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we show that the set of topological entropies of G-SFTs on any such group which has
decidable word problem and admits a translation-like action of Z2 coincides with the set
of non-negative upper semi-computable real numbers. We use this result to give a complete
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1. Introduction

The topological entropy of an action G Õ X of an amenable group G on a
compact metric space X by homeomorphisms is a non-negative number which
counts the asymptotic exponential growth rate of the number of distinguishable
orbits of the system. Initially introduced by Adler, Konheim, and McAndrew [1]
for Z-actions, it is an important conjugacy invariant which has been studied
broadly.

A particularly interesting case is when G Õ X is a subshift of finite type
(G-SFT). Up to dynamical conjugacy, there are countably many distinct subshifts
of finite type, and therefore at most countably many real numbers can be attained
as the entropy of a subshift of finite type. A classical result by Lind [20] classifies
the topological entropies attainable by Z-SFTs as non-negative rational multiples
of logarithms of Perron numbers. This characterization relies on a full description
of the configurations of Z-SFTs as bi-infinite paths on a finite graph and a study
of the eigenvalues of their adjacency matrices.

A more recent result by Hochman and Meyerovitch [14] completely classifies
the entropies of Zd -SFTs. Interestingly, they show that for d � 2 the characteriza-
tion is of an algorithmic nature. More precisely, the numbers attained as entropies
of Z

d -SFTs coincides with the set of non-negative upper semi-computable real
numbers. Their classification relies on a construction which embeds arbitrarily
large computation diagrams of an arbitrary Turing machine into a Z

d -SFT.
The purpose of this study is to explore what entropies can be achieved by

subshifts of finite type defined on an arbitrary amenable group G. In particular,
we shall present a way to transfer entropies attainable by SFTs on a group H to G

whenever H can be “geometrically embedded into G.” A simple observation is
that whenever H is a subgroup of an amenable group G, then any number obtained
as the topological entropy of an H -SFT X can also be obtained as the topological
entropy of a G-SFT Y . Indeed, this is achieved by letting Y be the set of all
configurations such that every H -coset contains a configuration of X and there
are no restrictions between each individual H -coset.

In this article we generalize the above construction introducing the notion
of group charts. A group chart .X; 
/ is a dynamical structure consisting of a
dynamical system G Õ X and a continuous cocycle 
 W H �X ! G that associates
configurations in X to partitions of its underlying group G into quotients of H .
Whenever X is a G-subshift, we can use the partitions induced by the chart .X; 
/

to embed any H -subshift Y into a G-subshift Y
 ŒX� which stores the information
of Y in a natural way. We shall show (Theorem 3.10) that for any such embedding
in which the cocycle induces free actions, the topological entropy satisfies the
following addition formula,

htop.G Õ Y
 ŒX�/ D htop.G Õ X/ C htop.H Õ Y /:
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Furthermore, if both X and Y are SFTs, we have that Y
 ŒX� is an SFT. Therefore
this formula can be used to embed the entropies of H -SFTs into the set of entropies
of G-SFTs up to a fixed additive constant. We shall introduce the notion of group
charts and give a proof of the addition formula on §3.1.

In §3.2 we shall show that whenever a group chart is given by a G-SFT X , then
we can choose it in such a way that its entropy is arbitrarily small (Corollary 3.20).
This will follow from a theorem that gives a canonical way of reducing the entropy
of subshifts of finite type defined on an arbitrary countable amenable groups
(Theorem 3.17). We shall prove this theorem using the theory of quasitilings
introduced by Ornstein and Weiss [21] and a recent result of Downarowicz,
Huczec and Zhang [10].

In §3.3 we will characterize the existence of free charts, that is, charts for which
every element of x codes a true partition of G into copies of H , through the notion
of translation-like actions introduced by Whyte [26]. Furthermore, following the
ideas of Jeandel [15], we shall show that whenever H is finitely presented and
there exists a non-empty H -SFT on which H acts freely, then one can always
find a free chart .X; 
/ for which X is a G-SFT. Putting all of the previous results
together, we shall show the following result.

Theorem 3.24. Let G; H be finitely generated amenable groups and let ESFT.H/

and ESFT.G/ respectively denote the set of real numbers attainable as topological

entropies of an SFT in each group. Suppose that

(1) H admits a translation-like action on G,

(2) H is finitely presented,

(3) there exists a non-empty H -SFT for which the H -action is free.

Then, for every " > 0 there exists a G-SFT X such that htop.G Õ X/ < " and

htop.G Õ X/ C ESFT.H/ � ESFT.G/:

In §4 we shall apply the above theorem to study the groups on which Z
2

acts translation-like. It shall follow that modulo a computability obstruction, any
finitely generated amenable group on which Z

2 acts translation-like admits the
same characterization of the set of numbers that can be attained as topological
entropies of subshifts of finite type as Z2. Namely,

Theorem 4.7. Let G be a finitely generated amenable group with decidable

word problem which admits a translation-like action by Z
2. The set of entropies

attainable by G-subshifts of finite type is the set of non-negative upper semi-

computable numbers.

Finally, in §5 we shall use Theorem 4.7 to give a characterization of the
numbers attainable as topological entropies of subshifts of finite type in several
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classes of groups. More precisely, we shall give a complete classification for
polycyclic-by-finite groups (Theorem 5.6), products of two infinite and finitely
generated amenable groups with decidable word problem (Corollary 5.10), count-
able amenable groups which admit a presentation with decidable word prob-
lem and a finitely generated subgroup on which Z

2 acts translation-like (Corol-
lary 5.12) and infinite and finitely generated amenable branch groups with decid-
able word problem (Theorem 5.16).

2. Preliminaries and notation

In this note we shall consider left actions G Õ X of countable amenable groups
G over compact metric spaces X by homeomorphisms. Let us denote by F b G

a finite subset of G and by 1G the identity of G. For K b G and " > 0 we say that
F b G is left .K; "/-invariant if jKF 4F j � "jF j. From this point forward we
shall omit the word left and plainly speak about .K; "/-invariant sets. A sequence
¹Fnºn2N of finite subsets of G is called a Følner sequence if for every K b G and
" > 0 the sequence is eventually .K; "/-invariant.

2.1. Shift spaces. Let † be a finite set and G be a group. The set †G D ¹xW G !

†º equipped with the left group action G Õ X given by gx.h/ , x.hg/ is the full

G-shift. The elements a 2 † and x 2 †G are called symbols and configurations

respectively. We endow †G with the product topology generated by the clopen
subbase given by the cylinders Œa�g , ¹x 2 †G j x.g/ D aº. A support is a
finite subset F b G. Given a support F , a pattern with support F is an element
p 2 †F and we write supp.p/ D F . We denote the cylinder generated by p by
Œp� D

T

h2F Œp.h/�h.
A subset X � †G is a G-subshift if and only if it is G-invariant and closed in

the product topology. Equivalently, X is a G-subshift if and only if there exists a
set of forbidden patterns F such that

X D XF , †G n
[

p2F
g2G

gŒp�:

Given a subshift X � †G and a support F b G the language with support F

is the set LF .X/ D ¹p 2 †F j Œp�\X ¤ ¿º of all patterns which appear in some
configuration x 2 X . The language of X is the set L.X/ D

S

F bG LF .X/.

Remark 2.1. It is also possible to define the left G-action by gx.h/ , x.g�1h/

instead of x.hg/. In this article we chose the latter in order to minimize the amount
of superindices �1 and to make the notation compatible with the setting of [10],
whose results we shall use to prove Theorem 3.17.
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Definition 2.2. We say that a subshift X is of finite type (SFT) if there exists a

finite set F of forbidden patterns such that X D XF.

2.2. Topological entropy. Let G Õ X be the action of a group over a compact
metrizable space by homeomorphisms. Given two open covers U;V of X we
define their join by U _ V D ¹U \ V j U 2 U; V 2 Vº. For g 2 G let
gU D ¹gU j U 2 Uº and denote by N.U/ the smallest cardinality of a subcover
of U. If F is a finite subset of G, denote by UF the join

U
F D

_

g2F

g�1
U:

Definition 2.3. Let G Õ X be the action of a countable amenable group, U

an open cover and ¹Fnºn2N a Følner sequence for G. We define the topological

entropy of G Õ X with respect to U as

htop.G Õ X;U/ D lim
n!1

1

jFnj
log N.UFn/:

The function F 7! log N.UF / is subadditive and thus the limit does not depend
on the choice of Følner sequence, see for instance [21, 17]. The topological

entropy of G Õ X is defined as

htop.G Õ X/ D sup
U

htop.G Õ X;U/:

In the case where G Õ X is expansive, any open coverU whose elements have
diameter less than the expansivity constant achieves the supremum. Particularly,
in the case of a subshift X � †G we may consider the partition � D¹Œa�1G

j a2†º.
For a finite F � G we obtain that �F D ¹Œp� j p 2 LF .X/º. Hence, whenever X

is a subshift its topological entropy can be computed by

htop.G Õ X/ D lim
n!1

1

jFnj
log.jLFn

.X/j/:

A more intuitive way to understand this limit, is that the function F 7!
1

jF j
log.jLF .X/j/ converges as F becomes more and more invariant, that is, for

every " > 0 there exists K b G and ı > 0 such that for any .K; ı/-invariant set F

we have jhtop.G Õ X/ � 1
jF j

log.jLF .X/j/j � ". For a self contained proof and
relevant background see [16, Theorem 4.38].

In the case when the open coverU consists of pairwise disjoint open sets, it can
be shown that the function F 7! log N.UF / is not only subadditive, but satisfies
Shearer’s inequality (see [9, Corollary 6.2]). This in turn implies that in the case
of a subshift we may write

htop.G Õ X/ D inf
F 2F.G/

1

jF j
log.jLF .X/j/: (1)

where F.G/ denotes the set of all finite subsets of G, see [9, Corollary 6.3]).
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Remark 2.4. In fact the result that topological entropy can be computed as an
infimum over all finite subsets holds for any G Õ X , although it may not hold
individually for every partition U. This was proven in [9] using the variational
principle. A good way to think about it is that in the context of amenable groups,
the topological entropy coincides with the naive entropy of Burton [6].

Let us introduce the following notation which will be useful in the remainder of
the article. For a group G, we denote the set of real numbers attained as topological
entropies of G-SFTs by ESFT.G/,

ESFT.G/ D ¹r 2 R j there exists a G-SFT X; htop.G Õ X/ D rº:

Let us state two classical theorems from the literature which will be used
further on. Recall that a Perron number is a real algebraic integer greater than
1 and greater than the modulus of its algebraic conjugates.

Theorem 2.5 (Lind [20]). ESFT.Z/ is the set of non-negative rational multiples of

logarithms of Perron numbers.

In order to state the second result, we need to introduce the notion of upper
semi-computable numbers, they are also sometimes called “right-recursively enu-
merable numbers”.

Definition 2.6. A real number r is upper semi-computable if there exists a Turing

machine T which on input n 2 N halts with the coding of a rational number qn � r

on its tape such that limn!1 qn D r .

Theorem 2.7 (Hochman and Meyerovitch [14]). For d � 2, ESFT.Zd / is the set

of non-negative upper semi-computable numbers.

3. Realization of entropies of subshifts of finite type

3.1. Group charts and the addition formula

Definition 3.1. Let G; H be two topological groups and let X be a compact

topological space on which G acts on the left by homeomorphisms. A continuous

map 
 W H � X ! G is called an H -cocycle if it satisfies the equation


.h1h2; x/ D 
.h1; 
.h2; x/x/ � 
.h2; x/ for every h1; h2 in H:

The cocycle equation can be represented by the diagram shown on Figure 1.
Let us clarify how this equation fits within the classical setting of cocycles.
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A continuous map 
 as above induces an action H Õ X by setting h�x D 
.h; x/x,
where the product on the right is the one associated to the action G Õ X . With
this action H Õ X in mind, the equation simplifies to the better known equation
for cocycles


.h1h2; x/ D 
.h1; h2 � x/ � 
.h2; x/ for every h1; h2 in H:

Any H -cocycle 
 induces a family ¹H
x
Õ Gºx2X of left H -actions on G.

Indeed, if for fixed x 2 X we define for h 2 H and g 2 G, the action given by
h �x g , 
.h; gx/g, then for all h1; h2 2 H we have

.h1h2/ �x g D 
.h1h2; gx/g

D .
.h1; 
.h2; gx/gx/ � 
.h2; gx//g

D 
.h1; .
.h2; gx/g/x/ � .
.h2; gx/g/

D h1 �x .
.h2; gx/g/

D h1 �x .h2 �x g/:

x

y

z

2; x/

1h2; x/

1; y/

y D 2; x/x

z D 1; y/y D 1h2; x/x

Figure 1. The circles x; y; z represent points in the space X while the arrows represent left
multiplication by group elements. The cocycle equation states that the arrows commute:

.h1h2; x/ D 
.h1; y/
.h2; x/.

Remark 3.2. If H is a finitely generated group and S a finite generating set for
H , then the values of any H -cocycle 
 restricted to S � X define 
 completely.
Furthermore, whenever G is countable, by continuity of 
 and compactness of
S �X we have that 
 must be uniformly bounded on S �X and thus 
.S �X/ b G.
Hence if X is a G-subshift, there exists a finite set F b G such that 
 restricted
to S � X is completely defined by a finite map Q
 W S � LF .X/.

The following notion is strongly motivated by the work of Jeandel [15].
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Definition 3.3. Let G; H be two countable groups. Given a left action G Õ X

and an H -cocycle 
 W H � X ! G we say the pair .X; 
/ is a G -chart of H .

Furthermore, if for each x 2 X the action H
x
Õ G is free, we say that .X; 
/ is a

free G -chart of H .

Example 3.4. The trivial system G Õ ¹0º consisting of a single point and the
cocycle 
 W H � ¹0º ! G which sends .h; 0/ 7! h is a free G-chart of H for any
subgroup H � G.

Example 3.5. Let G D Z
2 and let †snake be the set of vector pairs given by

†snake D ¹.`; r/ 2 ¹.1; 0/; .�1; 0/; .0; 1/; .0; �1/º2 j ` ¤ rº

Visually, we may represent †snake by the set of square unit tiles shown on Figure 2.
The first vector is represented by the tail of the arrow and the second vector by the
outgoing arrow.

Figure 2. The alphabet †snake.

For a D .`; r/ 2 †snake let L.a/ D ` and R.a/ D r . We define the snake

shift as the Z
2-SFT Xsnake � .†snake/

Z
2

of all configurations x such that for
every position v 2 Z

2, we have R.x.v// D L.x.v C R.x.v//// and L.x.v// D

R.x.vCL.x.v////. Visually, these are the configurations such that every outgoing
arrow matches with an incoming arrow. Let 
snakeWZ� X ! Z

2 be the Z-cocycle
defined by 
snake.1; x/ D R.x..0; 0/// and 
snake.�1; x/ D L.x..0; 0///. It can be
verified that .Xsnake; 
snake/ is a Z

2-chart of Z.
The Z

2-chart .Xsnake; 
snake/ of Z is not free. Indeed, every configuration x

in which a cycle appears induces an action Z
x
Õ Z

2 which is not free. Let
Xfreesnake � Xsnake be the free snake subshift consisting of all configurations x 2

Xsnake such that no cycles appear, it can be verified that .Xfreesnake; 
snakejZ�Xfreesnake
/ is

a free Z
2-chart of Z. See Figure 3.

Let † be a set. The notion of G-chart gives canonical way to recover an H -orbit
of † given a G-orbit y 2 †G and basepoints x 2 X and g 2 G. Indeed, if .X; 
/

is a G-chart of H we can associate to every y 2 †G an orbit �x;g.y/ 2 †H by
setting

�x;g.y/.h/ , y.h �x g/ D y.
.h; gx/g/ for every h in H .
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Figure 3. On the left we see a local patch of Xsnake. The value of the Z-cocycle 
snake.n; x/

corresponds to the vector of Z2 obtained by following the arrow at the origin n times. On
the right we see a local patch of a configuration of Xfreesnake. As cycles are forbidden, the
cocycle induces a free action.

Moreover, this configuration satisfies, for every h1; h2 2 H ,

.h2�x;g.y//.h1/ D �x;g.y/.h1h2/

D y..h1h2/ �x g/

D y.h1 �x .h2 �x g//

D .�x;h2�xg.y//.h1/:

In other words, the left shift action of h2 on �x;g.y/ is the same as �x;h2�xg.y/,
that is, the configuration obtained by changing the basepoint g by h2 �x g.

From now on, we shall only consider G-charts .X; 
/ where X is a G-subshift.

Definition 3.6. Let .X; 
/ be a G-chart of H and Y � †H be an H -subshift. The

.X; 
/-embedding of Y is the G-subshift Y
 ŒX� � †G �X which has the property

that .y; x/ 2 Y
 ŒX� if and only if for every g 2 G then �x;g.y/ is in Y .

In simpler words, Y
 ŒX� is the subshift of all pairs .y; x/ where x 2 X and

every copy of H induced by the action H
x
Õ G is decorated independently with

a configuration from Y .

Example 3.7. Consider the free Z
2-chart .X; 
/ of Z from Example 3.5, that is,

X D Xfreesnake and 
 D 
snakejZ�Xfreesnake
. Consider the Z-subshift Y consisting on the

orbit of the sequence x over the alphabet † D ¹ ; ; º given by

x.n/ D

8

ˆ

<

ˆ

:

if n D 0 mod 3;

if n D 1 mod 3;

if n D 2 mod 3:



616 S. Barbieri

The subshift Y
 ŒX� is the set of all configurations .y; x/ 2 ¹ ; ; ºZ
2

� X

such that every path in x 2 X induced by 
 is decorated independently with a
configuration from Y , see Figure 4.

Figure 4. The subshift Y
 ŒX� is obtained by “overlaying” the copies of H induced by 
 on
X with configurations of Y .

Remark 3.8. Let .X; 
/ be a G-chart of H . If X is a G-SFT and Y is an H -SFT
then Y
 ŒX� is also a G-SFT.

Remark 3.9. If .X; 
/ is a G-chart of H and there is x 2 X such that H
x
Õ G is

free, then the map � W Y
 ŒX� ! Y given by �.y; x/ D �x;1G
.y/ is surjective. In

particular, Y
 ŒX� is non-empty if and only if Y is non-empty.

The following result is the main tool that will allow us to take a subshift of
finite type with fixed topological entropy defined on a group H , and realize it,
modulo a fixed constant, as the topological entropy of a subshift of finite type
defined on any group where H can be freely charted . It shows that the entropy
of any subshift which is embedded in a free chart can be expressed through an
addition formula.

Theorem 3.10 (addition formula). Let G; H be countable amenable groups. For

any free G-chart .X; 
/ of H and for any H -subshift Y we have

htop.G Õ Y
 ŒX�/ D htop.H Õ Y / C htop.G Õ X/: (2)
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Proof. Denote by †X and †Y the alphabets of X and Y respectively. Let " > 0.
There exists S b H and ı > 0 such that every non-empty .S; ı/-invariant set
F b H satisfies

ehtop.HÕY /jF j � jLF .Y /j � e.htop.HÕY /C"/jF j:

Let 
 W H � X ! G be the H -cocycle associated to X . As G is countable and S

is finite, the restriction of 
 to S � X is bounded. Let W1 b G be a set such that

.S � X/ � W1. By continuity of 
 there exists W2 b G such that a set such
that for every s 2 S we have 
.s; x/ D 
.s; y/ whenever xjW2

D yjW2
. For every

"0 > 0 there exists a finite set S 0 � W1 [ W2 and ı0 > 0 such that every non-empty
.S 0; ı0/-invariant F 0 b G satisfies

ehtop.GÕX/jF 0j � jLF 0.X/j � e.htop.GÕX/C"0/jF 0j:

Let F 0 b G be an .S 0; ı0/-invariant set and consider a pattern p 2 LS 0F 0.X/.
As W2 � S 0, for each f 0 2 F 0 and s 2 S the map 
p.s; f 0/ , 
.s; f 0x/ where
x 2 X is any configuration such that xjS 0F 0 D p is well defined. Let us define
the relation R � F 0 � F 0 as the smallest equivalence relation such that whenever
f 0

1 ; f 0
2 2 F 0 satisfy that for some s1; s2 2 S we have 
p.s1; f 0

1/f 0
1 D 
p.s2; f 0

2/f 0
2 ,

then .f 0
1; f 0

2/ 2 R.
The equivalence relation R induces a partition F 0 D F

p
1 ] F

p
2 ] � � � ] F

p

k.p/
.

Let us denote by @SF
p
i the set of all g0 2 S 0F 0 n F 0 for which there is f 0 2 F

p
i

and s 2 S such that 
p.s; f 0/f 0 D g0. By definition of R, note that the sets @SF
p
i

are pairwise disjoint and @SF
p
i � S 0F 0 n F 0.

We obtain that
Pk.p/

iD1 j@SF
p
i j � jS 0F 0 n F 0j � ı0jF 0j. Dividing both sides by

jF 0j and multiplying each left term by
jF

p

i
j

jF
p

i
j

we obtain

k.p/
X

iD1

j@SF
p
i j

jF
p
i j

jF
p
i j

jF 0j
� ı0:

Denote by �i the ratio �i D
jF

p

i
j

jF 0j
and by ıi D

j@S F
p

i
j

jF
p

i
j

. Note that �i 2 Œ0; 1�,
Pk.p/

iD1 �i D 1 and ıi 2 Œ0; jS j�. Let I.p/ be the set of indices such that ıi � ı.
We have that

P

i2I.p/ ıi�i C
P

j …I.p/ ıj �j � ı0. A simple manipulation of this
expression yields

X

i2I.p/

�i � 1 �
ı0

ı
: (3)

The intuitive meaning of (3) is that the total amount of sites in the .S 0; "0/-in-
variant set F 0 which lie in an induced subset of H which is .S; ı/-invariant can be
made arbitrarily large by tweaking the ratio ı0

ı
.
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As the G-chart .X; 
/ of H is free, we can identify each set F
p
i with a subset

H
p
i b H and @SF

p
i with SH

p
i n H

p
i . Furthermore, we have jH

p
i j D jF

p
i j

and jSH
p
i n H

p
i j D j@SF

p
i j. In other words, whenever j@SF

p
i j � ıjF

p
i j, the

set Hi is .S; ı/-invariant. Now we use this computation to estimate the size of
jLF 0.Y
 ŒX�/j. Clearly jLS 0F 0.X/j � jLF 0.X/j, we can thus obtain

jLF 0.Y
 ŒX�/j �
X

p2LS 0F 0 .X/

k.p/
Y

iD1

jLH
p

i
.Y /j

�
X

p2LS 0F 0 .X/

Y

i2I.p/

jLH
p

i
.Y /j

Y

j …I.p/

jLH
p

j
.Y /j

�
X

p2LS 0F 0 .X/

Y

i2I.p/

jLH
p

i
.Y /j

Y

j …I.p/

j†Y jjH
p

j
j

� j†Y j
ı0jF 0j

ı

X

p2LS 0F 0 .X/

Y

i2I.p/

jLH
p

i
.Y /j:

As each H
p
i for i 2 I.p/ is .S; ı/-invariant, we get jLH

p

i
.Y /j � e.htop.HÕY /C"/jHi j

and thus

jLF 0.Y
 ŒX�/j � j†Y j
ı0jF 0j

ı

X

p2LS 0F 0 .X/

Y

i2I.p/

e.htop.HÕY /C"/jHi j

� j†Y j
ı0jF 0j

ı

X

p2LS 0F 0 .X/

e.htop.HÕY /C"/jF 0j.1� ı0

ı
/

� j†Y j
ı0jF 0j

ı e.htop.HÕY /C"/jF 0jjLS 0F 0.X/j:

Therefore we obtain that

1

jF 0j
log.jLF 0.Y
 ŒX�/j/ �

ı0

ı
log.j†Y j/ C .htop.H Õ Y / C "/

C
1

jF 0j
log.jLS 0F 0.X/j/

�
ı0

ı
log.j†Y j/ C htop.H Õ Y / C "

C
1

jF 0j
.log.jLF 0.X/j/ C log.jLS 0F 0nF 0.X/j//

�
ı0

ı
log.j†Y j/ C htop.H Õ Y / C "

C
1

jF 0j
log.jLF 0.X/j/ C

jS 0F 0 n F 0j

jF 0j
log.j†X j/:
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As F 0 is an .S 0; ı0/-invariant set, we get that jS 0F 0 nF 0j � ı0jF 0j. Furthermore,
by definition this also implies that log.jLF 0.X/j � .htop.G Õ X/ C "0/jF 0j,
therefore for every .S 0; ı0/-invariant set F 0 we have

1

jF 0j
log.jLF 0.Y
 ŒX�/j/ � htop.H Õ Y / C htop.G Õ X/

C " C "0 C
ı0

ı
log.j†Y j/ C ı0 log.j†X j/:

By the infimum formula for the entropy, the previous expression is an upper
bound for the entropy htop.G Õ Y
 ŒX�/. Now choose " D "0 D 1

n
, this bounds the

available values of ı and ı0 above. We may arbitrarily choose ı0 � ı
n
. Letting n

go to infinity we obtain

htop.G Õ Y
 ŒX�/ � htop.H Õ Y / C htop.G Õ X/: (4)

For the lower bound, (1) shows that a lower bound for LH
p

i
.Y / is given by

ehtop.HÕY /jH
p

i
j. It is then not hard to see that for every F 0 b G we have

jLF 0.Y
 ŒX�/j � jLF 0.X/jehtop.HÕY /jF 0j: (5)

From where we obtain the other inequality. �

Recall that by Remark 3.8 if both the subshift X in a chart .X; 
/ and the
embedded subshift Y are SFTs, then Y
 ŒX� is also an SFT. This gives us a way of
producing a new G-SFT those topological entropy is the sum of their entropies.

Corollary 3.11. If .X; 
/ is a free G-chart of H and X is a G-SFT, then for every

H -SFT Y there exists a G-SFT Z which has entropy htop.G Õ X/Chtop.H Õ Y /.

In other words,

htop.G Õ X/ C ESFT.H/ � ESFT.G/:

In what follows we shall show that if there is at least one free G-chart .X; 
/

of H where X is a G-SFT, then it is always possible to find another such chart
where X can have arbitrarily low entropy.

3.2. Reducing the entropy of a chart. The goal of this section is to develop a
method for reducing the entropy of a subshift of finite type in such a way that the
new subshift of finite type preserves any cocycle defined on the original one. In
order to do this we will use the machinery of quasitilings developed by Ornstein
and Weiss in [21]. In order to minimize the complexity of the proof, we shall in
fact use a recent result by Downarowicz, Huczec and Zhang [10] which shows, for
any countable amenable group, the existence of zero-entropy exact tilings where
each tile can be made arbitrarily invariant.
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The ideas presented in this section have been strongly influenced by the work
of Frisch and Tamuz [12] which use similar methods to study generic properties
of the set of all subshifts.

Definition 3.12. Let G be a group. A tile set is a finite collection T D ¹T1; : : : ; Tnº

of finite subsets of G which contain the identity. A tiling of G by T is a function

� W G ! T [ ¹¿º such that

(1) (� is pairwise-disjoint) For every g; h 2 G, if g ¤ h then �.g/g\�.h/h D ¿;

(2) (� covers G) For every g 2 G there exists h 2 G such that g 2 �.h/h.

Lemma 3.13. Let T be a tileset. The collection of all tilings of G by T is a G-SFT.

Proof. Let XT � .T [ ¹¿º/G be the set of all configurations � W G ! T [ ¹¿º

which avoid the set of forbidden patterns D [ C where

(1) D is the set of all patterns p with support ¹1G ; gº where g D t�1
2 t1 ¤ 1G for

some t1; t2 2
S

i�n Ti and which satisfy that p.1G/ \ p.g/g ¤ ¿;

(2) C consists of all patterns q with support
S

i�n T �1
i such that 1G … q.g/g for

every g 2 supp.q/.

Both D and C are finite and thus XT is a G-SFT. We claim that � 2 XT if and
only if � is a tiling of G by T. We shall show this in two parts. Let � 2 .T[¹¿º/G.

(1) � is pairwise disjoint if and only if no pattern from D appears in � . Indeed, if
� is not pairwise disjoint there are h1 ¤ h2 such that �.h1/h1 \�.h2/h2 ¤ ¿.
Letting � 0 D h1� we have � 0.1G/ D �.h1/ and � 0.h2h�1

1 / D �.h2/, therefore
�.h1/h1 \ �.h2/h2 ¤ ¿ if and only if � 0.1G/ \ .� 0.h2h�1

1 //h2h�1
1 ¤ ¿.

This means that there exist t1 2 � 0.1G/ and t2 2 � 0.h2h�1
1 / such that

t1 D t2h2h�1
1 , equivalently such that h2h�1

1 D t�1
2 t1. Let g D t�1

2 t1. We
get that � 0.1G/ \ .� 0.g//g ¤ ¿ if and only if � 0j¹1G ;gº 2 D and thus � 0j¹1G ;gº

appears in � .

(2) � covers G if and only if no pattern from C appears in � . Indeed, suppose �

does not cover G, then there is g 2 G such that for every h 2 G, g … �.h/h.
Letting � 0 D g� we obtain that �.h/ D � 0.hg�1/ and hence g … �.h/h for
every h 2 G if and only if 1G … � 0.hg�1/hg�1 for every h 2 G which is
the same as saying that 1G … � 0.s/s for every s 2 G. This is equivalent to
� 0jS

i�n T �1
i

2 C. Therefore � does not cover G if and only if there is g 2 G

such that .g�/jS
i�n T �1

i
2 C, which is the same as saying that a pattern from

C appears in � .

Therefore � 2 XT if and only if � is a tiling of G by T. �

Remark 3.14. The orbit closure of any tiling � W G ! T [ ¹¿º forms a G-subshift
which is not necessarily of finite type. We shall denote by htop.�/ the topological
entropy of said subshift.
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Theorem 3.15 (Downarowicz, Huczek and Zhang [10]). Let G be a countable

amenable group. For any F b G and ı > 0 there exists a tile set T such that every

T 2 T is .F; ı/-invariant and there exists a tiling � by T such that htop.�/ D 0.

Lemma 3.16. Let G be a countable amenable group and X � †G be a G-SFT.

Suppose that Y � X is a subshift of X , then for every " > 0 there exists a G-SFT

Z � X so that

htop.G Õ Y / � htop.G Õ Z/ � htop.G Õ Y / C ":

Proof. Fix " > 0. By (1) there exists D b G so that

log.jLD.Y /j � jDj.htop.G Õ Y / C "/:

Let F1 be a set of forbidden patterns which defines X and let

F D F1 [ .†D n LD.Y //:

Letting Z be the G-SFT defined by the set of forbidden patterns F, we have
Z � X and Y � Z from where it follows that htop.G Õ Y / � htop.G Õ Z/.
Furthermore, by construction we get LD.Z/ D LD.Y / and thus

htop.G Õ Z/ D inf
F 2F.G/

1

jF j
log.jLF .Z/j/

�
1

jDj
log.jLD.Z/j � htop.G Õ Y / C ":

And so Z satisfies the required properties. �

Let T; K be finite subsets of G. The K-core of T is the set

CoreK.T / D ¹t 2 T j Kt � T º:

It is an easy exercise to show that if T is a
�

K; ı
jKj

�

-invariant set, then one has
jT n CoreK.T /j < ıjT j. For a proof, see [10, Lemma 2.6].

Now we are ready to state the main theorem of this section which shows that
every SFT admits subsystems with arbitrarily low topological entropy and which
are also SFTs.

Theorem 3.17. Let G be a countable amenable group and X � †G be a G-SFT.

For every " > 0 there exists a G-SFT Z � X such that htop.G Õ Z/ � �

Proof. We claim that it suffices to show that for every " > 0 there exists a
G-SFT Y (on a different alphabet) such that htop.G Õ Y / � � and a continuous
G-equivariant map �W Y ! X . Indeed, if this is the case, using the above result
with "

2
and the property that (for amenable group actions) topological entropy does
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not increase under topological factor maps, we obtain that �.Y / is a subshift of X

with entropy htop.G Õ �.Y // � "
2
. Using Lemma 3.16 with "

2
we obtain an SFT

Z � X whose entropy is bounded by htop.G Õ �.Y // C "
2

� " as required.
Let us show the above claim. Let F be a finite set of forbidden patterns which

defines X , let F D
S

p2F supp.p/ be the union of their supports and K D FF �1.
By Theorem 3.15 there exists a tileset T D ¹T1; : : : ; Tnº such that every tile in T is
�

K; "
4jKj log.j†j/

�

-invariant and which admits a tiling �� by T with zero entropy. In
particular, the K-core of each tile T 2 T satisfies jT n CoreK.T /j < "

4 log.j†j/
jT j

and we can find a finite set D b G such that log.jLD.¹g��ºg2G/j/ � "
4
jDj.

By Lemma 3.13 the set XT of all tilings of G by T is a G-SFT. Consider the
subshift of finite type XL

T
� XT where we additionally forbid the finite set of

patterns L:
L D .T [ ¹¿º/D n LD.¹g��ºg2G/:

Clearly �� 2 XL

T
, hence XL

T
is a non-empty G-SFT. Furthermore,

htop.G Õ XL

T
/ D inf

F bG

1

jF j
log.jLF .XL

T
/j/ �

1

jDj
log.jLD.XL

T
/j/ �

"

4
:

Consider the set U ,
S

i�n Ti . We define X? as the set of all configurations
in .† [ U /G for which no forbidden patterns from F appear. Finally, we define
Y � XL

T
� X? as the set of all pairs of configurations .�; x/ such that for every

g 2 G if we let .� 0; x0/ D .g�; gx/, then

(1) if h 2 CoreK.� 0.1G// then x0.h/ D h;

(2) if h 2 � 0.1G/ n CoreK.� 0.1G// we have x0.h/ 2 †;

(3) x0j� 0.1G /nCoreK.� 0.1G // 2 L� 0.1G /nCoreK .� 0.1G //.X/.

In other words, Y is the G-subshift which consists of all configurations ob-
tained by overlaying some x 2 X with a tiling � 2 XL

T
and replacing every symbol

in the K-core of a tile by an address pointing to the center of the tile.
We claim Y is a G-SFT. Indeed, it can be obtained from the G-SFT XL

T
� X?

by forbidding the finite collection of all patterns p with support U for which the
first coordinate of p.1G/ is some T 2 T and either there is g 2 CoreK.T / for
which the second coordinate of p.g/ is not g or the pattern obtained by restricting
the second coordinate of p to T n CoreK.T / is not in LT nCoreK.T /.X/. We leave
it as an exercise to the reader to verify that .�; x/ 2 Y if and only if no patterns as
above appear.

Let us first construct the G-equivariant map �W Y ! X . Informally, � is
the map that erases the tiling � and replaces the addresses (which appear in the
K-core of some Tg for T 2 T) by the symbols of some fixed pattern which
depends only on the values of x on Tg n CoreK.T /g. Formally, associate to every
T 2 T and pattern p 2 LT nCoreK .T /.X/ a pattern �.T; p/ 2 LT .X/ such that
�.T; p/jT nCoreK.T / D p. Let ˆW Y ! † be defined by
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ˆ.�; x/ ,

´

x.1G/ if x.1G/ 2 †;

�.�.h�1/; .h�1x/j�.h�1/nCoreK.�.h�1///.h/ if x.1G/ D h 2 U:

As U is finite this map is local. As a consequence, �W Y ! †G given by
�.�; x/.g/ D ˆ.g�; gx/ is a continuous G-equivariant map.

Let us show that �.�; x/ 2 X . If it is not the case, then there exists p 2 F and
g 2 G such that �.g�; gx/jsupp.p/ D p. For simplicity, let us rename .� 0; x0/ D

.g�; gx/. If for every s 2 supp.p/ we have x0.s/ 2 † then �.� 0; x0/jsupp.p/ D

x0jsupp.p/ which cannot be p by definition of X?. Otherwise we have Ns 2 supp.p/

such that x0.Ns/ D h 2 U , which in turn means that � 0.h�1 Ns/ 2 T. In other
words, for f D h�1 Ns we have Ns 2 CoreK.� 0.f //f . By definition of K-core,
we have that K Ns � � 0.f /f . As supp.p/ � F and K D FF �1 we obtain that
supp.p/ � � 0.f /f . By definition of � and � we have that �.f � 0; f x0/j� 0.f / D

�.� 0.f /; f x0j� 0.f /nCoreK.� 0.f /// 2 L� 0.f /.X/. In particular, �.� 0; x0/j� 0.f /f 2

L� 0.f /f .X/. As supp.p/ � � 0.f /f this shows that �.� 0; x0/jsupp.p/ ¤ p, raising
a contradiction.

Lastly, let us verify that htop.G Õ Y / � ". As htop.G Õ XL

T
/ � "

4
, we

can find W1 b G and ı1 > 0 such that any .W1; ı1/-invariant set R satisfies
log.jLR.XL

T
/j/ � jRj "

2
. Pick W , W1 [ U and ı < ı1 sufficiently small – for

instance ı < min
�

ı1; "
4jU j log.j†j/

�

– such that any .W; ı/-invariant set R satisfies
that jR n CoreU .R/j < "

4 log.j†j/
jRj.

Fix � 2 XL

T
and let us denote by LR.Y; �/ the set of p 2 LR.Y / for which the

first coordinate is � jR. Let us write R as the disjoint union R1 ] R2 where R1 is
the set of all g 2 R for which there is h 2 R such that �.h/h � R. By definition,
as �.h/ � U , we have that R2 � R n CoreU .R/ and hence jR2j < "

4 log.j†j
jRj.

On the other hand, the symbols in every position in CoreK.�.h//h are fixed. As
the �.h/h cover R1 and j�.h/h n CoreK.�.h/h/j < "

4 log.j†j/
j�.h/j we have at most

"
4 log.j†j/

jR1j � "
4 log.j†j/

jRj positions in R1 are potentially free. Therefore we
obtain the bound

jLR.Y; �/j � j†jjR2jj†j
"

4 log.j†j/
jR1j

� j†j
"

2 log.j†j/
jRj

:

Note that this does not depend upon the choice of � . We can thus obtain

jLR.Y /j � jLR.XL

T
/jj†j

"
2 log.j†j/

jRj
� exp

�

jRj
"

2

�

j†j
"

2 log.j†j/
jRj

:

Therefore

htop.G Õ Y / �
1

jRj
log.jLR.Y /j/ �

1

jRj

�

jRj
"

2
C jRj

" log.j†j/

2 log.j†j/

�

� ":

Which completes the proof. �
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Before applying Theorem 3.17 to reduce the entropy of a chart, let us mention
a nice application which shows that for any arbitrary countable amenable group,
every subshift of finite type must necessarily contain a subsystem with zero
topological entropy. This extends the result of Quas and Trow [22, Corollary 2.3]
which shows that minimal Z

d -SFTs have zero topological entropy and whose
argument works for amenable orderable groups. Let us also remark the work
of Frisch and Tamuz [12] also gives a way to obtain Quas and Trow’s result
for arbitrarily countable amenable groups and that the author is aware of a non-
published direct proof by Ville Salo which works for any amenable and finitely
generated group and relies on a combinatorial argument.

Corollary 3.18. Let be G a countably infinite amenable group. Any G-SFT X

contains a G-invariant closed subset with zero topological entropy. In particular,

every minimal G-SFT has zero topological entropy.

Proof. Let "n D 1
n

and let Y0 D X . By Theorem 3.17 there exists a G-SFT
Y1 such that htop.G Õ Y1/ � "1 and Y1 � Y0. Iterating this procedure we
can obtain for every n 2 N a G-SFT Yn such that htop.G Õ Yn/ � "n D 1

n

and Yn � Yn�1. As each Yn is closed we have that Z D
T

n�0 Yn is non-
empty. Clearly Z is G-invariant as each Yn is G-invariant. Furthermore, one has
htop.G Õ Z/ � htop.G Õ Yn/ for every n 2 N, therefore htop.G Õ Z/ D 0. �

Let us also remark that this result is in direct contrast with existence of minimal
Toeplitz subshifts of arbitrary positive topological entropy on residually finite
groups, see [8, 18, 19].

To the knowledge of the author, the following question is open even in Z
2.

Question 3.19. Does there exist an amenable group G and a G-SFT which does

not contain a zero-entropy G-SFT?

Let us go back to reducing the entropy of a chart.

Corollary 3.20. Suppose there exists a free G-chart .X; 
/ for H such that X is

a G-SFT. Then for every " > 0 there exists a free G-chart .Y; 
 0/ for H such that

Y is a G-SFT and htop.G Õ Y / � �.

Proof. Apply Theorem 3.17 to X and " > 0 to obtain a G-SFT Y such that
htop.G Õ Y / � � and Y � X . Let 
 0W H � Y ! G be the restriction of 
 to
Y . Clearly 
 0 is continuous and an H -cocycle. �

3.3. Conditions for the existence of free charts. In this section we shall present
conditions under which there exist free charts and conditions under which they can
be realized with a subshift of finite type. An obvious condition which implies the
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existence of a free G-chart of H is that H embeds into G as a subgroup, see
Example 3.4. Note that in that case the chart automatically has entropy zero and
we obtain the rather obvious corollary that ESFT.H/ � ESFT.G/.

The notion that H embeds into G can be relaxed using the notion of translation-
like action introduced by Whyte [26]. We shall see that whenever the groups are
finitely generated, this notion is closely related with the existence of free charts.

Definition 3.21. Let .X; d/ be a metric space and H a group. We say that H Õ X

is a translation-like action if

� H Õ X is free, that is, for every x 2 X then hx D x implies that h D 1H ;

� H Õ X is bounded, that is, for every h 2 H , supx2X d.x; hx/ < 1.

Any finitely generated group G can be seen as a metric space by endowing
it with a metric induced by a finite set of generators. In that case, the second
condition can be replaced by the condition that for every fixed h 2 H the set of
all .h � g/g�1 is finite.

Proposition 3.22. Let H; G be finitely generated groups. H acts translation-like

on G if and only if there exists a free G-chart .X; 
/ of H .

Proof. Fix a finite set S of generators of H . Suppose there exists a translation-
like action H Õ G. As the action is bounded and S is finite, we have that the set
F D ¹f 2 G j .s � g/ D fg for s 2 S; g 2 Gº is finite. Consider the alphabet
† D F S and the configuration xW G ! † such that .x.g//.s/ D f 2 F if and
only if s � g D fg. Let X D

S

g2G¹gxº be the orbit closure of x. By definition
X is a G-subshift. For y 2 X , let 
.s; y/ D .y.1G//.s/ and extend 
 to H � X

through the cocycle equation. It is clear that 
 is continuous. By definition, we
have that s �x g D 
.gx; s/g D .x.g//.s/ D .s � g/g�1g D s � g. In other words,
the action H

x
Õ G coincides with H Õ G and hence it’s free. It follows from

compactness that the same holds for any y 2 X and thus .X; 
/ is a free G-chart
of H .

Conversely, suppose there exists a free G-chart .X; 
/ of H and let x 2 X .
By definition, the action H

x
Õ G is free. Let h 2 G, the restriction of 
 to

¹hº � X takes finitely many values and depends only on finitely many coordinates
of x 2 X . It follows that .h �x g/g�1 D 
.h; gx/gg�1 D 
.h; gx/ takes only
finitely many values and hence H

x
Õ G is bounded. �

In other words, the least we can require if we want a free G-chart of H is the
existence of a translation-like action of H on G. In what follows we shall give
further conditions under which one can always find a free G-chart of H given by
a G-SFT. The following proof is essentially contained in the work of Jeandel [15,
Section 2].
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Proposition 3.23. Let H; G be finitely generated groups such that

(1) H admits a translation-like action on G;

(2) H is finitely presented;

(3) there exists a non-empty H -SFT for which the H -action is free.

Then there exists a free G-chart .X; 
/ of H such that X is a non-empty G-SFT.

Proof. The first part of the proof is the same as in the last proposition, let H Õ G

be the translation-like action and suppose hS j R � S�i is a finite presentation of
H where S D S�1. By definition, the set F D ¹f 2 G j .s � g/ D fg for s 2

S; g 2 Gº is finite. Consider the alphabet † D F S of all functions from S to F

and let 
 W S� � †G ! G be the map given by 
.s; x/ D .x.1G//.s/ for s 2 S and
extended to the free monoid S� by the condition


.s1s2; x/ D 
.s1; 
.s2; x/x/ � 
.s2; x/ for every s1; s2 in S�:

Let us first consider the subshift Y � †G such that for every s 2 S and g 2 G

we have .y.g//.s/ D f then .y.fg//.s�1/ D f �1. This is clearly a subshift of
finite type. Let us note that for y 2 Y , g 2 G and s 2 S we have


.s�1s; gy/ D 
.s�1; 
.s; gy/gy/ � 
.s; gy/

D 
.s�1; Œ.y.g//.s/�gy/ � .y.g//.s/

D y.Œ.y.g//.s/�.s�1/ � .y.g//.s/ D 1G :

The same holds for 
.ss�1; gy/. By a similar argument, it can be shown that if
w 2 S� is a word that can be freely reduced to the identity, then 
.w; gy/ D 1G

for every g 2 G. In other words, .Y; 
/ codes the free group on S generators.
Let us define X � Y as the set of all configurations x 2 Y such that whenever

s1s2 : : : sn�1sn 2 R then for every g 2 G, if we define f1 D .y.g//.sn/,
f2 D .y.f1g//.sn�1/ and, for every k � n,

fk D .y.fk�1 : : : f1g//.snC1�k/:

Then we have fnfn�1 : : : f1 D 1G . As R is finite, these conditions can be imposed
by forbidding patterns with support bounded by F n. In other words, X is also
a G-subshift of finite type. Again, by the previous calculation, we obtain that
for every w 2 R and g 2 G we have 
.w; gx/ D 1G Moreover, as every word
which represents 1G in G can be obtained by freely conjugating and concatenating
words in R, we have that any word w 2 S� which represents the identity satisfies

.w; gx/ D 1G . In other words, .X; 
/ codes a G-chart of H .

It is not true that .X; 
/ is free. In fact, the configuration such that .x.g//.s/ D

1G belongs to X . However, the configuration Nx 2 X defined using the free action
H Õ G by . Nx.g//.s/ D .s � g/g�1 satisfies that H

x
Õ G = H Õ G.
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By hypothesis, there exists an H -subshift Z on which H acts freely. Let
us consider Z
 ŒX�. By Remark 3.9 we have that Z
 ŒX� is non-empty. Let
O
 W H � Z
 ŒX� ! G be the map defined by O
.h; .z; x// D 
.h; x/. We claim
the G-chart .Z
 ŒX�; O
/ of H is free.

Indeed, if it is not free, there is .z; x/ 2 Z
 ŒX� and h ¤ 1H such that
h �.z;x/ g D g. Equivalently, such that 
.h; gx/ D 1G or h �x g D g. Hence,
we would have that

h�x;g.z/ D �x;h�xg.z/ D �x;g.z/:

As �x;g.z/ 2 Z, this gives a configuration for which the shift does not act
freely, which contradicts the assumption on Z. �

Let us gather all our results in a single theorem for further reference.

Theorem 3.24. Let G; H be finitely generated amenable groups. Suppose that

(1) H admits a translation-like action on G;

(2) H is finitely presented;

(3) there exists a non-empty H -SFT for which the H -action is free.

Then, for every " > 0 there exists a G-SFT X such that htop.G Õ X/ < " and

htop.G Õ X/ C ESFT.H/ � ESFT.G/:

Proof. By Proposition 3.23 there exists a free G-chart .X; 
/ of H such that X is a
G-SFT. Furthermore, by Corollary 3.20 we can choose it so that htop.G Õ X/ < ".
Finally, we conclude by applying Corollary 3.11. �

4. Characterization of entropies: the case H D Z
2

The goal of this section is to exploit Theorem 3.24 for the case H D Z
2.

The interest on this particular case comes from the fact we already have a full
characterization of the entropies of Z

2-SFTs by Theorem 2.7. Furthermore,
Z

2 Š ha; b j aba�1b�1i is finitely presented, and there exist non-empty Z
2-SFTs

for which the Z
2-action is free, for instance the Robinson tiling [23].

There is a single obstacle that stops us from getting a characterization for all
groups on which Z

2 acts translation-like: even if we can choose the entropy of the
chart to be arbitrarily low, there is no guarantee that said entropy will be an upper
semi-computable number. In what follows we shall show that this is indeed the
case if G is a finitely generated group with decidable word problem.

Given a set S � G denote by S� the formal set of all finite words s1s2 : : : sn 2

S�. Also, for any such word in S� denote by s1s2 : : : sn the unique element of G

represented by it.
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Definition 4.1. Let G be a finitely generated group and S a finite set of generators.

The word problem of G is the set of all words over the alphabet S which represent

the identity of G.

WPS .G/ D ¹w 2 S� j
N
w D 1Gº:

We say that G has decidable word problem if the language WPS .G/ is decidable
for some finite set of generators S . It can be shown that this notion is independent
of the chosen set of generators and thus, modulo many-one equivalence, one can
speak about the word problem WP.G/ of G without making reference to a specific
set of generators.

We shall also need to introduce the set of locally admissible patterns.

Definition 4.2. Let † be a finite alphabet and F be a list of forbidden patterns

which defines a subshift XF. For F b G We say that q 2 †F is in the set of

locally admissible patterns LlocF .XF/ if no patterns from F appear in q, namely,

Œq� 6� gŒp� for every g 2 G and p 2 F.

Lemma 4.3. Let G be a countable group and XF � †G be a subshift defined by a

set of forbidden patterns F. For any F b G there exists K b G such that K � F

and p 2 LF .X/ if and only if there exists q 2 LlocK .X/ such that qjF D p.

Proof. If G is finite the result is obvious. Otherwise we may fix an enumeration
¹gnºn2N of G, let F n D F [

S

k�n¹gkº and consider p 2 †F nLF .X/. We claim
there must exist an integer n.p/ such that qjF ¤ p for every q 2 Lloc

F n.p/.X/. If
this was not the case, we may choose for every n a pattern qn 2 LlocF n .X/ such
that qjF D p. As the sequence of Œqn� � Œp� is closed and nested, the intersection
Y D

T

n2NŒqn� is non-empty and Y � Œp�, and any configuration y 2 Y satisfies
that no forbidden patterns appear, hence y 2 X \ Œp� and thus p 2 LF .X/.

As †F is finite we may define N , maxp2†F nLF .X/ n.p/ and K , F N .
By definition of N , we have that if p 2 †F n LF .X/ then qjF ¤ p for every
q 2 LlocK .X/. Conversely, if p 2 LF .x/ there exists x such that xjF D p.
Defining q , xjK we have qjF D p and q 2 LK.X/ � LlocK .X/. �

In what follows we shall need to briefly introduce the notion of pattern codings
and effectively closed subshifts in finitely generated groups. An introduction to
this topic can be found on [3].

Definition 4.4. Let G be a finitely generated group, S a finite set of generators

and † an alphabet. A function cW W ! † from a finite subset W of S� is called a

pattern coding. The cylinder defined by a pattern coding c is given by

Œc� D
\

w2W
N
wŒc.w/�:
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In other words, a pattern coding is a coloring of a finite subset of the free
monoid S�. A set C of pattern codings defines a G-subshift XC by setting

XC D †G n
[

g2G
c2C

gŒc�:

We say that a G-subshift X is effectively closed if there exists a recursively
enumerable set of pattern codings C such that X D XC. Obviously, every G-SFT
is effectively closed.

We shall need the following result.

Lemma 4.5 (Lemma 2.3 of [3]). Let G be a finitely generated and recursively

presented group. For every effectively closed subshift X � †G the maximal

–for inclusion– set of forbidden pattern codings that defines X is recursively

enumerable.

Proposition 4.6. Let G be a finitely generated amenable group with decidable

word problem. For every effectively closed subshift X � †G the topological

entropy htop.G Õ X/ is upper semi-computable.

Proof. Let us fix a symmetric set S of generators for G. We shall first define three
algorithms TWP; Tpat; Tcolor which will be used in the proof.

First, as G has decidable word problem there is an algorithm TWP which on
input w 2 S� halts and accepts if and only if

N
w D 1G .

Second, as X is effectively closed, by Lemma 4.5 there exists a maximal
recursively enumerable set of pattern codings C� such that X D XC� . We define
Tpat as the algorithm which on input n 2 N yields the list of the first n pattern
codings Œc1; c2; : : : ; cn� of C�.

Finally, let us denote by �n the equivalence relation on
S

k�n Sk defined by

u �n v if and only if TWP accepts uv�1. Let Bn ,
S

k�n Sk= �n. We define
Tcolor as the algorithm, which on input n 2 N computes the set of all functions
xW Bn ! † such that for every pattern coding ci W Wi ! † listed by Tpat on input
n we have that either Wi n Bn ¤ ; or x.w/ ¤ c.w/ for at least one w 2 Wi .

In simpler words, Tcolor enumerates all patterns over a representation of the
ball of size n of the Cayley graph of G where the first n forbidden pattern codings
do not appear at the identity.

Now we construct an algorithm Tent which on input n outputs a rational
number hn as follows. First apply algorithm Tcolor on input n to produce a set
¹x1; : : : ; xM.n/º of colorings as above. For each A � Bn we define LA

n as the set
of restrictions ¹x1jA; : : : ; xM.n/jAº to A. Let us define hA

n as the smallest rational
number of the form k

2n such that

1

jAj
log.jLA

n j/ <
k

2n
:
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Finally, let us define hn , minA�Bn
¹hA

n º. From the above definitions, it is
clear that each hn can be computed in a finite number of steps with Tent. We claim
that the sequence ¹hnºn2N is non-increasing and that infn2N hn D htop.G Õ X/.

Indeed, let m > n. Clearly for A � Bn we have LA
m � LA

n , hence jLA
n j > jLA

mj

hence we obtain

hm D min
A�Bm

¹hA
mº � min

A�Bn

¹hA
mº � min

A�Bn

¹hA
n º D hn:

Hence the sequence ¹hnºn2N is non-increasing. It is clear from the definition
that for every n 2 N such that Bn � A we have LA

n � LA.X/, hence hA
n >

1
jAj

log.jLA
n j/ � 1

jAj
log.jLA.X/j/ and thus by (1),

hn > inf
A�Bn

1

jAj
log.jLA.X/j/ � htop.G Õ X/:

Similarly, by (1) for every " > 0 there exists a fixed finite F � G such that
1

jF j
log.jLF .X/j/ � htop.G Õ X/ � �. By Lemma 4.3 there exists K such that

p 2 LF .X/ if and only if there exists q 2 LlocK .X/ such that qjF D p. Choose
N1 such that BN1

� K and N2 so that all pattern codings of C� whose support is
contained in K have already appeared. Let N � max.N1; N2/. By definition we
have that LK

N D LlocK .X/ and thus LF
N D LF .X/, hence we have that

hN � hF
N �

1

jF j
log.jLF .X/j/ C

1

2N
� htop.G Õ X/ C � C

1

2N
:

The last inequality shows that ¹hnºn2N converges to htop.G Õ X/. �

From this, we can obtain the following characterization.

Theorem 4.7. Let G be a finitely generated amenable group with decidable

word problem which admits a translation-like action by Z
2. The set of entropies

attainable by G-subshifts of finite type is the set of non-negative upper semi-

computable numbers.

Proof. By hypothesis there exists a translation-like action of Z2 on G. Therefore
Z

2; G satisfy the hypothesis of Theorem 3.24 which means that for every " > 0

there exists a G-SFT X such that htop.G Õ X/ < " and

htop.G Õ X/ C ESFT.Z2/ � ESFT.G/:

Recall that by Theorem 2.7 ESFT.Z2/ is precisely the set of non-negative up-
per semi-computable real numbers. As G has decidable word problem, Proposi-
tion 4.6 implies that ESFT.G/ � ESFT.Z2/. Noting that 0 2 ESFT.G/ and that the
set of upper semi-computable numbers is stable under addition, if we let " go to
zero we obtain

ESFT.G/ D ESFT.Z2/:

Which is what we wanted to show �
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5. Consequences

In the remainder of this section we shall make use of the following simple con-
struction.

Definition 5.1. Let H � G be a subgroup, ¹0º be the trivial G-subshift with one

point and let the H -cocycle 
 W H � ¹0º ! G be the canonical free G-chart of H

defined by 
.h; 0/ D h.

For an H -subshift X denote by X"G the free G -extension of X defined by

X
 Œ¹0º�.

Proposition 5.2. Let G be a countable amenable group, H � G and X be an

H -subshift. Then

htop.G Õ X"G/ D htop.H Õ X/:

Proof. By Theorem 3.10 we have

htop.G Õ X"G/ D htop.H Õ X/ C htop.G Õ ¹0º/ D htop.H Õ X/:

Which is what we wanted to show. �

We shall also need the following result which relates the entropies of subshifts
of finite type in a group to those of a finite index subgroup.

Lemma 5.3. Let G be a countable amenable group and let H � G be a finite index

subgroup. Assume that ESFT.H/ is closed under division by positive integers.

Then ESFT.G/ D ESFT.H/.

Proof. For any H -SFT X we can consider the G-SFT X". By Proposition 5.2 we
get ESFT.H/ � ESFT.G/.

For the converse, let Y � †G be a G-SFT and consider H Õ Y the restriction
of the G action on Y to H . It is a well known property of topological entropy that

1
ŒGWH�

htop.H Õ Y / D htop.G Õ Y /. It suffices to show that H Õ Y is conjugated
to an H -SFT. Indeed, as ESFT.H/ is closed under division by positive integers the
above formula yields the result.

Choose a set R of left representatives of G=H and define the R-higher power
shift X ŒR� by

X ŒR� D ¹x 2 .†R/H j there exists y 2 Y such that for every r 2 R; h 2 H;

.x.h//.r/ D y.rh/º:

As R is finite, it is clear that X ŒR� is closed and H -invariant and hence
that it is an H -subshift. The function �W X ŒR� ! Y that sends x 7! y by
�.x/.rh/ D .x.h//.r/ is clearly a continuous bijection. It is also H -equivariant:

h0�.x/.rh/ D �.x/.rhh0/ D .x.hh0//.r/ D .h0x.h//.r/ D �.h0x/.rh/:
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Therefore H Õ X ŒR� is conjugated to H Õ Y . The construction of the forbid-
den patterns that show that X ŒR� is an H -SFT whenever Y is a G-SFT is a simple
exercise. The reader may find it in either [7, Definition 3.1] or in [2, Proposi-
tion 9.3.33]. �

Question 5.4. Is there any infinite and finitely generated amenable group G for

which ESFT.G/ is not closed under division by positive integers?

5.1. Polycyclic-by-finite groups. The goal of this section is to give a full char-
acterization of the set of real numbers attainable as entropies of subshifts of finite
type on a polycyclic-by-finite group. In what follows we shall introduce polycyclic
groups and state a few of their properties. A good reference is [24] or [11].

A group G is called polycyclic if there exists a finite sequence of subgroups

G D N1 F N2 F � � � F Nn F NnC1 D ¹1Gº:

such that every quotient Ni=NiC1 is cyclic. The number of i such that Ni =NiC1

is infinite does not depend on the choice of sequence and is thus a group invariant
called the Hirsch index of G and denoted by h.G/.

If we replace the condition that each Ni =NiC1 is cyclic by the condition that
each Ni=NiC1 is the infinite cyclic group, we obtain the class of poly-C1 groups.
There are polycyclic groups which are not poly-C1, for instance any cyclic finite
group. However, they are very close in the following sense. A proof can be found
in either of the two references mentioned above.

Proposition 5.5. The following are equivalent:

(1) G is virtually polycyclic;

(2) G is polycyclic-by-finite;

(3) G is poly-C1-by-finite.

In particular, as every short sequence 1 ! N ! G ! Z ! 1 splits, the last
proposition means that any virtually polycyclic group can be written as a series
G D N0 FN1 F� � �FNn FNnC1 D ¹1Gº such that for i � 1 we have Ni D NiC1 ÌZ

and G is virtually N1. Moreover if this is the case then h.G/ D n.

Theorem 5.6. Let G be a virtually polycyclic group. Then

(1) if h.G/ D 0 then ESFT.G/ D
®

1
jGj

log.n/
ˇ

ˇ n 2 ZC

¯

;

(2) if h.G/ D 1 then ESFT.G/ D ESFT.Z/, the set of non-negative rational

multiples of logarithms of Perron eigenvalues;

(3) if h.G/ � 2 then ESFT.G/ D ESFT.Z2/, the set of non-negative upper semi-

computable numbers.
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Proof. As G is poly-C1-by-finite, we have that G D N0 F N1 F � � � F Nh.G/ F

Nh.G/C1 D ¹1Gº where every quotient except the first one is an infinite cyclic
group. If h.G/ D 0, then G D N0 F N1 D ¹1Gº is necessarily a finite group F .
As every Følner sequence in a finite group is eventually the whole group, we have
that for any subshift X � †F

htop.F Õ X/ D
1

jF j
log.jLF .X/j/:

In particular, the entropy of every subshift is of the form we claim. To show
that every such number occurs, consider the SFT Xn

unif � ¹1; 2; : : : ; nºF consisting
of the uniform configurations xi such that xi .f / D i for every f 2 F . Clearly
htop.F Õ Xn

unif/ D 1
jF j

log.n/. This proves the first claim.
If h.G/ D 1 then G D N0 FN1 FN2 D ¹1Gº. As N1 Š ¹1GºÌZ then N1 Š Z.

This means that G is virtually Z. By Proposition 5.3 the claim holds for this case
as well.

Let h.G/ � 2. We will show that Z2 embeds into G. Indeed, we have that
Nh.G/ Š Z and that Nh.G/�1 Š Nh.G/ Ì Z is a subgroup of G. Hence, have
that Nh.G/�1 Š Z Ì' Z for some homomorphism 'WZ ! Aut.Z/. There are
two cases: either '.1/ D id or '.1/ is multiplication by �1. The first case
yields Nh.G/�1 Š Z

2 and hence Z
2 embeds into G. In the second case note that

'.2/ D id and thus ZÌ' 2Z is isomorphic to Z
2. Hence Nh.G/�1 contains a finite

index copy of Z2 and thus as Nh.G/�1 embeds into G, we obtain that Z2 embeds
into G as well.

Therefore, whenever h.G/ � 2 we have that Z2 embeds into G. In particular
Z

2 acts translation-like on G. As every polycyclic-by-finite group is finitely
generated and has decidable word problem, we can apply Theorem 4.7 to obtain
the desired conclusion. �

Remark 5.7. In the previous proof we did not use the full power of Theorem 4.7.
We only applied it to the case where Z

2 actually embeds into G. The next
application will rely strongly on translation-like actions.

5.2. Products of infinite finitely generated groups. In this section we shall
make use of the following theorem by Seward [25]

Theorem 5.8 (Theorem 1.4 of [25]). Every infinite and finitely generated group

admits a translation-like action of Z.

Corollary 5.9. Let G1; G2 be infinite and finitely generated groups. Then G1 �G2

admits a translation-like action of Z2.

Proof. By Theorem 5.8, there exist translation-like actions Z
˛1Õ G1 and Z

˛2Õ G2.
The Z

2-action given by .n1; n2/ � .g1; g2/ , .n1 �˛1
g1; n2 �˛2

g2/ satisfies the
requirements. �
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Corollary 5.10. Let G1; G2 be two infinite, amenable and finitely generated

groups with decidable word problem. The set of topological entropies of non-

empty G1 � G2-SFTs is exactly the set of non-negative upper semi-computable

numbers.

Proof. Clearly G1 � G2 has decidable word problem. By the previous corollary it
admits a translation-like action of Z2. The result follows from Theorem 4.7. �

5.3. Countably infinite amenable groups. Let us now consider the case of
countably infinite amenable groups which are not necessarily finitely generated.
In the remainder of this section we will need to speak about the word problem for
arbitrary countable groups. We shall say that a group presentation hN j R � N

�i

has decidable word problem if there exists an algorithm which on entry w 2 N
�

decides whether
N
w D 1 in the group defined by that presentation. We shall say

that a countable group G has decidable word problem if it admits a presentation
with decidable word problem. Note that if G has decidable word problem, then
every finitely generated subgroup of G also does, but the converse may not hold,
see for instance [4, Example 5.4].

Proposition 5.11. Let G be a countably infinite amenable group which admits

a decidable presentation and let X � †G be a G-subshift of finite type. Then

htop.G Õ X/ is upper-semi computable.

Proof. If X is a G-subshift of finite type, there is a finite set of patterns F which
defines it. Let S D

S

p2F supp.p/ be the union of the supports of patterns in F

and let H D hSi � G be the finitely generated subgroup of G generated by S .
As G is amenable and has decidable word problem, then H is amenable and has
decidable word problem. Let Y be the H -subshift defined by F. We clearly have
that X D Y "G where Y "G is the free G-extension of Y . By Proposition 4.6
htop.H Õ Y / is upper semi-computable. Therefore by Proposition 5.2 we have
that htop.H Õ Y / D htop.G Õ Y "G/ D htop.G Õ X/ and hence htop.G Õ X/ is
also upper semi-computable. �

Corollary 5.12. Let G be an amenable countably infinite group with decidable

word problem and which admits a finitely generated subgroup on which Z
2 acts

translation-like. Then

ESFT.G/ D ESFT.Z2/:

Proof. By Proposition 5.11 we get ESFT.G/ � ESFT.Z2/. Let H be a finitely
generated subgroup on which Z

2 acts translation-like. As H has decidable word
problem and is amenable, by Theorem 4.7 ESFT.H/ D ESFT.Z2/. For any r 2

ESFT.H/, there is an H -SFT X such that htop.H Õ X/ D r . By Proposition 5.2
we have htop.G Õ X"/ D r and hence ESFT.H/ � ESFT.G/. This gives
ESFT.G/ D ESFT.Z2/. �
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Corollary 5.13. Let G1; G2 be amenable, countably infinite and non-locally finite

groups with decidable word problem. Then

ESFT.G1 � G2/ D ESFT.Z2/:

Proof. G1 � G2 is amenable, countably infinite and has decidable word problem.
Furthermore, as neither group is locally finite, there are infinite and finitely gen-
erated subgroups H1 � G1 and H2 � G2. By Corollary 5.9 H1 � H2 admits a
translation-like action of Z2. The result follows from Corollary 5.12. �

Remark 5.14. The non-locally finite condition in Corollary 5.13 is necessary. If
G is a locally finite group and X � †G is a subshift of finite type. We can use the
same technique as in Proposition 5.11 to reduce its entropy to the entropy of the
group which is finitely generated by the support of its forbidden patterns. But the
entropy of any subshift in a finite group is necessarily a rational multiple of the
logarithm of a positive integer.

5.4. Branch groups. Suppose that G is a countable amenable group with de-
cidable word problem which contains the product of two non-locally finite and
countably infinite subgroups G1 � G2 as a subgroup. Then Corollary 5.13 and
Corollary 5.12 imply that ESFT.G/ D ESFT.Z2/.

There are many examples satisfying the previous hypothesis within the class
of branch groups [5]. There is more than one definition of branch group, we shall
work with the following one:

Definition 5.15. A group G is called a branch group if there exist two sequences

of groups .Li/i2N and .Hi /i2N and a sequence of positive integers .ki /i2N such

that k0 D 1, G D L0 D H0 and

(1)
T

i2N Hi D 1G ,

(2) Hi is normal in G and has finite index,

(3) there are subgroups L
.1/
i ; : : : ; L

k.i/
i of G such that Hi D L

.1/
i � � � � � L

k.i/
i

and each of the L
.j /
i is isomorphic to Li ,

(4) conjugation by elements of g transitively permutes the factors in the above

product decomposition,

(5) ki properly divides kiC1 and each of the factors L
.j /
i contains kiC1=ki factors

L
.j 0/
iC1.

This allows us to state the following result

Theorem 5.16. Let G be an infinite, finitely generated, amenable branch group

with decidable word problem. Then ESFT.G/ D ESFT.Z2/.
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Proof. By the fifth property above, k1 > 1. Furthermore, as each Hi has finite
index, it is also infinite and finitely generated. As k1 is finite, each Li is also
infinite and finitely generated. Thus H1 D L

.1/
1 � � � � � L

.k1/
1 is a subgroup of G

on which Z
2 acts translation-like. The result follows from Corollary 5.12. �

A canonical example which satisfies all of the above properties is the following.

Example 5.17. The set of topological entropies of non-empty SFTs in the Grig-
orchuk group [13] is exactly the set of non-negative upper semi-computable num-
bers.

6. Final remarks

The techniques presented in this work give tools to embed the entropies of SFTs
defined on a group G to groups in which G embeds geometrically. As the only
known non-trivial base cases are Z and Z

2, we can only obtain characterizations
which coincide either with ESFT.Z/ or ESFT.Z2/. This raises the following ques-
tion.

Question 6.1. Is there any infinite and finitely generated amenable group G with

decidable word problem for which ESFT.G/ is neither ESFT.Z/ nor ESFT.Z2/?

Furthermore, Theorem 4.7 provides a full characterization of the entropies
attainable by SFTs defined on polycyclic-by-finite groups, but it cannot be applied
on every solvable group with decidable word problem. Two notable examples
where it does not apply (at least not directly) are the Baumslag–Solitar groups
BS.1; n/ D ha; b j bab�1 D ani for n � 2, and the Lamplighter group Z=2Z o Z.

Question 6.2. For n � 2, does it hold that ESFT.BS.1; n// D ESFT.Z2/?

Question 6.3. CharacterizeESFT.Z=2ZoZ/. Does it coincide with either ESFT.Z/

or ESFT.Z2/?
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