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Abstract. This paper is a continuation of the authors’ previous work on noncommuta-

tive joinings, and contains a study of relative independence of W�-dynamical systems.

We prove that, given any separable locally compact group G, an ergodic W�-dynamical

G-system M with compact subsystem N is disjoint relative to N from its maximal com-

pact subsystem MK if and only if N ŠMK . This generalizes recent work of Duvenhage,

which established the result for G abelian.
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1. Introduction

This paper is a continuation of [2], in which we studied the basic analytical prop-

erties of joinings of W�-dynamical systems, and used the theory of joinings to

establish noncommutative analogues of a number of fundamental characteriza-

tions of ergodicity and mixing properties from classical ergodic theory.

Recall that a W�-dynamical system is a tuple N D .N; �; ˛; G/, where N is

a von Neumann algebra, � is a faithful normal state on N , and ˛ is a strongly

continuous action of a separable locally compact group G on N by �-preserving

automorphisms. A joining of two W�-dynamical systems expresses a relationship

between the two systems that generalizes the situation in which they contain a

common subsystem. Recall the following definition, which was motivated by its

compatibility with mixing properties observed in the noncommutative setting.
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Definition 1.1. A joining of the W �-dynamical systems N D .N; �; ˛; G/ and

M D .M; '; ˇ; G/ is a state ! on the algebraic tensor productN ˇM op satisfying

!.x ˝ 1
op
M / D �.x/; (1)

!.1N ˝ y
op/ D '.y/;

and

! ı .˛g ˝ ˇ
op
g / D !; (2)

! ı .�
�
t ˝ .�

'
t /

op/ D !;

for all x 2 N , y 2 M , g 2 G and t 2 R. We denote by JS .N;M/ the set of all

joinings of N and M.

It was shown in [2] that a joining of systems N D .N; �; ˛; G/ and M D

.M; '; ˇ; G/ can, alternatively, be viewed as a pointed correspondence H be-

tween N and M with some additional structure, and as an equivariant Markov

map ˆWN ! M (cf. [2] Theorem 4.6). In the present work, we study the spe-

cial case in which such a Markov map is bimodular with respect to an embedded

subalgebra of N arising from a common subsystem B of M and N. These maps

are called joinings of N and M relative to (or, simply, over) the subsystem B

and have been employed widely in the study of classical, measure-preserving sys-

tems. For instance, the celebrated Furstenburg Multiple Recurrence Theorem is a

consequence of the Furstenberg–Zimmer Structure Theorem for ergodic measure-

preserving dynamical systems, one proof of which [9] showcases the joinings of

an ergodic system with itself relative to a subsystem.

The question of whether a theory of joinings relative to subsystems can be

formulated for non-abelian acting groups dates back at least to [10], in which two

proofs were given that the extension of a zero topological entropy transformation

T WX ! X to the space of probability measures M(X) (with the w�-topology)

must also have zero topological entropy. The first proof is joining-theoretic and

the second combinatorial. The combinatorial proof generalizes to extend this

result to amenable acting groups, and the authors suggested that this generalization

may also admit a joining-theoretic proof. Though we do not pursue that specific

question, in this paper we build a theoretical framework for approaching questions

of this type – our results hold for W*-dynamical systems arising from general

locally groups acting on general von Neumann algebras with separable preduals.

A number of technical challenges arise in this setting. First, as noted in [6, 7, 2],

the dynamics of ergodic systems with non-abelian acting groups is somewhat more

complicated. For instance, such groups may admit irreducible finite-dimensional

(hence, non-weakly mixing) representations, so may give rise to compact systems

in which there are no eigenoperators. Thus, to extend the results of [7] to this new
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setting, different methods are required; these are set out in Section 4, which also

draws on the previous work of the authors in [2] and [3].

A second challenge is how to extract information from a canonical projec-

tion associated to a joining of two systems. In the classical setting, a joining

� of two p.m.p. G-systems X D .X; �; ˛/ and Y D .Y; �; ˇ/ is encoded in an

equivariant Markov map, namely the restriction to L2.X; �/ of the projection

L2.X � Y; �/ ! L2.Y; �/. This map restricts further to an equivariant map of

L1.X; �/ into L1.Y; �/. However, the naive noncommutative analogue of this

projection will not, in general, restrict to a map between von Neumann algebras.

The precise relationship, articulated in Lemma 2.2 below, between this “classi-

cal” projection with the Markov map associated to a noncommutative joining as

in Theorem 4.1 of [2], is essential for our primary description of noncommutative

joinings over a common subsystem (Proposition 2.5) and subsequent characteriza-

tion (Theorem 3.3) of the notion of independence relative to a common subsystem.

The proof depends ultimately on the technical results of [3], in which it was shown

that the canonical Hilbert space operator associated to a Markov map between two

systems exhibits a useful symmetry with respect to the modular operators and au-

tomorphism groups of the two systems.

The contents of the paper are organized as follows. Section 2 recalls some

of the notation and basic structural results of [2], and employs the modular sym-

metry results from [3] to obtain a useful intertwining lemma for Markov maps

ˆW .N; �/ ! .M; �/ between von Neumann algebras, a consequence of which is

Theorem 2.3, which yields a formula – valid on the dense subalgebra of analytic

elements – for the above mentioned Hilbert space projection associated to a join-

ing of two systems. We use these observations to formulate the notion of a joining

relative to a common subsystem in the language of correspondences, and Proposi-

tion 2.5 connects this point of view to the one developed in [7] which emphasizes

states. This yields a formulation of disjointness of two W�-dynamical systems

relative to a common subsystem in the language of Markov maps and correspon-

dences.

Section 3 lays out some technical tools needed for our main results in the fol-

lowing section. Of central importance is the fact that a ucp map ˆWN ! M is a

joining of W� systems N D .N; �; ˛; G/ and M D .M; '; ˇ; G/ relative to a sub-

system B if and only if its adjoint ucp mapˆ� is also a joining of the two systems

relative to the same system. This observation leads to a characterization of the

relatively independent joining in terms of a “projection property” of the associ-

ated ucp map in Theorem 3.3; and a characterization of the relatively independent

joining in terms of the associated orthogonal projection in Theorem 3.4.

We turn in Section 4 to the dynamics of ergodic systems, and our main results

of the paper. We introduce the Kronecker subsystem of an ergodic W�-dynamical

system N D .N; �; ˛; G/, whose underlying von Neumann algebra is generated

by the finite-dimensional subspaces of N which are invariant under the action ˛.



556 J. Bannon, J. Cameron, and K. Mukherjee

Theorem 4.7 establishes that these subspaces do in fact generate a compact sub-

system NK of N, whose underlying von Neumann algebra is tracial and injective,

and which turns out to be maximal among compact subsystems of N: The notion

of a maximal compact subsystem of a W�-dynamical system was studied in [7],

under the assumption that the acting group is abelian, but the methods used there

required an abelian acting group, so a different approach is necessary here. A cen-

tral role is played by the main results of [2], which control the finite-dimensional

invariant subspaces of the unitary representation associated to an ergodic group

action. Our main result in Section 4 extends Theorem 5.6 of [7] from the setting

of abelian groups to that of a general locally compact acting group, and combines

techniques from [2] and the technical methods introduced in the preceding sec-

tions to give a characterization of the Kronecker subsystem of an ergodic system

in terms of relative disjointness.

2. Joinings over a common subsystem

In this section, we develop the notion of a joining of two noncommutative dynami-

cal systems over a common subsystem, from the point of view of correspondences.

An essential ingredient will be the main technical result of [3], in which it was ob-

served that the ucp map associated to a joining exhibits a useful symmetry with

respect to the modular automorphism groups of the two underlying dynamical

systems.

2.1. Modular symmetry of joinings and associated projections. If N and M

are von Neumann algebras with normal, faithful states �WN ! C and 'WM ! C,

a linear map ˆWN ! M is called a .�; '/-Markov map if ˆ is unital, completely

positive, and satisfies

' ıˆ D �

and

�
'
t ıˆ D ˆ ı �

�
t ; for all t 2 R:

If ! is a joining of W �-dynamical systems N and M as above, let H! denote its

associated GNS Hilbert space, i.e. the separation and completion of N ˇ M op

with respect to the inner product extending

hx0 ˝ y
op
0 ; x1 ˝ y

op
1 i! WD !.x

�

1x0 ˝ .y0y
�

1 /
op/

for all x0; x1 2 N and y0; y1 2M . The GNS representation �! of N ˇM op will

be viewed as defining a bimodule structure by x�y WD �!.x˝y
op/� for all x 2 N ,

y 2M and � 2 H! . We denote by �! the canonical cyclic vector associated to the

class of 1N˝1M op in H! . Recall from Theorem 3.3 of [2] that, if we denote by��
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the canonical cyclic and separating vector for L2.N; �/, then the map x�� 7! x�!
extends to an operator L D L��;�!

WL2.N; �/! H! called the left exchange map

that is a unitary left N -module isomorphism from L2.N; �/ onto N�! . Similarly,

the right exchange map R D R�' ;�!
WL2.M; '/! H! extends �'y 7! �!y to a

unitary right M -module isomorphism of L2.M; '/ onto �!M . In [2] it was also

shown that

ˆ!.x/ D R
��N .x/R

defines a normal .�; '/-Markov map ˆ! WN ! M . Let Tˆ!
be the extension of

the map x�� 7! ˆ!.x/�' to L2.N; �/, and denote by P! the map which is the

restriction to the subspace N�! of the orthogonal projection of H! onto �!M .

This is a natural analogue of the (classically) Markov projection mentioned in the

introduction. The left and right exchange maps witness a relationship between

Tˆ!
and P! , as follows:

Lemma 2.1. Given a joining ! of the systems N and M, we have

R�' ;�!
Tˆ!
D P!L��;�!

: (3)

Proof. For any x 2 N and y 2M; one has

hTˆ!
.x��/; �'yi' D hR

��N .x/R�'; �'yi'

D hx�! ; �!yi!

D hP!x�! ; �!yi!

D hR�P!L.x��/; �'yi' :

(4)

By the boundedness of the exchange maps, and of Tˆ!
andP! , it follows that Tˆ!

and R�P!L coincide on L2.N; �/. This proves the result. �

It is clear that P! is the unique operator T from N�! into �!M that for all

� 2 N�! and � 2 �!M satisfies

hT �; �i! D h�; �i! : (5)

Equation (3) expresses a relationship between P! and ˆ! at the Hilbert space

level, but not necessarily at the level of the dense subspaces N�� and N�! :

Investigating these maps at the algebraic level, one might hope to show that P!

is the extension of the map defined for x 2 N by T .x�!/ D �!ˆ!.x/. It is not

clear that this map satisfies (5) for all � 2 N�! and � 2 �!M , since it is, a priori,

unbounded. However, we will see that modular theory allows us to determine a

formula for P! in terms of ˆ! on a dense subalgebra of analytic elements.

Let N and M be systems as above, and ˆ 2 Jm.N;M/ in the following.

Consider the set

N� D ¹x 2 N W there is a w�-entire function F WC! N

such that F.it/ D �
�
t .x/º:
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It is a standard fact, following immediately for example from (16) on p. 29

together with (1) on p. 32 of [14], that N� is a w�-dense �-subalgebra of N ; it is

often called the algebra of entire analytic elements of N . If x 2 N�; then in fact

the function Fx WC! N extending the map i t 7! �
�
t .x/ is unique, and for z 2 C

we define �
�
�iz.x/ to be Fx.z/. Denote by D� the subspace N��� � L2.N; �/:

Define M' �M and D' analogously.

The following lemma shows how a .�; '/-Markov mapˆ connects the respec-

tive entire analytic elements of the states � and '; and the analytic continuations of

the associated maps arising from their respective modular automorphism groups.

We will make use of the resulting symmetry repeatedly in the sequel.

Lemma 2.2. Let N D .N; �/ and M D .M; '/ be von Neumann algebras

with faithful normal states, and ˆ a .�; '/-Markov map. Denote by N� � N

and M' � M the respective subalgebras of entire analytic elements. Then

ˆ.N�/ �M' and for any x 2 N� and z 2 C; we have that

ˆ ı ��
z .x/ D �

'
z ıˆ.x/:

Proof. It follows from Theorem 3.1 of [3]1 that Tˆ!
.D�/ � D' : This, together

with the fact that �' is separating for M , implies that ˆ!.N�/ � M' , and the

final equality follows from uniqueness of the entire extension. �

Note that Lemma 2.2 implies that for any x 2 N�; we have

�
'

i=2
.ˆ!.x//

� D �
'

�i=2
.ˆ!.x

�// 2M;

and

�'�
'

i=2
.ˆ!.x// D J'�

'

�i=2
.ˆ!.x

�//J'�'

D J'�
1=2
' ˆ!.x

�/��1=2
' J'�'

D ˆ!.x/�' :

From this observation, we obtain the following result of independent interest,

which will also be useful in the sequel.

Theorem 2.3. If N D .N; �; ˛; G/ and M D .M; '; ˇ; G/ are systems, and

! 2 JS .N;M/; then for any x 2 N� we have

P!.x�!/ D �!�
'

i=2
.ˆ!.x//:

1 Theorem 3.1 of [3], although a straightforward observation for unitary Tˆ, in the general
case requires a long and technical modular theory argument.
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Proof. Letting both sides of (3) act on x�� 2 D� we obtain

P!.x�!/ D R�' ;�!
Tˆ!

.x��/

D R�' ;�!
ˆ!.x/�'

D R�' ;�!
�'�

'

i=2
.ˆ!.x//

D �!�
'

i=2
.ˆ!.x//: �

2.2. Joinings over a common subsystem and relative independence. We now

consider the notion of joining of two systems over a common subsystem from

the point of view of correspondences. The modular symmetry of the associated

Markov maps seen above will be essential for obtaining full generalizations of

classical results on relative independence of systems over a common subsystem.

For convenience, we begin by recalling a few key concepts from [2].

Definition 2.4. Let B D .B; �; ; G/ and N D .N; �; ˛; G/ be W �-dynamical

systems. Given an injective �-homomorphism � 2 Jm.B;N/, the pair .B; �/ is

called a subsystem of N. We call such a map � an embedding of the system B

into N . If M D .M; '; ˇ; G/ is another W �-dynamical system, and there are

embeddings �N 2 Jm.B;N/ and �M 2 Jm.B;M/ then the triple .B; �N ; �M / is

called a common subsystem of N and M.

When the embeddings �N and �M in Definition 2.4 are clear from the context,

in what follows, we will identify a subsystem B with its images in N and M, and

simply refer to B as a common subsystem of M and N.

Note that if N D .N; �; ˛; G/ is a system, and B is a von Neumann subalgebra

of N which is the image of a normal, �-preserving conditional expectation E;

then also �
�
t ı E D E ı �

�
t for all t 2 R. Since such an expectation is necessarily

unique, it also commutes with the automorphisms ˛g for all g 2 G: Therefore,

the action ˛ restricts to B and B D .B; � ı E; ˛; G/ defines a subsystem of N

via the inclusion map of B into N: On the other hand, if B is a subsystem of N;

then the associated embedding �WB ! N necessarily satisfies � ı �
�
t D �

�
t ı � for

all t 2 R; and it follows that there is a unique normal, �-preserving conditional

expectation EWN ! �.B/ (see, for instance, Theorem 5.4 of [2]). The uniqueness

of E implies, furthermore, that ˛g ıE D Eı˛g for all g 2 G; so thatG acts on the

von Neumann subalgebra �.B/ of N: Finally, by definition � satisfies � D � ı �, so

we can without loss of any dynamical information identify B with its image �.B/

in N .

The main focus of this paper is on the class of joinings of systems N and

M that “fix” a common subsystem B; more specifically, we consider joinings

ˆ 2 Jm.N;M/ which intertwine the inclusions �N and �M of B into N and M .

In Proposition 2.5, we obtain a characterization of such a map ˆ in terms of an

associated state on B ˇ Bop. In the proof, and throughout the remainder of this
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paper, we will make use of the notion of the adjoint of a ucp Markov map. In

particular, let .N; �/ and .M; '/ be as above, and let ˆWN ! M be a normal

u.c.p. map. Then, recall [1] that ˆ satisfies the conditions

' ıˆ D � and ˆ ı �
�
t D �

'
t ıˆ; t 2 R

if and only if there is a normal u.c.p. map ˆ�WM ! N satisfying

�.ˆ�.y/x/ D '.yˆ.x//; y 2M and x 2 N: (6)

Proposition 2.5. Let N D .N; �; ˛; G/ and M D .M; '; ˇ; G/ be systems, and let

B D .B; �; ; G/ be a common subsystem of N and M. Denote by �N and �M the

respective embeddings of B into N and M , and  the state on B ˇ Bop defined

by

 .b1 ˝ b
op
2 / D hb1��b2; ��i�:

Let ˆ 2 Jm.N;M/ be a joining. Then, the following conditions are equivalent:

(i) the restriction of ˆ to �N .B/ is the injective �-homomorphism

�N .b/ 7�! �M .b/I

(ii) the state ! D !ˆ satisfies ! ı .�N ˝ �
op
M / D  on the �-algebra B ˇ Bop,

where �
op
M is the natural map

J�b
�J� 7�! J' �M .b/

�J'

from

B 0 \ B.L2.B; �// �!M 0 \ B.L2.M; '//:

Proof. First, assuming that condition (ii) holds, observe that the GNS spaceH! is

aB�B bimodule with left-right action given by b1 �� �b2 WD �N .b1/��M .b2/, for all

� 2 H! . We will show that L2.B; �/ is contained in the pointed correspondence

.H! ; �!/ as a B � B bimodule. To do this, define a map V WL2.B; �/ ! H! by

first setting

V.b1��b2/ D �N .b1/�! �M .b2/

for b1; b2 2 B , and then extending to linear combinations in the obvious way.

Using the assumption that ! ı .�N ˝ �
op
M / D  on B ˇ Bop; it is then routine

to check that V is isometric and satisfies V.b1�b2/ D �N .b1/V .�/�M .b2/ for all

� 2 L2.B; �/ and any b1; b2 2 B: This shows that L2.B; �/ � H! as a B � B

correspondence.

Now, if b 2 B� is an entire analytic element with respect to the state �, then

�M .b/ 2M' by Lemma 2.2. Moreover,

�N .b/�! D �N .b/V �� D V.���
�

i=2
.b// D �! �M .�

�

i=2
.b// D �!�

'

i=2
.�M .b//:
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Denote by R the right exchange map L2.M; '/! H! , and � the left action of N

on H! . Recall from [2] that ˆ is precisely the normal ucp map associated to the

N �M correspondence H! , so has the form ˆ D ˆ! D R
��.�/R: To see that ˆ

behaves nicely on �N .B/, let b 2 B�, and y; z 2M be arbitrary. Then

hˆ.�N .b//�'y;�'zi' D hR
��.�N .b//R.�'y/;�'zi'

D h�N .b/�!y; �!zi!

D h�!�
'

i=2
.�M .b//y; �!zi!

D h�'�
'

i=2
.�M .b//y;�'zi'

D h�M .b/�'y;�'zi' :

Therefore,

ˆ.�N .b// D �M .b/ D �M ı �
�

N .�N .b//

for all b 2 B�: A standard density argument, using normality of these maps, then

shows that this equality holds for all b 2 B; so ˆ coincides with the �-homomor-

phism �M ı �
�

N on the subalgebra �N .B/ � N . This proves (i).

Now suppose that condition (i) holds. Since ˆj�N .B/ is the injective �-homo-

morphism �M ı �
�

N j�N .B/, we consider the natural B-bimodule structure on the

Stinespring Hilbert space Hˆ given by

b1 � � � b2 D �N .b1/� .ˆ ı �N /.b2/ D �N .b1/� �M .b2/;

for b1; b2 2 B and � 2 Hˆ: Let � be the state �jB WB ! C, and consider the map

W WL2.B; �/! Hˆ, defined on a dense subspace of L2.B; �/ by setting

W.b1��b2/ D �N .b1/�ˆ�M .b2/;

for b1; b2 2 B , and extending to linear combinations. This map is isometric, since

for b1; b2; b3; b4 2 B�, we may employ (5) of [2], Lemma 2.2 and the special form

of ˆ to obtain

hW.b1��b2/; W.b3��b4/iˆ

D h�N .b1/�ˆ�M .b2/; �N .b3/�ˆ�M .b4/iˆ

D hˆ.�N .b
�

3b1//�'�M .b2/; �'�M .b4/i'

D h�'�
'

i=2
.ˆ.�N .b

�

3b1///�M .b2/; �'�M .b4/i'

D hJ'.�
'

i=2
.ˆ.�N .b

�

3b1///�M .b2//
�J'�' ; J'.�M .b4//

�J'�'i'

D h�M .b4/
��' ; �M .b2/

�.�
'

i=2
.ˆ.�N .b

�

3b1////
��'i'

D h�
'

i=2
.ˆ.�N .b

�

3b1///�M .b2b
�

4 /�' ; �'i'

D '.�
'

i=2
.ˆ.�N .b

�

3b1///�M .b2b
�

4 //

D '.�
'

i=2
.�M .b

�

3b1//�M .b2b
�

4 //
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D '.�M .�
�

i=2
.b�

3b1//�M .b2b
�

4 //

D ' ı �M .�
�

i=2
.b�

3b1/b2b
�

4 /

D �.�
�

i=2
.b�

3b1/b2b
�

4 /

D h�
�

i=2
.b�

3b1/b2b
�

4��; ��i�

D hb�

4��; b
�

2 .�
�

i=2
.b�

3b1//
�J���i�

D hJ�.�
�

i=2
.b�

3b1/b2/
�J���; J�b

�

4J���i�

D h���
�

i=2
.b�

3b1/b2; ��b4i�

D hb�

3b1��b2; ��b4i�

D hb1��b2; b3��b4i�:

The map W hence extends to an isometric embedding of L2.B; �/ into Hˆ,

satisfying W.b1�b2/ D �N .b1/W.�/�M .b2/ for all b1; b2 2 B and � 2 L2.B; �/:

This shows that L2.B; �/ � Hˆ as B-B correspondences. To see that (ii) holds,

note, as was shown in Theorem 4.6 of [2], that the state ! D !ˆWN ˇM
op ! C

given by

!.x ˝ yop/ D hx�ˆy; �ˆiˆ:

satisfies conditions (1) and (2) of Definition 1.1, so ! 2 Js.N;M/: Moreover, for

any b1; b2 2 B , we have

!.�N .b1/˝ �M .b2/
op/ D h�N .b1/�ˆ�M .b2/; �ˆiˆ

D hW.b1��b2/; W��iˆ

D hb1��b2; ��i�

D  .b1 ˝ b
op
2 /:

This completes the proof that (i) implies (ii). �

We are now ready to state the main definitions of this section.

Definition 2.6. Let N D .N; �; ˛; G/ and M D .M; '; ˇ; G/ be systems, and

let B D .B; �; ; G/ be a common subsystem of N and M, with embeddings

�N 2 Jm.B;N/ and �M 2 Jm.B;M/: We say that ˆ 2 Jm.N;M/ is a joining

of N and M over the common subsystem B if the restriction of ˆ to �N .B/ is the

�-isomorphism �M ı�
�1
N of �N .B/with �M .B/. Denote by JB.N;M/ the collection

of all joinings of N and M over the common subsystem B.

A few remarks are in order. First, although the definition of a joining of systems

N and M over a common subsystem B depends on the embeddings �N and �M ;

in this work, there will always be canonical choices of �N and �M and therefore

no ambiguity in this definition. In the case of a self-joining ˆ of a system N
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over a single subsystem .B; �N /, the above condition simply asserts that ˆ is

B-bimodular.

Secondly, note that our definition of subsystem coincides with that of a “modu-

lar subsystem” in [5]. Therefore, recalling from [2] the one-to-one correspondence

between ucp maps ˆ 2 Jm.N;M/ and their associated states ! 2 Js.N;M/;

Proposition 2.5 shows that in this setting our definition of joinings over common

subsystems is equivalent to the one found in [5]. As we will see in what follows

(and, as can also be seen in [5]), the assumption of modularity of subsystems is

crucial to extending any significant classical results about joinings over subsys-

tems to the noncommutative setting.

If B is a common subsystem of N and M as above, then the ucp map

�M ı �
�

N WN ! M satisfies Definition 2.6, so in this situation JB.N;M/ is al-

ways nonempty. The special case in which �M ı �
�

N is the only joining of N with

M over B is interesting, so we precise the following definition.

Definition 2.7. Let N D .N; �; ˛; G/ and M D .M; '; ˇ; G/ be systems, and

let B D .B; �; ; G/ be a common subsystem of N and M, with embeddings

�N 2 Jm.B;N/ and �M 2 Jm.B;M/:The joining �M ı�
�

N 2 JB.N;M/ is called the

relatively independent joining of N and M over B. We say that the systems N and

M are relatively independent overB (or disjoint overB) if JB.N;M/ D ¹�M ı�
�

N º.

The reader will surely notice an ambiguity in the above definition: the ex-

pression “N and M are disjoint over B” is symmetric in N and M but the no-

tation JB.N;M/ D ¹�M ı �
�

N º is not obviously so. However, it is true that

JB.N;M/ D ¹�M ı �
�

N º if and only if JB.M;N/ D ¹�N ı �
�

M º, an observation

which is contained in the following basic fact.

Proposition 2.8. Let B be a common subsystem of two systems N and M. Then

ˆ 2 JB.N;M/ if and only if ˆ� 2 JB.M;N/.

Proof. Let !ˆ 2 Js.N;M/ be the canonical state associated to the ucp map ˆ

and let  WB ˇ Bop ! C be the state defined by

 .b1 ˝ b
op
2 / D hb1��b2; ��i�; b1; b2 2 B:

Consider the opposite state of  , defined by  opWB ˇ Bop ! C by

 op.b1 ˝ b
op
2 / WD hb2��b1; ��i� D  .b2 ˝ b

op
1 /; b1; b2 2 B:

Note thatˆ� 2 Jm.M;N/, and consider the associated state !ˆ� 2 Js.M;N/. By

Proposition 2.5, we have to show that !ˆ�.�M .b1/ ˝ �
op
N .b

op
2 // D  op.b1 ˝ b

op
2 /

for all b1; b2 2 B .

Denote by B� � B;N� � N;M' � M the �-algebras of analytic elements

for the respective modular automorphism groups .�
�
t /; .�

�
t / and .�

'
t /. It follows
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from [3, Lemma 2.2] that if b 2 B�, then �N .b/ 2 N� and �M .b/ 2 M' . Let

b1; b2 2 B�. We then have

!ˆ�.�M .b1/˝ �
op
N .b

op
2 //

D hˆ�.�M .b1//���N .b2/; ��i�

D hˆ�.�M .b1//J�.�N .b2//
�J���; ��i�

D hˆ�.�M .b1//�
�

�i=2
.�N .b2//��; ��i�

D �.ˆ�.�M .b1//�
�

�i=2
.�N .b2///

D '.�M .b1/ˆ.�
�

�i=2
.�N .b2//// (by eq. (6))

D '.�M .b1/�
'

�i=2
.ˆ.�N .b2/// ([3, Lemma 2.2])

D h�
1
2
'ˆ.�N .b2//�' ; .�M .b1//

��'/i'

D hˆ.�N .b2//�' ; �
1
2
' .�M .b1//

��'/i'

D hˆ.�N .b2//�' ; �
'

�i=2
..�M .b1//

�/�'/i'

D hˆ.�N .b2//�' ; J'.�M .b1//J'�'i' ([8])

D hˆ.�N .b2//J'.�M .b1//
�J'�' ; �'i'

D hˆ.�N .b2//�'�M .b1/; �'i'

D  .b2 ˝ b
op
1 / (by Proposition 2.5)

D  op.b1 ˝ b
op
2 /:

Since !ˆ� ;  ;  op are normal in each variable, the requirement of Proposition 2.5

is established by invoking density of analytic elements. �

3. Relative independence and orthogonality

In this section we establish some basic technical results on joinings relative to

a common subsystem that will be useful in the sequel. Among these is a char-

acterization in Theorem 3.3 of the relatively independent joining in terms of a

‘projection property’ of equivariant Markov maps. In the proof, we will make use

of the notion of the multiplicative domain of a unital completely positive map; we

recall the relevant details on multiplicative domains here.

Definition 3.1. Let A and B be unital C�-algebras and ˆWA ! B a unital,

completely positive map. The multiplicative domain of ˆ is the set

Aˆ D ¹a 2 AWˆ.a
�a/ D ˆ.a/�ˆ.a/; ˆ.aa�/ D ˆ.a/ˆ.a/�º � A:

The following result of Choi gives a further characterization of the multiplica-

tive domain.
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Lemma 3.2. [4] If A and B are unital C�-algebras and ˆWA! B is a ucp map,

thenAˆ is a C�-subalgebra ofA, the restriction ofˆ to Aˆ is a �-homomorphism,

and furthermore,

Aˆ D ¹a 2 AWˆ.ax/ D ˆ.a/ˆ.x/; ˆ.xa/ D ˆ.x/ˆ.a/ for all x 2 Aº:

Observe that, using the defining property of the adjoint, it is straightforward to

check that the map �N ı �
�

N WN ! �N .B/ is an �N .B/-bimodule map, and preserves

the state �. By uniqueness of the conditional expectation, it follows that �N ı �
�

N D

E�N .B/, i.e. ��N D �
�1
N ıE�N .B/. The following result characterizes precisely when

a joining between systems N and M gives rise to a common subsystem of N and

M and yields a new proof of the “orthogonality” characterization of the relatively

independent joining mentioned above.

Theorem 3.3. Let N D .N; �; ˛; G/ and M D .M; '; ˇ; G/ be systems, and

let ˆ 2 Jm.N;M/. If .B; �N ; �M / is a common subsystem of N and N then the

relatively independent joining ˆ D �M ı �
�

M satisfies ˆ D ˆˆ�ˆ. On the other

hand, if N and M are systems and ˆ 2 Jm.N;M/ satisfies ˆ D ˆˆ�ˆ, then N

and M have a common subsystem B, and ˆ is the relatively independent joining

of N and M over B.

Proof. Suppose first that ˆ 2 Jm.N;M/ satisfies ˆ D ˆˆ�ˆ. By Lemma 6.3

of [2], the algebra of harmonic elements (cf. [12])

B D ¹x 2 N Wˆ�ˆ.x/ D xº

D ¹x 2 N Wˆ�ˆ.xy/ D xˆ�ˆ.y/; ˆ�ˆ.yx/ D ˆ�ˆ.y/x for all y 2 N º
(7)

is a von Neumann subalgebra ofN . Moreover,ˆ D ˆˆ�ˆ implies that .ˆ�ˆ/2 D

ˆ�ˆ which, in turn, implies ˆ�ˆ.N/ D B . So ˆ�ˆWN ! N is a projection of

norm one whose image is B and is also a B-bimodule map. By a well–known

theorem of Tomiyama [16], ˆ�ˆ is a conditional expectation onto B . But since

� ıˆ�ˆ D �, by [15] it follows that ˆ�ˆ D EB , where EB is the unique normal

�-preserving conditional expectation onto B . Uniqueness of EB implies that B is

˛-invariant, so this yields a subsystem B D .B; �jB ; ˛jB ; G/ of N.

By our hypothesis, and properties of the adjoint (see [2] for details), the joining

ˆ� 2 Jm.M;N/ satisfiesˆ� D ˆ�ˆˆ�; so the same argument from the previous

paragraph shows that ˆˆ�WM ! M is the unique normal, '-preserving condi-

tional expectation onto the ˇ-invariant von Neumann subalgebra Q D ˆˆ�.M/

ofM . By the Kadison–Schwarz inequality, and the properties ofˆ; for any x 2 B

we have

ˆ.x/�ˆ.x/ � ˆ.x�x/

D ˆ.ˆ�ˆ.x/�ˆ�ˆ.x//

� ˆ.ˆ�.ˆ.x/�ˆ.x///

� ˆ.x/�ˆ.x/;
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so that ˆ.x�x/ D ˆ.x/�ˆ.x/; and by Lemma 3.2 the restriction of ˆ to B is a

�-homomorphism. Moreover, ˆ.B/ D Q, since

Q D ˆˆ�.M/ � ˆˆ�ˆ.B/ D ˆ.B/ D ˆˆ�ˆ.N/ D ˆ.N/ � ˆˆ�.M/ D Q:

Note that ˆjB is isometric, since kxk D kˆ�ˆ.x/k � kˆ.x/k � kxk for any

x 2 B:Thus, the restriction ofˆ toB defines an embedding �M ofB intoM which,

by construction, satisfies the necessary equivariance relations for membership

in Jm.B;M/. Thus, B is a common subsystem of N and M: Finally, if we

let �N be the inclusion of B into N , since ˆ�ˆ D E�N .B/, �M D ˆ ı �N and

��N D �
�1
N ı E�N .B/, we see that

ˆ D ˆˆ�ˆ D ˆ ı E�N .B/ D ˆ ı �N ı �
�1
N ı E�N .B/ D �M ı �

�

N ;

the relatively independent joining of N with M over B .

Conversely, suppose that B D .B; �; ; G/ is a common subsystem of N

and M . Write �N and �M for the associated embeddings, and let ˆ D �M ı �
�

N

denote the relatively independent joining. Then

ˆ�ˆ D �N ı �
�

M ı �M ı �
�

N D �N ı �
�1
M ı E�M .B/ ı �M ı �

�1
N ı E�N .B/

D �N ı �
�1
N ı E�N .B/

D E�N .B/;

from which it follows that

ˆˆ�ˆ D �M ı �
�1
N ı E�N .B/ D ˆ:

This completes the proof. �

As a corollary, we use our description of the projection Pˆ associated to a

joining ˆ obtained in the previous section to give the following Hilbert space

formulation of disjointness relative to a subsystem.

Theorem 3.4. Let N and M be systems, and B a common substem of M and N ,

as above. Let ˆ 2 JB.N;M/; and let PˆWN�ˆ ! �ˆM be the restriction of

the orthogonal projection of Hˆ onto �ˆM: Then the following conditions are

equivalent:

(i) the map ˆ is the relatively independent joining of N and M over B;

(ii) the subspacesN�ˆ	 �N .B/�ˆ and �ˆM 	 �ˆ�M .B/ are orthogonal in Hˆ;

(iii) Pˆ.N�ˆ/ � �ˆ�M .B/

Proof. First, note that ifW WH!ˆ
! Hˆ is the natural pointed bimodule map ex-

tending the identification of canonical cyclic vectors, it is an isomorphism by (2)

of Theorem 4.6 of [2]. Since W �jN �ˆ
WN�ˆ ! N�!ˆ

is a left Hilbert N -module
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isomorphism and W j�!ˆ
M W �!ˆ

M ! �ˆM is a right Hilbert M -module isomor-

phism, WP!ˆ
W �jN �ˆ

is the projection of N�ˆ onto �ˆM and hence W inter-

twines P!ˆ
and Pˆ, and the immediate analogue of Theorem 2.3 holds for Pˆ.

The proof that (ii) implies (iii) is a consequence of Theorem 2.3 applied

to dense sets of analytic vectors together with standard Hilbert space theory.

Assuming (ii), given � 2 �ˆM 	 �ˆ�M .B/, one has that

hPˆ�0; �i D h�0; �i D 0

for any �0 2 N�ˆ 	 �N .B/�ˆ. If � 2 N�ˆ decomposes as �1 ˚ �0 with �1 2

�N .B/�ˆ and �0 2 N�ˆ 	 �N .B/�ˆ then for an � as above,

hPˆ�; �i D hPˆ�1; �i D 0

since Theorem 2.3 applied to the algebra �N .B�/ of analytic elements implies

Pˆ.�N .B/�ˆ/ D �ˆ�M .B/. Indeed, B��� is a dense subspace of L2.B; �/ D

B�� and the map b�� 7! �N .b/�' extends to a left Hilbert module isomorphism

of B�� onto �N .B/�� which, in turn, is isomorphic as a left Hilbert module to

�N .B/�ˆ via the right exchange map.

We now prove that (i) implies (ii). If we denote by E the unique �-preserving

conditional expectation and let

N� 	 �N .B/ D ¹x 2 N�WE�N .B/.x/ D 0º;

then .N� 	 �N .B//�ˆ is a subspace of N�ˆ 	 �N .B/�ˆ, which is dense in the

norm on Hˆ since every x 2 N� may be written as .x �E�N .B/.x//CE�N .B/.x/

and if N��ˆ 3 x��ˆ ! � 2 N�ˆ, we have that .x� � E�N .B/.x�///�ˆ ! P�

and E�N .B/.x�/ ! .1 � P /�, where P is the orthogonal projection of Hˆ onto

�N .B/�ˆ. Similarly, the subspace �ˆ.M' 	 �M .B// is norm-dense in �ˆM 	

�ˆ�M .B/. Moreover, if n 2 N� 	 �N .B/ and m 2M' 	 �M .B/ are arbitrary, then

by Theorem 2.3 we have

hn�ˆ; �ˆmi! D hPˆ.n�ˆ/; �ˆmi!

D h�ˆ�
'

i=2
.ˆ.n//; �ˆmi!

D h�ˆˆ.�
�

i=2
.n//; �ˆmi! D 0;

since ˆ.N/ � �M .B/: It follows that N�ˆ 	 �N .B/�ˆ and �ˆM 	 �ˆ�M .B/ are

orthogonal.

We now prove that (iii) implies (i). First note that (iii) and Theorem 2.3 imply

that for any n 2 N� we have

Pˆ.n�ˆ/ D �ˆ�
'

i=2
.ˆ.n// D �ˆ.ˆ ı �

�

i=2
/.n/ 2 �ˆ�M .B/;
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and it follows, since the associated right exchange map is a unitary right module

isomorphism, that ˆ.N/ � �M .B/: Since ˆj�N .B/ is a �-isomorphism of �N .B/

onto �M .B/, we have that

Tˆj�N .B/��
W �N .B/�� �! �M .B/�'

is a unitary operator and additionally, by Eq. 8 of [2],

.Tˆj�N .B/��
/� D T �

ˆj�M .B/�'
D Tˆ� j

�M .B/�'
;

so for all b 2 B ,

�M .b/�' D .Tˆj�N .B/��
/.Tˆj�N .B/��

/��M .b/�' D ˆˆ
�.�M .b//�'

This, together with the fact that�' is separating forM andˆ.N/ � �M .B/, yields

ˆˆ�ˆ.n/ D ˆ.n/

for all n 2 N . By Theorem 3.3 we get that ˆ is the relatively independent joining.

�

4. Relative ergodicity and mixing properties

In this section, we consider relativized versions of the notions of ergodicity and

primeness of W�-dynamical systems studied in [2]. We also employ the technical

observations of the previous section in analyzing the relationship between the

properties of compactness and weak mixing of a dynamical system. Our main

results in the latter part of this section extend those in [7] from abelian groups to

general groups, and thereby establish noncommutative generalizations of classical

characterizations of weak mixing and compactness in terms of joinings over

subsystems.

4.1. Relative ergodicity and primeness. The concept of a dynamical system

which is ergodic relative to a subsystem has been widely studied and appears

throughout the literature in both the classical and noncommutative settings. Prime

dynamical systems, i.e., those that admit no nontrivial subsystem, have also ap-

peared widely in the classical setting. For example, note the interesting fact that

an ergodic measure preserving Z-system admits a topological, minimal, prime

model if and only if it has zero entropy [17]. Although we were not able to find a

specific reference in the literature to the term ‘relative primeness’ defined below,

we find it to be a convenient term for this natural generalization of the notion of a

prime dynamical system.

Definition 4.1. Let B be a subsystem of N with respect to the embedding �BN .
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(i) We say that the system N is an identity system relative to B if, for any x 2 N

with E�B
N

.B/.x/ D 0, one has ˛g .x/ D x for all g 2 G.

(ii) The system N is said ergodic relative B if NG � �BN .B/.

(iii) We say that N is prime relative to B if, whenever A D .A; �; ı; G/ is a

subsystem of N with embedding �AN such that B is a subsystem of A with

embedding �BA and

B A

N

 

!
�B
A

 

!
�B
N

 ! �A
N

commutes, then �BN .B/ D �
A
N .A/.

The following characterization of relative ergodicity ofW �-dynamical systems

in terms of relative disjointness was recently proved by Duvenhage in [7]; we

give a new proof of the result using the machinery of correspondences, as a

straightforward corollary to Theorem 3.4.

Theorem 4.2. Let B be a subsystem of N with respect to the embedding �N .

Then N is ergodic relative to B if and only if for any system M which is an

identity system relative toB, with associated inclusion �M , one has JB;m.N;M/ D

¹�M ı �
�

N º, i.e., N and M are disjoint relative to B.

Proof. First let N D .N; �; ˛; G/ be a system which is ergodic relative to a

subsystem B D .B; �N /, and suppose that M D .M; '; ˇ; G/ is a system which

also contains B as a subsystem, and is the identity relative to B. Let ˆWM ! N

be an element of JB;m.M;N/. Then, for any y 2 M 	 �M .B/, since ˇg.y/ D y

for all g 2 G we must also have

˛g .ˆ.y// D ˆ.ˇg.y// D ˆ.y/; g 2 G;

and then ergodicity of N relative to B implies ˆ.y/ 2 �N .B/. By definition, we

also haveˆ.�M .B// � �N .B/, so this means the image ofˆ is contained in �N .B/.

Then, for any analytic element m 2M , by Theorem 2.3 one has

Pˆ.m�ˆ/ D �ˆ�
'

i=2
.ˆ.m// 2 �ˆ�N .B/;

owing to invariance of �N .B/ under �
'

i=2
. A straightforward density argument then

shows that Theorem 3.4 applies, and we see that JB;m.M;N/ D ¹�N ı �
�

M º, i.e.,

M and N are disjoint relative to B.

Conversely, suppose that N D .N; �; ˛; G/ is not ergodic relative to a sub-

system B D .B; �N /. Then there is some z 2 N for which ˛g.z/ D z for all
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g 2 G while E�N .B/.z/ D 0. Then the von Neumann subalgebra P of N gener-

ated by �N .B/ and z strictly contains �N .B/, and defines a subsystem P of N via

the inclusion �WP ,! N . Moreover, it is easy to see that P is an identity system

relative to B. But now the conditional expectation of N onto P defines a joining

of N and P over the common subsystemB which is not the relatively independent

joining. �

We also obtain the following characterization of relative primeness, in terms

of an ergodicity property of joinings.

Theorem 4.3. Let B be a subsystem of N. Then N is prime relative to B if and

only if for any non-identity map ˆ 2 JB.N;N/; every element x 2 N which

satisfies ˆ.x/ D x is contained in �N .B/.

Proof. First assume that N D .N; �; ˛; G/ is prime relative to the subsystem

B D .B; �BN /, and supposeˆ 2 JB.N;N/ is not the identity. The set of “harmonic

elements” Nˆ D ¹x 2 N Wˆ.x/ D xº is a von Neumann subalgebra of N (see

[2, Theorem 6.3]) containing �BN .B/, which is invariant under both ˛ and the

modular automorphism group .�
�
t /t2R. Therefore, the inclusion of Nˆ into N

makes A D .Nˆ; �jN ˆ ; ˛jN ˆ ; G/ a subsystem of N. Primeness of N relative to

B then implies Nˆ � �BN .B/.

Conversely, suppose that for any nonidentity map ˆ 2 JB.N;N/, we have

Nˆ � �BN .N /. Let A D .A; �AN / be a subsystem of N which also contains B as a

subsystem, in such a way that �BN D �
A
N ı�

B
A : Then there is a conditional expectation

ˆ of N onto �AN .A/ which intertwines both ˛ and the modular automorphisms

�
�
t ; t 2 R. This map ˆ defines an element of JB.N;N/ which is not the identity

map. But then our hypothesis implies �AN .A/ � Nˆ � �BN .B/, from which it

follows that �AN .A/ D �
B
N .B/: Thus, N is prime relative to the subsystem B. �

4.2. Compactness and weak mixing. We begin by recalling the definitions of

the two main properties under consideration in what follows.

Definition 4.4. Let M D .M;G; ˇ; '/ be a system. An element y 2 M is said

weakly mixing for ˇ if for every finite subset F of M 	C1 and every � > 0 there

exists a g 2 G such that j'.x�ˇg .y//j < � for all x 2 F . The system M is called

weakly mixing if every y 2M 	 C1 is weakly mixing for ˇ.

Definition 4.5. A system M D .M; '; ˛; G/ is said compact if, for every x 2M ,

the orbit ¹˛g.x/�' W g 2 Gº is precompact in L2.M; '/.

One of the main results obtained [2] was that an ergodic W�-dynamical system

is weakly mixing precisely when it admits no nontrivial compact subsystem. More

specifically, Lemma 6.12 of [2] shows that ifM D .M;G; ˇ; '/ is a W�-dynamical

system which is ergodic, but not weakly mixing, then any finite-dimensional
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subspace F ofM which is invariant under ˇ yields a compact subsystem of M by

letting G act on the von Neumann algebra generated by F and the identity 1 2M .

It is then natural from a dynamical point of view to consider whether there is a

“maximal” object of this form, and what its properties are. To this end, we consider

the following definition, which is analogous to the classical definition.2

Definition 4.6. Let M D .M;G; ˇ; '/ be an ergodic W�-dynamical system.

Define the Kronecker subalgebra to be the von Neumann subalgebra MK;ˇ of

M generated by the union of all finite-dimensional ˇ-invariant subspaces of M .

When the action is clear from context (which it always will be), we will abbreviate

this notation to MK .

We first use the main results of [2] to show that the Kronecker subalgebra

associated to a system M defines a compact subsystem of M.

Theorem 4.7. If M D .M;G; ˇ; '/ is an ergodic system, then the Kronecker

subalgebraMK is injective and tracial, and defines the unique maximal compact

subsystem of M.

Proof. The unitary representation V induced by the action ˇ on M splits into a

direct sum of compact and weakly mixing parts, i.e. L2.M; '/ splits into a direct

sum of V -invariant subspaces Hc ˚ Hwm such that Hc is the maximal closed

subspace in which the V -orbit of any vector is k � k'-precompact. The strong-

operator closure of the image of V jHc
is then (for instance, by Theorem 3.7 of [9])

a compact topological group.

Let M0 WD vN.¹x 2 M W x�' 2 Hc \ M�'º/. Since it is generated by a

ˇ-invariant subset, the von Neumann algebra M0 is ˇ-invariant. We will em-

ploy Theorem 6.9 of [2] to show that M0 � M
' and that any element of M0 has

a k � k'-precompact orbit. To begin with, note that by the Peter-Weyl Theorem

and Theorem 6.9 of [2], Hc splits as an orthogonal direct sum
L

1

iD1 Si�' with

Si �M
' finite-dimensionalˇ-invariant subspaces ofM '. ThusHc � L

2.M ' ; '/

and therefore ¹x 2 M W x�' 2 Hc \M�'º � M
' and consequently M0 � M

' .

It is straightforward to show (cf. the proof of Lemma 6.12 of [2]) that any ele-

ment y in the �-algebra M00 generated by ¹x 2 M W x�' 2 Hc \M�'º and 1

will have k � k'-precompact orbit. Let " > 0 and x 2 M0 be given, and .gn/n
a sequence in G. There exists y 2 M00 such that ky�' � x�'k' < "=3.

Now since y has precompact orbit, there is a subsequence .gnk
/ such that

ˇgnk
.y/�' is k � k'-Cauchy. Choose N 2 N such that k > l > N implies

2 In the classical setting the Kronecker system is the sub �-algebra spanned by the eigen-
functions of the action. That definition is inappropriate in general, since such eigenfunctions do
not always exist.
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that k.ˇgnk
.y/ � ˇgnl

.y//�'k' < "=3. Then

k.ˇgnk
.x/ � ˇgnl

.x//�'k' � k.ˇgnk
.x/ � ˇgnk

.y//�'k'

C k.ˇgnk
.y/ � ˇgnl

.y//�'k'

C k.ˇgnl
.y/ � ˇgnl

.x//�'k' < ";

(8)

and therefore x�' has precompact orbit. In fact, we have proved that M0�' D

Hc \M�' .

We claim that M0 DMK .

To showMK �M0, note that if K is a finite-dimensional ˇ-invariant subspace

of M '�' , then the orbit under V of any x�' in K is k � k'-precompact, and so

x�' 2 Hc \ M�' � M0�' and therefore x 2 M0. Since MK is the unital

von Neumann algebra generated by all x taken from invariant finite dimensional

subspaces K, it follows that MK �M0.

To show M0 � MK , assume x 2 M0. For every " > 0 there exists an N 2 N

so that x�' 2 Hc \ M�' is within " of
LN

iD1 Si�' with each Si � MK a

finite-dimensional invariant subspace, by the above Peter-Weyl decomposition, an

internal direct sum decomposition of Hc . The fact that this is an internal direct

sum is crucial, since the Hilbert space sum is compatible with the sum in the

algebra, and hence there are si 2 Si , i 2 ¹1; : : : ; N º so that k.x�
PN

iD1 si /�'k' <

" with
PN

iD1 si 2 MK . Therefore x�' 2 ŒMK�' �. Since MK � M
' and M0 �

M ' are inclusions of finite von Neumann algebras with traces (restrictions of ) ',

the orthogonal projection of ŒM '�' � onto ŒMK�' � restricts to the '-preserving

conditional expectation E D E
M '

MK
, and hence E.x/�' D x�' and since �' is

separating for M , E.x/ D x and consequently x 2MK .

Finally, the injectivity of MK is a well-known result [11]. �

As a consequence of Theorem 4.7, we can make the following definition.

Definition 4.8. The Kronecker subsystem MK of an ergodic system M D .M;G;

ˇ; '/ is the subsystem of M whose underlying von Neumann algebra MK is

generated by all finite-dimensional ˇ-invariant subspaces of M .

The proof of Theorem 4.7 establishes that, in the above notation Hc D MK�' ,

that is, the Kronecker subsystem MK of an ergodic system M is maximal among

compact subsystems of M. From this observation we obtain the following corol-

laries.

Corollary 4.9. Let M be an ergodic system. For every finite subset F ofM 	B0

then for every � > 0 there exists a g 2 G with j'.x�ˇg.y//j < � for all x; y 2 F .

Corollary 4.10. Let M be an ergodic system with Kronecker subsystem MK . If

y 2M 	MK then y is weakly mixing for ˇ.



Noncommutative joinings II 573

Proof. Let � > 0 and F be a finite subset of M 	 C1, and F0 D ¹x � EMK
.x/W

x 2 F º. By Corollary 4.9 we know there exists g 2 G so that j'.x�

0ˇg.y//j < �

for all x0 2 F0. Now for any x 2 F we have that

j'.x�ˇg.y//j D j'..x � EMK
.x//�ˇg.y//C '.EMK

.x/�ˇg.y/j

D j'..x � EMK
.x//�ˇg.y//j < �: �

The following additional corollary to Theorem 4.7 extends Theorem 5.5 of [5]

from the setting of abelian groups to that of a general locally compact acting group.

Corollary 4.11. An ergodic system M D .M;G; ˇ; '/ is weakly mixing if and

only if its Kronecker subsystem MK is trivial.

Proof. If MK is the trivial system, then by 4.10 every y 2 M 	 C1 is weakly

mixing for ˇ, that is, the system M is weakly mixing. Conversely, if M is weakly

mixing and MK is not trivial, then the inclusion of the Kronecker subalgebraMK

into M defines a nontrivial compact subsystem of M, violating Theorem 6.13

of [2]. Thus, MK is trivial. �

The following is our main result, which extends Theorem 5.6 of [7] to actions

of nonabelian groups.

Theorem 4.12. Let N be a compact subsystem of an ergodic system M D .M;G;

ˇ; '/. If M and MK are disjoint relative to N, then the subsystemsN and MK are

isomorphic. On the other hand, if N is isomorphic to MK then for any compact

system B which has MK as a subsystem, M and B are disjoint relative to MK .

Proof. If N D .N; �M / is a compact subsystem of the ergodic system M which is

not isomorphic to MK thenN embeds inM as a proper von Neumann subalgebra

of MK . Denote the embedding of N into MK by �MK
. Then, composition with

the conditional expectation EMK
of M onto MK defines a map EMK

ı ��M in

JN.M;MK/ which is not equal to �MK
. This proves the first statement.

For the second statement, let N be a compact subsystem of M isomorphic

to MK . Then, up to a twist by the isomorphism which intertwines the two systems,

we may assume that N D MK . Let B D .B;G; ˛; �/ be a compact system as

above, and write �B for the embedding of MK into B. If ˆWB !M is any joining

of the two systems overMK , then for any x 2 B ,ˆ.x/ 2M has precompact orbit,

since

ˇG.ˆ.x// D ¹ˇg.ˆ.x//W g 2 Gº D ¹ˆ.˛g.x//W g 2 Gº D ˆ.˛G.x//:

The maximality property of MK then impliesˆ.x/ 2MK . Then, by Theorem 2.3,

for any x 2 B we have

P.x�ˆ/ D �ˆ�
�

i=2
.ˆ.x// 2 ��MK ;

and by Theorem 3.4 we have that ˆ is the relatively independent joining. �
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