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Abstract. We obtain a characterisation of confined subgroups of Thompson’s group F . As

a result, we deduce that the orbital graph of a point under an action of F has uniformly

subexponential growth if and only if this point is fixed by the commutator subgroup. This

allows us to prove non-embeddability of F into wobbling groups of graphs with uniformly

subexponential growth.
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1. Introduction

Discovered in 1965, Richard Thompson’s group F became an important object

of study for geometric group theory and measured group theory. This group (see

§2.1 for the definition of F ) has an unusual combination of properties � it is a

finitely presented, torsion-free group, which has a free subsemigroup but no free

subgroups, and its commutator subgroup is simple. Furthermore, amenability of

F remains a major open question. Recall that an action of a group G on a set X

is amenable if X carries a G-invariant finitely additive probability measure, and a

group is called amenable if its action on itself by left multiplication is amenable.

We refer the reader to [1] and [2] for more details about Thompson’s group F .

Even though the Cayley graph of F with its standard finite generating set is

hard to visualize, a family of its orbital Schreier graphs associated to the action

on the unit segment was explicitly described by Dmytro Savchuk in [16]. This

description was later used in the study of Poisson–Furstenberg boundary of F

for various classes of symmetric generating measures, see [10], [4], [11], [15],

and [17].

The main result of this article is also related to the study of Schreier graphs

of F . In Theorem 3.1 we give a characterisation of the confined subgroups of F in

terms of the action of F on the unit interval. It is equivalent to a characterisation

https://creativecommons.org/licenses/by/4.0/


492 M. Chaudkhari

of the Schreier graphs of F which do not contain arbitrarily large balls isomorphic

to a ball in the Cayley graph of F . Notice that the complicated structure of the

standard Cayley graph of F implies that these are the only Schreier graphs of F

that one could hope to describe explicitly. As a corollary, we show that F has no

faithful actions with uniformly subexponential growth of orbital Schreier graphs

and that F does not embed into the wobbling group of a graph with uniformly

subexponential growth. Recall that the wobbling group W.X/ of a metric space

X is defined as the group of all bijections from X to itself which keep distances

between points of X and their images bounded by some constant (see §2.4). If

G is a finitely generated group acting on a set X , and � is the orbital Schreier

graph of a point p 2 X with standard graph distance, then G also acts on �

by elements of its wobbling group. The statement of our main result is similar

to the classification of the confined subgroups for the full groups of minimal

étale groupoids of germs obtained by Nicolas Matte Bon in [14]. We also use

generalizations of the commutator lemma obtained by Adrien Le Boudec and

Nicolas Matte Bon in [13] and [14].

Our interest in embeddings of F into wobbling groups of “small” graphs is

inspired by the proof of amenability of the full topological group of a Cantor min-

imal system in [7]. One of the steps in this proof is to embed a finitely generated

subgroup of the full topological group into W.Z/ and later use the fact that ac-

tion of W.Z/ on Z is extensively amenable (notion first defined in [8]), see [5]

or [7]. Furthermore, amenability of interval exchange transformation group, or

shortly the IET, is equivalent to a question about amenability of subgroups of the

wobbling group W.Zd / for d > 3, we refer the reader to [6] for more details.

In this context a “small” graph could mean a recurrent graph (the action of the

wobbling group of such a graph is always extensively amenable) or a graph of

subexponential growth.
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introducing him to the topic and her guidance, support and encouragement. The

author would also like to thank Nicolas Matte Bon for valuable remarks about a

preliminary version of this article. The author would like to express his gratitude

to the referee for their helpful suggestions and remarks.

2. Preliminaries

2.1. Properties of Thompson’s group F. This subsection contains a brief

overview of properties of Thompson’s group F which are used in this article.

Proofs of majority of these facts could be found in [1] or [2].

Definition 2.1. Thompson’s group F is the group formed by all orientation-

preserving piecewise linear homeomorphisms of the segment Œ0; 1� which have
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breakpoints in dyadic rationals and slopes equal to powers of 2. Here a breakpoint

of a piecewise linear function is a point where it is not differentiable, and a

piecewise linear function on a segment must have a finite number of breakpoints.

In this article we consider the right action of F on the unit segment, thus for any

two homeomorphisms h; g 2 F their composition is defined as hg.x/ D g.h.x//.

It is well known that for any n � 1 the action of F on ordered n�tuples of dyadic

rationals is transitive. The support of g 2 F is the closure of the set of points of

the unit segment on which g acts nontrivially. Thompson’s group F has the finite

presentation

hx0; x1 j Œx0x�1
1 ; x�1

0 x1x0� D Œx0x�1
1 ; x�2

0 x1x2
0 � D idi;

where the generators are defined as follows:

x0.t / D

8

ˆ

<

ˆ

:

t=2; 0 � t � 1=2;

t � 1=4; 1=2 � t � 3=4;

2t � 1; 3=4 � t � 1;

and

x1.t / D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

t; 0 � t � 1=2;

t=2 C 1=4; 1=2 � t � 3=4;

t � 1=8; 3=4 � t � 7=8;

2t � 1; 7=8 � t � 1:

Its commutator subgroup F 0 is a simple group which coincides with the subgroup

of all elements with support contained in the unit interval .0; 1/. The quotient

F=F 0 is isomorphic to Z
2, and a subgroup H < F is normal if and only if it

contains the commutator subgroup of F .

For any segment Œa; b� � Œ0; 1� (or an interval .a; b/) denote F Œa; b� (respec-

tively F.a; b/) the subgroup of all elements of F with support in Œa; b� (respec-

tively .a; b/). We will need the following properties of these subgroups:

(1) if a < b are dyadic rationals, then F Œa; b� is isomorphic to F . Furthermore,

its commutator subgroup is exactly the subgroup F.a; b/;

(2) if a < b < c < d are dyadic rationals then the group generated by elements

of F Œa; c� and F Œb; d � contains F Œa; d �.

2.2. Schreier graphs and orbital graphs

Definition 2.2. Assume that G is a group generated by a finite set S and let H < G

be its subgroup. The Schreier graph of G modulo H is an oriented labeled graph

with the set of vertices equal to the set of right cosets ¹Hg; g 2 Gº and the set of

edges equal to ¹.Hg; Hgs/; s 2 Sº. We denote this graph by �.G; H/.
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If G acts on a set X and p 2 X , the Schreier graph of G modulo the stabilizer

of p is called the orbital graph of p. Its vertex set can be identified with the orbit

OG.p/ of p, and two vertices v; w 2 OG.p/ are connected by an edge with label

s if and only if s.v/ D w.

For a connected graph with bounded degree one can define its uniform growth

function as follows:

Definition 2.3. Let � D .V; E/ be a connected graph with bounded degree. For

v 2 � denote by B�.v; n/ the ball of radius n centered at v in �. Then the uniform

growth function of � is defined as

Nb.n/ D sup
v2V

jB�.v; n/j;

where jB�.v; n/j stands for the cardinality of the set of vertices.

If � is a Schreier graph of G, changing a finite generating set of G preserves the

equivalence class of the uniform growth function of � under the following equiv-

alence relation: for two functions f; gWN ! N; f is said to grow asymptotically
not slower than g (g � f ) if there exists a constant C > 0 such that g.n/ < f .C n/

for all n 2 N and f � g if and only if g � f and f � g.

In general, this equivalence class is preserved under bi-Lipschitz equivalence

and we refer to this class when we talk about uniform growth rate.

One should note that although the uniform growth is always greater or equal

to usual growth function of a graph, they might be completely different, and it is

easy to construct an example of a graph with exponential uniform growth which

has linear growth function.

We also consider Schreier graph �.G; H/ as a rooted graph with the root

at H . Space of rooted labeled graphs could be naturally equipped with a distance

d defined as follows. Let �1 and �2 be two rooted labeled graphs with roots

v1 and v2. Then d.�1; �2/ D 1
nC1

, where n � 0 is the least integer such that

B�1
.v1; n/ and B�2

.v2; n/ are not isomorphic as rooted labeled graphs.

2.3. Chabauty space. Let G be a countable discrete group. The set of its

subgroups Sub.G/ is endowed with a topology (called the Chabauty topology)

induced from the space 2G of all subsets of G with usual product topology. The

base of this topology is formed by sets

UA;B D ¹H 2 Sub.G/W A � H; H \ B D ;º;

where A; B are finite subsets of G. With the Chabauty topology Sub.G/ becomes

a compact metrizable space on which G acts by conjugation, and this is an action

by homeomorphisms.

Assume that G is finitely generated and fix a finite generating set S . Conver-

gence in the Chabauty topology has a reformulation in terms of Schreier graphs.
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Namely, a sequence of subgroups Hn converges to H < G if and only if, for any

generating set S , the sequence �.G; Hn/ converges to �.G; H/ in the space of

labeled rooted graphs.

Suppose that H and K are subgroups of G, then H is said confined by K

if the closure of K-orbit of H does not contain the trivial subgroup. Since the

base of neighborhoods of the trivial subgroup is formed by sets of form U¹1º;P

with P finite, the last condition is equivalent to the existence of a finite set

P D ¹g1; g2; : : : ; grº � G n 1, such that for all k 2 K

kHk�1 \ P ¤ ;;

we call such sets P confining. If K D G we say that H is a confined subgroup
of G.

In terms of Schreier graphs, H is not confined if and only if one can find a

sequence of vertices vn; n � 1, in the Schreier graph �.G; H/, such that versions

of �.G; H/ rooted at vn converge to the Cayley graph of G in the space of rooted

labeled graphs.

Confined subgroups are also related to the study of uniformly recurrent sub-
groups – closed minimal G-invariant subsets of Sub.G/ (it is easy to see that any

nontrivial uniformly recurrent subgroup consists of confined subgroups). We refer

the reader to [13] for a description of uniformly recurrent subgroups of Thomp-

son’s groups and its applications to C �-simplicity.

2.4. Wobbling groups. The wobbling groups were first studied in [12] and

applied to Tarski’s circle-squaring problem.

Definition 2.4. Let � D .V; E/ be a locally finite connected graph equipped with

standard graph metric d� . The wobbling group W.�/ is defined as the group of

all bijections g W V ! V such that

sup
x2V

d�.x; g.x// < 1:

One can show that the wobbling group of any graph containing infinite path

contains a free subgroup, but no property (T) group could be embedded into the

wobbling group of a graph with uniformly subexponential growth, see [5] or [9].

However, as it was pointed out by Matte Bon, if one removes uniformity require-

ment, any residually finite group can be embedded into the wobbling group of

a graph of linear growth. In particular, group SL3.Z/ which has property (T)

embeds into the wobbling group of a graph with linear growth. Therefore, gen-

eral embeddability questions would require some uniformity, although in case of

Thompson’s group F, which has few normal subgroups, a question without as-

sumptions about uniformity still makes sense.

Finally, as we already mentioned in the introduction, if G is a finitely generated

group with a generating set S , and H is its subgroup, then the action of G on right

cosets of H defines a homomorphism from G to W.�.G; H//.



496 M. Chaudkhari

3. Characterisation of confined subgroups of Thompson’s group F

In this section we obtain a characterisation of confined subgroups of F in terms

of the action of F on the unit interval. This characterisation is analogous to one

obtained in Theorem 6.1 (Theorem 4.1 in version 1) of [14], although the proof

of Theorem 6.1 does not directly apply to F , because in the present case the

corresponding action of a confined subgroup on a Cantor space may have infinite

fixed closed proper subsets, and as a result, the statement of Step 1 in the proof of

Theorem 6.1 in [14] is false in this setting.

If a group G acts by homeomorphisms on a topological space X and Y � X ,

we call the rigid stabilizer of Y the subgroup of G consisting of all elements which

fix the complement of Y pointwise. We denote this subgroup by RG.Y /, and the

stabilizer of Y is denoted by StG.Y /. Finally, the subgroup of all elements g 2 G

which act trivially on some neighborhood of Y is denoted by St0G.Y / and is called

the germ stabilizer of S .

Theorem 3.1. A subgroup H of Thompson’s group F is confined if and only if
there exists a finite subset of the unit segment S � Œ0; 1� such that St0F 0.S/ � H �

StF .S/: In particular, H is confined if and only if it is confined by F 0.

Proof. We first prove that any subgroup satisfying inclusions from the theorem is

confined. It suffices to show that for any finite S the subgroup St0F 0.S/ is confined

by F . Put r D jS j C 3 and take any nontrivial g1; g2; : : : ; gr 2 F with pairwise

disjoint supports. Then for any h 2 F the support of at least one of the elements

h�1g1h; h�1g2h; : : : ; h�1grh does not intersect S [ ¹0; 1º, and thus this element

belongs to the germ stabilizer of S and to F 0.

We will prove the reverse direction under a weaker assumption that the sub-

group H is confined by F 0. Consider a maximal open subset V of the interval

.0; 1/ such that H contains every g 2 F , whose support belongs to V . It is easy

to see that such a maximal set exists, since if H contains every element supported

in one of a family of open sets, then it contains every element supported in their

union. Our aim is to show that the complement of V is finite. We first check that

V is non-empty. We are going to use the following theorem (a generalization of

the commutator lemma, see also a similar Theorem 3.10 in [13]):

Theorem 3.2 (N. Matte Bon, [14]). Let G be a countable group acting by homeo-
morphisms of a Hausdorff space X , and assume that A � G is a subgroup whose
action on X is minimal and proximal. Let H 2 Sub.G/ be confined by A. Then
there exists a non-empty open subset U � X and a finite index subgroup � of the
rigid stabilizer RA.U / such that H contains the derived subgroup Œ�; ��.

Apply this theorem to X D .0; 1/, A D F 0 and H (the action of F 0 is transitive

on ordered n-tuples of dyadic rationals for any n, so it is minimal and proximal



Confined subgroups of Thompson’s group F 497

on the unit interval). Let a < b be dyadic rationals such that Œa; b� is contained

in U . As we mentioned before, the subgroup F Œa; b� of elements of F supported

on Œa; b� is isomorphic to Thompson’s group F, and its commutator is simple and

coincides with the group F.a; b/ of all elements of F supported on the interval

.a; b/. Then since F 0Œa; b� is simple, it must be contained in �, and consequently,

in its derived subgroup. Therefore, H contains F.a; b/ and V is non-empty.

Next, we show that V has only finitely many connected components. Suppose

that P D ¹g1; g2; : : : ; grº is confining for H . Note that if we replace some

elements of P with their inverses and reorder elements of P , we will still have

a confining set. We need the following fact:

Lemma 3.3. For any nontrivial g1; g2; : : : ; gr 2 F; possibly after permuting and
taking inverses, one can find intervals U1; : : : ; Ur with dyadic endpoints such that
g1.U1/ < U1 < g2.U2/ < U.2/ < � � � < gr .Ur / < Ur , where an interval .a; b/ is
less than .c; d/ if b < c.

Proof. We induct on r . Case r D 1 is obvious. For the inductive step, choose

an element with maximal supremum of support. Take this element as gr , and

let s be the supremum of its support. Note that s must be a fixed point of gr .

If gr is greater than the identity on .s � �; s� for any sufficiently small �, take

its inverse. It remains to apply inductive hypothesis to elements g1; g2; : : : ; gr�1

and then choose Ur sufficiently close to s to ensure that desired inequalities hold

for Ur . 4

Suppose that one can find r connected components .x1; y1/; : : : ; .xr ; yr/ of V

such that 0 < x1 and yi � xiC1 for i D 1; : : : ; r � 1. Using Lemma 3.3, we can

show that at least one of these intervals could be extended over its left endpoint

contradicting the definition of connected component. Indeed, let Ui , i D 1; : : : ; r ,

be as in Lemma 3.3 and let g1; g2; : : : ; gr be the corresponding modification of P ,

then one can choose dyadic intervals Vi � .xi ; yi/ and sufficiently small dyadic

intervals Wi ; xi 2 Wi ; i D 1; : : : ; r , such that W1 < V1 < W2 < V2 < � � � <

Wr < Vr . Since F 0 acts transitively on increasing 4r-tuples of dyadic rationals,

there exists h 2 F 0 such that h.Vi/ D Ui ; h.Wi/ D gi .Ui /; i D 1; : : : ; r . Then

for some i an element k D h�1gih belongs to H and k.Vi/ D Wi . Consequently,

F 0ŒWi � D k�1F 0ŒVi �k < H . Therefore, any element of F with support in Wi

belongs to H . Now, since elements with support in Wi together with elements

with support in .xi ; yi/ generate group of all elements supported on Wi [ .xi ; yi /,

we obtain an interval in V which contains .xi ; yi/ as a strictly smaller subinterval,

a contradiction. As a result, V can not have more than rC1 connected components.

Since V consists of finitely many intervals, endpoints of these intervals must

be fixed by H , and Œ0; 1� n V is a disjoint union of finitely many segments and

points. Assume that a segment Œx; y�; x < y; is a connected component of the

complement of V; then its endpoints must be fixed by H . Notice that Lemma 3.3
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together with transitivity on r-tuples imply that H can not have more than r fixed

points in the interval .0; 1/, so H can not act on Œx; y� trivially. Consider element

h 2 F 0 which maps all break points (except for 0 and 1) of each of g1; g2; : : : ; gr

inside .x; y/. Then h�1P h D ¹h�1g1h; h�1g2h; : : : ; h�1grhº is still a confining

set for H . Furthermore, each of its elements either has support in .x; y/ or moves

at least one endpoint of Œx; y�. Since h�1P h is confining, its conjugation by any

element of F 0 must hit H . Thus, if we conjugate h�1P h by elements with support

in .x; y/, we will still be hitting H , but elements of h�1P h which move endpoint of

this segment will still move the endpoint, so they can not belong to H . Therefore,

we can only consider those elements of h�1P h which are supported on Œx; y�. But

this implies that the restriction of H to Œx; y� is confined by the subgroup of all

elements of F with support on .x; y/. Then we can repeat the argument in the

beginning of the proof to obtain a subinterval .z; t / � .x; y/ that must belong

to V , which contradicts the definition of Œx; y�. Consequently, the complement of

V is some finite set of points S which are fixed by H . Thus, by the definition of V ,

St0F 0.S/ � H � StF .S/, which completes the proof of the theorem. �

Remark 3.4. Theorem 3.1 implies that the graph �.F; H/, with H being a

confined subgroup of F , must be amenable. Indeed, it suffices to prove this for

H D St0F 0.S/ D St0F .S [ ¹0; 1º/ with S \ .0; 1/ ¤ ;. Notice that x0.t / < t

for all t 2 .0; 1/, so for any finite S � .0; 1/ there exists k 2 N such that

xk
0 .S/ � .0; 1=2/. Then, since x1.t / D t and x0.t / D t=2 on .0; 1=2/ and

they coincide in a neighbourhood of 1, �.F; H/ contains arbitrarily large parts

of square grid and thus it is amenable.

Remark 3.5. The theorem above also implies that the subgroups constructed in [3]

are examples of maximal non-confined subgroups of F .

4. Growth of orbital graphs of Thompson’s group F

Results from the previous section allow us to deduce lower bounds on the uniform

growth of orbital graphs of F in the same fashion as in §8 of [14].

Theorem 4.1. Assume that F acts on a set X and let p be any point in X . Then
either the orbital graph of p has exponential uniform growth or it is fixed by the
commutator subgroup of F .

Proof. The orbital graph of p is isomorphic to the Schreier graph of StF .p/.

Assume that StF .p/ is not confined by F . Then there exists a sequence of points

pn; n � 1; in the orbit of p such that orbital graphs of pn converge to the Cayley

graph of F in the space of rooted labeled graphs. Then, as F has exponential

growth, the orbital graph of p has exponential uniform growth.
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If StF .p/ is confined, then it either contains the commutator subgroup F 0 or

it fixes a point x in the unit interval .0; 1/. In the latter case the orbital graph of

p grows not slower than the orbital Schreier graph of x. But according to the

classification of orbital Schreier graphs of points from the unit interval obtained

by Savchuk in [16], all these graphs have exponential uniform growth, which

completes the proof. �

Corollary 4.2. F and F 0 do not embed into wobbling groups of graphs with
uniformly subexponential growth.

Proof. It suffices to notice that the orbital graph of a point under the action of a

finitely generated subgroup of a wobbling group has uniform growth not exceeding

the uniform growth of the initial graph. Then, if F acts on a graph by elements

of its wobbling group, either every point of the graph is fixed by the commutator

subgroup or it has exponential uniform growth. Conclusion for F 0 follows from

the fact that F embeds in F 0. �

5. Final remarks and questions

We still do not know whether F could be embedded into a wobbling group of a

recurrent graph with bounded degree or into a wobbling group of a graph with

subexponential growth. In the latter case, arguments used in §4 might fail only for

a point p with non-confined stabilizer if a sequence pn; n � 1; is sufficiently sparse

in the orbital graph of p. Similarly, for recurrent graphs the case of a confined

subgroup follows from results of Savchuk and Kaimanovich or Mishchenko. For

non-confined subgroup H the fact that arbitrarily large balls from the Cayley

graph appear in the Schreier graph modulo H does not imply that the Schreier

graph is not recurrent, since one can modify a recurrent graph by inserting large

components of a Cayley graph of F without affecting its recurrence. The following

question still remains open:

Question 1. Is there any non-confined maximal subgroup of F which corresponds
to a recurrent Schreier graph? In particular, are the Schreier graphs modulo
subgroups defined in [3] always transient?

It also would be natural to try to estimate the density of fragments of the Cayley

graph of F in a Schreier graph modulo its non-confined subgroup, possibly with

additional assumptions concerning amenability. Affirmative answer to the follow-

ing question would obviously settle the general case of graphs with subexponential

growth.
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Question 2. Is it true that for any non-confined subgroup H < F one can find
constant K such that for infinitely many n 2 N there is a copy of a ball BF .n/ in
a ball of the Schreier graph with radius Kn centered at the root?
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