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We explicitly compute its virtually cyclic geometric dimension gd.�/. Among the tools we
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1. Introduction

Given a group �, a collection of subgroups F is called a family if it is closed

under conjugation and under taking subgroups. We say that a �-CW-complex X

is a model for the classifying space EF� if every isotropy group of X belongs

to F, and XH is contractible whenever H belongs to F. Such a model always

exists and it is unique up to �-homotopy equivalence. The geometric dimension

https://creativecommons.org/licenses/by/4.0/
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of � with respect to the family F, denoted gd
F

.�/, is the minimum dimension n

such that � admits an n-dimensional model for EF�.

Classical examples of families are the family that consists only of the trivial

subgroup ¹1º, and the family Fin of finite subgroups of �. A group is said to be

virtually cyclic if it contains a cyclic subgroup (finite or infinite) of finite index. We

will also consider the family Vcyc of virtually cyclic subgroups of �. These three

families are relevant to the Farrell–Jones and the Baum–Connes isomorphism

conjectures.

In the present paper we study gdVcyc.�/ (also denoted gd.�/) when � is the

fundamental group of an orientable, closed, connected 3-manifold. We call a

group non-elementary if it is not virtually cyclic. Our main result is the following

theorem.

Theorem 1.1. Let M be a connected, closed, oriented 3-manifold, and let � D

�1.M/ be the fundamental group of M . Then gd.�/ � 4. Moreover, we can

classify gd.�/ as follows:

(1) gd.�/ D 0 if and only if � is virtually cyclic;

(2) gd.�/ D 2 if and only if � is a non-elementary free product of virtually cyclic

groups;

(3) gd.�/ D 4 if and only if � contains a Z3 subgroup;

(4) gd.�/ D 3 in all other cases.

Since we are dealing with 3-manifold groups, the purely group theoretic de-

scription given above also corresponds to the following more geometric charac-

terization of the virtually cyclic geometric dimension.

Corollary 1.2. Let M be a connected, closed, oriented 3-manifold, and let M D

P1# � � �#Pk be the prime decomposition of M . Let � D �1.M/ be the fundamental

group of M . Then we can classify gd.�/ as follows:

(1) gd.�/ D 0 if and only if M is modeled on S3 or S2 �R;

(2) gd.�/ D 2 if and only if every Pi in the prime decomposition of M is modeled

on S3 or S2�E, and either: (1) k > 2, or (2) M D P1#P2 with j�1.P1/j > 2;

(3) gd.�/ D 4 if and only if at least one of the prime components Pi is modeled

on E3;

(4) gd.�/ D 3 in all other cases.
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Our main tools for proving Theorem 1.1 is the Kneser–Milnor prime decom-

position and the Jaco–Shalen–Johannson JSJ decomposition of a 3-manifold, the

push-out constructions associated to acylindrical splittings from [5], the theory of

Seifert fibered and hyperbolic manifolds, and some Bredon cohomology compu-

tations.

The paper is organized as follows. In Section 2 we review the notions of

geometric and cohomological dimensions for families of subgroups and some of

the basic notation of Bass–Serre theory. Section 3 is devoted to recalling some

basics of 3-manifold theory, such as the prime decomposition of Kneser–Milnor

and the JSJ decomposition of Jaco–Shalen–Johannson. In Section 4 we state some

useful push-out constructions that will help us construct new classifying spaces

out of old ones. We also relate the geometric dimension of the fundamental group

of a graph of groups with that of the vertex and edges groups, provided that the

splitting is acylindrical. This allows us to establish Theorem 4.12, which reduces

the calculation to the case of prime manifolds. We then analyze case-by-case the

situation when M is a Seifert fibered space (Section 5) or a hyperbolic manifold

(Section 6), with the results of these analyses summarized in Tables 1 and 2.

In Section 7, we focus on 3-manifolds whose JSJ decomposition only contains

pieces that are Seifert fibered with Euclidean orbifold base – and show that these

manifolds are always geometric. The main result of Section 8 is Theorem 8.1,

where for a non-geometric prime 3-manifold, we show that the JSJ decomposition

gives rise to an acylindrical splitting. Section 9 then finishes the computation

of the virtually cyclic geometric dimension for all the prime manifolds that are

not geometric. Finally, in Section 10, we bring these results together and prove

Theorem 1.1.
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2. Preliminaries

2.1. Virtually cyclic geometric and cohomological dimension. Let � be a

discrete group. A nonempty set F of subgroups of � is called a family if it is

closed under conjugation and passing to subgroups. We call a �-CW-complex a

model for EF� if for every H � �:

(1) H … F H) XH D ; (XH is the H -fixed subcomplex of X);

(2) H 2 F H) XH is contractible.
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Such models always exist for every discrete group � and every family of sub-

groups F. Moreover, every pair of models for EF� are �-homotopically equiva-

lent. The geometric dimension gd
F

.�/ of � with respect to the family F, is the

minimum n for which an n-dimensional model for EF� exists.

On the other hand, given � and F we have the so-called restricted orbit

category OF�, which has as objects the homogeneous �-spaces �=H , H 2 F,

and morphisms consisting of �-maps between them. We define an OF�-module

to be a functor from OF� to the category of abelian groups, while a morphism

between two OF�-modules is a natural transformation of the underlying functors.

Denote by OF�-mod the category of OF�-modules, which is an abelian category

with enough projectives. Thus we can define a �-cohomology theory for �-spaces

H �
F

.�IF / for every OF�-module F (see [9, p. 7]). The Bredon cohomological

dimension of G – denoted cdF.G/ – is the largest nonnegative n 2 Z for which

the Bredon cohomology group H n
F

.GIF / D H n
F

.EFGIF / is nontrivial for some

M 2Mod-OFG.

In the present work we are mainly concerned with the family Vcyc of virtually

cyclic subgroups. A highly related family is the family Fin of finite subgroups. We

will denote EVcyc� (resp. gdVcyc.�/, cdVcyc.�/, H �
Vcyc) and EFin� (resp. gdFin.�/,

cdFin.�/, H �
Fin) as

xx
E� (resp. gd.�/, cd.�/,

xx
H �) and

x
E� (resp. gd.�/, cd.�/,

x
H �)

respectively. We also call gd.�/ the virtually cyclic (or VC) geometric dimension

of �.

Lemma 2.1. We have the following properties of the geometric dimension:

(1) if H � G, then gd
F\H .H/ � gd

F
.G/ for every family F of G;

(2) for every group G and every family of subgroups F we have

cdF.G/ � gd
F

.G/ � max¹3; cdF.G/º

(in particular, if cdF.G/ � 3, then cdF.G/ D gd
F

.G/);

(3) if G is an n-crystallographic group then gdG D nC 1

Proof. Statement (1) Follows from the observation that a model for EFG is also

a model for EF\H H , just by restricting the G-action to the subgroup H � G.

Statement (2) is the main result of [6], while statement (3) follows from [2]. �

2.2. Graphs of groups. In this subsection we give a quick review of Bass–Serre

theory, referring the reader to [13] for more details. A graph (in the sense of

Bass and Serre) consists of a set of vertices V D vert Y , a set of (oriented) edges

E D edge Y , and two maps E ! V � V , y 7! .o.y/; t .y//, and E ! E, y 7! Ny

satisfying NNy D y, Ny ¤ y, and o.y/ D t . Ny/. The vertex o.y/ is called the origin

of y, and the vertex t .y/ is called the terminus of y.
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An orientation of a graph Y is a subset EC of E such that E D EC

F
xEC. We

can define path and circuit in the obvious way.

A graph of groups Y consists of a graph Y , a group YP for each P 2 vert Y ,

and a group Yy for each y 2 edge Y , together with monomorphisms Yy ! Yt.y/.

One requires in addition Y Ny D Yy .

Suppose that the group G acts without inversions on a graph X , i.e. for every

g 2 G and x 2 edge X we have gx ¤ Nx. Then we have an induced graph of

groups with underlying graph X=G by associating to each vertex (resp. edge) the

isotropy group of a preimage under the quotient map X ! X=G.

Given a graph of groups Y, one of the classic theorems of Bass–Serre theory

provides the existence of a group G D �1.Y/, called the fundamental group of the

graph of groups Y and a tree T (a graph with no cycles), called the Bass–Serre

tree of Y, such that G acts on T and the induced graph of groups is isomorphic

to Y. The identification G D �1.Y/ is called a splitting of G.

Analogously we can define a graph of spaces X as a graph X , CW-complexes

XP and Xy D X Ny for each vertex P and each edge y, and closed cellular

embeddings Xy ! Xt.y/ for each edge y. We also assume that the images of

all the embeddings are disjoint. In this case we will have a CW-complex, called

the geometric realization, that is assembled by gluing the ends of the product space

Xy � Œ0; 1� to the spaces Xt.y/, Xt. Ny/.

Finally, given a graph of spaces X where all maps �1.Xy/ ! �1.Xt.y// are

injective, there is an associated graph of groups Y with the same underlying

graph and whose vertex (resp. edge) groups are the fundamental groups of the

corresponding vertex (resp. edges) CW-complexes. Then, as a generalization

of the Seifert–van Kampen theorem, we have that the fundamental group of the

geometric realization of X is naturally isomorphic to the fundamental group of

the graph of groups Y.

3. 3-manifolds and decompositions

In this section we will review some 3-manifold theory. For more details see [12]

and [10].

3.1. Seifert fibered spaces. A trivial fibered solid torus is the usual product

S1 �D2 with the product foliation by circles S1 � ¹yº; y 2 D2. A fibered solid

torus is a solid torus with a foliation by circles which is finitely covered by a

trivial fibered solid torus. Similarly, a fibered solid Klein bottle is a solid Klein

bottle which is finitely covered by a trivial fibered solid torus.

A Seifert fiber space is a 3-manifold with a decomposition into disjoint circles,

called fibers, such that each circle has a neighborhood which is a union of fibers

and is isomorphic to a fibered solid torus or a fibered Klein bottle.
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Given a Seifert fiber space M , one can obtain an orbifold B by quotienting

out by the S1-action on the fibers of M ; that is, by identifying each fiber to a

point. By considering the quotient of neighborhoods of fibers in M , the topology

B inherits makes it a surface with a natural orbifold structure; we call B the base

orbifold of M . Such an orbifold B has its orbifold fundamental group, which is

not necessarily the fundamental group of the underlying topological space, but is

related to the fundamental group of M via the following lemma.

Lemma 3.1 ([12, Lemma 3.2]). Let M be a Seifert fiber space with base orbifold

B . Let � be the fundamental group of M , and let �0 be the orbifold fundamental

group of B . Then there is an exact sequence

1 �! K �! � �! �0 �! 1;

where K denotes the cyclic subgroup of � generated by a regular fiber. The group

K is infinite except in cases where M is covered by S3.

Recall that an orbifold is called good if it is the quotient of a manifold by an

action of a discrete group of isometries. An orbifold that is not good is called bad.

It is known that every good 2-orbifold is isomorphic, as an orbifold, to the

quotient of S2, E2, or H2 by some discrete subgroup of isometries. Hence

all closed good 2-orbifolds can be classified as spherical, euclidean or flat, and

hyperbolic. Bad 2-orbifolds are classified in [12, Theorem 2.3].

3.2. Geometric 3-manifolds. A Riemannian manifold X is a smooth manifold

that admits a Riemannian metric. If the isometry group Isom.X/ acts transitively,

we say X is homogeneous. If in addition X has a quotient of finite volume, X is

unimodular. A geometry is a simply-connected, homogeneous, unimodular Rie-

mannian manifold along with its isometry group. Two geometries .X; Isom.X//

and .X 0; Isom.X 0// are equivalent if Isom.X/ Š Isom.X 0/ and there exists a dif-

feomorphism X ! X 0 that respects the Isom.X/; Isom.X 0/ actions. A geom-

etry .X; Isom.X// (often abbreviated X) is maximal if there is no Riemannian

metric on X with respect to which the isometry group strictly contains Isom.X/.

A manifold M is called geometric if there is a geometry X and discrete subgroup

� � Isom.X/ with free �-action on X such that M is diffeomorphic to the quotient

X=�; we also say that M admits a geometric structure modeled on X . Similarly,

a manifold with nonempty boundary is geometric if its interior is geometric.

It is a consequence of the uniformization theorem that compact surfaces

(2-manifolds) admit Riemannian metrics with constant curvature; that is, compact

surfaces admit geometric structures modeled on S2, E2, orH2. In dimension three,

we are not guaranteed constant curvature. Thurston demonstrated that there are

eight 3-dimensional maximal geometries up to equivalence ([12, Theorem 5.1]):

S3, E3, H3, S2 � E, H2 � E, ePSL2.R/, Nil, and Sol.
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3.3. Prime and JSJ decomposition. A closed n-manifold is an n-manifold

that is compact with empty boundary. A connected sum of two n-manifolds

M and N , denoted M#N , is a manifold created by removing the interiors of a

smooth n-disc Dn from each manifold, then identifying the boundaries Sn�1. An

n-manifold is nontrivial if it is not homeomorphic to Sn. A prime n-manifold

is a nontrivial manifold that cannot be decomposed as a connected sum of two

nontrivial n-manifolds; that is, M D N #P for some n-manifolds N; P forces

either N D Sn or P D Sn. An n-manifold M is called irreducible if every

2-sphere S2 � M bounds a ball D3 � M . It is well known that all orientable

prime manifolds are irreducible with the exception of S1 � S2. The following is

a well-known theorem of Kneser (existence) and Milnor (uniqueness).

Theorem 3.2 (prime decomposition). Let M be a closed oriented nontrivial

3-manifold. Then M D P1# : : : #Pn where each Pi is prime. Furthermore, this

decomposition is unique up to order and homeomorphism.

Another well known result we will need is the Jaco–Shalen–Johannsondecom-

position. The version stated here also uses Perelman’s work.

Theorem 3.3 (JSJ decomposition). For a closed, prime, oriented 3-manifold M

there exists a collection T � M of disjoint incompressible tori (i.e. two sided

properly embedded and �1-injective), such that each component of M nT is either

a hyperbolic or a Seifert fibered manifold. A minimal such collection T is unique

up to isotopy.

Remark 3.4. Note that the prime decomposition provides a graph of groups with

trivial edge groups and vertex groups isomorphic to the fundamental group of

the Pi ’s. The fundamental group of the graph of groups will be isomorphic to

�1.M/. Similarly the JSJ decomposition of a prime 3-manifold M gives rise

to a graph of groups, with all edge groups isomorphic to Z2, and vertex groups

isomorphic to the fundamental groups of the Seifert fibered and hyperbolic pieces.

Again, the fundamental group of the graph of groups will be isomorphic to �1.M/.

Each graph of groups provide a splitting for the fundamental groups of the initial

manifold. These splittings will be used to provide reductions of the general

computation to some special cases.

4. Push-out constructions for classifying spaces

In this section we will review some push-out constructions, used to construct new

classifying spaces out of old (or known) ones.
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Definition 4.1. Let � be any finitely generated group, andF � F
0 a pair of families

of subgroups of �. We say a collection A D ¹A˛º˛2I of subgroups of � is adapted

to the pair .F;F0/ provided that the following conditions hold:

(1) for all A; B 2 A, either A D B or A \ B 2 F;

(2) fhe collection A is conjugacy closed;

(3) every A 2 A is self normalizing; i.e. N�.A/ D A;

(4) for all A 2 F
0 n F, there is a B 2 A such that A � B .

Proposition 4.2 ([4, Proposition 3.1]). Let F � F
0 be families of subgroup of �.

Assume that the collection of subgroups A D ¹H˛º˛2I is adapted to the pair

.F;F0/. Let H be a complete set of representatives of the conjugacy classes

within A, and consider the cellular homotopy �-push-out

a

H2H

� �H EFH EF�

a

H2H

� �H EF0H X

 

!

 

!

 

!

 

!

Then X is a model for EF0�.

Remark 4.3. We note that in [4, Proposition 3.1] (and [7, Theorem 2.3]), the con-

struction instead uses a cellular �-push-out. As such, there are some additional

conditions required on the two maps. It is easy to see that, with their additional

conditions, the cellular �-push-out they use is �-homotopic to the cellular homo-

topy �-push-out. Conversely, when forming the cellular homotopy �-push-out,

one replaces the original spaces and maps by homotopy equivalent spaces and

maps – and then take the cellular �-push-out of the resulting diagram. It is again

easy to check that the replacement maps can be chosen to satisfy the additional

constraints mentioned in [4, Proposition 3.1].

The following lemmas are straightforward consequences of the definition of

adapted collections.

Lemma 4.4. Let � be a finitely generated discrete group, and let F � F
0 � F

00 be

three nested families of subgroups of �. Let A be a collection adapted to the pair

.F;F00/. Then A is adapted to the pairs .F;F0/ and .F0;F00/.

If 'W� ! �0 is a homomorphism of groups and F is a family of subgroups

of �0, we will denote by zF the family of subgroups of � given by

¹H � �W '.H/ 2 Fº:
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Lemma 4.5. Let 'W� ! �0 be surjective group homomorphism of discrete

groups, let F � F
0 be pair of families of subgroups of �0, and let A D ¹A˛º˛2I be

a collection adapted to the pair .F;F0/. Then zA D ¹'�1.A˛/º˛2I is a collection

adapted to the pair .zF; zF0/ of families of subgroups of �.

Theorem 4.6. Let F be a family of subgroups of the finitely generated discrete

group �. Let 'W� ! �0 be a surjective homomorphism. Let F0 � F
0
0 be a

nested pair of families of subgroups of �0 satisfying zF0 � F � zF0
0, and let

A D ¹A˛º˛2I be a collection adapted to the pair F0 � F
0
0. Let H be a complete

set of representatives of the conjugacy classes within zA D ¹'�1.A˛/º˛2I , and

consider the following cellular homotopy �-push-out

a

zH2H

� � zH EF0
H EF0

�0

a

zH2H

� � zH EF
zH X

 

!

 

!

 

!

 

!

Then X is a model for EF�.

Proof. It can be easily verified that, via restriction with ', EF0
�0 D EzF0

� and

EF0
H D EzF0

zH . From Lemmas 4.4 and 4.5 we have that zA is a collection adapted

to the pair .zF0;F/. Then by Proposition 4.2 we have that the above push-out is a

model for EF�. �

The following immediate corollary is more suitable for our purposes, and it

will be used jointly with Lemma 3.1.

Corollary 4.7. Let � be finitely generated discrete group. Let 'W� ! �0 be a

surjective homomorphism with cyclic kernel. Let Fin0 and Vcyc0 be the families

of finite and virtually cyclic subgroups of �0 respectively. Let A be a collection

adapted to the pair .Fin0; Vcyc0/. Let H be a complete set of representatives

of the conjugacy classes within zA, and consider the following cellular homotopy

�-push-out
a

zH2H

� � zH x
EH

x
E�0

a

zH2H

� � zH
xx
E zH X

 

!

 

!

 

!

 

!

Then X is a model for
xx
E�.
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Next, we will show how to construct a classifying space (for a suitable family)

for the fundamental group of a graph of groups, by assembling the classifying

spaces of the vertex groups and the edge groups. We will later apply these

constructions in conjunction with Remark 3.4.

Let Y be a graph of groups with vertex groups YP and edge groups Yy, and

fundamental group G. We are going to construct a graph of spaces X using the

classifying spaces of the edges and the vertices and the corresponding families

of virtually cyclic subgroups. Let XP be a model for for the classifying space

xx
EYP , and Xy be a model for

xx
EYy , for every vertex P and edge y of Y . So for

every monomorphism Yy ! Yt.y/ we have a Yy-equivariant cellular map (unique

up to Yy-homotopy) Xy ! Xt.y/ which leads to the G-equivariant cellular map

G �Yy
Xy ! G �Yt.y/

Xt.y/. This gives us the information required to define a

graph of spaces X with underlying graph T , the Bass–Serre tree of Y. Moreover,

we have a cellular G-action on the geometric realization X of X.

Proposition 4.8. The geometric realization X of the graph of spaces X con-

structed above is a model for EFG, where F is the family of virtually cyclic sub-

groups of G that are conjugate to a virtually cyclic subgroup in one of the Yy

or YP , y 2 edge Y , P 2 vert Y . In particular, there exists a model for EFG of

dimension

gd
F

.G/ � max¹gd.Yy/C 1; gd.YP / j y 2 edge Y; P 2 vert Y º:

Proof. Let �WX ! T be a deformation retraction collapsing each copy of XP

down onto the vertex zP 2 vert T to which it corresponds, and similarly collapsing

each Xy � Œ0; 1� down along the Xy component to the corresponding edge Qy 2

edge T , Qy ' Œ0; 1�. Then G has a natural action on X via left multiplication,

which permutes the copies of each XP or Xy so that � is a G-equivariant map. It

remains to show that the G-C W -complex X is a model for EFG.

Suppose first that H � G is not in F; then either H is not conjugate into any

vertex subgroup or is not virtually cyclic. If H is not conjugate into any vertex

subgroup, then T H D ;; in particular, H does not fix any copy of XP or Xy�Œ0; 1�

in X , so XH D ;. If H is not virtually cyclic, then even if the H -action on T does

fix some nonempty subgraph, the H -action on any corresponding XP or Xy�Œ0; 1�

must have empty fixed set; again, this implies that XH D ;.

On the other hand, suppose H 2 F; that is, H is virtually cyclic and conjugate

into the subgroup YP , for some vertex P . Then H fixes the copy of XP in X

corresponding to a fixed vertex in T . As H is virtually cyclic, and XP is a model

for
xx
EYP , .XP /H is not empty. Moreover, given any two vertices P and Q in

vert T fixed by the H -action, the unique geodesic path c in T connecting P and

Q must also be fixed; in particular, T H is a connected subgraph of the tree T , so

that T H is itself a tree. Let Qy 2 edge T be fixed, and consider the copy Xy � Œ0; 1�

with �-image Qy; then the H -action on Xy has nonempty fixed set .Xy/H , so in
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particular .Xy/H � Œ0; 1� is nonempty. Thus, the �-preimage of T H is a nonempty,

connected subspace XH � X . To see that XH is contractible, first contract down

along � to T H , then contract the tree T H . �

Definition 4.9. Let Y be a graph of groups with fundamental group G. The

splitting of G is said to be acylindrical if there exists an integer k such that,

for every embedded edge-path c of length k in the Bass–Serre tree T of Y, the

stabilizer of c is finite.

The following proposition roughly says that, provided Y gives an ayclindrical

splitting of G, you can attach 2-cells to the classifying space from Proposition 4.8

to get a model for
xx
EG.

Proposition 4.10. Let Y be a graph of groups giving an acylindrical splitting

of G. Let F be the family of virtually cyclic subgroups of G that conjugate into a

vertex group in Y. Let A be the collection of maximal virtually cyclic subgroups

of G not in F. Let H be a complete set of representatives of the conjugacy classes

within A. Let ¹�º be the one point space, and consider the following cellular

homotopy G-push-out

a

H2H

G �H E EFG

a

H2H

G �H ¹�º X

 

!

 

!

 

!

 

!

Then X is a model for
xx
EG.

Proof. From [5, Claim 3] we know that A is an adapted collection to the pair

.F; Vcyc/. Hence by Proposition 4.2 we just have to prove that, for all H 2 H, E

and ¹�º are models for EFH and
xx
EH respectively. It is clear that ¹�º is a model

for
xx
EH since H is virtually cyclic. To verify the other case, it suffices to check

that F \H is the family of finite subgroups of H .

Let V 2 F satisfy V � H . Then V can be conjugated into YP for some vertex

group in Y ; say gVg�1 � YP . Since V is virtually cyclic, let hvi be a finite-index

cyclic subgroup of V . If hvi is infinite, then ŒH W hvi� < 1. If h 2 H n hvi, then

hn 2 hvi for some n 2 N, which means that ghng�1 2 YP . Now recall that G can

be identified with a subgroup of the free product F.Y/ D �vertY YP�Fedge Y , where

Fedge Y is the free group on edge Y . Therefore there is no element f 2 F.Y/ n YP

with a power in YP . Thus, we must have that ghg�1 2 YP . But this implies that

gHg�1 � YP , contradicting that H … F. So we conclude that hvi must be finite.

Since V has a finite subgroup of finite index, it is also finite.
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Conversely, if F � H is a finite subgroup, then T F is nonempty (note

that T is CAT.0/). In particular, F fixes some vertex gYP 2 vert T , and is

therefore conjugate to a subgroup of YP . This shows F 2 F, giving the reverse

containment. �

Corollary 4.11. Let Y be a graph of groups giving an acylindrical splitting of G.

Then

gd.G/ � max¹2; gd.Yy/C 1; gd.YP / j y 2 edge Y; P 2 vert Y º:

Proof. Fix minimal models for
xx
EYy , and

xx
EYP for every edge y and every vertex

P of Y . Now from Proposition 4.8 we get a model X for EFG of dimension

max¹gd.Yy/C 1; gd.YP / j y 2 edge Y; P 2 vert Y º. Now using Proposition 4.10

we can attach 2-cells to X in order to obtain a model for
xx
EG of dimension

max¹2; gd.Yy/ C 1; gd.YP / j y 2 edge Y; P 2 vert Y º, therefore this is an upper

bound for gd.G/. �

As a quick application, we now explain how to reduce our analysis of the

virtually cyclic geometric dimension of a 3-manifold group to the prime case.

Theorem 4.12. Let M be a closed, orientable, connected 3-manifold. Consider

the prime decomposition M D P1# � � �#Pk. Denote � D �1.M/, �i D �1.Pi /.

Then

max¹gd.�i / j 1 � i � kº � gd.�/ � max¹2; gd.�i / j 1 � i � kº:

Proof. Since each �i is a subgroup of �, we have that the first inequality comes

from Lemma 2.1. On the other hand, the prime decomposition of M determines

a graph of spaces with fundamental group � and hence a graph of groups Y (see

Remark 3.4). Since the edge groups are all isomorphic to �1.S2/ D 1, stabilizers

of the edges in the Bass–Serre tree T of Y are trivial. Thus the splitting of � is

acylindrical (with k D 1 in Definition 4.9). The conclusion now follows from

Corollary 4.11. �

The reader might naturally wonder whether a similar reduction can be per-

formed with the JSJ decomposition. This is indeed the case, but acylindricity of

the splitting is much more subtle in that case (and does not always hold). We will

discuss this is detail in Section 8.

5. The Seifert fibered case

In this section, we will study the geometric dimension of the fundamental groups

of compact Seifert fibered manifolds, both in the case where they have toral bound-

ary components (e.g. pieces in the JSJ decomposition of a prime 3-manifold) and

the case where they have no boundary (e.g. are themselves prime 3-manifolds).
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5.1. Seifert fibered manifolds without boundary. Using the base orbifold B

of a Seifert fibered manifold, we have the following classification

� B is a bad orbifold;

� B is a good orbifold, modeled on either S2, H2 or E2.

The following proposition deals with the case where B is a bad orbifold, or is

a good orbifold modeled on S2.

Proposition 5.1. Let M be a closed Seifert fiber space with base orbifold B and

fundamental group �. Assume that B is either a bad orbifold, or a good orbifold

modeled on S2. Then � is virtually cyclic. In particular, gd.�/ D 0

Proof. Suppose first that B is modeled on S2. Then �0 D �1.B/ is a discrete

subgroup of SO.3/ Š Isom.S2/ and is therefore finite. By the short exact sequence

given in Lemma 3.1, � is virtually cyclic.

From the classification of bad orbifolds (see [12, Theorem 2.3]) we know

that if B is a bad orbifold then its orbifold Euler characteristic is positive. So

by [12, Theorem 5.3(ii)] M is modeled on one of S3 or S2 � E. Now we

conclude by observing that discrete subgroups in either Isom.S3/ Š SO.4/ or

Isom.S2 � E/ Š SO.3/ � .R Ì Z2/ are virtually cyclic. �

Now we have to deal with the case where B is a good orbifold modeled on H2

or E2.

Proposition 5.2. Let M be a closed Seifert fiber space with base orbifold B

modeled on H2. Let � D �1.M/ and �0 D �1.B/ be the respective fundamental

groups. LetA be the collection of maximal infinite virtually cyclic subgroupsof �0,

let zA be the collection of preimages of A in �, and let H be a set of representatives

of conjugacy classes in zA. Consider the following cellular homotopy �-push-out:

a

zH2H

� � zH E
2

H2

a

zH2H

� � zH
xx
E zH X

 

!

 

!

 

!

 

!

Then all zH 2 H are virtually 2-crystallographic, and X is a model for
xx
E�.

Proposition 5.3. Let M be a closed Seifert fibered manifold with base orbifold

modeled on H2, and let � D �1.M/ be the fundamental group of M . Then

gd.�/ D 3.
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Proof of Proposition 5.2. We have the short exact sequence

1 �! Z �! � �! �0 �! 1

from Lemma 3.1. Then �0 is a lattice in Isom.H2/ Š PSL2.R/ Ì Z=2, hence is

hyperbolic. Let Vcyc0 and Fin0 be the families of virtually cyclic subgroups and

finite subgroups of �0 respectively. Applying [3, Theorem 2.6], we see that the

collection A of maximal infinite virtually cyclic subgroups of �0 is adapted to the

pair .Fin0; Vcyc0/.

This allows us to apply the construction of Corollary 4.7. Since �0 is a lattice

in Iso.H2/, we have that H2 is a model for
x
E�0. Let H 2 A. Therefore H is the

stabilizer of a unique geodesic c in H2. The subgroup of H that fixes c is finite

and normal; the quotient of H by this group inherits an effective action on c ' E,

and is therefore 1-crystallographic. This gives E as a model for
x
EH .

Consider zH 2 H, H D �. zH/ and its action on H2 (on which B is modeled).

As H is virtually cyclic, we know it stabilizes a unique geodesic c, hence H has

a natural action on E as c ' E. We now consider the preimage of this copy of

E in the lift of the Seifert fiber space M to its universal cover. By Lemma 3.1,

� ! �0 is infinite cyclic unless M is modeled on S3, but this will contradict [12,

Theorem 5.3]; lifting E to zM we then get an zH -action on E2. Let zF � zH be

the subgroup with trivial action on E2. Then F D �. zF / is a subgroup F � H ,

which cannot contain the hyperbolic element that generates the finite-index infinite

cyclic subgroup of H , so must be finite. Since ker � Š Z acts non-trivially on the

fiber direction, zF Š F must also be finite. Letting Q D zH= zF , we get that Q is

2-crystallographic, as it inherits an effective cocompact action onE2. In particular

the model for
xx
EQ given by [2] will provide a 3-dimensional model for

xx
E zH . �

Proof of Proposition 5.3. The model constructed is three dimensional, as
xx
E zH

and E2 � Œ0; 1� are both three dimensional; this gives that gd.�/ � 3. Since �

has a subgroup isomorphic to Z2 (consider any zH 2 H), the result follows from

Lemma 2.1. �

Proposition 5.4. Let M be a closed Seifert fibered manifold with base orbifold

modeled on E2, and let � D �1.M/ be the fundamental group of M . Then

� M is modeled on E3, and gd.�/ D 4 or

� M is modeled on Nil, and gd.�/ D 3.

Proof. From [12, Theorem 5.3(ii)] we know that M is modeled either on E3 or

on Nil. In the former case we have that � is 3-crystallographic, and by [2] we have

that gd.�/ D 4.
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For the case where M is modeled on Nil, we would like to use [7, Theo-

rem 5.13]. For this we will first prove that � is virtually poly-Z, and then check

that � satisfies [7, Theorem 5.13 case 2b], so that gd.�/ D 3. The two conditions

to check are:

(1) there is an infinite normal subgroup C � �, and for every infinite cyclic

subgroup D � � with Œ� W N�D� <1 we have C \D ¤ 1;

(2) there exists no subgroup W � � such that its commensurator N� ŒW � has

virtual cohomological dimension equal to 1.

From Lemma 3.1 we have the short exact sequence

1 �! Z �! � �! �0 �! 1

where �0 is the orbifold fundamental group of B , which is 2-crystallographic

by hypotheses, in particular it is virtually poly-Z with a filtration of the form

1 � Z � Z2 � �0. Since the property of being virtually poly-Z is closed

under taking extensions (see [7, Lemma 5.14, i-iv]) we conclude that � is virtually

poly-Z.

Nil is the continuous Heisenberg Lie group, and can be identified with the

group R3 with multiplication given by

.a; b; c/ � .d; e; f / D .aC d; b C e; c C f � ae/:

The center of Nil is the subgroup ¹.0; 0; z/ j z 2 Rº. It is a simple matter to

compute conjugates and positive powers:

.x; y; z/�1 � .a; b; c/ � .x; y; z/ D .a; b; ay � bx C c/I

.a; b; c/n D
�
na; nb; nc �

n.n � 1/

2
ab

�
for n > 0:

We now verify property (1). Let C � � be the center Z.�/ of �. We first point

out that C is infinite cyclic. Indeed, the group � can be viewed as a lattice in Nil,

which implies C D � \Z.Nil/ is a discrete cocompact subgroup in Z.Nil/ Š R.

Let D be an infinite cyclic subgroup of �, generated by the element .a; b; c/ 2

Nil. If .x; y; z/ 2 N�D, then we must have for some n:

.x; y; z/�1.a; b; c/.x; y; z/ D .a; b; c/n:

So if .x; y; z/ 2 N�D then from the formulas above we see that n D 1 and

ay � bx D 0.

Without loss of generality suppose a ¤ 0. Then for .x; y; z/ to be a normalizer

of D, we need ay � bx D 0, or y D b
a
x. Thus, we can consider the closed Lie

subgroup

H WD
°�

˛;
b

a
˛; ˇ

� ˇ̌
ˇ ˛; ˇ 2 R

±



592 K. Joecken, J.-F. Lafont, and L. J. Sánchez Saldaña

of Nil, and observe that H is isomorphic to R2. Since N�D D H \ �, we

see that N�D can be viewed as a discrete subgroup of H Š R2, which forces

vcd.N�D/ � 2.

Since vcd.�/ D 3, we conclude that Œ� W N�D� D 1. Thus, for any infinite

cyclic D � �, either Z.�/\D ¤ ¹1º or Œ� W N�D� D1; in particular, � satisfies

condition (1) above.

Finally, since vcd.�/ D 3, and N � N�D � N� ŒD� and vcd.N / D 2 we

verify condition (2) above, completing the proof. �

5.2. Seifert fibered manifolds with boundary. In this section we study compact

Seifert fibered manifolds with non-empty boundary. Throughout this section,

M will always be a compact Seifert fibered manifold with nonempty boundary.

Let � D �1.M/ be the fundamental group, let �0 D �orb

1 .B/ be the orbifold

fundamental group of the base orbifold B , and let �W� ! �0 be the associated

homomorphism.

First we will see that we do not have to consider the case of B being a bad

orbifold or a good orbifold modeled on S2.

Lemma 5.5. Let M be a compact Seifert fibered manifold with nonempty bound-

ary with base orbifold B . Denote by Bı be the interior of B . Then Bı is a good

orbifold modeled either on H2 or on E2.

Proof. By the classification of bad orbifolds (see [12, Theorem 2.3]), the only

bad orbifolds without boundary have compact underlying space, so Bı must be

good, and therefore finitely covered by a 2-manifold N ı that is also not compact.

Then N ı is geometric; by the uniformization theorem, all geometric surfaces are

modeled on S2, E2, or H2. Since S2 is compact, all quotients by discrete (finite)

actions are also compact, therefore N ı cannot be modeled on this geometry. The

lemma follows. �

Proposition 5.6. Let M be a compact Seifert fibered manifold with nonempty

boundary. Let � D �1.M/, and let B be the base orbifold of M . If Bı is modeled

on E2, then � is 2-crystallographic isomorphic to Z2 or Z Ì Z. In particular

gd.�/ D 3.

Proof. With this hypothesis, by [10, Theorem 1.2.2] we have that M is modeled

on E3 or Nil, or is diffeomorphic to S1 �S1 � I , or is a twisted Œ0; 1�-bundle over

the Klein bottle. But neither E3 nor Nil admit noncompact geometric quotients.

In the remaining two cases the fundamental group of M is isomorphic to Z2 or

to Z Ì Z respectively. Hence � is a 2-crystallographic group, and the conclusion

follows from Lemma 2.1. �
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Proposition 5.7. Let M be a compact Seifert fibered manifold with nonempty

boundary, and let � D �1.M/ be the fundamental group. Suppose that the interior

of the base orbifold Bı is modeled on H2, and has orbifold fundamental group

�orb
1 .B/ D �0. Let �W� ! �0 be the quotient map, and let A be the collection

of preimages of maximal infinite virtually cyclic subgroups of �0. Let H be a

set of representatives of conjugacy classes in A. Consider the following cellular

homotopy �-push-out:

a

zH2H

� � zH E
x
E�0

a

zH2H

� � zH
xx
E zH X

 

!

 

!

 

!

 

!

Then X is a model for
xx
E�. Moreover,

x
E�0 admits a 1-dimensional model, and

xx
E zH admits a 3-dimensional model. In particular gd.�/ D 3.

Proof. We would like to use Proposition 4.2 to construct a model for
xx
E�. LetF0 be

the family of virtually cyclic subgroups of � and F be the family of virtually cyclic

subgroups F of � such that �.F / � �0 is finite. In order to use Proposition 4.2,

we need a model for EF�, an adapted collection A, and models for EFH and
xx
EH

for each H 2 A.

First, a model for EF� is the same as a model for
x
E�0. On the other hand

�0 contains as a finite index subgroup the fundamental group of a surface with

non-empty boundary, therefore �0 is virtually free. Hence �0 admits a splitting as

a fundamental group of a graph of groups of finite groups, so the Bass–Serre tree

T of such a splitting is a model for
x
E�0.

Next let us describe an adapted collection A.

Let A be the collection of subgroups of � that are preimages of maximal

infinite virtually cyclic subgroups of �0. Then we claim that A is adapted to the

pair .F;F0/ of families of subgroups of �. In fact, the virtually cyclic subgroups

of �0 that are conjugate into a vertex group of the graph of groups presentation

must be finite, since the vertex groups themselves are finite. In particular, the

splitting of �0 given by the graph of groups is acylindrical. By [5, Claim 3], the

collection A0 of maximal infinite virtually cyclic subgroups of �0 is adapted to

the pair .FIN0;VC0/ of families of finite and virtually cyclic subgroups of �0,

respectively. By Lemma 4.5, A D fA0 is therefore adapted to the pair .F; eVC0/ of

families of subgroups of �. Since F � F
0 � eVC0, Lemma 4.4 shows that A is

adapted to the pair .F;F0/, as claimed.
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Let zH 2 A be the �-preimage of a maximal infinite virtually cyclic subgroup

H � �0. A model for EF
zH is the same as a model for

x
EH . Since H is virtually

cyclic, E is a model for
x
EH .

It remains to construct a model for
xx
E zH . But this can be done by an argument

identical to the one at the end of Proposition 5.2. We leave the details to the

reader. �

Remark 5.8. Note that the adapted collectionA constructed in the proof of Propo-

sition 5.7, consists of preimages of maximal infinite virtually cyclic subgroups of

�0 in �. So H contains representatives of the conjugacy classes of the boundary

toris of M . This fact will be used in some of the Bredon cohomology computa-

tions in Section 9.

6. The hyperbolic case

In this section, we will analyze the geometric dimension of lattices in the isometry

group PSL.2;C/ of hyperbolic 3-space. Since we are going to use some standard

properties of hyperbolic 3-dimensional geometry we refer the reader to [12, p. 448]

for details about the geometry of H3.

Proposition 6.1. Let M be a connected, oriented, finite-volume hyperbolic 3-

manifold, and let � D �1.M/. Then gd.�/ D 3.

Proof. In order to establish the proposition, we start by using a push-out construc-

tion to create a model for
xx
E�. This will provide an upper bound on gd.�/.

The group � is a relatively hyperbolic group, relative to the collection of

maximal parabolic subgroups P� of �. From [3, Theorem 2.6], we know that the

collection A of infinite maximal subgroups Mc that stabilize a geodesic c.R/ �

H3 and infinite maximal parabolic subgroups P� that fix a unique boundary point

� 2 @H3 is adapted to the pair .Fin; Vcyc/.

Let A be the collection of infinite maximal Mc or P� subgroups of �. Let H be

a complete set of representatives of the conjugacy classes within A, and consider

the following cellular homotopy �-push-out:

a

H2H

� �H
x
EH

x
E� D H3

a

H2H

� �H

xx
EH X

 

!

 

!
 

!

 

!
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Then Proposition 4.2 tells us that X is a model for
xx
E�. Since X is 3-dimensional,

we obtain the inequality gd.�/ � 3. If � is nonuniform, it contains subgroups

isomorphic to Z2, and the conclusion follows from Lemma 2.1.

Suppose now that � is a uniform lattice. The push-out construction above gives

rise to the Mayer–Vietoris sequence

� � � �!
xx
H3.�I

x
Z/ �!

� M

H2Hxx
H3.H I

x
Z/

�
˚
x
H3.�I

x
Z/ �!

M

H2H
x
H2.H I

x
Z/ �! � � � :

Note that in this case H is always of the form Mc (there are no P� elements in H

because we have no parabolic elements), hence it is virtually cyclic. Moreover, we

have
x
H3.�I

x
Z/ Š H 3.M IZ/ Š Z. The Mayer–Vietoris sequence thus simplifies

to

� � � �!
xx
H3.�I

x
Z/ �! Z �! 0 �! � � � :

This gives the lower bound 3 � cd.�/ � gd.�/ and completes the proof. �

7. Two exceptional cases

In this section, we focus on manifolds whose JSJ decomposition has all pieces

that are Seifert fibered with Euclidean base orbifold. We let K denote the twisted

I-bundle over the Klein bottle. Note that, while the Klein bottle is a non-orientable

surface, the space K is an orientable 3-manifold with a torus boundary.

Lemma 7.1. Let M be an irreducible 3-manifold, and assume that all the pieces

in the JSJ decomposition are Seifert fibered with Euclidean base orbifold. Then

either:

(1) M is a torus bundle over S1, or

(2) M consists of two copies of K glued together along their boundary.

Proof. From Proposition 5.6, we know the only such Seifert fibered pieces are

either (i) the torus times an interval, and (ii) the twisted I -bundle K over the Klein

bottle. If we have a piece of type (i) whose boundary tori are distinct in M , then

we would violate the minimality of the number of tori in the JSJ decomposition.

So if we have a piece of type (i), then the JSJ decomposition of M in fact has

a single piece, and M must be a torus bundle over S1. If there are no pieces of

type (i), then the decomposition of M consists of two copies of K glued together

along their boundary. �

We will now compute the virtually cyclic geometric dimension for these

classes of manifolds.
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7.1. Torus bundles over the circle

Proposition 7.2. Let M be a torus bundle over S1, with fundamental group �.

Then exactly one of the following happens:

(1) M is modeled on E3, hence gd.�/ D 4,

(2) M is modeled on Nil, and gd.�/ D 3,

(3) M is modeled on Sol, and gd.�/ D 3.

Proof. Since M is a torus bundle over S1, � Š Z2
Ì' Z with 'WZ ! SL2.Z/.

Denote '.1/ D A. We have three cases depending on whether the matrix A

is elliptic, parabolic or hyperbolic. For a non-identity matrix A, these cases

correspond to whether the trace of A is < 2,D 2 and > 2 respectively (the identity

matrix is defined to be elliptic).

If A is elliptic it has finite order, so � is virtually Z3. This implies M is finitely

covered by the 3-torus, and must be crystallographic (see [1, Table 1]). Then

gd.�/ D 4 follows from [2].

If A is parabolic, then the action on Z2 has an invariant rank one subgroup.

This implies that the center Z of � 0 is infinite cyclic. Since Z is a characteristic

group of � 0, it follows that Z is an infinite cyclic normal subgroup of �. Applying

[11, Theorem 7], we see that M is Seifert fibered with virtually nilpotent (but

not virtually abelian) fundamental group, so is modeled on Nil (see [1, Table 1]).

From Proposition 5.4 we obtain that gd.�/ D 3.

Finally, consider the case where A is hyperbolic. Then the action of A on Z2

does not have any non-trivial invariant subgroups. This implies the center of �

is trivial, so by [14, Theorem 4.7.13] we obtain that M is modeled on Sol. In

order to compute gd.�/, we will verify that every finite index subgroup of � has

finite center. Let H � � be a finite index subgroup. Then we have the short exact

sequence

1 �! H \ Z
2 �! H �! Z �! 1:

Then H \ Z2 has finite index in Z2, and p.H/ ¤ 0. A is hyperbolic, so every

positive power of A is also hyperbolic. This again implies that the centralizer

Z�.H/ must be trivial. Recalling that H was an arbitrary finite index subgroup

of �, [7, Theorem 5.13] allows us to conclude gd.�/ D 3. �

7.2. Twisted doubles of K

Proposition 7.3. Let M be an irreducible 3-manifold obtained as the union of

two copies of K, where the gluing is via a homeomorphism 'WT ! T between

the boundary torus. Denote by � the fundamental group of M . Then exactly one

of the following happens:
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(1) M is modeled on E3, hence gd.�/ D 4,

(2) M is modeled on Nil, and gd.�/ D 3,

(3) M is modeled on Sol, and gd.�/ D 3.

Proof. We know that �1.K/ is isomorphic to the fundamental group of the Klein

bottle ZÌZ. This implies � Š .ZÌZ/�Z2 .ZÌZ/, where the Z2, which embeds

as an index two subgroup of ZÌZ, comes from the boundary of K. Note that the

Z2 subgroup is a normal subgroup of �, so can be identified with the kernel of

an induced surjective morphism pW� ! D1. Defining � 0 WD p�1.Z/ to be the

pre-image of the cyclic index two subgroup of the infinite dihedral group D1, we

obtain the diagram

1 Z2 � D1 1

1 Z2 � 0 Z 1

 

!

((

 

!

 

!
p  

!

 

!

 

!

 

!
p

 
-

!

 

!

 
-

!

Thus we see that � 0 is one of the groups discussed in Proposition 7.2. Since �

contains � 0 as an index two subgroup, we see that the geometry of M coincides

with the geometry of the corresponding double cover M 0 (see the algebraic criteria

in [1, Table 1]).

The calculations of gd.�/ then follow from [2] in the E3 case, and from

Proposition 5.4 in the Nil case. In the Sol case, just as in Proposition 7.2, one

can easily verify that � satisfies the conditions of [7, Theorem 5.13], which gives

us gd.�/ D 3 (the details are left to the reader). �

Let us summarize the information we have so far on the JSJ decomposition

of M , when M is not geometric.

Corollary 7.4. Let M be a prime 3-manifold, which we assume is not geometric,

and let Ni be the pieces in the JSJ decomposition of M . Then all the Ni are either

(i) hyperbolic, (ii) Seifert fibered over a hyperbolic base, or (iii) copies of K, the

twisted I -bundle over the Klein bottle.

Moreover, every piece of type (iii) is attached to a piece of type (i) or (ii). In

particular, there must be a piece of type (i) or (ii).

Proof. There must be at least one torus in the decomposition, for otherwise

M itself is closed hyperbolic or closed Seifert fibered, hence geometric. By

Lemma 7.1 and Proposition 7.2, there are no pieces homeomorphic to T 2� Œ0; 1�,

so the only pieces that are Seifert fibered over a Euclidean base 2-orbifold are

copies of K. Finally, if a piece of type (iii) is attached to a piece of type (iii), then

Proposition 7.3 tells us M is geometric. �
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8. Reducing to the JSJ pieces

Next we relate the study of the virtually cyclic geometric dimension of the funda-

mental group of a prime manifold, to that of the components in its JSJ decomposi-

tion. In Sections 5 and 6, we have already calculated the virtually cyclic geometric

dimension of the prime manifolds that are geometric. So throughout this section,

we will work exclusively with non-geometric prime 3-manifolds.

Theorem 8.1. Let M be a closed, oriented, connected, prime 3-manifold which

is not geometric. Let N1; : : : ; Nk with k � 1, be the components arising in the JSJ

decomposition. Denote G D �1.M/, Gi D �1.Ni /. Then

3 � max¹gd.Gi / j 1 � i � kº � gd.G/ � max¹4; gd.Gi/ j 1 � i � kº:

Proof. Since M is not geometric, it has at least one torus in its JSJ decomposition

(see Corollary 7.4), so we will have a subgroup of G isomorphic to Z2. Moreover,

every Gi has a subgroup isomorphic to Z2, giving us the first inequality. The

second inequality follows from Lemma 2.1. For the last inequality, we proceed as

in the proof of Theorem 4.12. The JSJ decomposition provides a splitting of G as

the fundamental group of a graph of groups with vertex groups Gi and edge groups

copies of Z2, and by Lemma 2.1 we have gd.Z2/ D 3. Now the conclusion will

follow from Corollary 4.11 once we prove that the splitting of G is acylindrical,

which is done below in Proposition 8.2. �

Proposition 8.2. Let M be a closed, oriented, connected, prime 3-manifold,

which is not geometric. Let Y be the graph of groups associated to its JSJ

decomposition. Then the splitting of G D �1.M/ as the fundamental group of

Y is acylindrical.

Proof. Let T be the Bass–Serre covering tree of Y, and let c be a path of length 5.

G acts without inversion on T , so elements that stabilize c must in fact fix it,

for otherwise they would invert the center edge of c. We will argue that the

stabilizer of c is trivial. This will show that the splitting satisfies the definition

of acylindricity, with integer k D 5.

Let c have edges ¹ Qy1; : : : ; Qy5º, and let o. Qyi / D zPi�1; t . Qyi/ D zPi in T . Let

yi D p. Qyi/ 2 edge Y and Pi D p. zPi/ 2 vert Y for each vertex and edge in c.

Let Ni , 0 � i � 5, be the manifolds that correspond to each vertex Pi , with

fundamental groups Gi . Let Ti , 1 � i � 5, be the torus associated to each edge yi ,

and denote by Zi the stabilizer of Qyi (which is a conjugate in G of the fundamental

group of Ti ).

Now suppose that one of the Ni (1 � i � 4) is hyperbolic. Then the stabilizer

of c is contained in Zi�1 \ Zi . The groups Zi�1 and Zi are stabilizers of two

distinct horospheres of H3. It follows that the group that fixes c must be finite,

hence trivial since the Gi is torsion-free.
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So we now need to consider the case where all the Ni (1 � i � 4) are

Seifert fibered. Recall that the Ni have non-empty boundary, so there are only

two possible cases for each of their base orbifold: either the base is hyperbolic, or

it is Euclidean. In view of Corollary 7.4 either N2 or N3 is Seifert fibered with

hyperbolic base 2-orbifold.

Let us now briefly pause and focus on N a Seifert fibered space, with hyper-

bolic base 2-orbifold. Then by [10, Theorem 1.2.2], G D �1.N / acts on H2 � R,

with quotient the corresponding Ni . Notice an important feature of such Seifert

fibered spaces – they come equipped with a canonical Seifert fibered structure.

Indeed, the circle fibers in Ni always lift to copies of the R factor in the universal

cover.

Each edge incident to the corresponding vertex QP has stabilizer a Z2 subgroup

of G. Up to reparametrization, the Z2-action on the universal cover H2 � R is

described as follows. The first coordinate acts by translation in the R-factor, while

the second coordinate acts by a parabolic isometry on the H2-factor. Noting that a

pair of parabolic isometries that are centered at different points at infinity always

intersect trivially, we conclude that the corresponding pair of edge stabilizers can

only intersect in an infinite cyclic subgroup. Moreover, the axes of translation

of this cyclic subgroup corresponds precisely to the fibers of the Seifert fibration

on N .

We now continue our proof. If both N2, N3 are Seifert fibered with hyperbolic

base, then we claim that Z1\Z2\Z3 is trivial. By the discussion above, Z1\Z2 is

an infinite cyclic subgroup of G2, generated by the Seifert fibers of N2. Similarly,

Z2 \ Z3 is also an infinite cyclic subgroup of G3, generated by the Seifert fibers

of N3. Consider the torus T2 (with fundamental group Z2) where N2 and N3 are

glued together. This 2-torus has two circle fibrations induced on it, depending on

whether we view it as a subspace of N2 or of N3. The circle fibers induced by the

N2 fibration correspond to the subgroup Z1 \Z2, while the circle fibers induced

by the N3 fibration correspond to the subgroup Z2 \ Z3. If these two subgroups

intersect non-trivially, then the two fibrations match on the common 2-torus T2,

and we obtain a Seifert fibered structure on N2 [T2
N3. But this contradicts

the minimality of the JSJ decomposition. Thus the two fibrations on T2 cannot

match, and hence .Z1 \ Z2/ \ .Z2 \ Z3/ is trivial. But this group is precisely

the intersection of the stabilizers of the three consecutive edges Qy1; Qy2; Qy3 in the

path c. Since this intersection contains the stabilizer of c, we conclude that c has

trivial stabilizer.

Finally, we are left with one remaining case: one of N2, N3 is Seifert fibered

with hyperbolic base, while the other one is Seifert fibered with flat base. Without

loss of generality, we assume that N2 has hyperbolic base, while N3 has flat base.

Then as discussed above, we see that N3 must coincide with K, the twisted interval

bundle over the Klein bottle. In particular, G3 D �1.N3/ coincides with the

fundamental group of the Klein bottle, and the single boundary torus @N3 has

fundamental group Z2 D Z3 which is the canonical index two Z2 subgroup in G3.
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Let us briefly focus on the manifold K. The universal cover of K is R2� Œ0; 1�.

There are precisely two possible Seifert fibrations of K. Indeed, a Seifert fibration

lifts to a foliation of the universal cover R2 � Œ0; 1� by parallel straight lines. In

order to descend to a well-defined foliation of K, the straight lines have to be

invariant under the action of the �1.K/, the fundamental group of the Klein bottle.

Since �1.K/ is crystallographic, we have a well-defined holonomy involution

hWZ2 ! Z2, given by conjugating the normal index two subgroup Z2 G�1.K/ by

any element in �1.K/ n Z2. This holonomy action leaves invariant precisely two

cyclic subgroups of Z2, corresponding to the˙1 eigenspaces of h. The foliations

with slopes matching the eigenspace of h are precisely the ones which will descend

to K.

Continuing our proof, the canonical Seifert fibered structure on the piece N2

induces foliations by straight lines on R2 � ¹0º � zN3. It also induces a foliation

by straight lines on R2 � ¹1º � zN3. These two foliations are related: the foliation

on R2 � ¹1º can be obtained from the foliation on R2 � ¹0º, by applying the

holonomy map h. There are now two possible cases: either these foliations have

slope matching an eigenspace of h, or they will not.

If the foliation matches the eigenspace of h, then putting the corresponding

Seifert structure on N3, we obtain a globally defined Seifert structure on N2[T2
N3.

This contradicts the minimality condition in the JSJ splitting.

On the other hand, if the slope does not match an eigenspace, then from the

action of the holonomy h, we see that the straight line foliations on the two sides

R2 � ¹0º and R2 � ¹1º are by lines of different slope. But this means that,

if we view the infinite cyclic groups Z1 \ Z2 and Z3 \ Z4 as subgroups of

Z2 G �1.K/ D G3, they act by translations in distinct directions, and hence the

intersection .Z1\Z2/\ .Z3\Z4/ is trivial. Since the stabilizer of c is contained

within this intersection, it is also trivial. This was the last remaining case, and

hence completes the proof that the splitting is acylindrical. �

9. Bredon cohomology computation

From our work in Sections 5 and 6, we know the geometric dimension for fun-

damental groups of closed geometric 3-manifolds. In this section, we focus on

non-geometric prime 3-manifolds.

Proposition 9.1. Let M be a closed oriented prime 3-manifold, with � D �1.M/,

and assume that M is not geometric. Then gd.�/ D 3.

Proof. Since M is not geometric, Theorem 8.1 gives us the inequality 3 �

gd.�/ � 4, so we just need to rule out gd.�/ D 4.

Let Y be the graph of groups associated to the JSJ decomposition of M , so

that �1.Y/ D �1.M/ D �. Then the Gi are the groups associated to the vertices
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pi 2 vert Y . Proposition 8.2 tells us that Y is an acylindrical graph of groups.

Letting F be the family of virtually cyclic subgroups of � that are conjugate into

one of the Gi , Proposition 4.10 tells us that an
xx
E� can be obtained by attaching

2-cells to a model for EF�. Thus our proposition would follow immediately from

the

Claim. There exists a 3-dimensional model for EF�.

Unfortunately the naïve model for EF� described in the proof of Proposi-

tion 4.8 is 4-dimensional. In order to show that there exists a 3-dimensional model,

we will instead show that the fourth Bredon cohomology H 4
F

.�IF / vanishes for all

coefficient modules F 2 Mod-OF�. This implies that the Bredon cohomological

dimension cdF� D 3, which implies the existence of the desired 3-dimensional

model (see Lemma 2.1).

To show H 4
F

.�IF / D 0, we make use of the graph of spaces model described

in Proposition 4.8. Chose an orientation A of the edges of the finite graph Y. Then

by [8, Remark 4.2], the graph of spaces gives rise to the long exact sequence

� � �
@�

�!
M

vert Y xx
H3.Gi IF /

˛�

�!
M

y2A xx
H3.Z2IF /

��

�! H 4
F

.�IF /
@�

�!
M

vert Y xx
H4.Gi IF / �! � � � :

(1)

We know that all the pieces in the JSJ decomposition satisfy gd.Gi / D 3, so by

Lemma 2.1, we also have cd.Gi / D 3. This forces
xx
H4.Gi IF / D 0 for all the Gi .

Thus in order to prove that H 4
F

.�IF / is trivial, it suffices to prove that

˛�W
M

vert Y xx
H3.Gi IF / �!

M

y2A xx
H3.Z2IF / (2)

is surjective. Given an oriented edge y 2 A, and one of the endpoints pi 2 vert Y ,

the corresponding morphism
xx
H3.Gi IF /!

xx
H3.Z2IF / is induced by the inclusion

Z2 ,! Gi , corresponding to one of the boundary tori T 2 ,! Ni . We know

from Corollary 7.4 that each piece Ni from the JSJ decomposition has nonempty

boundary and is either (i) hyperbolic, (ii) Seifert fibered with hyperbolic base

2-orbifold, or (iii) a copy of K, the twisted I -bundle over the Klein bottle. Let

us analyze the morphism in the first two cases.

In case (i), Ni is hyperbolic with non-empty boundary and fundamental

group Gi . Then Proposition 6.1 gives the following Mayer–Vietoris exact se-

quence

� � � �!
xx
H3.Gi IF /!

� M

H2Hxx
H3.H IF /

�
˚
x
H3.Gi IF / �!

M

H2H
x
H3.H IF / �! � � � :
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Since each H 2 H is either 2-crystallographic or virtually cyclic, we always have

that
x
H3.H IF / D 0. Also, among the elements of H we have the fundamental

groups of the boundary tori of Gi , lets call H0 � H the subset consisting of those

copies of Z2. Then for every H
00 � H

0 we obtain from the Mayer–Vietoris above

that the map

xx
H3.Gi IF / �!

M

H2H00xx
H3.H IF /

induced by the inclusion of subgroups is surjective.

Next, let us analyze case (ii), where Ni is Seifert fibered with B modeled on

H2 and fundamental group Gi . Then using the push-out from Proposition 5.7, an

argument similar to the one in the hyperbolic case, shows that the map

xx
H3.Gi IF / �!

M

H2H00xx
H3.H IF /

is again surjective for every subset H00 � H
0, where again H

0 is the set of Z2

subgroups in Gi corresponding to boundary components of Ni .

Note that in case (iii), where Ni is the twisted interval bundle over the Klein

bottle, it is not clear how to prove a surjectivity statement as above, as we do not

have a push-out construction for the corresponding classifying space.

We now return to the proof of the Proposition. We needed to show that the

morphism ˛� in Equation (2) is surjective. The only possible difficulty lies from

the Z2 subgroups that arise as boundaries of geometric pieces homeomorphic

to K (see last paragraph). But from Corollary 7.4, every geometric piece Ni that

is homeomorphic to K gets attached to another geometric piece Nj that is not

homeomorphic to K. In particular, the corresponding morphism
xx
H3.Gj IF / !

xx
H3.H IF / is surjective (where H Š Z2 is the subgroup corresponding to the

2-torus @Ni ). It is now easy to see that the morphism in Equation (2) is in fact

surjective, completing our proof. �

Table 1. Virtually cyclic dimension of non-closed pieces in the JSJ decomposition.

Type of geometric piece Analyzed in gd.�/

Compact Seifert fibered piece with

bad base orbifold or with good base

orbifold modeled on S2

Impossible, Lemma 5.5 –

Compact Seifert fibered piece with

base orbifold modeled on H2

Proposition 5.7 3

Compact Seifert fibered piece with

base orbifold modeled on E2

Proposition 5.6 3

Hyperbolic piece Proposition 6.1 3
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10. Proof of the main theorem

We are now ready to establish our main theorem.

Proof of Theorem 1.1. First, we verify that gd.�/ � 4 for every closed orientable

3-manifold M . In view of Theorem 4.12, it is sufficient to consider the case where

N is prime. We have two cases depending on whether N is geometric or not. If

N is a closed geometric 3-manifold, then gd.�/ � 4 always holds – see Table 2

for details. On the other hand, if N is a prime 3-manifold which is not geometric,

then Proposition 9.1 shows that gd.�/ D 3.

Having established that gd.�/ � 4 for all closed orientable 3-manifolds, let

us now analyze the possibilities for gd.�/, and establish statements (1)–(4) in our

main theorem.

(1) For every group � and every family F of subgroups, gd
F

.�/ D 0 if and

only if � 2 F. Statement (1) follows as a particular case.

(2) Assume that gd.�/ D 2. Then it follows from Theorem 4.12 that all the

components in the prime decomposition have virtually cyclic geometric dimen-

sion at most 2. Proposition 9.1 then tells us that all the prime factors of M are geo-

metric. Looking at Table 2, we see all the components in the prime decomposition

must be modeled on S2 � E or S3, and hence have virtually cyclic fundamental

group. Thus � is a free product of virtually cyclic groups.

Conversely, if � is a free product of virtually cyclic groups, then we have an

acylindrical splitting of �. By Corollary 4.11 we obtain gd.�/ � 2. To obtain

a lower bound we just have to observe that � always contains a free group on

two generators. Since such groups have virtually cyclic dimension equal to 2, we

obtain 2 � gd.�/.

(3) If � contains a Z3 subgroup, applying Lemma 2.1 gives the lower bound

4 D gd.Z3/ � gd.�/, which forces gd.�/ D 4. Conversely, in view of

Theorem 4.12, if gd.�/ D 4 then one of the components arising in the prime

decomposition of M must have virtually cyclic dimension D 4. But for prime

manifolds, we know that having virtually cyclic dimension D 4 implies that the

manifold is geometric (by Proposition 9.1), and looking at Table 2 we see the

manifold must be crystallographic. This implies its fundamental group (itself a

subgroup of �) contains a Z3 subgroup.

(4) To complete the proof, let us now assume that � is not virtually cyclic,

nor a free product of virtually cyclic groups, nor has a Z3 subgroup. We will

prove that gd.�/ D 3. Let M D P1# � � �#Pk with corresponding free splitting

� WD �1 � � � � ��k . In view of Theorem 4.12, it suffices to show that all the prime
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manifolds Pi in the decomposition satisfy gd.�i / � 3, and that at least one Pi has

gd.�i / D 3.

First note that none of the Pi can be crystallographic, since � does not contain

any Z3 subgroup. From Table 2, we see that if Pi is prime, geometric, but not

crystallographic, then gd.�i / � 3. On the other hand, if Pi is not geometric,

then from Proposition 9.1 it must have gd.�i / D 3. So we see that indeed all

gd.�i / � 3.

Finally, if none of the Pi have gd.�i /D3, then they must all satisfy gd.�i /�2.

Combining the results in Table 2 and Proposition 9.1, this can only happen if all

the Pi satisfy gd.�i / D 0. From Table 2, this only occurs if all the �i are virtually

cyclic, forcing � to either be virtually cyclic (if there is only one prime factor)

or to be a free product of virtually cyclic groups. But both of these statements

are contradictions. We conclude that there must exist a Pi with gd.�i / D 3.

Applying Theorem 4.12 gives us gd.�/ D 3, and completes the proof of our main

theorem. �

Table 2. Virtually cyclic dimension of closed geometric manifolds.

Type of closed 3-manifold Analyzed in gd.�/ Geometry

Seifert fibered with bad base orbifold or

good base orbifold modeled on S2

Prop. 5.1 0 S3 or S2 � E

Seifert fibered manifold with base orbifold

modeled on H2

Prop. 5.3 3 H2 or ePSL2.R/

Seifert fibered manifold with base orbifold

modeled on E2

Prop. 5.4 4 or 3 E3 or Nil resp.

Hyperbolic manifold Prop. 6.1 3 H3

Remark 10.1. Looking through the proof of Theorem 1.1 above, we see that the

exact same arguments also establish the geometric description given in Corol-

lary 1.2.
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