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Introduction

The Chebyshev polynomials Td WC ! C, defined for d � 2 by the equation

Td .cos �/ D cosd� , are important in many areas of mathematics. In the study

of single-variable complex dynamics, they are especially notable for being post-

critically finite, and for having a “smooth” Julia set, namely the interval Œ�1; 1�.

Moreover, their restrictions to Œ�1; 1� act as “folding maps,” whose dynamics can

be completely described.

In the 1980s, Veselov [18] and Hoffman and Withers [9] defined, for each root

system ˆ in R
n, a family of “Chebyshev-like” polynomial maps Tˆ;d WC

n ! C
n.

(Certain special cases, particularly in dimension 2, had been studied since the

1970s [3, 10], although not in a dynamical context.) These maps Tˆ;d are also

post-critically finite (in an appropriate sense), and each of them acts as a “folding

map” on a certain compact subset of Cn, which depends only on ˆ.

Any post-critically finite map f WCn ! C
n has an associated iterated mon-

odromy group IMG.f /, which encodes the dynamics of f algebraically, espe-

cially on (the boundary of ) the set of points in C
n that do not escape to infinity un-

der iteration of f . Iterated monodromy groups were introduced by Nekrashevych

[12, 13, 14] and have proved to be a powerful tool in both dynamics and group

theory. However, very few such groups have been calculated for post-critically

finite maps of Cn where n > 1; see [1, 15] for the only examples known to the

author. (A special case of the present article’s main result, obtained by different

methods, is shown in [2].)

https://creativecommons.org/licenses/by/4.0/
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It is known that the iterated monodromy group of a Chebyshev polynomial Td

is the infinite dihedral group ha; b j a2 D b2 D idi, which may be realized as the

group of transformations of � 2 C that leave the cosine 1
2
.ei�Ce�i�/ invariant. In

this article, we generalize this result to Chebyshev-like maps in every dimension

n � 1. Given a root system ˆ � R
n, we let zWˆ denote the associated affine Weyl

group.

Theorem. Let Tˆ;d WC
n ! C

n be a Chebyshev-like map associated to the root

system ˆ. Then IMG.Tˆ;d / is isomorphic to zWˆ.

Our approach is somewhat indirect. Because Tˆ;d is post-critically finite, its

post-critical locus is a (not necessarily irreducible) hypersurfaceDˆ � C
n, which

we show depends only onˆ. The iterated monodromy group IMG.Tˆ;d / is defined

as a quotient of the fundamental group of the complement of Dˆ. However, we do

not compute this fundamental group at the start; instead, we relate IMG.Tˆ;d / and

�1.C
n n Dˆ/ to the fundamental group of a certain complement of hyperplanes

(the “Cartan–Stiefel diagram,” see §2). Along the way, we uncover �1.C
n nDˆ/.

Corollary. For every root system ˆ, there exists an infinite hyperplane arrange-

ment Hˆ � C
n, invariant under zWˆ, such that �1.C

n nDˆ/ is isomorphic to an

extension of zWˆ by �1.C
n nHˆ/.

Iterated monodromy groups are examples of self-similar groups acting on

trees. Thus we also have the following consequence.

Corollary. Any affine Weyl group of rank n acts faithfully as a self-similar group

on a rooted dn-ary tree for any d � 2.

It is natural to conjecture that the property of having an iterated monodromy

group isomorphic to an affine Weyl group characterizes the Chebyshev-like maps.

Conjecture. Let f WCn ! C
n be post-critically finite. If the iterated monodromy

group of f is an affine Weyl group, then (some iterate of ) f is a Chebyshev-like

map.

Here is the structure of the paper. In §1, we recall the necessary definitions

from the theory of root systems and review the definition of the Chebyshev-like

maps Tˆ;d . In §2, we study the post-critical locus of each map Tˆ;d . In §3, we

recall the definition of iterated monodromy groups and establish a key lemma.

Finally, in §4 we prove the main result.
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1. Root systems and Chebyshev-like maps

First we review some of the theory of root systems. References are [7, 16]. The

notation used here is similar but not identical to that of [9].

Throughout, we endow R
n with the standard inner product h � ; � i, which we

extend to a Hermitian form on C
n, also written h � ; � i, that is antilinear in the first

variable and complex linear in the second variable—that is, for all � 2 C and

v;w 2 C
n, we have hv; �wi D �hv;wi D hN�v;wi.

Definition 1.1 (complex reflection). A nonzero vector v 2 Cn and a real number

` 2 R together determine a complex reflection �v;`WC
n ! C

n, given algebraically

by

�v;`.x/ D x � 2
hv; xi � `

hv; vi
v:

Note that �v;` is complex-affine in x, and its derivative is D�v;` D �v;0. The

fixed-point set of �v;` is the complex hyperplane Hv;` defined by the equation

hv; xi D `. If v 2 Rn, then �v;` restricts to an ordinary reflection Rn ! Rn across

the real hyperplane Hv;` \R
n.

Definition 1.2 (root system, root, coroot). A root system (with rank n) is a finite

set of vectors ˆ � R
n such that the following conditions are satisfied:

� ˆ spans Rn;

� if v 2 ˆ and � 2 R, then �v 2 ˆ () � D ˙1;

� if v 2 ˆ, then �v;0.w/ 2 ˆ for all w 2 ˆ;

� if v 2 ˆ and w 2 ˆ, then 2
hv;wi

hv; vi
2 Z.

Elements of ˆ are called roots. For v 2 ˆ, the coroot of v is v_ D
2 v

hv; vi
.

A root system ˆ is irreducible if it cannot be partitioned into root systems of

lower rank, which are contained in orthogonal subspaces.

Figure 1. Irreducible root systems of rank 2: respectively, A2, B2, and G2.
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When the type of ˆ is known (such as An, Bn, Cn, Dn, E6, E7, E8, F4, or G2

in the cases thatˆ is irreducible), then in notation we may replaceˆwith its type.

Definition 1.3 (Weyl group, affine Weyl group). Given a root system ˆ, the Weyl

group of ˆ is the group Wˆ generated by all reflections of the form �v;0, v 2 ˆ.

The affine Weyl group of ˆ is the group zWˆ generated by all reflections of the

form �v;`, v 2 ˆ, ` 2 Z.

Equivalently, the affine Weyl group zWˆ can be defined as the semidirect

product Q_
ˆ Ì Wˆ, where Q_

ˆ is the lattice in R
n generated by the coroots of

ˆ. Both Wˆ and zWˆ may be thought of as acting on either Rn or Cn.

Definition 1.4 (simple roots, fundamental weights). Given a root systemˆ � R
n,

let �WRn ! R be a linear functional that does not vanish on any elements of ˆ.

The elements v of ˆ such that �.v/ > 0 are called positive roots (relative to �); a

positive root ˛ is called simple if it cannot be written as a sum ˛ D vCw where

v and w are distinct positive roots. The simple roots form a basis ¹˛1; : : : ; ˛nº of

R
n; the fundamental weights !1; : : : ; !n form the dual basis to the coroots of the

simple roots: that is,

h!j ; ˛
_
k i D

´

1 if j D k,

0 if j ¤ k.

Now we reach our main definition.

Definition 1.5 (generalized cosine, Chebyshev-like map). Let ˆ � R
n be a root

system andWˆ its Weyl group. Let !1; : : : ; !n be a choice of fundamental weights

for ˆ. For each 1 � k � n, define  k from C
n to C by

 k.x/ WD
X

r2Wˆ!k

exp.2�ihr; xi/

D
1

jStabWˆ
.!k/j

X

w2Wˆ

exp.2�ihw!k ; xi/;

where Wˆ!k is the orbit of !k under Wˆ, and StabWˆ
.!k/ is the stabilizer of !k

in Wˆ. Then define the generalized cosine ‰ˆWC
n ! C

n by

‰ˆ WD . 1; : : : ;  n/:

For each integer d � 2, let md WC
n ! C

n denote multiplication by d . Then the

Chebyshev-like map Tˆ;d WC
n! C

n is defined by the functional equation

Tˆ;d ı‰ˆ D ‰ˆ ımd . (1)
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Theorem ([9, 18]). Given any root system ˆ of rank n and any integer d � 2,

equation (1) defines a polynomial map Tˆ;d WC
n! C

n.

The construction above is due independently to Veselov [18, 19] and Hoffman–

Withers [9]. Up to permutation of coordinates,‰ˆ is independent of the choice of

fundamental weights, because the Weyl group acts transitively on bases of simple

roots. The terminology of “generalized cosine” comes from Hoffman and Withers,

who described these Chebyshev-like maps in terms of folding figures in R
n, which

leads to the consideration of root systems. Veselov expressed the construction

in terms of exponential invariants of semi-simple Lie algebras and noted, from

Chevalley’s theorem, that the coefficients of the polynomials defining Tˆ;d are

integers.

Example 1.6 (Chebyshev polynomials). In the classical case, from which the

Chebyshev-like maps get their name, ˆ D ¹˙1º is the A1 root system in R. Then

1 is a simple root, 1
2

is the corresponding fundamental weight, and the Weyl group

is just the two-element group generated by multiplication by�1 (in either R or C/.

Set t D ei �x , so that‰A1
.x/ D  1.x/ D t C t

�1, and we have the d th Chebyshev

polynomial Td WD TA1;d defined by the equation Td .t C t
�1/ D td C t�d . (Here

we have followed the convention that Td .2 cos �/ D 2 cosd� , contra the equation

Td .cos �/ D cosd� stated in the introduction. These two conventions produce

dynamically conjugate maps.)

Example 1.7 (a Chebyshev-like map in 2 dimensions). The A2 root system is

the simplest of the irreducible rank 2 root systems (see Figure 1). It can be

realized in the plane in R
3 having equation x1 C x2 C x3 D 0 as the set of

six vectors ˆ D ¹.˙1;�1; 0/; .0;˙1;�1/; .˙1; 0;�1/º. One choice of simple

roots is ˛1 D .1;�1; 0/, ˛2 D .0; 1;�1/. The corresponding fundamental

weights are !1 D .2=3;�1=3;�1=3/ and !2 D .1=3; 1=3;�2=3/, and so when

x D .x1; x2; x3/ satisfies x1 C x2 C x3 D 0, we have h!1; xi D x1 and

h!2; xi D x1 C x2. The Weyl group in this case is the symmetric group on

3 elements, realized as the permutations of the coordinates in R
3. If we set

tj D exp.i 2�xj / and .X1; X2/ D ‰A2
.x/, then we have the equalities t1t2t3 D 1,

X1 D t1 C t2 C t3 and X2 D t1t2 C t2t3 C t3t1. In the coordinates .X1; X2/, we

may write TA2;2, for instance, as the map

TA2;2.X1; X2/ D .X1
2 � 2X2; X2

2 � 2X1/;

which has been independently studied, e.g., in [2, 11, 17].

2. Critical and post-critical loci

Definition 2.1 (critical point, critical value, post-critical locus, post-critically

finite). Let f WCn ! C
n be a holomorphic map. A critical point of f is a point
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c such that the derivative Df.c/WCn ! C
n is singular. The critical locus of f is

the set Cf containing all critical points of f . A critical value of f is a point of

the form f .c/, where c 2 Cf . The post-critical locus of f is the union Pf of all

(strict) forward images of the critical locus of f , in symbols

Pf WD
[

k�1

f k.Cf /.

We say f is post-critically finite if Cf ¤ C
n and Pf is a closed, proper subvariety

of Cn.

The notion of a post-critically finite map of Cn was introduced by Fornæss and

Sibony [4, 5] as a generalization of post-critically finite polynomials on C. The

post-critical locus of such a map f includes the critical values of f , but it may

(and generally does) include more points of Cn. The map f is locally a covering

map away from its critical values. Thus, the restriction of f to the complement of

Cf [ Pf is a covering of the complement of Pf .

Although we will not treat the generalized cosine‰ˆ dynamically, we do need

to know what its critical locus and critical values are.

Definition 2.2 (Cartan–Stiefel diagram). Given a root system ˆ, let Hˆ be the

union of all complex hyperplanes fixed by some non-identity element of the affine

Weyl group zWˆ. That is,

Hˆ WD
[

v2ˆ
`2Z

Hv;` .

This union of hyperplanes is the (complex) Cartan–Stiefel diagram of zWˆ.

We also let Dˆ be the image of Hˆ by ‰ˆ; that is,

Dˆ WD ‰ˆ.Hˆ/.

Example 2.3. Whenˆ is the A1 root system as in Example 1.6, we have Hˆ D Z

and Dˆ D ¹˙2º.

The next example provides part of the motivation for the notation Dˆ.

Example 2.4. When ˆ is the A2 root system as in Example 1.7, the points of

Hˆ with real coordinates form the edges of a planar tiling by equilateral triangles.

Dˆ is the complex version of the deltoid (a.k.a. three-cusped hypocycloid) with

equation X1
2X2

2 C 18X1X2 D 4.X1
3 CX2

3/C 27.

The next three lemmas demonstrate the importance ofHˆ andDˆ to our study.
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Lemma 2.5. For any root system ˆ, the critical locus of ‰ˆ is Hˆ.

Proof. It is evident from the definition of ‰ˆ that ‰ˆ. Qwx/ D ‰ˆ.x/ for all

Qw 2 zWˆ, and in particular that the set of critical points of ‰ˆ is invariant under

the action of zWˆ. Thus it is sufficient to show that c is a critical point for ‰ˆ if

and only if it is equivalent under zWˆ to some point fixed by a non-identity element

of Wˆ.

First, note that if �v;0.c/ D c for some v 2 ˆ, then for all � 2 C we have

�v;0.c C �v/ D c � �v, and thus ‰ˆ is not locally injective at c; in other words,

c is a critical point of ‰ˆ. Therefore, all of Hˆ is contained in the critical locus

of ‰ˆ.

To see that ‰ˆ has no other critical points, first observe that the natural

projection C
n ! C

n=Q_
ˆ is a covering map, having no critical points. Next, ‰ˆ

is the composition of this projection and the quotient map C
n=Q_

ˆ ! C
n given

by the induced action of Wˆ on C
n=Q_

ˆ. The critical points of this latter action

are precisely the points that are fixed by some non-identity element ofWˆ, which

is to say, the image of Hˆ in C
n=Q_

ˆ. �

Lemma 2.6. Given a root system ˆ and an integer d � 2, the Chebyshev-like

map Tˆ;d is post-critically finite, with Dˆ as its post-critical locus.

Proof. Differentiating both sides of (1) at a variable point x and applying the chain

rule yields

ŒDTˆ;d .‰ˆ.x//� ı ŒD‰ˆ.x/� D ŒD‰ˆ.dx/� ımd

(using the fact that md is already linear). Therefore we shall determine when

‰ˆ.x/ is a critical point of Tˆ;d .

First suppose that x is not a critical point of ‰ˆ, i.e., x … Hˆ. Then we can

rewrite the above equation as

ŒDTˆ;d .‰ˆ.x//� D ŒD‰ˆ.dx/� ımd ı ŒD‰ˆ.x/�
�1.

This equation implies that ‰ˆ.x/ is a critical point of Tˆ;d whenever dx is a

critical point of ‰ˆ, i.e., when dx 2 Hˆ.

Now the set of critical points is closed, and so every point in the closure of

md
�1.Hˆ/ n Hˆ (which is to say, the union of all hyperplanes which are strict

preimages of hyperplanes in Hˆ) also yields a critical point of Tˆ;d . The critical

values of Tˆ;d are therefore the images of Hˆ by ‰ˆ, which is to say Dˆ.

Finally, note that Hˆ is invariant under md , because d �Hv;` D Hv;d` and d

is an integer. Therefore all critical values of Tˆ;d lie in Dˆ, every point of Dˆ is

a critical value, and Dˆ is invariant under Tˆ;d . �

Recall that a covering map pWY! X of path-connected topological spaces is

called regular when the group of deck transformations Gal.Y=X/ acts transitively

on each fiber of p.
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Lemma 2.7. Let ˆ � R
n be a root system having affine Weyl group zWˆ. Set

X D C
n n Dˆ and Y D C

n nHˆ. Then the restriction of the generalized cosine

‰ˆ to Y is a regular covering of X, with Gal.Y=X/ D zWˆ.

Proof. By Lemma 2.5, no points of Y are critical for ‰ˆ, and therefore ‰ˆ is

locally a homeomorphism when restricted to Y; i.e., ‰ˆjY is a covering map. By

definition, we have Dˆ D ‰ˆ.Hˆ/, so ‰ˆ.Y/ D X. As observed in the proof of

Lemma 2.5, ‰ˆ. Qwx/ D ‰ˆ.x/ for all Qw 2 zWˆ, so zWˆ is contained in Gal.Y=X/.

Moreover, the same proof shows that the fiber over each point ofX can be identified

with zWˆ, which implies Gal.Y=X/ D zWˆ. �

An immediate consequence of Lemma 2.7 is an expression for the fundamental

group �1.C
n nDˆ/ as an extension of zWˆ. Recall that any covering map pWY!

X induces an injective group homomorphism p�W�1.Y/ ! �1.X/, defined by

p�.Œ��/ D Œp ı ��. The subgroup p�.�1.Y// is normal in �1.X/ precisely when

p is a regular covering, and in this situation the quotient �1.X/=p�.�1.Y// is

isomorphic to the deck transformation group Gal.Y=X/. (See [8] for details.)

Corollary 2.8. Given a root system ˆ with affine Weyl group zWˆ, let ‰ˆ, Hˆ,

and Dˆ be defined as above. Then we have the following exact sequence:

0 �! �1.C
n nHˆ/ �! �1.C

n nDˆ/ �! zWˆ �! 0;

where the map �1.C
n nHˆ/! �1.C

n nDˆ/ is the injection .‰ˆ/�, and the map

�1.C
n nDˆ/! zWˆ is the induced canonical projection.

3. Iterated monodromy groups

Iterated monodromy groups of dynamical systems (and of topological automata

more generally) were introduced by V. Nekrashevych [12, 13, 14]. We recall the

definition, using slightly different notation.

Definition 3.1 (partial self-covering, monodromy action, iterated monodromy

group). Let X be a path-connected, locally path-connected topological space. A

partial self-covering of X is a covering map f WX1 ! X, where X1 is an open,

path-connected subset of X. Each iterate f k of a partial self-covering of X is

again a partial self-covering, with domain Xk D f �k.X/. We will label a partial

self-covering by the pair .X; f /.

Given a partial self-covering .X; f / and a point x0 2 X, let Tf be the tree of

preimages of x0, namely, the vertex set of Tf is the disjoint union

Tf D
G

k�0

f �k.x0/;
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and Tf has an edge from x0 2 f �k.x0/ to x00 2 f �.k�1/.x0/ if x00 D f .x0/. If f

has topological degree ı, then Tf is a rooted ı-ary tree with root x0.

The fundamental group �1.X; x0/ acts on Tf as follows: given a loop 
 based

at x0 and x0 2 f �k.x0/, use f k to lift 
 to a path Q
 starting at x0, and let Œ
� �x0 be

the endpoint of Q
 . This is the monodromy action, which induces the monodromy

homomorphism �f W�1.X; x0/! Aut.Tf /,

�f .Œ
�/W x
0 7�! Œ
� � x0:

The image of �1.X; x0/ via �f is the iterated monodromy group of f , denoted

IMG.f /.

It is not hard to check that, up to isomorphism, IMG.f / is independent of the

choice of basepoint x0. However, in what follows we will occasionally need to be

attentive to basepoints for other reasons.

Example 3.2. Suppose f WCn ! C
n is post-critically finite, with critical locus

C and post-critical locus P. Then the restriction of f to C
n n .C [ P/ is a partial

self-covering of X D C
nnP. In this situation, we define IMG.f / to be the iterated

monodromy group of .X; f /.

Given a partial self-covering .X; f /, it follows from the definitions that Œ
� 2

�1.X; x0/ is in the kernel of the monodromy homomorphism �f if and only if

every lift of 
 by every iterate of f is a loop (i.e., closed). This observation will

be useful at several points.

Example 3.3 (cf. [12]). Let Td WC ! C be the d th Chebyshev polynomial (as

in Example 1.6), and set X D C n ¹˙2º. The d � 1 critical points of Td are

2 cos.j�=d/, 1 � j � d � 1, and the images of these points lie in ¹˙2º;

moreover, ¹˙2º is forward invariant under Td . Thus the restriction of Td to

X1 D C n ¹2 cos.j�=d/ j 0 � j � dº is a partial self-covering of X. The

fundamental group of X with basepoint 0 is generated by Œ
C� and Œ
��, where 
˙

are the loops defined by 
˙.s/ D ˙2.1�e
2�is/ (Figure 2, left). Using the relation

Td .tCt
�1/ D tdCt�d , it can be seen that Œ
C� and Œ
�� both act on the tree TTd

as

order 2 automorphisms (Figure 2, right). On the other hand, the product Œ
��Œ
C�

acts on the kth level of TTd
as a permutation of order dk; therefore the order of

�Td
.Œ
��Œ
C�/ is infinite. Thus the iterated monodromy group of Td is isomorphic

to the infinite dihedral group, or in other words the affine Weyl group of the A1

root system.

Definition 3.4 (semiconjugacy). Two partial self-coverings gWY1 ! Y and

f WX1 ! X are semiconjugate if there exists a continuous map pWY ! X such

that p.Y1/ D X1 and p ı g D f ı p on Y1. The map p is then called a semicon-

jugacy from g to f , and we write pW .Y; g/! .X; f /.
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C
2

0
C 2

Figure 2. Left. Generators 
˙ of the fundamental group of C n ¹C2;�2º. Right. Lifts

of 
˙ by the Chebyshev polynomial T4 D T 2
2

. The large dots represent �2 and C2. Red

curves are lifts of 
C, and blue curves are lifts of 
�. Each curve begins and ends at a point

of T�1
4
.0/.

We are particularly interested in certain cases where two partial self-coverings

.X; f / and .Y; g/ are semiconjugate by a covering map pWY! X.

Lemma 3.5. Let .X; f / and .Y; g/ be partial self-coverings, with pW .Y; g/ !

.X; f / a semiconjugacy. Suppose that p is a regular covering map such that

p�.ker�g/ � ker�f . Choose a basepoint y0 2 Y, and set x0 D p.y0/. Then

the diagram

0 0 0

0 ker�g ker�f ker�f = ker�g 0

0 �1.Y; y0/ �1.X; x0/ Gal.Y=X/ 0

0 IMG.g/ IMG.f / IMG.f /= IMG.g/ 0

0 0 0

 !  !  !

 
!

 
!

 !
 

!

 !

 
!

 !

 

!

 

!
p�

 ! �g

 

!

 ! �f

 

!

 !

 

!

 

!

 !

 

!

 !
 

!

 !

(2)

is commutative, with exact rows and columns.

Proof. The vertical maps ker�g ! �1.Y; y0/ and ker�f ! �1.X; x0/ are

inclusions, and so the upper left square of the diagram commutes by assumption.

Outside of this square, the maps are all canonically determined, and the rest of

the diagram commutes by standard theorems of group theory. Exactness is by

construction. �

We close this section with a set of sufficient conditions for the inclusion

p�.ker�g/ � ker�f in the hypothesis of Lemma 3.5 to hold, which will allow us

to employ the diagram (2) in our arguments of the next section.
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Lemma 3.6. Let pW .Y; g/! .X; f / be a semiconjugacy of partial self-coverings.

If gk is a regular covering map for all k, and p is a regular covering map such

that p�1.Xk/ D Yk for all k, then p�.ker�g/ � ker�f .

Proof. Choose a basepoint y0 2 Y, and set x0 D p.y0/. Let Œ�� 2 ker�g ; then

every lift of � by every iterate gk is a loop. Set 
 D p ı �, and let Q
 be a lift

of 
 by some iterate f k . We want to show that Q
 is a loop. By definition, Q


starts at some x0 2 f �k.x0/ � Xk. Choose y0 2 p�1.x0/ � Yk , and lift Q
 to a

path Q� in Yk starting at y0. Now, Q� is not necessarily a lift of � by gk . However,

if we apply p to gk.y0/, we find p.gk.y0// D f k.p.y0// D f k.x0/ D x0, and

so there exists � 2 Gal.Y=X/ such that y0 D �.gk.y0//, and Q� is a lift of � by

� ı gk . Because gk is a regular covering map, the lifting property implies that

there exists a homeomorphism � 0WYk ! Yk such that � ı gk D gk ı � 0. Thus

� 0 ı Q� is a lift of � by gk , which means that � 0 ı Q� must be a loop. Because � 0 is a

homeomorphism, Q� must also be a loop, and thus p ı Q� D Q
 is a loop. Therefore

Œ
� D p�.Œ��/ 2 ker�f . �

It is worth making a couple of remarks on the condition p�1.Xk/ D Yk in the

statement of Lemma 3.6. First, for a general semiconjugacy pW .Y; g/ ! .X; f /,

we have only the inclusion Yk � p
�1.Xk/. Second, when p is a regular covering

map, the equation p�1.Xk/ D Yk is equivalent to the statement that Gal.Y=X/

preserves Yk , in the sense that �.Yk/ D Yk for all � 2 Gal.Y=X/.

4. Proof of main theorem

In Section 2 we saw that all Chebyshev-like maps Tˆ;d are post-critically finite.

Thus they have iterated monodromy groups, which we compute in this section.

Theorem 4.1. Let ˆ be a root system with affine Weyl group zWˆ. For any d � 2,

the iterated monodromy group of Tˆ;d is isomorphic to zWˆ.

Before completing the proof of Theorem 4.1, we make one more general

observation.

Lemma 4.2. Let .X; f / be a partial self-covering. If f is injective, then its iterated

monodromy group is IMG.f / D 0.

Proof. If f is injective, then it is a homeomorphism. In this case, any lift of any

loop by any iterate of f remains a loop, and therefore all of �1.X/ lies in the kernel

of �f .

Alternatively, observe that when f is injective, every level of Tf has only one

vertex, and therefore �1.X/ must act trivially at every level. �
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We can apply Lemma 4.2 to the partial self-covering .Cn nHˆ; md /, because

md is evidently injective. Thus we have ker�md
D �1.C

n nHˆ/. The following

lemma is now the primary piece that remains to be established.

Lemma 4.3. Let ˆ be a root system, and let ‰ˆ be its associated generalized

cosine. Given d � 2, let Tˆ;d be the associated Chebyshev-like map. Then .‰ˆ/�
is a surjective map from �1.C

n nHˆ/ to ker�Tˆ;d
.

Proof. Let Y D C
n nHˆ, and choose a point y0 2 R

n \ Y. Set x0 D ‰ˆ.y0/.

First we check that the conditions of Lemma 3.6 are met, in order to see that

.‰ˆ/�.�1.Y; y0// � ker�Tˆ;d . Because g D md is a homeomorphism, gk is a

regular covering for all k. The restriction of ‰ˆ to Y is a regular covering (by

Lemma 2.7), and so it suffices to check that Yk D C
n n 1

dk Hˆ is invariant under

Gal.Y=X/ D zWˆ, which is true because 1

dk Hˆ is even invariant under 1

dk
zWˆ,

which contains zWˆ.

Given Œ
� 2 �1.C
n n Dˆ; x0/, let � be a lift of 
 by ‰ˆ to a path in Y.

Then the endpoints of � join points that differ by an element of zWˆ. Suppose

that Q
 is a lift of 
 by .Tˆ;d /
k . Lift Q
 to a path Q� by ‰ˆ. Using the relation

.Tˆ;d /
k ı‰ˆ D ‰ˆ ımdk , we see that Q� D 1

dk �, up to an element of zWˆ. If Q
 is

also a loop, then the endpoints of Q� must again differ by an element of zWˆ. Thus,

if Œ
� 2 ker�Tˆ;d
, it must be true that, for all k, the path 1

dk � joins points that

differ by some element of zWˆ. We wish to show that this condition implies that �

is a closed loop.

Let Q_
ˆ � R

n be the lattice generated by the coroots of ˆ. For each a 2 Q_
ˆ,

the path aC � also projects to 
 . We can choose an element ofQ_
ˆ that sends the

endpoints of � to a single Weyl chamber of ˆ. (For instance, we can assume

that the endpoints of � are linear combinations of simple roots with positive

coefficients.) The elements of Hˆ partition this Weyl chamber into regions of

finite area, each of which is a fundamental domain for ‰ˆ.R
n/. Now we can find

k sufficiently large that both endpoints of 1

dk � are in a single fundamental domain.

This is impossible unless � is a loop, which proves the result. �

Proof of Theorem 4.1. Consider the diagram (2), withX D C
nnDˆ, Y D C

nnHˆ,

f D Tˆ;d , g D md , and p D ‰ˆ. By Lemma 4.2, IMG.md / is trivial,

which implies that ker�md
D �1.Y; y0/, and also that IMG.Tˆ;d /= IMG.md / D

IMG.Tˆ;d /. Then Lemma 4.3 implies that .‰ˆ/�W ker�md
! ker�Tˆ;d

is an

isomorphism, so ker�Tˆ;d
= ker�md

D 0. The exactness of the rows and columns

of (2) now shows that IMG.Tˆ;d / Š Gal.Y=X/, which by Lemma 2.7 is precisely

the affine Weyl group of ˆ. �

Finally, we state a consequence for the structure of affine Weyl groups, for

which we need one more set of definitions (cf. [6, 12, 13]).
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Definition 4.4 (ı-ary tree, self-similar group). Given a positive integer ı, the ı-ary

tree is the graph Tı whose vertex set consists of all finite words in the alphabet

Œı� D ¹1; 2; : : : ; ıº, with an edge between each pair of vertices w and wk, where

k 2 Œı�. The root of Tı is the empty word ¿. For each k 2 Œı�, the subtree Tı;k is

the induced graph on the set of vertices that begin with k. The map �k Ww 7! kw

is an isomorphism from Tı to Tı;k. Given an automorphism g of Tı and k 2 Œı�,

the renormalization of g at k is the induced automorphism gk of Tı defined by

gk D �
�1
g.k/
ıg ı�k. We say that a groupG of automorphisms of Tı is self-similar

if gk 2 G for all g 2 G and for all k 2 Œı�.

If .X; f / is any partial self-covering having topological degree ı, then the tree

of preimages Tf can be identified with Tı in a canonical (but non-unique) way,

and under this identification IMG.f / is a self-similar group acting faithfully on

Tı . The construction of the Chebyshev-like map Tˆ;d from a root system of rank

n implies that the topological degree of Tˆ;d is dn, which leads to the following

result.

Corollary 4.5. Let ˆ be a root system of rank n. Then, for any d � 2, zWˆ acts

faithfully as a self-similar group on the dn-ary tree as the iterated monodromy

group IMG.Tˆ;d /.
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