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Abstract. In this article we construct asynchronous and sometimes synchronous automatic

structures for amalgamated products and HNN extensions of groups that are strongly asyn-

chronously (or synchronously) coset automatic with respect to the associated automatic

subgroups, subject to further geometric conditions. These results are proved in the general

context of fundamental groups of graphs of groups. The hypotheses of our closure results

are satisfied in a variety of examples such as Artin groups of sufficiently large type, Coxeter

groups, virtually abelian groups, and groups that are hyperbolic relative to virtually abelian

subgroups.

Mathematics Subject Classification (2020). 20F65, 20F10, 20E06, 20F36.

Keywords. Automatic group, automatic coset system, graph of groups, relatively hyper-

bolic group, 3-manifold group, Artin group.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

2 Coset Automaticity and Crossover . . . . . . . . . . . . . . . . . . . . 508

3 Automatic structures for graphs of groups . . . . . . . . . . . . . . . . 513

4 Automaticity for graphs of relatively hyperbolic groups . . . . . . . . 527

5 Synchronous automaticity when geodesics concatenate up . . . . . . . 536

6 Further strong synchronous coset automatic structures . . . . . . . . . 542

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

1. Introduction

Closure properties for the classes of automatic and asynchronously automatic

groups are known for a variety of group constructions. The class of automatic

groups is closed with respect to finite index supergroups and subgroups, direct

products, free products [16, Chapter 12], and graph products [17]. For amalga-

mated products and HNN extensions, closure for automaticity is also known in

some special cases. Epstein et al. show in [16, Theorems 12.1.4, 12.1.9] that an

https://creativecommons.org/licenses/by/4.0/
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amalgamated product or HNN extension of automatic groups along a finite sub-

group is automatic, while Baumslag et al. [4] show closure for automaticity under

amalgamated products with other technical restrictions. It is proved in particular

in [4, Theorems E, B, D] that amalgamated products of two finitely generated free

groups over a finitely generated subgroup are asynchronously automatic, and that

amalgamated products of two finitely generated abelian groups over a subgroup

or of two negatively curved groups over a cyclic subgroup are automatic.

This article derives automatic structures for new families of groups as a con-

sequence of constructive proofs of closure properties for the class of groups with

strong automatic coset systems. The study of groups that are automatic relative to

a subgroup was introduced by Redfern in [26]. But Redfern had slightly weaker

conditions on the associated structures than we need, and our definition of strong

automatic coset systems comes from later work of Holt and Hurt in [19], where

some fellow travelling conditions were added. With either variant of the defini-

tion, an automatic coset system provides a quadratic time algorithm for reducing

an element of a coset of H in G to a normal form representative of that coset and,

in particular, a quadratic time solution for the membership problem of elements

of G in H .

Our article constructs strong automatic coset systems for fundamental groups

of graphs of groups, given that the vertex groups have such systems with respect to

corresponding edge groups, and given certain geometric conditions. In particular

the construction can be applied to amalgamated products and HNN extensions,

given those conditions. We build new automatic structures out of the automatic

coset systems we are now able to build. Our results also generalise those of [16]

relating to amalgamated products and HNN extensions.

The main results of the article are Theorems A, B, and D. The first two of these

provide our most general combination theorems, using only conditions introduced

in Section 2; the third deals with groups satisfying a particular condition on their

geodesics. Those three main results are stated briefly at the end of this introduc-

tion, together with a pair of corollaries, relating specifically to the fundamental

groups of compact 3-manifolds, and to Artin groups.

Related results on the construction of synchronous and asynchronous auto-

matic structures on amalgamated products and HNN extensions were developed

in [4], and their generalisations to graphs of groups were the topic of Shapiro’s

paper [29]. Some of our results are very similar to some of these, but others are

distinct. The earlier papers [4] and [29] do not involve automatic coset systems,

but their hypotheses are related to typical properties of automatic cosets systems

(such as the subgroup H being quasiconvex in G), and their hypotheses are also

related to our conditions of crossover and stability, which we discuss below. An-

other difference between their approach and ours is that their normal forms are

defined using left cosets of the subgroups (so subgroup elements are situated at

the right hand end of normal form words) whereas ours use right cosets. Since the

definition of automaticity involves multiplying words by generators on the right,

this difference is significant.
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In Section 2 we give definitions and notation of basic concepts used through-

out the article. The definitions of strong asynchronous and synchronous automatic

coset systems for a group, subgroup pair .G; H/ are given in Section 2.2. In that

section we also prove Theorem 2.2, which constructs asynchronous or synchro-

nous automatic structures for a group G, given a strong, asynchronous or synchro-

nous, automatic coset system for .G; H/ and an automatic structure, asynchronous

or synchronous, for H . We can combine this result with our combination theo-

rems for coset automatic systems to derive combination theorems for automatic

structures.

Section 2.3 introduces the geometric conditions of limited crossover and sta-

bility that are used in our main results, and studies basic properties of these con-

ditions.

The condition of limited crossover on a language LH of coset representatives

for H in G, with respect to a given generating set Y of H and a generating set Z

of a possibly different subgroup of G, limits the Y -length of ugv�1 as a function

of the Z-length of g when g 2 hZi and ugv�1 2 H , with u; v 2 LH . In our

results about graphs of groups, we need to assume this condition when hY i and

hZi are the edge subgroups of two edges with the same target vertex.

The condition of stability on an isomorphism � between two groups H1 and

H2 relates the lengths of an element h 2 H1 and its image �.h/ over specified

generating sets of H1 and H2, respectively.

Section 3 is devoted to our first two main results for graphs of groups G,

Theorems A and B. These are the most general combination theorems of this

article, building respectively strong asynchronous and strong synchronous coset

systems for �1.G/, given appropriate conditions of crossover and stability on

vertex, edge subgroup pairs (and in the second case some further conditions).

Necessary definitions and background on graphs of groups G are provided in

Section 3.1, including a description of Higgins’ [18] normal forms for �1.G/.

Section 3.2 contains the statement of Theorem A, together with asynchronous

combination results Corollary 3.4 and Theorem 3.6 specifically for amalgamated

products G1 �H G2, and Corollary 3.5 specifically for HNN-extensions G�� , of

strongly asynchronously coset automatic group, subgroup pairs. The proof of

Theorem A is given in Section 3.3. In Section 3.4, we prove Proposition 3.9

which derives strong synchronous coset automaticity from its asynchronous form,

given a particular geometric condition. We apply this to derive Theorem B, our

general closure result for graphs of groups that are strongly synchronously coset

automatic.

The remainder of the article is devoted to finding applications of Theorems A

and B. For some of these, such as Theorem D, some additional technical results

are needed to derive them. In general, we find applications by providing proofs

of strong asynchronous or synchronous coset automaticity, as well as crossover

conditions and more, for various pairs .G; H/. For many of our examples, we

derive strong synchronous (rather than asynchronous) coset systems.
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Section 4 is devoted to relatively hyperbolic groups; Section 4.1 contains def-

initions and a number of technical results that we need. Given a group G hyper-

bolic relative to a set of subgroups, and a specified such subgroup H , the technical

result Proposition 4.5 provides conditions under which we can find a strong syn-

chronous automatic coset system for .G; H/ that satisfies crossover and some other

conditions we need. Theorem 4.8 uses a combination of Proposition 4.5 and The-

orems B and 2.2 to deduce strong synchronous coset automaticity relative to any

peripheral subgroup of the fundamental group of a graph of relatively hyperbolic

groups, under appropriate conditions on relevant subgroups and coset systems.

Results of Dahmani [12, Theorem 0.1] and Antolin and Ciobanu [3, Corol-

lary 1.8] show that the fundamental group G of an acylindrical graph of finitely

generated groups that are hyperbolic relative to abelian subgroups, in which all of

the edge groups are peripheral, is automatic; in Corollary 4.10 we use Theorem 4.8

to give a new proof of this result. The special case of Corollary 4.10 in which the

graph of groups arises from the JSJ decomposition of a 3-manifold yields Corol-

lary C, which gives new automatic structures for fundamental groups of these

3-manifolds with respect to a Higgins language of normal forms (that is, normal

forms derived from the JSJ composition). These fundamental groups were first

shown to be automatic by Epstein et al. [16, Theorem 12.4.7] and Shapiro [29],

but the structure of the associated languages is not transparent from the proofs;

the results of Dahmani and of Antolin and Ciobanu provide a shortlex automatic

structure.

Section 5 considers groups for which geodesics of a subgroup H of G “con-

catenate up” to geodesics of G; such a pair (G; H/ is also referred to in the litera-

ture [1, 2, 9] as an “admissible pair.” We observe in Section 5.2 that this property

holds for Coxeter groups and for Artin groups of sufficiently large type, relative to

their parabolic subgroups. This property also holds for graph products of groups,

relative to sub-graph products [10], [23, Proposition 14.4]. We apply Theorem A

and Proposition 3.9 to deduce Theorem D. We note that we can apply this to prove

automaticity of a variety of examples of Artin groups that were not previously

known to be automatic; a family of such examples is described in Corollary E.

Finally, in Section 6 we derive several results involving abelian and virtually

abelian groups. Proposition 6.1 establishes strong coset automaticity with limited

crossover in finitely generated abelian groups. In Proposition 6.2 we prove that

finitely generated virtually abelian groups G are strongly coset automatic with re-

spect to any subgroup H ; however, the question of whether any crossover condi-

tions hold in this case remains open. We also prove assorted results on the strong

synchronous coset automaticity of various types of amalgamated free products

G1 �H G2 for which .G1; H/ and .G2; H/ are both strongly coset automatic; in

particular Proposition 6.5 proves the strongly synchronous coset automaticity of

an amalgamated product of a finitely generated abelian group and a group that is

hyperbolic relative to a collection of abelian subgroups, where amalgamation is

over one of those subgroups.
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1.1. Statement of main results. Each of these results refers to a graph of groups

G.ƒ/ D .ƒ D .V; EE/; ¹GvW v 2 V º; ¹GeW e 2 EEº; ¹�e j e 2 EEº/ over a finite

connected directed graph ƒ. (For more details see Definitions 3.1 and 3.2 of

Section 3.1; but note in particular that we denote the initial and terminal vertices

of an edge e 2 EE by �.e/ and �.e/ respectively and that for each edge e 2 EE,

there is an oppositely oriented edge Ne with �. Ne/ D �.e/ and �. Ne/ D �.e/.) We

suppose that the groups Gv , Ge are finitely generated, with generating sets Xv

and Ye, respectively.

We refer the reader to Definitions 2.1, 2.3, and 2.6 for the meanings of strong

coset automaticity, limited crossover, and stability, respectively.

Theorem A. Let G D G.ƒ/ be a graph of groups as above, and let e0 be an edge
of ƒ. Suppose that the following conditions hold for each e 2 EE.

(i) The pair .G�.e/; Ge/ is strongly asynchronously coset automatic with coset
language Le

�.e/
� .X˙

�.e/
/� containing the empty word.

(ii) The triple .Ge; G Ne; �e/ is stable with respect to .Ye; Y Ne/.

(iii) For each f 2 EE with �.e/ D �.f /, the coset language Le
�.e/

has limited
crossover with respect to .Ye; Yf /.

Then the pair .�1.G/; Ge0
/ is strongly asynchronously coset automatic.

Theorem B. Let G D G.ƒ/ be a graph of groups as above, and let e0 be an edge
of ƒ. Suppose that the following conditions hold for each e 2 EE.

(i) Ye � X�.e/.

(ii) The pair .G�.e/; Ge/ is strongly synchronously coset automatic with coset lan-
guage Le

�.e/
satisfying Le

�.e/
� Geo.G�.e/; X�.e// \ Œ.X˙

�.e/
/� n Y ˙

e .X˙
�.e/

/��;

the only representative in Le
�.e/

of the identity coset is �, and each ele-
ment g 2 G�.e/ is represented by a word ygzg 2 Geo.G�.e/; X�.e// with
yg 2 .Y ˙

e /� and zg 2 Le
�.e/

.

(iii) The triple .Ge; G Ne; �e/ is 1–stable with respect to .Ye; Y Ne/.

(iv) For each f 2 EE with �.e/ D �.f /, the coset language Le
�.e/

has limited
crossover with respect to .Ye; Yf /.

Then the pair .�1.G/; Ge0
/ is strongly synchronously coset automatic.

Corollary C. Let M be an orientable, connected, compact 3-manifold with in-
compressible toral boundary whose prime factors have JSJ decompositions con-
taining only hyperbolic pieces. Then the group �1.M/ is automatic, with respect
to a Higgins language of normal forms.
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Theorem D. Let G D G.ƒ/ be a graph of groups as above. Suppose that the
following conditions hold for each e 2 EE.

(i) Ye � X�.e/.

(ii) Geo.Ge; Ye/ concatenates up to Geo.G�.e/; X�.e//.

(iii) The triple .Ge; G Ne; �e/ is 1-stable with respect to .Ye; Y Ne/.

(iv) G�.e/ is shortlex automatic with respect to an ordering of X�.e/ in which all
letters of Y ˙

e precede all letters of X˙
�.e/

n Y ˙
e .

Let L be the set of coset languages SL
Ge

G�.e/
, for e 2 EE, and let T be any maximal

tree in ƒ. Then, for each e0 2 EE, the pair .�1.G/; Ge0
/ is strongly synchronously

coset automatic, with the Higgins coset language L WD L.G;L; e0;T/. Further-
more L � Geo

Ge0 , and the group �1.G/ is automatic.

Corollary E. Let † be a Coxeter graph of sufficiently large type. Given arbitrary
subgraphs ƒ1; ƒ2; : : : ; ƒk of †, suppose that the Coxeter graph †0 is formed by
adjoining new vertices v1; v2; : : : ; vk to † together with the following edges from
each vi :

� to each vertex of ƒi , with the label 2;

� to each vertex of † n ƒi , with the label 1;

� to each vertex vj with j ¤ i , with the label 1.

Then the Artin group A†0 is automatic.

Acknowledgments. Susan Hermiller was partially supported by grants from

the National Science Foundation (DMS-1313559) and the Simons Foundation

(Collaboration Grant number 581433).

2. Coset Automaticity and Crossover

2.1. Notation. Let G be a group. Throughout this article, all generating sets for

all groups will be assumed to be finite. Let X be a finite generating set for G. We

write X˙ for X [ X�1. We denote the length of a word w 2 .X˙/� by jwj.
We denote by �.G/ (or �.G; X/ if it is necessary to specify X) the Cayley

graph of G and let d�.G/ be the path metric in �.G/. For each g 2 G, we denote

the length of a shortest word over X˙ that represents g by jgjX , and call that the

X-length of g. For any g 2 G and w 2 .X˙/�, let gw denote the path in �.G/

starting at the vertex g and labelled by the word w.

We write 1 for the identity element of G, and � for the empty word in .X˙/�.

For two words w; x 2 .X˙/�, we write w D x if w and x are the same word, and

w DG x if w and x represent the same element of G.
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2.2. Automatic coset systems and automatic structures. As before, let G D
hXi with jX j < 1. We define a language for G (over X) to be a set of words over

X˙ that contains at least one representative of each element of G. Examples are

provided by Geo.G; X/ D Geo, the set of all words w over X˙ that are minimal

length representatives of the elements of G they define, and SL � Geo, the set of

all words w over X˙ that are minimal representatives of the elements they define

with respect to the shortlex ordering (defined using some fixed ordering of X˙).

Let H be a finitely generated subgroup of G. A coset language for .G; H/ is a

set LH (or LH
G if it is necessary to specify G) of words over X˙ that contains at

least one representative of each right coset Hg of H in G.

Examples of coset languages are provided by Geo
H (sometimes called Geo

H
G

or even Geo
H
G .X/), the set of all words w over X for which w is of minimal

length as a representative of Hw, and SL
H � Geo

H (sometimes called SL
H
G or

SL
H
G .X/), the set of all words w over X for which w is minimal with respect to the

shortlex ordering as a representative of Hw (with respect to some fixed ordering

of X˙).

Given a word w in .X˙/� and a natural number t , let w.t/ denote the element

of G represented by the prefix of w of length t ; in the case that t > jwj, let

w.t/ DG w. Two paths 1w and hw0 in the Cayley graph �.G; X/ are said to

synchronously K-fellow travel if for all t 2 N we have d�.G/.w.t/; hw0.t // � K.

The paths 1w and hw0 are said to asynchronously K-fellow travel if there exists

nondecreasing surjective functions �1; �2WN ! N such that for all t 2 N we have

d�.G/.w.�1.t //; hw0.�2.t /// � K.

Definition 2.1. A strong asynchronous automatic coset system for .G; H/ is

defined to be a coset language LH � X˙ together with a constant K, such that

(i) LH is a regular language (that is, the language of a finite state automaton),

(ii) if v; w 2 LH and h 2 H with d�.G;X/.v; hw/ � 1, then the paths 1v and hw in

�.G/ asynchronously K-fellow travel. (So, in particular, we have jhjX � K.)

If .G; H/ has a strong asynchronous automatic coset system as above, then we

say that .G; H/ is strongly asynchronously coset automatic (or SACA for short),

with coset language LH , and fellow traveller constant K. If the fellow traveller

condition above can be replaced by a synchronous fellow traveller condition, then

we say that G is strongly synchronously coset automatic (or SSCA) or just strongly
coset automatic.

We note that our definition of SSCAmatches the definition of coset automaticity

in [19]. Moreover, in the case that the subgroup H is the trivial group, the

definition of SSCA is equivalent to the definition of automatic [16]. We refer the

reader to [16] or [22] for further information on fellow traveller properties, regular

languages, finite state automata, and automatic groups.
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The following result allows us to construct automatic structures for groups

from automatic coset systems.

Theorem 2.2. Let G D hXi be a group, and H D hY i a subgroup of G. Suppose
that .G; H/ is strongly asynchronously coset automatic with language LH with
respect to X , and H is asynchronously automatic with language LH with respect
to Y . Then

(i) the group G is asynchronously automatic over X [ Y , with language L WD
LH LH (the concatenation of LH and LH /;

(ii) if .G; H/ is strongly coset automatic and H is automatic (that is, both
structures are synchronous), then G is automatic. Furthermore, if LH and
LH are both synchronous structures and LH contains only finitely many
representatives of each element of H , then the language L WD LH LH is
the language of a synchronous automatic structure for G.

Note that we do not require X and Y to be disjoint.

Proof. Suppose first that LH and LH satisfy the asynchronous K-fellow traveller

property. Since regular languages are closed under concatenation, the language L

is regular. We shall verify an asynchronous fellow traveller property for L with

constant �K2, where � is the maximum X-length of any y 2 Y .

Suppose that wv, w0v0 are words in L with w; w0 2 LH and v; v0 2 LH .

First suppose that wv DG w0v0. In this case v and v0 represent the same coset

of H in G, and so the pair of paths 1v and w�1w 0v0, and hence also the pair wv

and w 0v0, asynchronously K-fellow travel. In particular d�.G/.w; w0/ � K, and

hence, applying the fellow property for LH we deduce that w; w0 asynchronously

fellow travel at distance K2.

Similarly, if x 2 X and wvx DG w0v0, then the same argument shows that the

paths wv and w 0v0 K-fellow travel, and w and w0 K2-fellow travel.

Finally, suppose that y 2 Y , and that wvy DG w0v0. Writing y D x1 � � � x�

with each xi 2 X˙, we have that the paths wv and w 0v0 asynchronously �K-fellow

travel, and so w and w0 fellow travel at distance �K2.

In all cases the paths 1w and 1w0 asynchronously �K2-fellow travel, and the

paths wv and w 0v0 asynchronously �K-fellow travel. Thus, the paths 1wv and

1w0v0 asynchronously �K2-fellow travel, as desired. This proves (i).

To prove (ii), suppose that LH and LH are the languages of synchronous

structures. If LH contains infinitely many representatives of some elements of

H then, by [16, Theorem 2.5.1], we can replace it by a language consisting of

unique representatives. So, in proving the first assertion of (ii), we may assume

that LH contains only finitely many such representatives. Let K be a synchronous

fellow traveller constant for both structures. Then by [16, Theorem 2.3.9], there

is a constant N such that whenever u; u0 2 LH and the paths 1u and 1u0 end a

distance at most 1 apart, the lengths of the words u and u0 differ by at most N .



Automaticity for graphs of groups 511

Let w; w0 2 LH and v; v0 2 LH satisfy wvx DG w0v0 for some x 2
X [ Y [ ¹�º. As in the proof above, we see that the paths wv, w 0v0 synchronously

�K-fellow travel and so the paths 1w and 1w0 end at distance at most �K apart in

�.G; X/. Hence the paths 1w and 1w0 synchronously �K2-fellow travel, and their

lengths differ by at most �KN . Thus, the paths 1wv and 1w0v0 synchronously

�K2 C �KN -fellow travel. �

2.3. Crossover and stability. The properties of crossover and stability for coset

systems are fundamental for us in order to state and prove the results of Section 3.

Definition 2.3. Let Y and Z be finite subsets of a group G, and let H D hY i. Let

1 � � 2 N. We say that the coset language LH for .G; H/ has �-limited crossover
with respect to .Y; Z/ if, for any g 2 hZi with jgjZ � �, and any u; v 2 LH with

ug 2 Hv, we have jugv�1jY � �. We say that LH has limited crossover with

respect to .Y; Z/ if it has �-limited crossover for some �. If Y D Z, we use the

term limited crossover with respect to Y .

As we shall show in Sections 4, 5, and 6, the limited crossover property

is satisfied, for example, by Coxeter groups and by Artin groups of large type

where Y and Z are arbitrary subsets of the standard generating sets, by finitely

generated abelian groups with Y D Z an arbitrary finite subset, and by groups that

are relatively hyperbolic with respect to virtually abelian or hyperbolic parabolic

subgroups.

The following result will be useful for finding common crossover constants for

a collection of languages and generating sets.

Lemma 2.4. Suppose that for finite subsets Y; Z of a group G D hXi, H D hY i,
1 � � 2 N, and coset language LH � .X˙/� for .G; H/, the set LH has �-limited
crossover with respect to .Y; Z/. Then LH has k�-limited crossover with respect
to .Y; Z/, for any k 2 N.

Proof. Suppose that g 2 hZi with jgjZ � k� and that u; v 2 LH satisfy

ug 2 Hv. Then we can decompose g as a product g D g1 � � � gk of elements

gi 2 hZi, with each jgi jZ � �. We choose v1; : : : ; vk 2 LH such that, for each i ,

ug1 � � � gi 2 Hvi ; in particular we choose vk D v. Then we have ug1 2 Hv1,

and for each i D 2; : : : ; k vi�1gi 2 Hvi . We deduce from the limited crossover

condition that ug1v�1 and all of the elements vi�1giv
�1
i for 2 � i � k have

Y -length at most �. The product of these elements has Y -length at most k� and

is equal to ugv�1. �

The following stronger version of crossover leads to a variant of the result of

Corollary 3.4 for amalgamated products, proved in Theorem 3.6.
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Definition 2.5. Let Y; Z be finite subsets of G, H D hY i, and 1 � � 2 N. We

say that a coset language LH for .G; H/ has �-maximal crossover with respect to

.Y; Z/ if, for any g 2 hZi and any u; v 2 LH with u 62 H and ug 2 Hv, we have

jugv�1jY � �. If Y D Z, then we use the term �-maximal crossover with respect
to Y . We say that LH has maximal crossover with respect to the subgroup hZi of

G if LH has �-maximal crossover with respect to .Y 0; Z/ for some generating set

Y 0 of H and 1 � � 2 N .

We note that the maximal crossover property would not hold in the case that

H and G=H are infinite if we did not impose the condition u 62 H , but we do not

need that condition in the definition of limited crossover. It is straightforward to

show that if the maximal crossover property holds for some finite generating set Y

of H , then it holds (but probably with a different parameter �) for any other finite

generating set. Further, for some finite generating set of H , LH has 1-maximal

crossover.

This stronger property of maximal crossover is unusual but, as we shall show

in Section 4.2, it holds for groups that are hyperbolic relative to a collection of

finitely generated groups that are either virtually abelian or hyperbolic, where Y

and Z are suitably chosen generating sets of two of the parabolic subgroups.

Definition 2.6. Suppose that H1 D hY1i and H2 D hY2i are isomorphic groups

with isomorphism �W H1 ! H2. We say that .H1; H2; �/ is �-stable with respect

to .Y1; Y2/ if, whenever h 2 H1 with jhjY1
� �, we have j�.h/jY2

� �. Provided

that each of H1; H2 is associated with just one generating set, we may omit the

phrase “with respect to .Y1; Y2/,” and in general we shall do that. We say that

.H1; H2; �/ is stable if it is �-stable for some �.

We have the following results.

Lemma 2.7. For groups H1 D hY1i; H2 D hY2i, related by an isomorphism
�W H1 ! H2 of G, if .H1; H2; �/ is �-stable, then it is also k�-stable for any
k 2 N.

We omit the proof of this, which is nearly identical to the proof of Lemma 2.4.

Lemma 2.8. (i) Let X1 and X2 be finite generating sets for a group G, and let LH
1

be a coset language for the pair .G; H/ with respect to X1. Then there is a coset
language LH

2 for .G; H/ with respect to X2, such that the subset of G represented
by the words in LH

2 is the same as for LH
1 and such that, if any of the properties

SACA, SSCA, limited crossover, or maximal crossover hold in LH
1 , then they also

hold in LH
2 .



Automaticity for graphs of groups 513

(ii) If H � F � G with jG W F j finite, and .G; H/ has a coset language LH
G

satisfying any of SACA, SSCA, or limited crossover or maximal crossover relative to
a pair of finite generating sets for H , then there is a coset language LH

F for .F; H/

with the same properties. Furthermore, we can choose LH
F such that the subset

of the group that it represents is the intersection with F of the subset represented
by LH

G .

(iii) If H � G � F with jF W Gj finite and .G; H/ is strongly asynchronously
(resp. synchronously) coset automatic, then so is .F; H/.

We note that in (iii) it is not clear that either of the crossover properties is

preserved.

Proof. (i) Let �1W X�
1 ! G and �2W X�

2 ! G be the natural projection maps. For

each generator x 2 X1 choose a word w.x/ 2 X�
2 so that �1.x/ D �2.w.x//,

and let 'W X�
1 ! X�

2 be the corresponding semigroup homomorphism. Then we

imitate the construction of LH
2 from '.LH

1 / exactly as in [16, Theorem 2.4.1] for

automatic structures, and then, by the same argument as in [16], LH
2 is SACA or

SSCA if LH
1 is. Furthermore, we have �2.LH

2 / D �1.LH
1 /.

Now let Y � H be a finite generating set for H , and Z � G be any finite

subset. Suppose that LH
1 � X�

1 has �-limited (resp. �-maximal) crossover with

respect to .Y; Z/, Since both the limited and maximal crossover properties depend

only on the image of the language in G and the generating set of H , it follows that

LH
2 has �-limited (resp. �-maximal) crossover with respect to .Y; Z/, as desired.

We omit the proofs of (ii) and (iii), which are straightforward adaptations of

the proof of [16, Theorem 4.1.4]. �

Next we note that any coset language containing the empty word can have

all other representatives of the same coset removed, without altering SACA or

crossover conditions.

Lemma 2.9. Suppose that the group G D hXi is SACA with language LH con-
taining the empty word �, with respect to a finitely generated subgroup H D hY i.
Suppose also that Z1; : : : ; Zm are finitely many finite subsets of G such that LH

has limited crossover with respect to .Y; Zi/ for all i . Let zLH WD LH n S , where
S is the set of nonempty words in LH that represent the identity coset H in G.
Then the pair .G; H/ is SACA with language zLH , and zLH has limited crossover
with respect to .Y; Zi/ for all i as well.

3. Automatic structures for graphs of groups

Our goal in this section is to prove Theorem A, that free products with amalga-

mation, HNN extensions, and more generally fundamental groups of graphs of
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groups of asynchronously automatic groups with well-behaved coset automatic

structures, are also asynchronously automatic; the proof is given in Section 3.3.

The resulting structure is asynchronous, but under certain circumstances a strong

asynchronous coset system contains a synchronous system as a substructure, as

is proved in Proposition 3.9. We apply the proposition to deduce a synchronous

closure result Theorem B for graphs of groups with particular conditions on asso-

ciated coset automatic structures.

We begin this section with definitions and notation for graphs of groups.

3.1. Background on graphs of groups and Higgins normal forms. For a

directed graph ƒ with vertex set V and directed edge set EE (written ƒ D .V; EE/),

we denote the initial and terminal vertices of an edge e 2 EE by �.e/ and �.e/

respectively. We assume that associated with each edge e 2 EE, there is an

oppositely oriented edge Ne with �. Ne/ D �.e/ and �. Ne/ D �.e/. We define P.ƒ/

to be the set of directed paths of ƒ, and where p D e1 � � � ek 2 P.ƒ/, we define

�.p/ D �.e1/, �.p/ D �.ek/.

Definition 3.1. A graph of groups is a quadruple G D .ƒ; ¹Gv j v 2 V º; ¹Ge j

e 2 EEº; ¹�e j e 2 EEº/, where ƒ D .V; EE/ is a directed graph, each Gv is a group,

and for each e 2 EE, Ge is a subgroup of G�.e/, �eW Ge ! G Ne is an isomorphism,

and ��1
e D � Ne.

We call the subgroups Gv , Ge the vertex and edge groups of G, respectively.

Following standard practice, we assume that the Gv have pairwise trivial

intersections. Whenever we refer to a graph of groups G D G.ƒ/ in this article we

will use the notation of Definition 3.1. In addition we will use the notation Xv , Ye

for specified generating sets for Gv, Ge, respectively.

Definition 3.2. Let G D .ƒ; ¹Gv j v 2 V º; ¹Ge j e 2 EEº; ¹�e j e 2 EEº/ be a

graph of groups with connected graph ƒ, and let T be a maximal tree in ƒ. The

fundamental group of G at T, denoted �1.G/ D �1.G;T/, is the group generated

by the disjoint union of all of the groups Gv and the set of symbols ¹se j e 2 EEº,
subject to the relations:

(i) s Ne D s�1
e for all e 2 EE,

(ii) se D 1 for all directed edges e in T, and

(iii) segs�1
e D �e.g/ for all e 2 EE and g 2 Ge.

When ƒ consists of two vertices joined by an edge, or of a single vertex to-

gether with a loop, then the fundamental group is a free product with amalga-

mation or HNN-extension, respectively. We refer the reader to [27, 28] for basic

facts about graphs of groups. In particular, up to isomorphism, �1.G;T/ does not

depend on the choice of the maximal tree T.
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Now we provide a description of the language for �1.G/ that we use in our

proof of Theorem A. This is a set of words representing normal forms provided

by Higgins in [18], but modified to work with right rather than left cosets, and to

provide words over generating sets rather than normal forms that are products of

elements; see [8, Proposition 3.3] for more details.

For each v 2 V , let Xv be a finite generating set for the vertex group Gv; note

that the Xv are pairwise disjoint. We consider the generating sets

yX WD
[

v2V

Xv [ ¹seW e 2 EEº and X WD
[

v2V

Xv [ ¹seW e 2 EE n EETº

for �1.G/. For any product w 2 . yX˙/�, we define its deflation Defl.w;T/ 2 .X˙/�

to be the word derived from w by omitting from it every se for which e is in the

set EET of directed edges of the tree T.

Choose a vertex v0 2 V , and let Lv0
� .X˙

v0
/� be a language for Gv0

. For each

e 2 EE, let Le
�.e/

� .X˙
�.e/

/� be a coset language for .G�.e/; Ge/, and let L be the

collection of languages ¹Le
�.e/

º.

Now define yL.G;L; Lv0
; v0;T/ � . yX˙/� to be the set of all words of the form:

w0se1
u1 � � � sek

uk ;

where

(i) p D e1 � � � ek 2 P.ƒ/ with �.p/ D v0;

(ii) w0 2 Lv0
and ui 2 L

ei

�.ei /
for 1 � i � k;

(iii) if eiC1 D Nei , then ui does not represent an element of Gei
;

(iv) if k > 0 and ek 2 EET , then uk does not represent an element of Gek
.

Then every element of �1.G/ has at least one representative of this form. We refer

to this set as the inflated Higgins language for the group �1.G;T/ with respect to

the triple .L; v0; Lv0
/. The language

L.G;L; Lv0
; v0;T/ WD ¹Defl.w;T/ j w 2 yL.G;L; Lv0

; v0;T/º

over X is the associated Higgins language for �1.G/.

Next suppose that e0 is any directed edge in ƒ. We define yL.G;L; e0;T/ to be

the of all words over yX of the form

u0se1
u1 � � � sek

uk

where u0 2 L
e0

�.e0/
and the conditions (i)–(iv) above hold with v0 D �.e0/. Then

each coset of Ge0
in �1.G/ has at least one representative in this language. We call

this the inflated Higgins coset language for the pair .�1.G;T/; Ge0
/ with respect

to .L; e0/. Similarly, the language

L.G;L; e0;T/ WD ¹Defl.w;T/ j w 2 yL.G;L; e0;T/º

over X is the associated Higgins coset language for .�1.G/; Ge0
/.
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Remark 3.3. We note that in the case when Lv0
and Le

�.e/
are languages with

unique representatives of Gv0
and of cosets of Ge in G�.e/, respectively, then the

corresponding Higgins languages are sets with unique representatives of �1.G/

and cosets of Ge0
in �1.G/, respectively.

3.2. Strong asynchronous automatic coset systems for graphs of groups.

This section is devoted to the statement of our main graph of groups result Theo-

rem A, together with Corollaries 3.4 and 3.5, for amalgamated products and HNN

extensions, which are special cases of this. We defer the proof of the theorem

to the following section, Section 3.3. We conclude this section with a variant of

the result for amalgamated free products, in the case that one group has maximal

crossover.

Theorem A. Let G D .ƒ D .V; EE/; ¹GvW v 2 V º; ¹GeW e 2 EEº; ¹�e j e 2 EEº/ be a
graph of groups over a finite connected directed graph ƒ with an edge e0. Let Xv

and Ye be finite generating sets of the groups Gv and Ge , respectively. Suppose
that the following conditions hold for each e 2 EE.

(i) The pair .G�.e/; Ge/ is strongly asynchronously coset automatic with coset
language Le

�.e/
� .X˙

�.e/
/� containing the empty word �.

(ii) The triple .Ge; G Ne; �e/ is stable with respect to .Ye; Y Ne/.

(iii) For each f 2 EE with �.e/ D �.f /, the coset language Le
�.e/

has limited
crossover with respect to .Ye; Yf /.

Then the pair .�1.G/; Ge0
/ is strongly asynchronously coset automatic.

In the special cases of amalgamated products and HNN extensions, we imme-

diately obtain the following results as corollaries of the above result together with

Theorem 2.2.

Corollary 3.4 (amalgamated products). Let G1 and G2 be groups with a common
subgroup H D G1\G2, and suppose that G1, G2 and H are all finitely generated.
Suppose that the pairs .G1; H/ and .G2; H/ are both strongly asynchronously
coset automatic and that, for some finite generating set Y of H , each of the
associated coset languages has limited crossover with respect to .Y; Y /. Then
.G1 �H G2; H/ has a strong asynchronous automatic coset system. Moreover, if
the group H is asynchronously automatic, then so is the amalgamated product
G1 �H G2.

Corollary 3.5 (HNN extensions). Let G, H1, H2 be finitely generated with
H1; H2 � G and �W H1 ! H2 an isomorphism. Further, let Hi D hYi i for
jYi j < 1, for i D 1; 2. Suppose that

(i) the pairs .G; Hj / are strongly asynchronously coset automatic with coset
language LHj for j D 1; 2;
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(ii) LHj has limited crossover with respect to .Yi ; Yj / for each of i; j in ¹1; 2º;
and

(iii) the triples .H1; H2; �/ and .H2; H1; ��1/ are stable.

Then .G�� ; Hi/ is strongly asynchronously coset automatic for i D 1; 2. More-
over, if the (isomorphic) groups Hi are asynchronously automatic, then so is the
HNN extension G1�� .

In the presence of maximal crossover, the following variation of Theorem A

holds for amalgamated free products. The proof is analogous to the proof of

Theorem A in Section 3.3, although maximal crossover allows us to simplify the

argument somewhat.

Theorem 3.6. Let H � G1 \ G2 be a finitely generated group within the inter-
section of groups G1 D hX1i, G2 D hX2i, Suppose that .G1; H/ and .G2; H/ are
both strongly asynchronously coset automatic, and that the language for .G1; H/

has maximal crossover. Then .G1 �H G2; H/ is strongly asynchronously coset
automatic.

One situation in which we could apply this result is when G1 is hyperbolic

relative to a collection of virtually abelian groups with H a peripheral subgroup

(cf Proposition 4.5) and when H is an arbitrary subgroup of the virtually abelian

group G2 (cf Proposition 6.2).

3.3. Proving Theorem A. In order to prove Theorem A, we need to define a

procedure that we call cascading, that will convert a given word of a particular

form over yX˙ into another word representing the same group element, which (as

we shall show in Lemma 3.8) is in the inflated Higgins language.

Definition 3.7. Let G D .ƒ D .V; EE/; ¹Gv D hXviº; ¹Geº; ¹�eº/ be a graph of

groups, and let v0 2 V .

Let Lv0
� .X˙

v /� be a language for Gv0
and let L D ¹Le

�.e/
W e 2 EEº be a set of

coset languages for the pairs .G�.e/; Ge/, for which each Le
�.e/

is a language over

X�.e/, and for which the only representative in each Le
�.e/

of the identity coset Ge

is the empty word.

Let w D w0se1
w1 � � � sek

wk 2 . yX˙/�, where p D e1 � � � ek 2 P.ƒ/ with

�.p/ D v0, w0 2 .X˙
v0

/�, and wi 2 .X˙
�.ei /

/� for i D 1; : : : ; k.

An .L; Lv0
/-cascade of w is a word u 2 . yX˙/� satisfying u D�1.G/ w that is

obtained as follows.

(i) Select uk 2 L
ek

�.ek/
with wk DG�.ek/

hkuk for some hk 2 Gek
.

(ii) For j D k � 1; : : : ; 1, select uj 2 L
ej

�.ej
, with wj �ej C1

.hj C1/ DG�.ej /
hj uj

for some hj 2 Gej
.
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(iii) Select u0 2 Lv0
representing the element w0�e1

.h1/ in Gv0
.

(iv) Remove from u0se1
u1 � � � sek

uk the maximal suffix of the form sej
sej C1

� � � sek

for which ei 2 EET for all j � i � k, to obtain u.

The proof of the following lemma is basically the proof in [8, Proposition 3.4].

Lemma 3.8. Let G be a graph of groups over a finite connected graph ƒ D .V; EE/,
and assume the notation of Section 3.1. Let yL D yL.G;L; Lv0

; v0;T/ be an
inflated Higgins language over yX D

S
v2V Xv [ ¹seW e 2 EEº for which the

only representative in each Le
�.e/

of the identity coset Ge is the empty word. Let

w D w0se1
w1 � � � sek

wk be a word over yX as in Definition 3.7, and suppose that
for all 1 � i � k � 1 either eiC1 ¤ Nei or wi does not represent an element of Gei

.

(i) If u is an .L; Lv0
/-cascade of w, then u 2 yL.

(ii) Suppose that if both k > 0 and ek 2 EET then wk does not represent an
element of Gek

. Then any w0 2 yL with w0 D�1.G/ w is an .L; Lv0
/-cascade

of w of the form w0 D w0
0se1

w0
1 � � � sek

w0
k
; that is, the paths in ƒ associated

with w and w0 are the same, and there exist elements hi 2 Gei
for 1 � i � k

such that wk DG�.ek/
hkw0

k
, and for k > i � 1, wi�eiC1

.hiC1/ DG�.ei /
hiw

0
i ,

and w0�e1
.h1/ DGv0

w0
0.

Proof. An .L; Lv0
/-cascade word u of the word w is obtained by removing a suffix

sej
sej C1

� � � sek
of letters corresponding to edges in the tree T from a word of the

form u0se1
u1 � � � sek

uk . For each index `, we have w` DG�.e`/
h`u`�e`C1

.h`C1/�1

and, if e`C1 D Ne`, then h`; �e`C1
.h`C1/ 2 Ge`

and w` does not represent an

element of Ge`
, so the word u` also cannot represent an element of Ge`

. Moreover,

since the only representative of the identity coset in each of the coset languages is

the empty word, then after removing the maximal suffix of letters associated with

edges in T from the word u0se1
u1 � � � sek

uk , either the resulting word u is in Lv0
,

or u ends with a letter sej �1
with ej �1 … EET , or u ends with a word sej �1

uj �1

in which uj �1 does not represent the identity coset. Hence u is in the inflated

Higgins set yL.

Suppose further that the additional hypothesis of (ii) holds. If k > 0 and

ek 2 EET then, since wk DG�.ek /
hkuk with hk 2 Gek

, and wk does not represent

an element of Gek
, again we see that the word uk cannot represent an element of

Gek
. Hence in any case no suffix of letters is removed in the last step of the cascade

procedure, and the .L; Lv0
/-cascade u of w has the form u D u0se1

u1 � � � sek
uk

with the same associated path in ƒ as w.

Now let zLv0
� .X˙

v0
/� be a set of unique representatives for the elements

of Gv0
, containing the empty word �, and for each e 2 EE let zLe � Le

�.e/
be

a set of unique representatives of the right cosets of Ge in G�.e/, containing �.
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Let zL WD yL.G; ¹ zLeº; zLv0
; v0;T/ be the associated inflated Higgins language. By

Remark 3.3, each element of �1.G/ is represented by a unique element of zL.

Let Qw and Qw0 be .¹ zLeº; zLv0
/-cascades of w and w0, respectively. The words

w and w0 both satisfy the hypotheses in (ii), and so the proof above shows that

Qw; Qw0 2 zL. Now Qw D�1.G/ w D�1.G/ w0 D�1.G/ Qw0, and so the uniqueness of

representatives in zL implies that Qw and Qw0 are the same word over zX . Moreover,

the argument above shows that the paths in ƒ associated with w, Qw, and w0 are the

same. In particular, we can write Qw D Qw0se1
Qw1 � � � sek

Qwk, and there are elements
Qhi ; h0

i 2 Gei
for 1 � i � k such that wk DG�.ek/

Qhk Qwk, w0
k

DG�.ek /
h0

k
Qwk,

and for k > i � 1, wi�eiC1
. QhiC1/ DG�.ei /

Qhi Qwi , w0
i�eiC1

.h0
iC1/ DG�.ei /

h0
i Qwi ,

w0�e1
. Qh1/ DGv0

Qw0, and w0
0�e1

. Qh1/ DGv0
Qw0. Hence the elements hi defined

by hih
0
i D Qhi for 1 � i � k satisfy the properties needed for the conclusion

in (ii). �

We note that in the hypotheses of Lemma 3.8(ii), the word w is an arbitrary

element of the inflated Higgins language L0 D yL.G; ¹.X˙
�.e/

/�º; .X˙
v0

/�; v0;T/;

that is, w is in the inflated Higgins language with respect to the largest possible

sets of coset and vertex group representatives. Thus when the .L; Lv0
/-cascade

process is applied to a word in this maximal inflated Higgins language, a word

is produced in the inflated Higgins language with respect to more restricted coset

and vertex group representatives in .L; Lv0
/.

Given a word w in a Higgins normal form w D Defl.w0se1
u1 � � � sek

uk ;T/

or in coset normal form w D Defl.u0se1
u1 � � � sek

uk ;T/, the ƒ-path associated
with w is the directed path p D e1 � � � ek in the graph ƒ. An immediate con-

sequence of Lemma 3.8 is that any two words in the inflated Higgins language
yL.G;L; Lv0

; v0;T/ that represent the same element of �1.G/, or any two words in

the inflated Higgins coset language yL.G;L; e0;T/ that represent the same coset of

Ge0
in �1.G/, have the same associated ƒ-path, and so the ƒ-path associated with

a (deflated) Higgins normal form is well-defined.

Proof of Theorem A. Let T be a maximal tree in ƒ and let G WD �1.G;T/.

Applying Lemma 2.9, for each e 2 EE we modify the coset language Le
�.e/

by

removing all representatives of the identity coset Ge other than the empty word �.

Let

X WD
S

v2V Xv [ ¹seW e 2 EE n EETº;

let L WD ¹Le
�.e/

º be the collection of (modified) edge coset languages, and let

L WD L.G;L; e0;T/

be the associated Higgins coset language over X . We shall prove that L is the

language of a SACA structure for the pair .G; Ge0
/ over the generating set X .
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Now L is a coset language for .�1.G/; Ge0
/ (as discussed in Section 3.1). Let

L�.e0/ be a regular language of normal forms for G�.e0/. It is shown in [8, Proposi-

tion 3.3] that the Higgins language for �1.G/, with respect to L; L�.e0/; �.e0/, is a

regular language; the same proof shows that the Higgins coset language L is also

regular.

It now remains to verify fellow traveller properties for L. Let K be a common

fellow traveller constant for the coset automatic structures for the pairs .Ge; G�.e//.

Applying Lemmas 2.4 and 2.7 to Hypotheses (ii) and (iii), we can choose � 2 N

to be large enough such that

(a) K � �;

(b) for each e 2 EE, the triple .Ge; G Ne; �e/ is �-stable with respect to .Ye; Y Ne/;

(c) for each e; f 2 EE with �.e/ D �.f /, the coset language Le
�.e/

has �-limited

crossover with respect to .Ye; Yf /;

(d) for each e 2 EE, any element g 2 Ge with jgjX�.e/
� K satisfies jgjYe

� �.

We define a further constant N to be the maximum value of jyjX�.e/
for any e 2 EE

and any y 2 Ye.

Now suppose that w; w0 2 L are related by an equation wx DG hw0, where

h 2 Ge0
and x 2 X [ ¹�º; that is, either x is in the generating set of G, or x

represents the identity of G.

Let yX WD
S

v2V Xv [ ¹seW e 2 EEº, let yL WD yL.G;L; e0;T/ be the inflated

Higgins coset language, and let Le0
� .X˙

�.e0/
/� be a set of words representing

the elements of the group Ge0
. We suppose that Ow; Ow0 2 yL satisfy w D Defl. Ow;T/

and w0 D Defl. Ow0;T/, and write Ow D u0se1
u1 � � � sek

uk . Let p WD e1 � � � ek denote

the path in ƒ determined by w, and let zh 2 Le0
be any word representing the

element h in G�.e0/.

Case (1). Suppose that x D �. Then Ow DG zh Ow0. The words Ow and zh Ow0

are both in the inflated Higgins language yL.G;L; Le0
L

e0

�.e0/
; �.e0/;T/, and so by

Lemma 3.8(ii), zh Ow0 is an .L; Le0
L

e0

�.e0/
/-cascade of Ow also associated with the

path p in ƒ. Thus we can write Ow0 D u0
0se1

u0
1 � � � sek

u0
k

with each u0
i 2 L

ei

�.ei /
.

Moreover, for 1� i �k there are elements hi 2Gei
for which if h0

i WD �ei
.hi / 2 G Nei

and h0 WD h, then

ukx D G�.ek /
hku0

k
; h0

k
D Gsek

hks�1
ek

;

uk�1h0
k

D G�.ek�1/
hk�1u0

k�1
; h0

k�1
D Gsek�1

hk�1s�1
ek�1

;
:::

:::

u1h0
2 D G�.e1/

h1u0
1; h0

1 D Gse1
h1s�1

e1
;

u0h0
1 D G�.e0/

h0u0
0:

(�)
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An illustration of the paths 1w and hw0 in the Cayley graph �.G; yX/, along

with the connector hi and h0
i paths in this array of equations, is given in Figure 1.

We note that in this illustration, for each index j for which ej 2 EET , the edges sej

along the top and bottom paths actually label loops in �.G; yX/.

r
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u0
0

r
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1
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se1
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❄
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u0
k
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Figure 1. Fellow-travelling words representing the same coset.

We have jhk jX�.ek /
� K, from the fellow traveller property on L

ek

�.ek/
. Our con-

dition (d) ensures that jhkjYek
� �. Then condition (b) ensures that jh0

k
jY Nek

� �.

Then condition (c) ensures that jhk�1jYek�1
� �. Repeated application of con-

ditions (b) and (c), ensures that, for each i , jhi jYei
� � and jh0

i jY Nei
� �. The

definition of the constant N shows that jh0
i jX�.ei�1/

� �N for each i . Application

of the fellow traveller properties for the languages L
ei

�.ei /
now ensures that 1 Ow and

h Ow0 asynchronously fellow travel at distance KN � in �.G; yX/.

The paths 1w and hw0 in the Cayley graph �.G; X/ are obtained from the paths

1 Ow and h Ow0 by skipping the sej
edges in both paths whenever ej 2 EET. Thus the

paths 1w and hw0 also asynchronously fellow travel at distance KN � in �.G; X/.

Case (2). Suppose that x 2 X�.ek/. Let u be an .L; Le0
L

e0

�.e0/
/-cascade of

wx. Then the ƒ-path associated with u is a prefix p0 D e1 � � � e` of p. Since

the word zh Ow0 is in the inflated Higgins language yL.G;L; Le0
L

e0

�.e0/
; �.e0/;T/

and satisfies u DG zh Ow0, it follows by Lemma 3.8 that the word zh Ow0 is an

.L; Le0
L

e0

�.e0/
/-cascade of u, and the path in ƒ associated with zh Ow0 is also p0.

So Ow0 D u0
0se1

u0
1 � � � se`

u0
`

with ` � k and each u0
i 2 L

ei

�.ei /
. In the case that ` < k,

let u0
`C1

D � � � D u0
k

D �.

Now a composition of two cascades is again a cascade, and so zh Ow0 is an

.L; Le0
L

e0

�.e0/
/-cascade of the word wx. Hence there are elements hi 2 Gei

for

1 � i � k for which if h0
i WD �ei

.hi / 2 G Nei
and h0 WD h, then the array in

equation (�) holds. The corresponding paths in the Cayley graph �.G; yX/ are

illustrated in Figure 2.

Then just as in Case (1) we can bound the lengths of each hi ; h0
i over appro-

priate generating sets by �, and see that 1w and hw0 asynchronously KN �-fellow

travel in �.G; X/.

Case (3). Suppose that x 2 Xv , for some vertex v, but x 62 X�.ek/. In this case

we extend the path p in ƒ that corresponds to w to a path p0 by appending the
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Figure 2. Fellow-travelling words, Case (2).

unique minimal path ekC1 � � � e` within the tree T from �.ek/ to v; then �.e`/ D v.

We consider the word Qw WD OwsekC1
ukC1 � � � se`

u`x, with ukC1 D � � � D u` D �.

Since Ow does not end with a letter se for an edge e in T, the word Qw satisfies the

hypotheses of the word w in Lemma 3.8(i).

Let u be an .L; Le0
L

e0

�.e0/
/-cascade of Qw; by applying both parts of Lemma 3.8,

we see that the word zh Ow0 is an .L; Le0
L

e0

�.e0/
/-cascade of u, and hence also of Qw.

Now the ƒ-path associated with both u and zh Ow0 may be a prefix e1 � � � ej of p0;

we can write Ow0 D u0
0se1

u0
1 � � � sej

u0
j with j � ` and each u0

i 2 L
ei

�.ei /
, and

in the case that j < `, let u0
j C1 D � � � D u0

`
D �. The cascade from Qw to

zh Ow0 now yields elements hi 2 Gei
for 1 � i � `, which together with the

elements h0
i WD �ei

.hi/ 2 G Nei
and h0 WD h satisfy the array in equation (*). The

corresponding paths in the Cayley graph �.G; yX/ are illustrated in Figure 3.
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Figure 3. Fellow-travelling words, Case (3).

Then, as in Case (1), we deduce that 1w and hw0 asynchronously fellow travel

in �.G; X/ at a distance bounded by KN �.

Case (4). Suppose that x D se for some e 2 EE n EET . If uk ¤ � or e ¤ Nek,

then the word OwsekC1
� � � se`

x is in the inflated Higgins coset language yL, where

ekC1 � � � e` is the unique minimal path (possibly empty) in the tree T from �.ek/ to

the initial vertex of e. Then wx D Defl. OwsekC1
� � � se`

x;T/ is in the Higgins coset

language L. In this subcase the proof in Case (1) shows that the paths 1wx and

hw0 in �.G; X/ KN �-fellow travel.

So now suppose that uk D � and e D Nek . In that case we can write Ow D Qwsek

with Qw 2 . yX˙/�, and also write Qw D Qw00sej
� � � sek�1

, where sej
� � � sek�1

is the

maximal suffix of Qw lying in ¹se j e 2 EETº�. That is, Qw00 is obtained from Ow
by removing the letter sek

at the end, and then removing any resulting suffix of
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generators sej
associated with edges lying in the tree T. Now Qw00 is in the inflated

Higgins coset language yL, and so the word w00 WD Defl. Qw00;T/ is in the Higgins

coset language L. Moreover, w00 DG wx DG hw0, and so Case (1) applies to

show that the paths 1w00 and hw0 in �.G; X/ asynchronously KN �-fellow travel.

Since w D w00sek
, the paths 1w and hw0 asynchronously KN � C 1-fellow travel

in �.G; X/. �

3.4. Finding synchronous subsystems. Note that we might expect that an argu-

ment analogous to the proof of Theorem A would allow us to derive a synchronous

fellow traveller property for L from synchronous fellow traveller properties for the

coset languages Le
�.e/

. However it is not clear that this is possible, since it seems

likely that for words Defl.u0se1
u1 � � � sek

uk ;T/ and Defl.u0
0se0

1
u0

1 � � � se0

k0
u0

k0 ;T/ as

above, representing the same coset, the lengths of the corresponding subwords uj

and u0
j could differ.

But, as we prove in Proposition 3.9 below, under certain conditions a strong

asynchronous automatic coset system must contain a synchronous system as a

substructure. We shall use this result to derive Theorem B and other synchronous

results relating to Theorem A. Our proof of the proposition emulates the proof

of [15, Lemma 1], which shows that two geodesic paths that start at 1 in a Cayley

graph and and asynchronously K-fellow travel must also synchronously 2K-fellow

travel.

Proposition 3.9. Suppose that .G; H/ has a strong asynchronous automatic coset
system LH for which LH .Geo/ WD LH \ Geo

H is a coset language (contains at
least one representative of each coset). Then LH .Geo/ is a strong synchronous
automatic coset system for .G; H/.

Proof. We first prove regularity of LH .Geo/ by proving regularity of its comple-

ment in LH . Let X be the generating set for G and let K be the asynchronous

fellow traveller constant associated with LH � .X˙/�, and let N be the number

of states in the automaton recognising LH .

Suppose that w 2 LH n LH .Geo/, and let w0 be the shortest prefix of w

that is not of minimal length within its coset. Then there exists v 2 LH .Geo/

with jvj < jw0j and v 2 Hw0, and there exists a word w0u 2 LH , with

juj < N . Let h 2 H with w0 DG hv. Then, since v; w0u 2 LH with

.Hv/u DG Hw0u, the fellow traveller condition on LH implies that the paths

1w0u and hv in �.G; X/ asynchronously KN -fellow travel. Note that this implies

in particular that jhjX � KN .

We shall now show that 1w0 and hv synchronously fellow travel with constant

2KN C 2. Take any vertex g1 of �.G/ on the path 1w0, and let g2 be a vertex of

�.G/ on the path hv that is closest to g1. Let u1 be the prefix of w0 labelling the

subpath of 1w0 from 1 to g1, and u2 the label of the subpath of hv from h to g2.



524 S. Hermiller, D. F. Holt, S. Rees, and T. Susse

Now, both v and the maximal proper prefix of w0 are shortest representatives

of their cosets of H , and any prefix of a word in Geo
H is also in Geo

H . Then

u2 2 Geo
H , and either u1 D w0 or u1 2 Geo

H . Then we have ju2j � ju1j C KN

and ju1j � ju2j C KN C 2, and hence jju1j � ju2jj � KN C 2. So now the vertex

g3 of hv that is at distance ju1j from h is at distance at most KN C 2 from g2, and

hence distance at most .KN C 2/C KN D 2KN C 2 from g1 (see Figure 4). This

verifies our claim that 1w0 and hv synchronously .2KN C 2/-fellow travel.

w0

s
r

r

r

✲v

❄

h

r

r

r

�
�

�
�

�

u1

u2

g1

g2

g3

� KN � 2KNC2

� KNC2

w0

s
r

r

r

✲v

❄

h

r

r

r

❅
❅
❅
❅
❅

u1

u2

g3

g1

g2

� KN� 2KN

� KN

Figure 4. 1w0 and hv synchronously fellow travel.

Using the elements of G in the ball of radius 2KN C 2 centred at 1 (or “word

differences”) in constructing a finite set of states, we can construct a finite state

automata to recognise the languages (of padded pairs)

Lh WD ¹.w; v/ j w; v 2 LH and w has a prefix w0 with w0 DG hv; jw0j > jvj;

and 1w0; hv synchronously .2KN C 2/–fellow travelº

for each h 2 H with jhjX � KN . (See [16, Definition 2.3] or [22, Section 5.2.1]

for more details on word difference machines and padding to convert a language

of pairs of words to a language of words over a product alphabet.) The language

LH n LH .Geo/ is the union of the projections onto the first coordinate of the sets

Lh. Since regularity is preserved by projection, we see that the complement of

LH .Geo/ is indeed regular, and hence so is LH .Geo/.

Now suppose that v; w 2 LH .Geo/ and h 2 H , with d�.G/.w; hv/ � 1.

Then, much as above, we see that 1w and hv synchronously fellow travel with

constant 2K. For now, if g1 is any vertex of �.G/ on the path 1w, g2 a vertex of

�.G/ that is closest to g1 on the path hv, u1 the label of the subpath of 1w0 from

1 to g1, u2 the label of the subpath of hv from h to g2, and g3 the vertex of hv
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at distance ju1j from h, then ju2j � ju1j C K and ju1j � ju2j C K, and hence

jju1j � ju2jj � K, and d�.G/.g1; g3/ � 2K. �

3.5. A synchronous result for graphs of groups

Theorem B. Let G D .ƒ D .V; EE/; ¹GvW v 2 V º; ¹GeW e 2 EEº; ¹�e j e 2 EEº/ be a
graph of groups over a finite connected directed graph ƒ with an edge e0. Let Xv

and Ye be finite generating sets of the groups Gv and Ge , respectively. Suppose
that the following conditions hold for each e 2 EE.

(i) Ye � X�.e/.

(ii) The pair .G�.e/; Ge/ is strongly synchronously coset automatic with coset lan-
guage Le

�.e/
satisfying Le

�.e/
� Geo.G�.e/; X�.e// \ Œ.X˙

�.e/
/� n Y ˙

e .X˙
�.e/

/��;

the only representative in Le
�.e/

of the identity coset is �, and each ele-
ment g 2 G�.e/ is represented by a word ygzg 2 Geo.G�.e/; X�.e// with
yg 2 .Y ˙

e /� and zg 2 Le
�.e/

.

(iii) The triple .Ge; G Ne; �e/ is 1–stable with respect to .Ye; Y Ne/.

(iv) For each f 2 EE with �.e/ D �.f /, the coset language Le
�.e/

has limited
crossover with respect to .Ye; Yf /.

Then the pair .�1.G/; Ge0
/ is strongly synchronously coset automatic.

Proof. Let G WD �1.G/, H WD Ge0
, and X WD

S
v2V Xv , and let T be any tree

in ƒ. Let L WD ¹Le
�.e/

j e 2 EEº. Then Theorem A shows that the pair .G; H/ D

.�1.G/; Ge0
/ is SACA, with respect to the Higgins coset language

LH WD L.G;L; e0;T/ � .X˙/�:

By Proposition 3.9, it suffices to show that LH \ Geo
H
G .X/ contains at least

one representative of each coset. Note that the empty word is in LH \ Geo
H
G .X/.

Let w be any nonempty element of Geo
H
G .X/; that is, w is of minimal length

as a representative over X of the right coset Hw in G. Write w D x1 � � � xm with

each xi 2 X˙. For each index i such that xi D s�1
e 2 ¹s�1

e0 j e0 2 EE n EETº, replace

xi by s Ne , to obtain a word w0 D Qx1 � � � Qxm over
� S

v2V X˙
v

�
[ ¹se0 j e0 2 EE n EETº.

For 1 � i � m, if Qxi 2
S

v2V X˙
v then let vi D v0

i be the unique vertex in ƒ

for which Qxi 2 Xvi
and if Qxi 2 ¹se0 j e0 2 EE n EETº then let vi and v0

i be the

initial and terminal vertices, respectively, of the edge e for which Qxi D se. Let

t0 2 ¹se j e 2 EETº� be the (possibly empty) word corresponding to the geodesic

path in the tree T from �.e0/ to the vertex v1. Similarly for 1 � i � m � 1 let

ti 2 ¹se j e 2 EETº� be the word corresponding to the geodesic in T from v0
i to

viC1. Let Ow WD t0 Qx1t1 � � � tm�1 Qxm. Then w0 D Defl. Ow;T/.

Repartitioning the subwords of Ow, we can write Ow D u0se1
u1 � � � sek

uk with

ui 2 .X˙
�.ei /

/� for each i , and e1 � � � ek is a path in ƒ starting at �.e0/. Since the
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original word w is a geodesic over X , and each ui is a subword of w, we have

ui 2 Geo.G�.ei /; X�.ei // for all i .

Next we construct a choice of .L; .Y ˙
e0

/�L
e0

�.e0/
/-cascade of Ow. By hypothe-

sis (ii), the element of G�.ek/ represented by uk is also represented by a word of

the form yku0
k

2 Geo.G�.ek/; X�.ek// with yk 2 .Y ˙
ek

/� and u0
k

2 L
ek

�.ek/
. Note

that if uk represents an element of Gek
, then u0

k
D �. Then jyk j C ju0

k
j D

juk j. Now the 1–stability condition says that there is a word y0
k

2 .Y ˙
ek�1

/�

with y0
k

DGek
�ek

.yk/ DG sek
yks�1

ek
and jy0

k
j D jyk j. Next there is a

word yk�1u0
k�1

2 Geo.G�.ek�1/; X�.ek�1// representing the element uk�1y0
k

of

G�.ek�1/, with yk�1 2 .Y ˙
ek�1

/� and u0
k�1

2 L
ek�1

�.ek�1/
(and again u0

k�1
D �

if uk�1y0
k
, and hence also uk�1, represents an element of Gek�1

). Then jyk�1j C
ju0

k�1
j � juk�1j C jy0

k
j. Repeating this process, we obtain the word Ow0 D

y0u0
0se1

u0
1 � � � sek

u0
k

satisfying

jy0j C
kX

j D0

ju0
j j � ju0j C jy0

1j C
kX

j D1

ju0
j j

:::

�
� i�1X

j D0

juj j
�

C jy0
i j C

� kX

j Di

ju0
j j

�

:::

�
kX

j D0

juj j:

Let Ow00 D u00
0se00

1
u00

1 � � � se00
`
u00

`
be the word obtained from Ow0 by removing the y0

prefix, removing the maximal suffix in ¹se j e 2 EETº�, and (iteratively) removing

any subwords of the form ses Ne with e 2 EET .

Let w00 WD Defl. Ow00;T/. Then w00 represents the same coset of H in G as the

word w 2 Geo
H
G .X/. Since the words w; w00 contain the same number of letters

in ¹se j e 2 EE n EETº (because the inflation, cascade, and deflation processes don’t

alter those letters), we have
Pk

j D0 juj j �
P`

j D0 ju00
j j D

Pk
j D0 ju0

j j. Hence these

sums are equal, y0 D �, and w00 2 Geo
H
G .X/ as well.

The fact that � is the only representative of the identity coset Ge in each Le
�.e/

guarantees that either ` D 0 or e` … EET or u00
`

does not represent an element of Ge`
,

and similarly guarantees that, for each subword se00
i
u00

i se00
iC1

of Ow00, either u00
i D �

or u00
i does not represent an element of Gei

. By construction, Ow00 doesn’t contain

a subword of the form ses Ne for any e 2 EET . If the word Ow00 contains a subword of

the form ses Ne with e 2 EE n EET , then so does the deflated word w00, contradicting

the fact that w00 is a geodesic word over X . Then Ow00 is in the inflated Higgins

coset language yL.G;L; e0;T/, and so its deflation w00 is in the language LH .
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Therefore w00 is an element of LH \ Geo
H
G .X/ representing the same coset as

the original word w. Hence LH \ Geo
H
G .X/ is a coset language for H in G, as

required. �

4. Automaticity for graphs of relatively hyperbolic groups

In this section, we prove that certain relatively hyperbolic groups have strong

synchronous automatic coset systems that satisfy the crossover conditions that

we need for the application of Theorem A. We begin in Section 4.1 with some

background and an account of relevant existing results for relatively hyperbolic

groups. In Section 4.2 we discuss crossover and SSCA for relatively hyperbolic

groups. Finally, in Section 4.3 we prove (in Corollary 4.10) automaticity for any

fundamental group of a graph of groups in which the vertex groups are hyperbolic

relative to abelian groups, the edge groups are peripheral subgroups of the vertex

groups, and a further hypothesis holds on paths in the graph. Then in Corollary C

we give an application to 3-manifold groups.

4.1. Background on relatively hyperbolic groups and biautomaticity. Back-

ground and details on relatively hyperbolic groups and biautomatic structures used

in this paper can be found in [3, 25, 16].

Let G D hXi be a group with finite generating set X . For any path p in

�.G; X/, let �.p/ denote the initial vertex, and let �.p/ denote the terminal vertex,

of p. Given � � 1 and c � 0, the path p is a .�; c/-quasigeodesic if for every

subpath r of p, the inequality l.r/ � �d�.G;X/.�.r/; �.r// C c holds.

The group G is biautomatic if there is a regular language L for G (over X) and a

constant K � 0 satisfying the property that whenever u; v 2 L and x; y 2 X˙[¹�º
satisfy ux DG yv, the paths 1y�1ux and 1v synchronously K-fellow travel [16,

Lemma 2.5.5].

Let ¹H! j ! 2 �º be a collection of subgroups of G, and let

H D
S

!2�.H! n ¹1º/:

The graph �.G; X [ H/ is called the relative Cayley graph of G.

Given a path p in �.G; X [ H/, the path p penetrates the coset gH! if p

contains an edge labelled by an element of H! that connects two vertices of gH! .

An H!-component of such a path is a non-empty maximal subpath of p that

is labelled by a word in H �
! . The path p is said to be without backtracking if,

whenever p D p0srs0p00 with two H!-components s; s0, the initial vertices of s

and s0 lie in different left cosets of H! (intuitively, p penetrates every left coset

at most once). The path p is without vertex backtracking if each subpath of p of

length at least 2 is labelled by a word that does not represent an element of an
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H! subgroup. In particular, if a path does not vertex backtrack, then it does not

backtrack and all components are edges.

Following [25] we say that G is hyperbolic relative to ¹H!º if the following

two conditions hold.

(i) �.G; X [ H/ is Gromov-hyperbolic.

(ii) Given any � � 1, there is a constant B.�/ with the following property.

Let p and q be any two .�; 0/-quasigeodesic paths without backtracking in

�.G; X [ H/ with �.p/ D �.q/ D 1 and d�.G;X/.�.p/; �.q// � 1. Then,

(a) if s is an H!-component of p penetrating the coset gH! , and q does

not penetrate gH! , then the distance between the initial and terminal

vertices of s in �.G; X/ is at most B.�/;

(b) if s is an H!-component of p penetrating the coset gH! and s0 is

an H!-component of q penetrating the same coset, then in �.G; X/

the distance between the initial vertices of s and s0, and the distance

between the terminal vertices of s and s0, are both at most B.�/.

Property (i) is frequently called weak relative hyperbolicity and Property (ii)

is frequently called bounded coset penetration. The groups H! are called the

peripheral subgroups of the hyperbolic group G.

Remark 4.1. In a finitely generated relatively hyperbolic group G, bounded coset

penetration also holds for .�; c/-quasigeodesics with � � 1 and c � 0, with a

constant B.�; c/ [25, Theorem 3.23].

Relatively hyperbolic groups with a finite generating set satisfy several further

fundamental properties that we shall use.

Lemma 4.2. Let G be a finitely generated group hyperbolic relative to a collection
¹H!º of subgroups. Then

(i) [25, Corollary 2.48] there are only finitely many groups H!; that is, j�j < 1;

(ii) [25, Proposition 2.36] for all !; � 2 � with ! ¤ �, the intersection H! \H�

is finite;

(iii) [25, Proposition 2.29] each H! is finitely generated.

Definition 4.3. [3, Construction 4.1] Let w be a word in .X˙/�; we define the

factorisation of w to be its decomposition as w D w0u1w1 � � � unwn where

(i) each wk is in
�
X˙ n

� S
!2�.X˙ \ H!/

���
,

(ii) each uk is a nonempty word in .X˙ \ H!k
/� for some !k 2 �,

(iii) if wk D � and x is the first letter of ukC1, then ukx is not in .X˙ \ H!/� for

any !.
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We define the derived word Ow of w to be the word Ow WD w0h1w1 � � � hnwn over

X˙ [ H, where each hk is the element of H represented by uk (or hk D � if

uk DG 1). Similarly, if p is a path in �.G; X/ labelled by w, then the derived path
Op is the corresponding path in �.G; X [ H/ labelled by Ow.

Following the notation in [3, Definition 4.5], given subsets LH!
� .X˙\H!/�

for each ! 2 �, let Rel.X; ¹L!ºpc/ denote the set of all words w in .X˙/� such

that, in the factorisation w D w0u1w1 � � � unwn of w, each uk is a prefix of a word

in
S

!2� L! .

The following result, which we state here as a lemma, is a combination of

several results in [3]. We use it to prove Proposition 4.5.

Lemma 4.4. Let G D hX1i (with jX1j < 1) be hyperbolic relative to a family
of subgroups ¹H!º!2�. Then there exist constants � � 1 and c � 0 and a finite
subset H0 of H D

S
!2�.H! n ¹1º/ such that, whenever X is a finite set satisfying

(i) X1 [ H0 � X � X1 [ H, and

(ii) for all ! 2 �, the group H! has a geodesic biautomatic structure over
H! \ X with language LH!

,

the following hold.

(a) For every !; � 2 � with ! ¤ �, the intersection H! \H� is contained in X .

(b) For every ! 2 �, the set X \ H! generates H! .

(c) For any word w 2 Geo.G; X/, the word Ow 2 .X˙ [ H/� derived from w

labels a .�; c/-quasigeodesic path in �.G; X [H/ without vertex backtrack-
ing.

(d) For every ! 2 �, if w 2 Geo.G; X/ represents an element of H! , then
w 2 Geo.H!; X \ H!/.

(e) The group G has a biautomatic structure over X with language Geo.G; X/\
Rel.X; ¹LH!

ºpc/.

Proof. By Lemma 4.2, there are finitely many peripheral subgroups, and they have

pairwise finite intersections; hence the subset H1 WD
S

!¤�2�.H! \ H� n ¹1º/
of H is finite. It also follows from Lemma 4.2 that each peripheral subgroup H!

has a finite generating set Y! , and so the subset H2 WD
S

!2� Y! of H is finite.

Let H3 be the finite subset H0 of [3, Lemma 5.3], and let H4 be the finite subset

H0 of [3, Theorem 7.6]. Then the finite subset H0 WD
S4

iD1 Hi satisfies (a)–(b),

and (c) and (e) follow from the two results of Antolin and Ciobanu. Suppose that

w 2 Geo.G; X/ represents an element of H! , and let w D w0u1w1 � � � unwn be

the factorisation of w. Since, by (c), the word Ow derived from w has no vertex

backtracking, the word Ow must have length at most 1; hence w 2 .X˙ \ H!/�,

proving (d). �
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4.2. Crossover properties for relatively hyperbolic groups. In this section we

use Lemma 4.4 to show that a group that is hyperbolic relative to geodesically

biautomatic subgroups is coset automatic relative to each peripheral subgroup

with maximal crossover. We note that a similar but weaker SSCA result is shown

in [8, Theorem 5.4].

Proposition 4.5. Let G D hX1i (with jX1j < 1) be a group that is hyperbolic
relative to subgroups ¹H! j ! 2 �º. Suppose that, for each !, any finite
generating set for H! can be extended to one over which H! has a geodesic
biautomatic structure. Let !0 2 �, and let H WD H!0

. Then there are constants
� � 1 and c � 0 and a finite generating set X for G satisfying the following.

(1) The set X satisfies properties (a)–(e) of Lemma 4.4, and hence the subgroup
H is generated by Y WD X \ H!0

.

(2) The pair .G; H/ is strongly synchronously coset automatic with respect to a
coset language LH satisfying LH � Geo.G; X/ \ Œ.X˙/� n Y ˙.X˙/��; the
only representative in LH of the identity coset is �, and each element g 2 G

is represented by a word ygzg 2 Geo.G; X/ with yg 2 .Y ˙/� and zg 2 LH .

(3) For all ! 2 � the language LH has maximal crossover with respect to
.Y; X \ H!/.

We note that the condition on finite generating sets of the H! holds when each

subgroup H! is either virtually abelian (by [3, Proposition 10.1]) or hyperbolic.

Proof. Given the finite generating set X1 of G, let � � 1 and c � 0 be the

constants and let H0 be the subset of H from (the proof of ) Lemma 4.4. Let

X2 WD X1[H0. For each ! 2 �, the set X2\H! generates H! (by Lemma 4.4(b)),

and so there is another finite generating set Y! � X2 \ H! over which Hw has a

biautomatic structure, with a language LH!
. Let X WD X2 [

� S
!2� Y!

�
. Then

X1 [ H0 � X � X1 [ H. Moreover, since H! \ H� � H0 � X2 for all

! ¤ �, we have X \ H! D Y! for all !. Now X is a finite generating set

for G satisfying (i)–(ii) of Lemma 4.4, and so properties (a)–(e) of that lemma

hold, which proves (1).

Let H WD H!0
and Y WD X \ H!0

. Let

L WD Geo.G; X/ \ Rel.X; ¹LH!
ºpc/;

be the language of the biautomatic structure for G over X (from Lemma 4.4(e)).

Finally, let

LH WD L \ Œ.X˙/� n Y ˙.X˙/��I

that is, LH is the set of words in the geodesic biautomatic structure for G that

do not begin with a letter in Y ˙. Since L is regular, and the class of regular

languages is closed under intersection, complementation, and concatenation, the

language LH is also regular.
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For any element g 2 G, there is a word w 2 L � Geo.G; X/ representing g,

and we can write w D ygzg where yg is the maximal prefix of w lying in .Y ˙/�

and zg does not start with a letter in Y ˙. The factorisation of w is yg followed by

the factorisation of zg ; in particular, the suffix zg of w is also a geodesic over X

for which the components lie in the prefix closures of the geodesic biautomatic

structures of the component subgroups, and so zg 2 LH . Moreover, zg is a

representative in LH of the coset Hg. Thus LH is a coset language for .G; H/.

Let w 2 LH be a representative of the identity coset; that is, w 2 H . Then it

follows from Lemma 4.4(d) that w 2 Geo.H; Y / � .Y ˙/�, but no word in LH

begins with a letter in Y ˙. Thus w D � in this case.

Before proving that the language LH satisfies the requisite fellow traveller and

crossover properties, we prove two lemmas.

Lemma 4.6. Let v 2 LH and let Ov be the derived word defined in Definition 4.3.
Then any path in �.X \ H/ labelled by Ov is a .�; c/-quasigeodesic that does not
vertex backtrack, and no such path of the form h Ov with h 2 H penetrates the
coset H .

Proof. Since LH � Geo.G; X/, the first claim follows from Lemma 4.4(c). For

any h 2 H , if the path p WD h Ov were to penetrate the identity coset H , then we

could write p D rst , where s is an edge labelled by a letter in H , and the initial

and terminal vertices of s lie in H . However, since (by the definition of LH ) the

first letter of v cannot lie in H , the path r is nonempty, and so rs is a path of length

at least 2 labelled by a word representing an element of H , contradicting the fact

that p has no vertex backtracking. So p cannot penetrate the coset H . 4

Lemma 4.7. Suppose that the word y 2 Geo.G; X/ represents an element
of H D H!0

that does not lie in H! for any ! ¤ !0, and let v 2 LH .
Then the path p D 1cyv in �.X [ H/ labelled by the derived word cyv is a
.�; c C � C 1/-quasigeodesic that does not backtrack.

Proof. Let v D v0s1v1 � � � snvn be the factorisation of v and Ov D v0h1 � � � hnvn.

We have y 2 Geo.H; Y / by Lemma 4.4(d) and, since y … .X˙ \ H!/� for any

! ¤ !0 and the first letter x of v does not lie in Y , the word yx is not in any

.X˙ \ H�/�. Thus the factorisation of yv is yv0s1v1 � � � snvn, and cyv D h Ov,

where y represents h 2 H . Since, by Lemma 4.6, Ov labels a .�; c/-quasigeodesic

path, the path p WD 1cyv is a .�; c C � C 1/-quasigeodesic.

Suppose that p backtracks. Then for some ! there are two H!-components of

p whose initial vertices lie in the same coset of H! and, since by Lemma 4.6 the

subpath h Ov of p is without backtracking, one of those two components must be

the first edge e WD 1h of p. By our choice of y, the edge e is an H -component

of p but not an H!-component for any other index ! ¤ !0, and so, for some

index i , the edge h���vi�1
hi of p also has initial vertex in the same coset H as the
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initial vertex 1 of e, and si DG hi represents an element of H . But then the

nonempty prefix v0s1 � � � vi�1si of the geodesic v represents an element of H and

so, by Lemma 4.4(d), this nonempty prefix lies in .Y ˙/�, contradicting the fact

that v 2 LH . 4

Returning to the proof of Proposition 4.5, we next apply these two lemmas to

establish the fellow traveller property. Suppose that u; v 2 LH , x 2 X˙ [ ¹�º,
and h 2 H satisfy ux DG hv. Let y 2 Geo.G; X/ be a geodesic representative

of h. Then, by Lemma 4.4, we have y 2 Geo.H; Y /. If h is in the finite setS
!¤!0

.H \ H!/ then it follows from the definition of the generating set X of G

that y 2 X˙ [ ¹�º, and so jyj � 1.

Suppose, on the other hand, that h does not lie in H! for any ! ¤ !0. Then, by

Lemma 4.6 applied to u, the path p WD 1 Ou in �.G; X[H/ is a .�; c/-quasigeodesic

without backtracking that does not penetrate the coset H . Since increasing the

constants preserves the quasigeodesic property, p is also a .�; c C � C 1/-quasi-

geodesic. By Lemma 4.7, the path q WD 1cyv is a .�; c C � C 1/-quasigeodesic as

well. Since h ¤ 1, the path q penetrates the coset H in its first edge 1h. Moreover,

the paths p and q both start at 1, and the group elements at their terminal vertices,

represented by u and yv, are connected by a single edge labelled x in �.G; X/.

Now, by the Bounded Coset Penetration property of Remark 4.1, the distance be-

tween 1 and h DG y in �.G; X/ is at most the constant B.�; c C � C 1/.

So in either case we have jyj D jhjX � M WD max¹1; B.�; c C � C 1/º. Now,

by a standard argument, if K is the fellow-traveller constant of the biautomatic

structure L for G over X , then the paths 1u and hv synchronously K 0-fellow travel,

with K 0 WD MK C M . This completes the proof of (2).

Finally we turn to the crossover property. Suppose that u; v 2 LH , ! 2 �,

g 2 H! , and h 2 H satisfy ug DG hv, where u does not represent an element of

H . Let x and y be elements of Geo.G; X/ representing g and h, respectively, and

note from Lemma 4.4 that x 2 Geo.H!; X \ H!/ and y 2 Geo.H; Y /. If h is in

the finite set
S

!¤!0
.H \ H!/ then, as above, we have jyj D jhjX � 1.

Suppose instead that h is not in this finite set. Then as above, Lemmas 4.6

and 4.7 show that the path p WD 1 Ou is a .�; c/-quasigeodesic without vertex

backtracking that does not penetrate the coset H , and the path q WD 1cyv is

a .�; c C � C 1/-quasigeodesic without backtracking. Now consider the path

p0 WD 1 Oug, where we consider g to be a single letter in the generating set H.

The path p0 is also a .�; c C � C 1/-quasigeodesic, since it consists of the path

p together with one more edge e WD Oug. Since p does not penetrate H , and the

word u does not represent an element of H , the initial vertex of e is not in H , and

so p0 also does not penetrate the coset H .

If the path p0 does not backtrack then, by the Bounded Coset Penetration

property of Remark 4.1, we have jyj D jhjX � B.�; c C � C 1/.

Suppose instead that p0 does backtrack; then the final edge e of p0 penetrates

the same H!0-coset uH!0 as one of the edges of p, for some index !0, and since
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g 2 H! , we may take !0 D !. Let u D u0s1u1 � � � snun be the factorisation of u,

and Ou D u0h1 � � � hnun, and suppose that the edge of p labelled by hk penetrates

the coset uH! . Then the suffix skuk � � � snun of u represents an element of H! and

then by Lemma 4.4(d) this suffix is a word in Geo.H!; X \ Hw/, and so we must

have k D n and un D �.

So we have that sng represents an element h0 2 H! , and the path p00 labelled

by u0h1 � � � sn�1un�1h0 is a .�; c C � C 1/-quasigeodesic without backtracking

that does not penetrate H , and that has the same initial and terminal vertices as q.

Now we can apply Remark 4.1 as before to the paths p00 and q to conclude that

jhjX � B.�; c C � C 1/.

Hence LH has M -maximal crossover with respect to .Y; X \ H!/, where

M D max¹1; B.�; c C � C 1/º. �

4.3. Synchronous automatic structures for graphs of relatively hyperbolic

groups. The following is now an immediate corollary of Proposition 4.5 and

Theorems B and 2.2.

Theorem 4.8. Let G D .ƒ D .V; EE/; ¹GvW v 2 V /º; ¹GeW e 2 EEº; ¹�eW e 2 EEº/
be a graph of groups over a finite connected directed graph ƒ. Suppose that the
following conditions hold.

(i) Each vertex group Gv is finitely generated and hyperbolic relative to a col-
lection of subgroups, and each edge group Ge with �.e/ D v is one of those
peripheral subgroups.

(ii) Any finite generating set of any peripheral subgroup H of a vertex group Gv

can be extended to one over which the peripheral subgroup has a geodesic
biautomatic structure.

(iii) For each edge e, the triple .Ge; G Ne; �e/ is 1-stable with respect to .X�.e/ \Ge;

X�. Ne/ \ G Ne/ where for each v 2 V the set Xv is a finite generating set for Gv

satisfying properties (1)–(3) of Proposition 4.5.

Then for each edge e0 2 EE the pair .�1.G/; Ge0
/ is strongly synchronously coset

automatic. Moreover, the fundamental group �1.G/ is automatic.

Once again, we observe that condition (ii) holds in particular when each

subgroup H! is either virtually abelian (by [3, Proposition 10.1]) or hyperbolic.

In general we cannot dispense with the 1-stability assumption in condition (iii)

of this theorem even in the case that the vertex groups are hyperbolic relative to

abelian subgroups, as the following example shows.

Example 4.9. Let G D ha; b; c j ab D bai Š Z2 � Z. Then G is hyperbolic

relative to ¹H º with H WD ha; bi. Let G be the graph of groups with a single

vertex, and a single edge e from the vertex group G to itself (so �1.G/ is an HNN

extension). We define �eW H ! H by �e.a/ D ab, �e.b/ D b. Then the resulting
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fundamental group is isomorphic to K � Z, where K is the Heisenberg group.

Since K is not automatic by [16, Theorem 8.1.3], the group K �Z is not automatic

by [16, Theorem 12.1.8].

However, in Corollary 4.10 we show that, in the case when the peripheral

subgroups are abelian and have sufficiently limited interaction, we can dispense

with the 1-stability assumption in Theorem 4.8.

Corollary 4.10. Let G be a graph of groups associated with a finite connected
graph ƒ and finitely generated vertex groups that are hyperbolic relative to abelian
subgroups, and suppose that each edge group is peripheral in its adjacent vertex
group. Suppose further that ƒ contains no nonempty directed circuit p for which,
whenever e; f is a pair of consecutive edges in p, the edge groups corresponding
to the terminal vertex of e and the initial vertex of f are equal. Then �1.G/ is an
automatic group with respect to a Higgins language of normal forms.

Proof. Let G D .ƒ D .V; EE/; ¹GvW v 2 V /º; ¹GeW e 2 EEº; ¹�eW e 2 EEº/ be

this graph of groups. In [16, Theorem 4.3.1], it is shown that every finitely

generated abelian group is shortlex automatic over every generating set; moreover,

the structure is also biautomatic.

For each v 2 V , let Xv;1 be a finite generating set of Gv, let ¹Hv;! j ! 2 �vº be

the collection of peripheral subgroups for Gv, and let Hv WD
S

!2�v
.Hv;! n ¹1º/.

Let H0
v be the finite subset of Hv associated to Gv and Xv;1 from Lemma 4.4, and

let Xv;2 WD Xv;1 [ H0
v . Then for each ! 2 �v , the set Xv;2 \ Hv;! generates the

group Hv;! .

Let yP .ƒ/ be the set of all directed paths in ƒ of the form p D e1 � � � ek such

that eiC1 ¤ Nei and Gei
D G NeiC1

for all 1 � i � k � 1; that is, the path p

in ƒ does not backtrack and the (peripheral) edge subgroups in the vertex group

G�.ei / D G�.eiC1/ corresponding to the edges ei and NeiC1 are the same for all i .

The hypotheses show that the set yP .ƒ/ is a finite set.

For any p D e1 � � � ek 2 yP .ƒ/, let Np WD Nek � � � Ne1 be the reverse path, let

Gp WD Gek
, and define �pW Gek

! G Ne1
by �p WD �e1

ı � � � ı �ek
. Note that the

hypotheses show that G Ne1
¤ Gek

. Also define Yp WD � Np.X�. Np/;2 \ G Np/.

For each vertex v of ƒ, let

Xv WD Xv;2 [
� S

p2 yP .ƒ/;�.p/Dv
Yp

�
:

Now let e be any edge of ƒ, and let v WD �.e/ and Qv WD �.e/. The set Xv \Ge is

again a generating set for the peripheral subgroup Ge, over which Ge is geodesic

biautomatic. The proof of Proposition 4.5 shows that the generating set Xv of Gv

satisfies properties (1)-(3) (with respect to the pair .Gv; Ge/) of that proposition.



Automaticity for graphs of groups 535

The fact that Hv;! \ Hv;� � Xv;2 for all distinct !; � 2 �v implies that

Xv \ Ge D
�
Xv;2 [

� S
p2 yP .ƒ/;�.p/Dv

Yp

��
\ Ge

D .Xv;2 \ Ge/ [ Ye [
� S

p2 yP .ƒ/n¹eº;GpDGe
Yp

�
;

and similarly

XQv \ G Ne D .XQv;2 \ G Ne/ [ Y Ne [
� S

q2 yP .ƒ/n¹Neº;GqDGe
Yq

�
:

Now �e.Xv;2 \Ge/ D Y Ne and �e.Ye/ D �e.� Ne.XQv;2 \G Ne// D XQv;2 \G Ne . Suppose

that p 2 yP .ƒ/ n ¹eº satisfies Gp D Ge. If the last edge of the path p is e, then we

can write p D q � e for some path q 2 yP .ƒ/ n ¹ Neº satisfying Gq D G Ne, and so

�e.Yp/ D �e.� Np.X�. Np/;2 \ G Np// D �e..� Ne ı � Nq/.X�. Np/;2 \ G Np// D Yq:

On the other hand, if the last edge of p is not e, then the path q WD p � Ne lies

in P.ƒ/ n ¹ Neº and satisfies Gq D G Ne, and the argument in the previous sentence

shows that � Ne.Yq/ D Yp; hence �e.Yp/ D Yq. Hence �e maps Xv \Ge to XQv \G Ne.

Similarly � Ne maps XQv \G Ne to Xv \Ge; that is, �e is a bijection from the generating

set Xv \Ge of Ge to the generating set XQv \G Ne of G Ne. Hence the triple .Ge; G Ne; �e/

is 1-stable with respect to this pair of generating sets. The result now follows from

Theorems 4.8 and 2.2. �

We already noted in Section 1 that the automaticity of �1.G/ in the above result

was previously known, with respect to a different normal form. In particular,

it follows from Dahmani’s Combination Theorem [12, Theorem 0.1] that �1.G/

is hyperbolic relative to a family of abelian groups, and then application of [3,

Corollary 1.8] shows that �1.G/ is shortlex biautomatic.

We can apply Corollary 4.10 to the construction of automatic structures for

fundamental groups of 3-manifolds. Although fundamental groups of closed

3-manifolds with JSJ decomposition pieces that do not have Nil or Sol geome-

try have been shown by Epstein et al. [16, Theorem 12.4.7] to be automatic, the

normal forms for the automatic structure are difficult to determine from the con-

struction in that proof. The proofs of Theorems A and 4.8 were partly inspired by

the proof in [8] that all fundamental groups of closed 3-manifolds have the related

property of autostackability, and as in that earlier proof, our proofs of those theo-

rems use the set of Higgins normal forms described in Section 3.1. We now show

that when the pieces of the JSJ decomposition are hyperbolic the fundamental

group of the 3-manifold is also automatic over those normal forms.

Corollary C. Let M be an orientable, connected, compact 3-manifold with in-
compressible toral boundary whose prime factors have JSJ decompositions con-
taining only hyperbolic pieces. Then the group �1.M/ is automatic, with respect
to a Higgins language of normal forms.
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Proof. The manifold M is a connected sum of finitely many prime manifolds,

M D M1# � � �#Mk , and the fundamental group �1.M/ is the free product of the

groups �1.Mi /.

For each index i , the group �1.Mi / is a fundamental group of a graph of finitely

generated groups that are hyperbolic relative to (free) abelian subgroups, over a

finite connected graph ƒi . Moreover, this graph of groups satisfies the properties

that each edge group is a peripheral subgroup in its vertex group, and for any two

edges e; f of ƒi with the same terminal vertex �.e/ D �.f / the intersection of

the corresponding edge groups is Ge \ Gf D ¹1º. Hence conditions (i) and (ii) of

Corollary 4.10 are satisfied, and so �1.Mi / is automatic with respect to a Higgins

language Li of normal forms.

The free product �1.M/ D �1.M1/� � � �� �1.Mk/ is automatic with respect to

the standard normal form set L of a free product [16, Theorem 12.1.4], constructed

using the languages Li of normal forms for the factor groups above. Then �1.M/

is also the fundamental group of a graph of groups built from the graphs of groups

defining the groups �1.Mi / by joining the graph ƒi to the graph ƒiC1 by an edge

whose associated edge groups are the trivial group for each i , and the language L

is a Higgins language for this graph of groups. �

Remark 4.11. For a nonorientable, connected, compact 3-manifold M with in-

compressible toral boundary, whose JSJ pieces have interiors with hyperbolic ge-

ometry, there is an orientable 2-sheeted cover M 0 of M satisfying the hypotheses

of Corollary C, and �1.M 0/ is an index 2 subgroup of �1.M/. Hence in this case,

by [16, Theorem 4.1.4] and Corollary C, the group �1.M/ has an automatic struc-

ture with a language that is the concatenation of the Higgins language of normal

forms for �1.M 0/ with a transversal for �1.M 0/ in �1.M/.

5. Synchronous automaticity when geodesics concatenate up

In this section we introduce the property for a pair of groups .G; H/ that geodesics

in G “concatenate up” from the subgroup H ; such a pair .G; H/ is known in the

literature as an admissible pair. In Section 5.1 we study crossover properties for

shortlex automatic groups in which geodesics concatenate up from subgroups, and

use this to prove that strong synchronous coset automaticity is preserved by the

graph of groups construction when geodesics for all edge groups Ge concatenate

up to geodesics for their incident vertex groups G�.e/.

Let G D hXi be a group and, for some Y � X , let H D hY i be the subgroup

of G generated by Y .
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Definition 5.1. We say that geodesics for H over Y concatenate up to geodesics

for G over X (or Geo.H; Y / concatenates up to Geo.G; X/) provided that, when-

ever w is a geodesic word over Y and v0 is a word over X that is a minimal length

representative of its coset, the word wv0 is also geodesic.

Note that this property implies that any element of G has a geodesic represen-

tative of this form wv0.

The property of geodesics concatenating up has been used by Alonso [1] and

Chiswell [9] to study the growth functions of amalgamated free products, HNN

extensions, and fundamental groups of graphs of groups. Examples of subgroups

in groups with generating sets for which geodesics concatenate up include any sub-

graph product of a graph product of groups (including a direct factor in a direct

product, or a free factor in a free product) [10], [23, Proposition 14.4]. Alonso’s

article [1] provides many other examples.

In Section 5.2 we prove that Coxeter groups and sufficiently large Artin groups

have the property of geodesics concatenating up with respect to special subgroups

(over the standard Coxeter and Artin generating sets), and hence amalgamated

products, HNN extensions, and more generally fundamental groups of graphs of

these groups over parabolic subgroups are automatic.

5.1. Crossover and strong synchronous coset automaticity for graphs of

groups when geodesics concatenate up. In order to obtain, in Theorem D, SSCA

for fundamental groups of graphs of groups in the case that geodesics concatenate

up, we begin by describing a situation that yields a geodesic SSCA and a 1-limited

crossover condition for a subgroup in a group.

Proposition 5.2. Let G D hX j Ri, let H D hY i for some Y � X , and suppose
that geodesics for H over Y concatenate up to geodesics for G over X . Suppose
that G is shortlex automatic with respect to some ordering of X˙ in which all
elements of Y ˙ precede all elements of X˙ n Y ˙, and let the languages SL and
SL

H be defined with respect to that ordering. Then the coset language SL
H has

1-limited crossover with respect to .Y; Z/ for any Z � X , and defines a strong
synchronous (shortlex) automatic coset system for .G; H/.

Proof. Let u 2 SL
H and x 2 X˙. The conclusions will follow once we have

proved that either ux DG v with v 2 SL
H or ux DG yv with v 2 SL

H

and y 2 Y ˙. In the first case, since u and v are both in SL
H , we must have

jjuj � jvjj � 1. In the second case, we shall show that juj D jvj. These restrictions

on u and v will be used later in the proof of Proposition 6.4.

Note that v or yv will then be proved to be the unique representative of ux

in SL, since we put all the letters of Y ˙ first in the ordering, provided that in the

case where there is more than one choice for yv we choose that one with y earliest

in the ordering of Y ˙. So the synchronous fellow travelling of the path 1u with

the path 1v or yv then follows from the (synchronous) shortlex automaticity of G.
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Case 1. Suppose first that the word ux is not geodesic, and let v1 2 SL represent

the element ux of G. Then jv1j is equal to either juj � 1 or juj. We claim that

v1 2 SL
H , which will complete the proof in this case.

If not, then let v0 be the representative of Hv1 in SL
H , so v0 <sl v1, with

v1 DG hv0 for some h 2 H . Since geodesics for H concatenate up to G, whenever

w is a geodesic representative for h, the word wv0 must be geodesic. It follows that

jv0j < jv1j. But now u DG v1x�1 DG hv0x�1 with jv0x�1j < jv1j C 1 � juj C 1,

and so v0x�1 DG h�1u. Now (since geodesics concatenate up) w�1u must be

geodesic, but we have jv0x�1j < jujC1 � jw�1uj, and so we have a contradiction.

Case 2. Suppose now that ux is geodesic. Let ux DG v1 with v1 2 SL

representing the element ux of G. So jv1j D juxj. If v1 2 SL
H then we are

done.

If not, then again let v0 be the representative of v1 in SL
H , so v0 <sl v1 with

v1 DG hv0 for some h 2 H . Let w be a geodesic representative of h. Then, again,

since geodesics concatenate up, wv0 must be geodesic, of the same length as v1,

and so jv0j < jv1j and jwj D jv1j � jv0j.

If jv0j D jv1j � 1, then jwj D 1, so w 2 Y ˙, and so ux DG wv0 with

jv0j D jv1j � 1 D juj, which proves the result.

Otherwise, jv0j � jv1j � 2. Then jwj � 2, and ux DG v1 DG wv0. Then

v0x�1 DG w�1u, and, since geodesics concatenate up, w�1u must be geodesic.

But jw�1uj > jv0x�1j, so we have a contradiction. This contradiction completes

the proof of the proposition. �

Theorem D. Let G D .ƒ D .V; EE/; ¹GvW v 2 V /º; ¹GeW e 2 EEº; ¹�eW e 2 EEº/
be a graph of groups over a finite connected graph ƒ. Let Xv and Ye be finite
generating sets of the groups Gv and Ge, respectively. Suppose that the following
conditions hold for each e 2 EE.

(i) Ye � X�.e/.

(ii) Geo.Ge; Ye/ concatenates up to Geo.G�.e/; X�.e//.

(iii) The triple .Ge; G Ne; �e/ is 1-stable with respect to .Ye; Y Ne/.

(iv) G�.e/ is shortlex automatic with respect to an ordering of X�.e/ in which all
letters of Y ˙

e precede all letters of X˙
�.e/

n Y ˙
e .

Let L be the set of coset languages SL
Ge

G�.e/
, for e 2 EE, and let T be any maximal

tree in ƒ. Then, for each e0 2 EE, the pair .�1.G/; Ge0
/ is strongly synchronously

coset automatic, with the Higgins coset language L WD L.G;L; e0;T/. Further-
more L � Geo

Ge0 , and the group �1.G/ is automatic.
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Proof. Define v0 WD �.e0/, H WD Ge0
and X WD

S
v2V Xv [¹seW e 2 EE n EETº. We

apply Proposition 5.2 in order to verify for each e 2 EE that the pairs .G�.e/; Ge/

satisfy conditions (i) and (iii) of Theorem A. Since we are already assuming

hypothesis (ii) of that theorem, we can apply it to conclude that the pair .G; H/ is

SACA, with the language as described.

Our next step is to prove that L � Geo
H . So suppose that w 2 L, and let

u be a representative of Hw of minimal X-length. We create a word Ou from

u by inserting into u symbols se for e 2 EET , so that Ou D u0se1
u1 � � � sek

uk ,

where e1 � � � ek is a path within ƒ that starts at v0, and where u0 2 .X˙
�.e0/

/�

and ui 2 .X˙
�.ei /

/� for each i . Note that we have Defl. Ou;T/ D u. Next we

construct an .L; SLGe0
SL

Ge0

G�.e0/
/-cascade of u, as follows. We define u0

k
to be the

shortlex minimal representative word over X�.ek/ in the coset Gek
uk , and suppose

that uk DG�.ek/
hku0

k
. Our hypothesis (ii) ensures that juk j D ju0

k
j C jhk jYek

.

Now we define h0
k

2 G Nek
to be the element �ek

.hk/ DG sek
hks�1

ek
. The 1-

stability condition implies that jh0
k
jY Nek

� jhkjYek
. We repeat this procedure,

but using uk�1h0
k

rather than uk , and so define elements hk; : : : ; h1; h0, words

u0
k
; : : : ; u0

0 2 SL
Gej

G�.ej /
, and elements h0

k
; : : : ; h0

1. Let w0 be a geodesic word over

Ye0
that represents h0. The deflation u0 of the word w0u0

0se1
u0

1se2
u0

2 � � � sek
u0

k
,

which represents the same element as u, is no longer than u. Hence u0 must be

geodesic, and since the deletion of w0 results in a word in the same coset, w0 must

be the empty word (and so h0 DG 1). Now u0 2 L. Since L has uniqueness, we

have u0 D w.

Now synchronicity of L follows by Proposition 3.9. Then application of

Theorem 2.2 proves that �1.G/ is automatic. �

5.2. Application to graphs of Coxeter and sufficiently large type Artin groups.

We assume that the reader is familiar with the definitions of Coxeter groups and

Artin groups (also known as Artin–Tits groups, of which Coxeter groups are nat-

ural quotients) and with the presentations of these groups over their standard gen-

erating sets; for Coxeter groups, [5] is a standard reference.

The following lemma is noted in [1, Example 1], and an outline of the proof

is given in [5, Exercise of Chapter IV §1(26)]. It is also proved in [2, Proposi-

tion 7.11].

Lemma 5.3. Let G D hXi be a Coxeter group, defined over its standard generat-
ing set X , and let H D hY i be a subgroup of G, for some Y � X . Then geodesics
for H concatenate up to G.

Proof. The proof of the lemma uses the Exchange Lemma [5, Chapter IV.1.4,

Lemma 3] for Coxeter groups, which says that, in any non-geodesic word over X ,
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we can get a shorter representative of the same group element by removing two of

the letters in the word.

We let w be a geodesic word over Y , and v a geodesic word over X such that

wv is non-geodesic, and prove that in that case v cannot be of minimal length

within its coset.

Let w0v be a minimal non-geodesic word with w0 a suffix of w. Since v is

geodesic, w0 is nonempty. Let w0 D tw00 with t 2 Y ˙. Then, by the Exchange

Lemma, we can remove two of the letters of the non-geodesic word tw00v to get

a shorter representative of the same group element. Since w00v and tw00 are both

geodesic, one of these removed letters must be t and the other must lie in v. So the

result of removing this letter from v is a shorter representative of the coset Hv. �

Given a Coxeter graph † (that is, a finite simple graph whose edges are labelled

by parameters mij each from the set .N n ¹0; 1º/ [ ¹1º), we denote by A† the

associated Artin group. Suppose that G is an Artin group with standard generating

set X , and that the integers mij are the parameters of the standard presentation

(which label the edges of †). The group G, as well as the Coxeter graph †, is said

to be of large type if for all i ¤ j , mij � 3, and (following [21]) of sufficiently
large type if for any triple i; j; k either none of mij ; mik; mjk is equal to 2, or all

three of mij ; mik ; mjk are equal to 2, or at least one mij ; mik; mjk is infinite.

The following lemma is proved in [10] (see also [23, Proposition. 14.4]) for

the special case of right-angled Artin groups. In order to prove the result for

Artin groups of sufficiently large type, we need to use knowledge of geodesics

in these groups, and of a process that reduces any word to geodesic form, which is

described in [20, 21]. In particular, some familiarity with the concept of critical
sequences of moves applied to words over the generators is required in order to

understand the following proof.

Lemma 5.4. Let G D hXi be an Artin group of sufficiently large type, defined
over its standard generating set X , and let H D hY i be a subgroup of G, for some
Y � X . Then geodesics for H concatenate up to G.

Proof. We prove the contrapositive, as follows. As in the proof of Lemma 5.3, we

let w be a geodesic word over Y , and v a geodesic word over X such that wv is

non-geodesic, and prove that in that case v cannot be of minimal length within its

coset. We prove this by showing that v must be equal in G to a geodesic word that

starts with a letter of Y ˙.

Let w0v be a minimal non-geodesic word with w0 a suffix of w. So, if u is

a geodesic word with u DG w0v, then jw0vj � juj � 2 but, since all defining

relators of Artin groups have even length, we must have juj D jw0vj � 2. Since

v is geodesic, w0 is nonempty. Let w0 D tw00 with t 2 Y ˙. Then w00v DG t�1u

with both words geodesic.

If w00 is empty then v DG t�1u, which proves the lemma. Otherwise, since

w is geodesic, w00 does not start with t�1, but it starts with a letter in Y ˙.
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By [21, Proposition 3.2 (1)] (applied with “left” in place of “right”), a single

leftward critical sequence (a sequence of overlapping replacements of 2-generator

subwords by words of the same length on the same 2 generators) can be applied to

w00v to transform it to a word starting with t�1. The moves in the sequence cannot

all take place within w00 because that would contradict w being geodesic. If some

of the moves in the critical sequence take place within v, then we can just change

v to the result of these moves. So we can assume that the first move �1 ! �1 in

the sequence overlaps both w00 and v.

We claim that the two generators involved in this move must both be in Y . So

suppose that one of them, s say, is not. The first letter of �1 lies in w00 and hence

in Y ˙, and so �1 begins with s or s�1. If there is a second move �2 ! �2 in the

sequence, then �2 begins with a letter in w00 and hence in Y ˙ and ends with s˙1,

so �2 must also begin with s or s�1. Then we see by induction that, for all moves

�i ! �i in the sequence, �i begins with s or s�1 and hence, after applying the

complete sequence, the resulting word begins with s or s�1. But we know already

that it begins with t�1 with t 2 Y ˙, so we have a contradiction, which proves the

claim.

Since one of the two generators involved in the first move �1 ! �1 is the first

letter of v or the inverse of that generator, it follows that the first letter of v is

in Y ˙, and the lemma is proved. �

Corollary 5.5. A fundamental group of a graph of groups in which each vertex
group is either a Coxeter group or a sufficiently large type Artin group, and in
which each edge group is a special subgroup in its adjacent vertex group, is
automatic.

We note that a fundamental group of such a graph of groups built only out of

Coxeter groups, or only out of Artin groups, must itself be such a group. And

conversely, by [24], any Coxeter group that arises as the fundamental group of a

graph of groups must arise in a similar way.

The following gives a number of examples.

Corollary E. Let † be a Coxeter graph of sufficiently large type. Given arbitrary
subgraphs ƒ1; ƒ2; : : : ; ƒk of †, suppose that the Coxeter graph †0 is formed by
adjoining new vertices v1; v2; : : : ; vk to † together with the following edges from
each vi :

� to each vertex of ƒi , with the label 2,

� to each vertex of † n ƒi , with the label 1,

� to each vertex vj with j ¤ i , with the label 1.

Then the Artin group A†0 is automatic.
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Proof. The Artin group A†0 is a multiple HNN-extension of Gv D A† over the

subgroups Gei
D Aƒi

, where �ei
W Aƒi

! Aƒi
is the identity map. Thus, this

graph of groups satisfies condition (iii) of Theorem D. Further, Xv D V.†/˙ and

Yei
D V.ƒi /

˙ and so condition (i) is satisfied. By Lemma 5.4, geodesics from

Aƒi
concatenate up to A†, and so condition (ii) is satisfied. Condition (iv) follows

from [21]. Thus, .A†0 ; Aƒ1
/ is SSCA. Moreover, Aƒi

is also shortlex automatic,

by [21]. Thus, by Theorem 2.2, A†0 is automatic. �

Example 5.6. A 4-generator example is provided by extending the Artin group

of type zA2 by one generator y1, defined to commute with two of the existing

generators. This is the Artin group defined by the Coxeter diagram shown in

Figure 5.

t
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t

3

✑
✑
✑
✑
✑
✑
✑✑

3
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2

◗
◗
◗
◗
◗
◗
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3
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2

1

Figure 5. An Artin group not previously known to be automatic

As far as the authors know, automaticity of the family of Artin groups covered

by Corollary E was previously unknown, since this family includes groups that are

not of sufficiently large type. On the other hand, it was clear that (as fundamental

groups of graphs of groups) they had solvable word problem, though quadratic

Dehn function was (probably) unknown.

Further, it can be shown that these Artin groups satisfy Dehornoy’s property H,

introduced in [13], which implies that their word problem is solvable via padded

multifraction reduction [14, Proposition 1.14].

6. Further strong synchronous coset automatic structures

For our next example of a family of groups and subgroups with limited crossover,

we consider the case in which the group is abelian. It is proved in [16, Theo-

rem 4.3.1] that finitely generated abelian groups are shortlex automatic over all

finite generating sets. The following proposition expands the result to coset sys-

tems relative to any subgroup.
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Proposition 6.1. Let G D hXi be a finitely generated abelian group, and let
H D hY i be a subgroup. Then .G; H/ is strongly synchronously coset automatic
with 1-limited crossover with respect to Y . Furthermore, for any ordering of X˙,
we can choose the coset automatic structure to consist of the shortlex least repre-
sentatives of the cosets of H .

Proof. We suppose that X˙ D ¹x1; : : : ; xnº, with x1 < x2 < : : : < xn. For each

x 2 X [X�1, write Nx for the coset Hx. Then xX WD ¹ NxW x 2 Xº is a generating set

for xG WD G=H , and each word w over X has an image Nw over xX . Let �W X ! xX
be the map x 7! Nx. Note that � might not be injective, but we may choose an

injective map �0W xX ! X such that ��0. Nx/ D Nx for all Nx 2 xX , and then extend �0

to an injective monoid homomorphism from words over xX˙ to words over X˙.

By [16, Theorem 4.3.1], xG is shortlex automatic with respect to the generating

set xX ; we define L xG to be the shortlex language for xG. Now we choose L to be the

set �0.L xG/. Then, as the image of a regular set under a monoid homomorphism,

L is regular. The words in L xG all have the form Nxr1

1 � � � Nxrn
n , with ri � 0, and those

in L the form x
r1

1 � � � xrn
n .

Now suppose that v D x
a1

1 � � � xan
n , w D x

b1

1 � � � xbn
n are elements of L and

h 2 H with d�.G/.v; hw/ � 1. Then d�. xG/. Nv; Nw/ � 1, and it follows from the

proof of [16, Theorem 4.3.1] that †i jbi � ai j � B , for some constant B . Hence,

since h DG vxw�1, with x 2 X [ X�1 [ ¹�º, the length of h is bounded by

B C 1. We can also see that, where v.j /; w.j / denote the prefixes of v; w of

length j , each of the elements v.j /�1w.j / is represented by a product x
r1

1 � � � xrn
n

with †jri j � 2B . It follows that the differences v.j /�1hw.j / DG hv.j /�1w.j /

are bounded in length.

Since G is abelian, it is straightforward to show that L has limited crossover

with respect to the pair .Y; Y /. �

Proposition 6.2. Let G be a finitely generated virtually abelian group, and let H

be a subgroup. Then .G; H/ is strongly synchronously coset automatic.

Proof. We shall construct first a coset language LH
1 for G. We have already con-

sidered the case when G itself is abelian in Proposition 6.1. It will be convenient

here, however, in this special case, to define a second language LH
2 , which has

additional properties that we shall need in the proof of Proposition 6.5.

Let F E G with F free abelian and jG W F j finite. By Lemma 2.8(iii) it is suf-

ficient to prove our result for the subgroup FH of G. But it will not be convenient

to make that assumption in the aforementioned application to Proposition 6.5 so,

in the case when G is nonabelian, we shall assume from now on that G D FH ,

but not when G is abelian.

Let J WD H \ F . Then, since either G D FH or G is abelian, we have

J E G. We can find a subgroup E � J of F such that E=J is torsion-free, and

E is characteristic of finite index in F , and hence normal of finite index in G.
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(We can define E � F as the inverse image under the natural map F ! F=J of

the e-th power of a complement in F=J of the torsion subgroup T of F=J , where

e is the exponent of T .)

If G is abelian, then we choose C to be any complement of J in E. Otherwise

we apply Lemma 6.3 below with yG D G=E to the ZG=E-module E and its

submodule J ; the submodule U guaranteed by the lemma corresponds to a normal

subgroup C of G within E, with J \ C D 1 and jE W JC j finite. Then, in either

case, the free abelian group JC is a direct product J � C , and has finite index in

G with J and C both normal in G.

We shall define both of our coset languages with respect to a finite generating

set X for G that is a union XJ [XC [XT , where XJ and XC are finite generating

sets for J and C , and XT is a set of (not necessarily unique) representatives of the

nontrivial cosets of JC in G, satisfying the condition that whenever a coset has

nontrivial intersection with H , the representatives in XT are all within H .

We describe first the construction of LH
1 . The quotient G=J is virtually abelian

with free abelian subgroup JC=J of finite index. For each g 2 G, write Ng for

the coset Jg. By [16, Proof of Corollary 4.2.4], there is an automatic structure

(actually a geodesic biautomatic structure with uniqueness) for xG WD G=J with

language L xG consisting of words over a finite generating set Z for xG of the form

ZC [ZT , where ZC is a particular generating set for CJ and ZT is a set of (unique)

representatives of the nontrivial cosets of CJ in xG, satisfying the condition that

whenever a coset has nontrivial intersection with xH its representative is chosen to

be in xH . We let K be the fellow traveller constant associated with this automatic

structure. The subsets XC ; XT of G that we need to define X are chosen to be

subsets of G that map bijectively under the map g 7! Ng to ZC ; ZT , and such that

XC � C , while XJ can be any finite generating set of J . So we have a bijection

�W XC [ XT to ZC [ ZT , and we extend ��1 to a monoid homomorphism that

maps words over ZC [ ZT to the corresponding words over XC [ XT .

The language L xG is defined in [16, Proof of Corollary 4.2.4] to be a set of

words of the form Nw or Nw Nt , where Nw is a word over ZC , and Nt 2 ZT . We define

LH
1 WD ��1.L xG/. So, as the image of a monoid homomorphism, LH

1 is regular,

and its elements have the form wt , where w is a word over XC and t 2 XT [ ¹�º.
We observe also that the set ZC and also the set of words Nw that arise in this

language are invariant under conjugation by elements of xG.

We claim that the language LH
1 is a strong automatic coset system for .G; H/.

We have seen that it is regular, and it contains a full set of coset representatives of

H in G (recall that J � H ).

It remains to prove the fellow traveller property. So suppose that w1t1; w2t2 2
LH

1 , and x 2 X [ X�1 [ ¹1º, h 2 H with

w1t1x DG hw2t2: (�)

We need to show that the paths 1w1 and hw2 fellow travel (and hence so do 1w1t1x

and hw2t2).
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Our first step towards this proof is to define c1 2 C , j1 2 J and t3 2 XT such

that t1x DG j1c1t3. Since there are only finitely many possible choices for each

of t1, and x, we see that c1 and j1 are bounded in length. Let B be an upper bound

on their lengths. Now we find w3 2 LH
1 \ .X˙

C /�, with w1c1 DG w3 (and so

w1j1c1 DG j1w3) and, since L xG is an automatic structure for xG, we see that 1w1

and 1w3 fellow travel at distance Kjc1j � KB . We now have w1t1x DG j1w3t3.

Now we consider the right hand side hw2t2 of the equation .�/. We can find

j 0 2 J; t4 2 XT , with h DG j 0t4 and so hw2t2 DG j 0t4w2t2 DG j 0t4w2t�1
4 t4t2.

As we observed above, the generating set ZC of CJ is closed under conjugation

by elements of xG and so, for each generator y that occurs in the word w2, the

image t4yt�1
4 in G=J is in ZC . The normality of C in G ensures that t4yt�1

4 is

a generator in the set XC that consists of inverse images under � of the elements

of ZC . Let w4 be the word formed from w2 by replacing each of its generators

y by the generator in XC that represents t4yt�1
4 . Then w4 DG t4w2t�1

4 and,

by the invariance property of the language L xG mentioned earlier, the image of

w4 in xG lies in L xG . Now we define c2 2 C; j2 2 J (also each bounded

above in length by B), and t5 2 XT such that t4t2 DG j2c2t5, and hence

j 0t4w2t2 DG j 0w4j2c2t5 DG j 0j2w5t5, where w5 DG w4c2. Just as for the

paths 1w1 and 1w3 discussed above, we find that 1w4 and 1w5 fellow travel at

distance KB .

Now recall that we have w1t1x DG hw2t2 .�/. The left hand side of .�/ is

equal in G to j1w3t3, and the right hand side to j 0j2w5t5, Since XT is a transversal

of JC in G we have t3 D t5 and, since JC is a direct product of C and J , we have

w3 DG w5 and j1 DG j 0j2. Since L xG is an automatic structure with uniqueness,

we also have w3 D w5 (as words). Further, j 0 is bounded in length by 2B .

So, since the pairs of paths .1w1; 1w3/ and .1w4; 1w5/ D .1w4; 1w3/ both

KB-follow travel, to complete our proof it suffices to show that 1w4 and hw2

fellow travel. We recall that for generators a1; : : : ; an; b1; : : : ; bn 2 X˙1
C with

bi DG t4ai t
�1
4 , we have w2 D a1 � � � an and w4 D b1 � � � bn. For each i , the

word difference .a1 � � � ai /
�1t4.b1 � � � bi / is equal in G to t�1

4 , and so 1w4 and t4w2

1-fellow travel. Since h DG j 0t4, j 0 is bounded in length and JC is abelian, it

follows that 1w4 and hw2 fellow travel, and we are done.

We turn now to the definition of our second synchronous automatic coset

system LH
2 in the case when G is abelian. In this case, we allow XT to be any

finite set of elements from G nJC that contains at least one representative of each

nontrivial coset of JC in G. Further, the conditions on the generating sets XJ and

XC of J and C are different from those of LH
1 ; they are chosen to ensure that for

all equations of the form t1t2t3 DG jct4 with t1; t2; t3; t4 2 X˙
T , j 2 J and c 2 C ,

the elements j and c and included in XJ and XC . (This property is not used in

the current proof, but it is required in the proof of Proposition 6.5 below.)

For our coset language LH
2 , we take the set of words of the form wv, where

w 2 SL.C; XC /, and v is a word of length at most 2 over XT . This language
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is regular, as it is the concatenation of two regular languages, and this language

contains representatives of all cosets of H within G.

It remains to prove the fellow traveller property, and we can do this very much

as we did for LH
1 . We suppose that w1v1; w2v2 2 LH

2 with w1; w2 2 SL.C; XC /

and v1; v2 words of length at most 2 over XT , and x 2 X [X�1 [¹1º, h 2 H with

w1v1x DG hw2v2: (�)

We can write h D j 0t with j 0 2 J and t 2 XT [ ¹1º, and so w1v1x DG j 0w2tv2.

Then JC v1x D JC tv2, so v1x DG jctv2, for some j 2 J and c 2 C , and hence

j 0 DJ j and w1c DC w2. Since there are only finitely many possible v1, v2 and t ,

the lengths of j and c are bounded. So, since w1; w2 2 SL.C; Xc/, they K-fellow

travel for some constant K and hence 1w1v1 and hw2v2 K 0-fellow travel for some

(larger) constant K 0. �

Lemma 6.3. Let yG be a finite group, let V be a finite dimensional torsion-free
Z yG-module, and W a submodule. Then there exists a Z yG-submodule U of V

with U \ W D ¹0º such that V=.U ˚ W / is finite.

Proof. Let yV D V ˝ Q and yW D W ˝ Q be the corresponding Q yG-modules.

By Maschke’s theorem, there exists a Q yG-submodule yU of yV with yV D yU ˚ yW .

Let e1; : : : ; en be a Z-basis of V , which we may consider also as a Q-basis of yV .

We can choose a basis u1; : : : ; uk of yU such that the matrices representing the

action of yG have integer entries. Define �ij 2 Q by ui D
Pn

j D1 �ij ej . Let m be

a common multiple of the denominators of all the �ij , and define U � V to be

the Z-module generated by the elements mui ; : : : ; muk of yU . Then U ˚ W has

rank n, and so must have finite index in V . �

By Corollary 5.5, the hypotheses of the following result are satisfied in par-

ticular when G1 is a Coxeter group or an Artin group of large type on its natural

generating set X1, and H is a parabolic subgroup.

Proposition 6.4. Suppose that H D hY i � G1 D hX1i with Y � X1, where H

and G1 satisfy the hypotheses of Proposition 5.2 with G1 and X1 in place of G

and X . Suppose that H is also a subgroup of the finitely generated abelian group
G2. Then .G1 �H G2; H/ is strongly synchronously coset automatic.

Proof. We use the coset language LH
1 constructed in the proof of Proposition 5.2

for .G1; H/ (where this language is SL
H ). We extend Y to a generating set X2 of

G2 such that H \ X2 D Y and define the coset language LH
2 for .G2; H/ with

respect to X2 as in the proof of Proposition 6.1, where it is called LH .

We claim that the language LH over X WD X1 [ X2 constructed for the pair

.G1 �H G2; H/ in the proof of Theorem A is synchronous, so we need to work

through that proof in our current context, and we shall adopt the notation used in
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that proof without further comment. Note first that the graph ƒ has two vertices

and a single edge, which lies in the maximal tree T, so no letter se appears in any

deflated words in the language, and Case (4) in the proof of Theorem A does not

arise.

Since both LH
1 and LH

2 contain unique representatives of each coset of H , so

does LH . So Case (1) in the proof of Theorem A, where the two different words

w; w0 2 LH lie in the same coset, does not arise. But the arguments used in the

proof of that case are applied to each of the cases (i.e. Case (2) and Case (3)) in

which Hwx D Hw0 with x 2 X . Recall that w D u0u1 � � � uk , where e1e2 � � � ek

is the path in ƒ associated with w. We shall just consider Case (2), in which uk

and x lie in the same subgroup G�.ek/. The argument in Case (3) is similar.

In Case (2) we have ukx DG hku0
k

for some hk 2 H , where the X-length of hk,

which is the same as its Y -length, is bounded above by some constant K. If k D 0,

then the synchronous fellow travelling of 1w and hw0 (where h D h0) follows from

the fact that LH
1 and LH

2 are both synchronous automatic coset systems. So we

may assume that k > 0.

Now, for 1 � i � k, we have ui�1hi DG hi�1u0
i�1 for some hi�1 2 H . Then

w0 D u0
0u0

1 � � � u0
`

for some ` � k, where u0
`

¤ �, and ui D � for ` < i � k.

Note that if hi DG 1 for some i then, by the uniqueness property of LH , we have

uj D u0
j and hj DG 1 for all j < i .

Suppose next that jhi j D 1 for some i , so hi is a generator in Y ˙. If ui�1 2 LH
2 ,

then hi�1 D hi and ui�1 D u0
i�1. If ui�1 2 LH

1 then, as stated in the first

paragraph of the proof of Proposition 5.2, we have either

(a) jjui�1j � ju0
i�1jj � 1 and hi�1 DG 1; or

(b) jui�1j D ju0
i�1j and jhi�1j D 1.

So in fact one of (a) and (b) must apply irrespective of whether ui�1 is in LH
1

or LH
2 .

Now if jhi j D m > 1, then hi is a product x1 � � � xm of m elements of Y ˙.

We can then apply the above argument to each of x1; : : : ; xm in turn, yielding

equations ui�1x1 DG y1v1, v1x2 DG y2v2; : : : ; vm�1xm DG ymvm, where each

vi 2 LH , each yi 2 Y ˙1 [ ¹�º, vm D u0
i�1, and hi�1 DG y1 � � � yk. So, since (a)

or (b) applies to each of these equations, we have either

(i) jhi�1j < jhi j and jjui�1j � ju0
i�1jj � jhi j; or

(ii) jhi�1j D jhi j and jui�1j D ju0
i�1j.

In particular, since jhk j � K, we have jhi j � K for all i . So Case (i) can occur

for at most K values of i , and hence

kX

iD1

jjui�1j � ju0
i�1jj � K2:
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It is proved in Theorem A that the paths labelled w and w0 asynchronously

L-fellow travel for some constant L and that, for each i , the beginnings and ends

of the subpath labelled ui correspond to those of u0
i in the fellow travelling. From

the above inequality, we see that, if the beginnings of these subpaths labelled ui

and u0
i are at distances i1 and i2 from the basepoint, then ji1 � i2j � K2. It follows

that 1w and hw0 synchronously fellow travel with constant at most L C K2, which

completes the proof. �

Proposition 6.5. Suppose that the group G1 is finitely generated and hyperbolic
relative to a collection of abelian subgroups, and let H be one of those subgroups.
Suppose that H is also a subgroup of the finitely generated abelian group G2. Then
.G1 �H G2; H/ is strongly synchronously coset automatic.

Proof. The idea of the proof is first to find coset languages LH
1 and LH

2 for

.G1; H/ and .G2; H/ with respect to suitable generating sets X1 and X2, then

to use Theorem A to find a strong asynchronous automatic coset system LH

for .G1 �H G2; H/, and finally to apply Proposition 3.9 to find a synchronous

subsystem within LH . For LH
1 we use the language LH constructed in the proof

of Proposition 4.5, and for LH
2 we use the language also called LH

2 from the proof

of Proposition 6.2.

For the application of Proposition 3.9, we need to choose the generating sets X1

and X2 for G1 and G2 such that Y WD X1\H D X2 \H . It is not a problem to find

generating sets X1, X2 for G1, G2 satisfying this condition. But the constructions

of LH
1 and LH

2 both involve the addition of new generators to Y . We can handle

this situation as follows. First we extend X1 (and so also X2 and Y ) during the

construction of LH
1 . Then we further extend X2 (and so also X1 and Y ) during

the construction of LH
2 . Since there is a geodesic biautomatic structure for H on

any finite generating set, Lemma 4.4 allows us to reconstruct LH
1 using the new

generating set X1.

We see from the proof of Proposition 4.5 that LH
1 consists of those words in

the geodesic biautomatic language L1 for G1 that do not begin with a letter in Y ˙.

As stated earlier, for the language LH
2 we use the second coset automatic

structure in Proposition 6.2, which is also named LH
2 there. So X2 D XJ [ XC [

XT , where C and J are disjoint free abelian subgroups of G2 with jG2 W JC j
finite, JC \ H D J , and XT contains a transversal for JC in G2, The elements

of LH
2 are words of the form wv, where w 2 SL.C; XC / and v is a word of length

at most 2 over XT .

Now let X D X1 [ X2 and let w 2 .X˙/� be a shortest representative of its

coset of H in G D G1 �H G2. Then we can write w as w1w2 � � � wk, where each

wi lies alternately in .X˙
1 /� or in .X˙

2 /�, and wi is a nonempty word that does

not begin with a generator from Y ˙. We aim to replace w with a word v of the

same length in the same coset of H such that, in the corresponding decomposition

v D v1v2 � � � vk, each vi is in LH
1 or in LH

2 . If we can do this, then v 2 LH \Geo
H
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representing Hw, and we can apply Proposition 3.9 to deduce the existence of a

synchronous subsystem of LH .

Since the words wi that lie in G1 must be geodesic words over X1, we may

replace them if necessary by words of the same length representing the same group

elements that lie in the geodesic biautomatic language L1 for G1. Then, since we

are assuming that wi does not begin with a letter in Y , we have wi 2 LH
1 . (This

replacement may decrease jwi j and increase jwi�1j, but provided that we replace

the words wi in order of decreasing i , this is not a problem.)

We may assume that the words wi in G2 contain no generators in Y , since

these could be moved to the left of the word. We may also assume that the letters

in wi from X˙
T lie at the end of the word. If we have three or more such letters

then, from our choice of X2, we can replace them with a word of the same length

containing a generator from Y . So we may replace wi by a word vi D u1u2, where

u1 and u2 are words over XC and XT , respectively, and ju2j � 2. We may also

assume that u1 is the shortlex least representative over XC of the element that it

represents, and hence vi 2 LH
2 , which completes the proof. �

Example 6.6. In this example we note that there is a pair .G; H/ that is strongly

synchronously coset automatic, but computer experiments suggest that it does not

have �-limited crossover for any � with respect to any generating set Y of H .

(But we have no means of proving that.) The group G is the trefoil knot group

(or the 3-string braid group) hx; y j xyx D yxyi and H is the free abelian rank 2

subgroup hx; d i, where d is the central element .xyx/2.
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