh;r D �i .h/Be;r ; Ch;r D �i .h/Ce;r :

For every 1 � r � L and every Qb 2 zBr ; choose a p
zb
e;r WB

Qb
e;r ! C

Qb
e;r which is

“as bijective as possible.” Namely, we require that

udi
.p

Qb
e;r.B

Qb
e;r// D min.udi

.B
Qb
e;r/; udi

.C
Qb
e;r//:

Define pe;r WBe;r ! Ce;r by saying that pe;r jB Qb
e;r

D p
Qb
e;r for every Qb 2 zBr : Then

�F0
�i
.j / D  F0

�i
.pe;r .j // for all j 2 Be;r : (2)
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Since pe;r.Be;r / D
S

Qb2Br
p

Qb
e;r .B

Qb
e;r/; we have that

udi
.pe;r.Be;r// D

X

Qb2 zBr

min.udi
.B

Qb
e;r/; udi

.C
Qb
e;r//

�
X

Qb2 zBr

udi
.C

Qb
e;r/ �

X

Qb2 zBr

judi
.B

Qb
e;r / � udi

.C
Qb
e;r/j

D udi
.Ce;r/ �

X

Qb2 zBr

j.�F0
�i
/�.udi

/.¹ Qbº/ � . F0
�i
/�.udi

/.¹ Qbº/j

� udi
.Ce;r / � k. F0

�i
/�.udi

/ � .�F0
�i
/�.udi

/k

� udi
.Ce;r / � 2ı

� udi
.Ce;r / � �:

(3)

For 1 � r � L and h 2 Tr n ¹eº; define ph;r WBh;r ! Ch;r by

ph;r.�i .h/.j // D �i .h/pe;r.j / for all j 2 Be;r .

By .3/; and our choice of F; ı; I1; the hypotheses of Lemma A.1 apply, so

we can find a p 2 Sym.di / as in the conclusion of Lemma A.1 for the family of

functions .ph;r/.h;r/2K : Let

J oi DJi\p
�1.Ji /\

h� L[

rD1

�i .Tr/.Be;r/
�
n
� L[

rD1

[

h2Tr

¹j 2 Bh;r Wp.j / ¤ ph;r.j /º
�i
:

By our choice of p;

udi
..J 0i /

c/ � 2.1� udi
.Ji //

C udi

� L[

rD1

[

h2Tr

¹j 2 Bh;r Wp.j / ¤ ph;r.j /º
�

C udi

�� L[

rD1

�i .Tr/Be;r

�c�

� 2.1� udi
.Ji //C "C 1� udi

� L[

rD1

�i .Tr/Be;r

�

� 2.1� udi
.Ji //C 3":
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Since i � I0; we have udi
..J 0i /

c/ � 5": So

udi
.¹j W .p.j // ¤ �.j /º/

� 5"C

LX

rD1

X

h2Tr

udi
.¹j 2 Be;r \ J oi W .�i.h/pe;r .j // D �.�i .h/.j //º/

� 5"C

LX

rD1

X

h2Tr

udi
.¹j 2 Be;r \ J oi W F0

�i
.pe;r .j //.h

�1/

D �F0
�i
.j /.h�1/º/

D 5";

(4)

the last line following by (2).

Fix a g 2 E: We have to estimate udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/: We

have that

udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/

� 5"C udi
.¹j 2 J 0i Wp.�i.g/.j // ¤ �i .g/p.j /º/

� 5"C

LX

rD1

X

h2Tr \g�1Tr

udi
.¹j 2 Be;r \ J oi W

p.�i.g/�i .h/.j // D �i .g/ph;r.�i .h/.j //º/

C

LX

rD1

jTr n g�1Tr judi
.Be;r /

� 5"C

LX

rD1

X

h2Tr \g�1Tr

udi
.¹j 2 Be;r \ J oi W

p.�i.g/�i .h/.j // D �i .g/ph;r.�i .h/.j //º/

C ı

LX

rD1

jTr n g�1Tr j C

LX

rD1

jTr n g�1Tr j�. zVr/:

For every 1 � r � L; h 2 Tr \ g�1Tr ; and every j 2 Ji ; we have

�i .g/�i .h/.j / D �i .gh/.j /:

So for all 1 � r � L; h 2 Tr \ g�1Tr ; j 2 J 0i \ Be;r ;

p.�i .g/�i .h/.j // D p.�i .gh/.j //

D pgh;r .�i.gh/.j //

D �i .gh/pe;r .j /

D �i .g/�i .h/pe;r.j /

D �i .g/ph;r .�i.h/.j //:
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Additionally, our choice of ı implies that ı
PL
rD1 jTr n g�1Tr j < ": Hence,

udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/ � 6"C

LX

rD1

jTr n g�1Tr j�. zVr/

� 6"C "

LX

rD1

jTr j�. zVr/

� 6"C "�
� L[

rD1

Tr zVr

�

� 7";

the third to last inequality follows because Tr is .E; "/-invariant, and the second to

last inequality follows because ¹gVrº1�r�L;g2Tr
is a disjoint family of sets. Thus,

udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/ � 7":

Since " is arbitrary, the above estimate and (4) complete the proof of Case 1.

Case 2. The case of general G Õ .X; �/. In this case, consider the diagonal

actionG Õ .X�¹0; 1ºG; �˝u˝G
¹0;1º

/;whereG Õ .¹0; 1º; u¹0;1º/
G is the Bernoulli

action. Let Q̌WX � ¹0; 1ºG ! B � ¹0; 1º be defined by Q̌.x; y/ D .ˇ.x/; y.e//:

Since the action G Õ .X � ¹0; 1ºG; �˝ u˝G
¹0;1º

/ is free, by Case 1 we may choose

a finite zF � G; a Qı > 0; and an zI 2 N so that if i � zI and �;  2 AP. Q̌; zF; Qı; �i/;
then there is a p 2 Sdi

so that

max
g2E

udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/ � "

and

udi
.¹j W�.p.j // ¤  .p.j //º/ � ":

By the proof of Theorem 8.1 of [8], we may choose a finite F � G; a ı > 0;

and an I 2 N; so that if i � I and  2 AP.ˇ; F; ı; �i/; then there is a
Q 2 AP. Q̌; zF; Qı; �i/ with �A ı Q D  : Suppose that i � I and that  ; � 2

AP.ˇ; F; ı; �i/: Choose Q ; Q� 2 AP. Q̌; zF; Qı; �i/ with �A ı Q� D �; �A ı Q D Q :
By Case 1, we may choose a p 2 Sdi

so that

max
g2E

udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/ � "

and

udi
.¹j W Q .p.j // ¤ Q�.j /º/ � ":

We then have that

udi
.¹j W .p.j // ¤ �.j /º/ � udi

.¹j W Q .p.j // ¤ Q .j /º/ � ";

so this completes the proof. �
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Lemma A.2 automatically tells us that the quantity AP.˛ j  ; � � � / “asymptoti-

cally does not depend upon ” in the case the acting group is amenable. Precisely,

we have the following lemma. For the proof, we use the following notation: if A

is a finite set, ı > 0; d 2 N; and �;�0 � Ad ; then we write � �ı �
0 if for every

� 2 � there is a �0 2 �0 so that ud .¹j W�.j / ¤ �0.j /º/ � ı: This is clearly the

same as ı-containment as defined in [25, Section 3] with respect to the metric on

Ad given by �.�;  / D ud .¹j W�.j / ¤  .j /º/:

Lemma A.3. Let ˛; ˇ; 
 be finite measurable observables with 
 � ˛ _ ˇ: Then

for any finite F � G and ı 2
�
0; 1
2

�
; there exists a finite F 0 � G and a ı0 > 0 so

that if  ; 0 2 AP.ˇW 
; F 0; ı0; �i /; then

j AP.˛ j  0W 
; F 0; ı0; �i/j � j AP.˛ j  W 
; F; ı; �i/jjAjıdi ıdi

�
di

bıdic

�
:

Proof. Let A;B; C be the codomains of ˛; ˇ; 
 respectively. Choose a � 2 .0; ı/
so that for all sufficiently large i; and all  ; 0 2 Bdi with udi

.¹j W .j / ¤

 0.j /º/ � � and  2 AP.ˇW 
; F; ı=2; �i/; we have  0 2 AP.ˇW 
; F; ı; �i/ and

AP.˛ j  W 
; F; ı=2; �i/ �� AP.˛ j  0W 
; F; ı; �i/:

We may choose an " 2 .0; �/ so that if p 2 Sdi
and

max
g2F

udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/ � ";

then

AP.
; F; ı=4; �i/ ı p � AP.
; F; ı=2; �i/:

By Lemma A.2, we may choose a finite F 0 � G with F 0 � F; and a ı0 2 .0; ı=4/
so that for all sufficiently large i and all ; 0 2 AP.ˇ; F 0; ı0; �i /; there is ap 2 Sdi

with

udi
.¹j W 0.p.j // ¤  .j /º/ � "

and

max
g2F

udi
.¹j Wp.�i.g/.j // ¤ �i .g/.p.j //º/ � ":

For all sufficiently large i and all  ; 0 2 AP.ˇW 
; F 0; ı0; �i/ we may find a p as

in Lemma A.2. For such a p we have

AP.˛ j  0W 
; F 0; ı0; �i / ı p � AP.˛ j  0 ı pW 
; F; ı=2; �i/

�� AP.˛ j  W 
; F; ı; �i/:

A fortiori,

AP.˛ j  0W 
; F 0; ı0; �i / ı p �ı AP.˛ j  W 
; F; ı; �i/:
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Since ı < 1=2, for a fixed � 2 Adi we have that j¹�0 2 Adi Wudi
.¹j W�.j / ¤

�0.j /º/ � ıºj � jAjdi ıdi
�
di

bıdi c

�
: Thus,

j AP.˛ j  0W 
; F 0; ı0; �i/j D j AP.˛ j  0W 
; F 0; ı0; �i/ ı pj

� jAjdi ıdi

�
di

bıdic

�
j AP.˛ j  W 
; F; ı; �i/j: �

In order to relate upper relative entropy to relative entropy for amenable groups

it turns out to be helpful to write down an equivalent expression for relative

entropy.

Definition A.4. Let ˇWX ! B be a finite measurable observable. We say that

a sequence  i W ¹1; : : : ; diº ! B is a sequence of ˇ-microstates if for every finite

F � G and every ı > 0 we have  Fi;�i
2 AP.ˇ; F; ı; �i/ for all large i: Suppose

that ˛; 
 are finite measurable observables with 
 � ˛_ˇ:Given a sequence . i/i
of ˇ-microstates, a finite F � G; and a ı > 0; we set

h.�i /i ;�.˛ j . i /i W 
; F; ı; �i/ D lim sup
i!1

1

di
log j AP.˛ j  i W 
; F; ı; �i/j;

h.�i /i ;�.˛ j . i /i W 
; G/ D inf
F�Gfinite;

ı>0

h.�i /i ;�.˛ j . i /i W 
; F; ı; �i/:

In order to show that the above expressions agree with relative entropy with

respect to .�i /i as we previously defined we need the following proposition.

Proposition A.5. Let ˇ; 
 be finite measurable observables with ˇ � 
: Then for

every finite F � G and ı > 0 there exists a finite F 0 � G; a ı0 > 0; and an I 2 N

so that

AP.ˇ; F 0; ı0; �i/ � AP.ˇW 
; F; ı; �i/

for all i � I:

Proof. Let B;C be the codomains of ˇ; 
: Let �WC ! B be such that � ı 
 D ˇ

almost everywhere. Fix a finite F � G and a ı > 0: We may choose a � > 0 so

that for all i and all �;  2 C di with

udi
.¹j W�.j / ¤  .j /º/ � � and  2 AP.
; F; ı=2; �i/;

we have � 2 AP.
; F; ı; �i/: We may choose an " 2 .0; �/ so that if i 2 N; and if

p 2 Sdi
has

max
g2F

udi
.¹j Wp.�i.g/.j // ¤ �i .g/p.j /º/ � ";

then

AP.
; F; ı=4; �i/ ı p � AP.
; F; ı=2; �i/:
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By Lemma A.2, we may choose a finite F 0 � G; a ı0 > 0; and an I0 2 N so

that if i � I0; then for all �;  2 AP.ˇ; F 0; ı0; �i / there is a p 2 Sdi
with

udk
.¹j W .p.j // ¤ �.j /º/ � "

and

max
g2F

udi
.j Wp.�i.g/.j // ¤ �i .g/.p.j //º/ � ":

We may, and will, assume that F � F 0 and that ı0 < ı=4:

Since G is amenable, it follows from Theorems 1 and 4 of [19] (see also

Theorem 1 of [9], Theorem 6.7 of [29]) that we may find an I1 2 N so that

if i � I1; then there is a  2 AP.
; F 0; ı0; �i /: Fix an i � max.I0; I1/, a

 2 AP.
; F 0; ı;0 ; �i /; and a � 2 AP.ˇ; F 0; ı0; �i /: Since �ı 2 AP.ˇ; F 0; ı0; �i /,

we may find a p 2 Sdi
so that

udi
.¹j W .� ı  /.p.j // ¤ �.j /º/ � ":

Let J D ¹j W .� ı  /.p.j // ¤ �.j /º: Let Q� 2 C di be any function satisfying the

following two conditions:

� Q�jJ c D . ı p/jJ c ,

� .� ı Q�/jJ D �jJ .

By our choice of ı0; F 0; "; we have that  ı p 2 AP.
; F; ı=2; �i/: Since

udi
.¹j W Q�.j / ¤  .p.j //º/ D udi

.J / � " � �;

it follows from our choice of � that Q� 2 AP.
; F; ı; �i/: Since � ı Q� D � by

construction, we have shown that

AP.ˇ; F 0; ı0; �i/ � AP.ˇW 
; F; ı; �i/: �

The above lemma shows that any factor map between actions of an amenable

group is model-surjective in the sense of [4, Definition 3.1]. Combining this

with Proposition 8.4 of [3] gives an alternate proof of the fact that measure-

preserving actions of amenable groups are strongly sofic with respect to any sofic

approximation.

Lemma A.6. Let ˇ; ˛; 
 be finite measurable observables with domain X and

with ˛ _ ˇ � 
 . If  i is any sequence of ˇ-microstates, then

h.�i /i ;�.˛ j ˇW 
/ D h.�i /i ;�.˛ j . i /i W 
; G/:
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Proof. Fix a finite F � G and a ı > 0: If i is sufficiently large, then by

Proposition A.5 we have  i 2 AP.ˇW 
; F; ı; �i/: Thus,

h.�i /i ;�.˛ j ˇW 
/ � h.�i /i ;�.˛ j . i /i W 
; G/:

We now prove the reverse inequality. Fix a finite F � G and a ı > 0: Choose

F 0; ı0 as in Lemma A.3 for this F; ı: Then for all large i;

sup
�2AP.˛W
;F 0;ı0;�i /

j AP.˛ j �W 
; F 0; ı0; �i /j

� j AP.˛ j  i W 
; F; ı; �i/jjAjıdi ıdi

�
di

bıdic

�
:

By Stirling’s Formula,

h.�i /i ;�.˛ j ˇW 
/

� h.�i /i ;�.˛ j ˇW 
; F 0; ı0; �i /

� h.�i /i ;�.˛ j . i/i W 
; F; ı/� ı log.ı/� .1� ı/ log.1 � ı/C ı log jAj:

Letting ı ! 0 and then taking the infimum over all finite F � G completes the

proof. �

It will also be helpful to note that we may replace the limit supremum in the

definition of relative entropy with a limit infimum.

Definition A.7. Let ˛; 
 be finite measurable observables with 
 � ˛: Given a

finite F � G and a ı > 0; we set

N
h.�i /i ;�.˛W 
; F; ı; �i/ D lim inf

i!1

1

di
log j AP.˛W 
; F; ı; �i/j;

N
h.�i /i ;�.˛W 
/ D inf

F�Gfinite;
ı>0

N
h.�i /i ;�.˛W 
; F; ı; �i/:

The following is more or less a consequence of results of Bowen [9] and Kerr

and Li [29]

Lemma A.8. Let ˛; 
 be finite measurable observables with domain X and so

that ˛ � 
: Then

N
h.�i /i ;�.˛W 
/ D h�.˛; G/ D h.�i /i ;�.˛W 
/:

Proof. It is implicitly shown in [9] and [29] that

h.�i /i ;�.˛W ˛/ D h�.˛; G/ D
N
h.�i /i ;�.˛W ˛/;
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Hence,

h�.˛; G/ D h.�i /i .˛W ˛/ � h.�i /i .˛W 
/ �
N
h.�i /i .˛W 
/:

It thus suffices to show that h�.˛; G/ �
N
h.�i /i .˛W 
/: To show this, fix a finite

F � G and a ı > 0: By Proposition A.5, we may find a finite F 0 � G and a ı0 > 0

so that

AP.˛W ˛; F 0; ı0; �i / � AP.˛W 
; F; ı; �i/:

It follows that

h�.˛; G/ D
N
h.�i /i ;�.˛W ˛/ �

N
h.�i /i ;�.˛W ˛; F 0; ı0/ �

N
h.�i /i ;�.˛W 
; F; ı/:

And taking the infimum over F; ı completes the proof. �

Theorem A.9. Fix finite measurable observables ˇ; ˛; 
 with 
 � ˛ _ ˇ: Let

Sˇ be the smallest complete, G-invariant sub-sigma-algebra of X which makes ˇ

measurable. Then

h.�i /i ;�.˛ j ˇW 
/ D h�.˛ j Sˇ ; G/:

Proof. By Proposition 2.7 (ii) and Lemma A.8,

h�.˛ _ ˇ;G/ D h.�i /i ;�.˛ _ ˇW 
/

� h.�i /i ;�.ˇW 
/C h.�i /i ;�.˛ j ˇW 
/

D h�.ˇ; G/C h.�i /i ;�.˛ j ˇW 
/:

Using the Abramov–Rokhlin formula h�.˛ j Sˇ ; G/ D h�.˛ _ ˇ;G/ � h�.ˇ; G/

(see [1, 7, 47, 16]), we find that

h�.˛ j Sˇ ; G/ � h.�i /i ;�.˛ j ˇW 
/:

To prove the reverse inequality, choose a sequence . i /i of ˇ-microstates. Fix

a finite F � G and a ı > 0; and let F 0 � G and ı0 > 0 be as in the conclusion to

Lemma A.3. For all sufficiently large i;

j AP.˛ _ ˇW 
; F; ı; �i/j

D
X

�2AP.ˇ W
;F;ı;�i /

j AP.˛ j �; F; ı; �i/j

�
X

�2AP.ˇ W
;F 0;ı0;�i /

j AP.˛ j �; F; ı; �i/j

� j AP.ˇW 
; F 0; ı0; �i/jj AP.˛ j  i WF
0; ı0; �i /jjAj�ıdi

1

ıdi
�
di

bıdi c

� :
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So by Stirling’s formula,

h.�i /i ;�.˛ _ ˇW 
; F; ı/

� h.�i /i ;�.˛ j . i /i WF
0; ı0/C

N
h.�i /i ;�.ˇW 
; F 0; ı0/

� ı log jAj C ı log.ı/C .1 � ı/ log.1� ı/

� h.�i /i ;�.˛ j ˇW 
/C h�.ˇ; G/ � ı log jAj C ı log.ı/C .1� ı/ log.1 � ı/;

where in the last line we use Lemmas A.8 and A.6. Taking the infimum over all

F; ı and arguing as in the first half we see that

h.�i /i ;�.˛ j ˇW 
/ � h�.˛ j Sˇ ; G/: �

Corollary A.10. For any G-invariant sigma algebras F1;F2 � X we have

h�.F1jF2; G/ D h.�i /i ;�.F1jF2WX/:

Proof. For a finite F2-measurable observable ˇ; let Sˇ be defined as in Theo-

rem A.9. We have that

h�.F1 j F2; G/ D sup
˛

inf
ˇ
h�.˛ j Sˇ ; G/;

where the supremum is over all finite F1-measurable observables ˛; and the

infimum is over all finite F2-measurable observables ˇ: A similar formula also

holds for h.�i /i ;�.F1 j F2WX/; so the general case follows from Theorem A.9. �
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