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1. Introduction

Much effort has been devoted to studying groups which act properly and cocom-

pactly on CAT.0/ cube complexes, henceforth referred to as cubulable groups,

in recent years. Their most famous appearance is in the resolution of the Virtual

Haken Conjecture by Agol and Wise, building on work of Bergeron and Wise,

https://creativecommons.org/licenses/by/4.0/
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Kahn and Markovic, Perelman, Thurston, and others, in which the cubulation of

hyperbolic 3-manifold groups is featured prominently [2, 16, 22, 23, 28]. Simply

knowing that a group is cubulable is sufficient to conclude a good deal of struc-

tural information about it. For instance, these groups satisfy a Tits alternative [25],

admit a quadratic-time solution to the word problem [3], and satisfy the Novikov

and Baum-Connes conjectures [4, 10]. Cubulable groups which have the stronger

property of being virtually special, i.e., possess a finite index subgroup which

embeds into a right-angled Artin group, enjoy stronger properties still, includ-

ing separability of quasiconvex subgroups (if Gromov hyperbolic) and linearity

[14, 31].

Aside from hyperbolic 3-manifold groups, many classes of groups have been

shown to be cubulable, including C 0
�

1
6

�
small cancellation groups [29]. One-

relator groups with torsion of exponent n � 4, groups which admit a presentation

of the form ha1; : : : ; am j wni with n � 4, were cubulated by Lauer and Wise in

2013 [17]. These groups are C 0
�

1
6

�
when n � 6. An extension of Wise’s result for

C 0
�

1
6

�
groups was given by Martin and Steenbock in 2014 when they successfully

cubulated C 0
�

1
6

�
small cancellation free products of cubulable groups [20]. In

2017, Jankiewicz and Wise gave an alternative proof of Martin and Steenbock’s

result relying on Wise’s cubical small cancellation theory developed in [30], which

they proved forC 0. 1
20
/ small cancellation free products [15]. In the present article,

we generalize Lauer and Wise’s cubulation results for one-relator groups with

torsion to the free product setting.

A group is locally indicable if every finitely generated subgroup admits Z as a

homomorphic image. For an element w of a groupG, let hhwii denote the normal

closure of w in G. The following is our main theorem.

Theorem 1.1. Let A and B be locally indicable, cubulable groups, w a word in

A �B which is not conjugate into A or B , and n � 4. Then G D A �B=hhwnii is

cubulable.

We remark that this is implied by the results of [20] when n � 6 and [15] when

n � 20.

To prove Theorem 1.1, we are motivated to pass to a broader class of groups;

namely, we consider “staggered” quotients of free products of finitely many lo-

cally indicable, cubulable groups. The topological models for these groups are

staggered generalized 2-complexes. See Section 2 for the definition of such a

complex X and its minimal exponent n.X/. Theorem 1.1 follows from the more

general statement below by taking X to be a dumbbell space for the free product

A � B with a 2-cell corresponding to wn glued to it.

Theorem 1.2. Let X be a compact staggered generalized 2-complex. Suppose

that X has locally indicable, cubulable vertex groups and that n.X/ � 4. Then

�1.X/ is cubulable.
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Wise uses his theory of quasiconvex heirarchies to prove a strong generaliza-

tion of the main result in [17], namely that all one-relator groups with torsion are

virtually special [30, Corollary 18.2]. One-relator groups with torsion are (Gro-

mov) hyperbolic, so when the exponent of the defining relator in a one-relator

group is at least 4, this result also follows from [17] and Agol’s theorem that a

hyperbolic, cubulable group is virtually special [1, Theorem 1.1].

Local indicability ofA andB also implies thatG D A�B=hhwnii is hyperbolic

relative to ¹A;Bº, a fact we will recover in Proposition 6.4. Thus if A and B are

hyperbolic themselves, then so is G [21, Corollary 2.41], and [1, Theorem 1.1]

gives the following as a corollary to Theorem 1.1:

Corollary 1.3. Suppose that A and B are locally indicable, hyperbolic, and

cubulable. Let w be a word in A � B which is not conjugate into A or B , and

n � 4. Then G D A � B=hhwnii is virtually special.

Though we suspect that Theorem 1.2 is true when n.X/ � 2, we unfortunately

find it necessary to impose the restriction that n.X/ � 4, just as Lauer and Wise

do, when seeking to prove properness of the action. In contrast to Lauer and

Wise’s setting, it also appears that the condition that n.X/ � 4 is necessary for

the cocompactness argument.

Question 1.4. Do Theorems 1.1 and 1.2 hold when n.X/ 2 ¹2; 3º?

In view of the fact that one-relator groups with torsion are virtually special, the

following question is intriguing (but well beyond the scope of the present article).

Question 1.5. LetA andB be locally indicable, virtually special groups,w a word

in A � B which is not conjugate into A or B , and n � 2. Is G D A � B=hhwnii
virtually special?

1.1. Methods. Our methods are topological, and the following is what might be

described as a naive approach to proving Theorem 1.1 that nonetheless captures

many of the main ideas. First, build a model space X for G D A � B=hhwnii by

starting with a dumbbell spaceXA _XB of non-positively curved cube complexes

with �1.XA/ D A and �1.XB/ D B . Then, attach a 2-cell to a path corresponding

to the wordwn, so that �1.X/ D G. See Figures 1 and 2. The task, then, is to build

a G-invariant collection of walls in the universal cover, invoke a construction of a

dual cube complex with aG-action due to Sageev [24], and prove that the walls are

geometrically nice enough to verify properness and cocompactness of the action.

A prerequisite for this method to work is to get good control over the geometry

of X . It is in doing so that we are motivated to pass to the staggered generalized

2-complexes mentioned previously, and of which dumbbell spaces are a particular

example.
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XBXA

Figure 1. A presentation complex for G. The boundary path of the pentagonal cell corre-

sponds to a word of the form w5.

zXA
zXB

zXA
zXB

zXA
zXB

Figure 2. The universal cover of this presentation complex. We build our walls in this space

by combining the Lauer–Wise walls considered in [17] (in the pentagonal cells) with the

natural hyperplanes in the CAT.0/ cube complex factors zXA and zXB .

1.2. Outline. We follow the outline of [17] whenever possible. We define stag-

gered generalized 2-complexes in Section 2. We also define the notion of a tower

in this section, a fundamental tool for studying these complexes. Here we also es-

tablish results which illustrate the connections between staggerings, towers, and

local indicability. The work in this section and the next is based heavily on work

of James Howie [7, 8, 9].
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Let G be the fundamental group of a staggered generalized 2-complex X with

locally indicable, cubulable vertex groups and minimal exponent n.X/ � 2. We

prove geometric small cancellation results about exposed and extreme 2-cells in

generalized van Kampen diagrams over G in Sections 3 and 4. These are strong

statements about the local geometry of staggered generalized 2-complexes on

which the rest of this work depends. These sections are direct generalizations

of the work of [17].

In Section 5, we prove statements about the local geometry of a space xX which

is essentially the universal cover of X , and we develop a tool called patchings for

producing the kinds of diagrams we can work with to prove results in later sections.

In Section 6, we recover relative hyperbolicity ofG using Osin’s idea of linear

relative Dehn functions [21], which will be important for later arguments. The

results up to this point in the outline do not depend on the fact thatX has cubulable

vertex groups.

We define the walls in xX in Section 7, combining the Lauer–Wise walls of

[17] with the natural walls in the portions of the universal cover which are already

CAT.0/ cube complexes. Trellises are defined as well – these are a convenient way

to focus our study of the walls on the 2-skeleton of xX . We prove that walls embed

and separate in Section 8.

At this point in the outline, we restrict to staggered generalized 2-complexes

X with minimal exponent n.X/ � 4.

We establish necessary conditions for the action on the dual cube complex to

be cocompact in Section 9. Here the present work diverges from [17] significantly

in order to deal with the fact that G is not a Gromov hyperbolic group, in general.

We prove that wall stabilizers satisfy a property called relative quasiconvexity; this

turns out to be the key to cocompactness of the action. Importantly, this argument

involves attaching combinatorial horoballs (defined in [6]) to xX to obtain a ı-

hyperbolic space.

In Section 10, we show that the walls in xX satisfy a criterion called linear

separation, implying that the action on the dual cube complex is proper. This

roughly means that the number of walls separating two points grows linearly with

the distance between them.

We put everything together in Section 11. We use the Sageev construction

to produce a dual cube complex with a G-action. Since our group is hyperbolic

relative to the factors and our walls are relatively quasiconvex, a little more work

allows us to apply a theorem of Hruska and Wise [13, Theorem 7.12] and prove

cocompactness in this more general setting. Linear separation is used to show that

the action is proper. Theorem 1.2 is proved in Theorem 11.5 and Theorem 1.1 is

Corollary 11.6.

Note to the skimming reader. In an effort to make results as general as possible,

additional assumptions are added as needed throughout the paper. We have tried to
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make this clear by making note of new standing assumptions at the beginning each

section. The last place where new standing assumptions are added is Section 7.
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2. Preliminaries

2.1. Basic definitions and conventions. All maps are assumed to be continuous

unless otherwise stated.

Definition 2.1 (graph of CW complexes). A graph of CW complexes Y is a

connected CW complex which admits a construction as follows.

� Begin with a collection V of connected CW complexes called the vertex

spaces of Y and an edge set E. Let V.0/ D
S

V 2V V
.0/ and let i WE ! V.0/

and t WE ! V.0/ be functions.

� For each e 2 E, attach a copy of I D Œ0; 1� to
F

V 2V V by identifying 0

with i.e/ and 1 with t .e/. We call the copies of I coming from this step the

essential edges of Y .

A graph of CW complexes is finite if E is finite.

Remark 2.2. A graph of CW complexes is similar to, but not quite the same as,

a total space of a graph of spaces (with trivial edge spaces) in the sense of Scott

and Wall [26]. An important distinction is that, in our case, the intersection of the

essential edges with a given vertex space may consist of many distinct 0-cells of

that vertex space. We will use the terminology “total space” in a slight abuse of

notation in Definition 2.6.

Remark 2.3. The point above gives rise to a base point issue. There is no

canonical graph of groups structure associated to a graph of CW complexes Y .

However, we may associate a graph of groups to Y as follows.
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1. To each vertex space V of Y , let TV be an embedded path in V .1/ which

contains the intersection of the essential edges of Y with V .

2. The space obtained by collapsing each TV to a point is homotopy equivalent

to Y and is an honest total space of a graph of spaces in the sense of [26]. It

thus gives rise to a natural graph of groups with trivial edge groups (using

each collapsed TV as a base point).

3. The essential edges in this total space form a connected graph. After choosing

a maximal spanning tree T of essential edges in this graph, we may define

the fundamental group of this graph of groups in the usual way.

Note that the fundamental group of this graph of groups is isomorphic to �1.Y /,

and the isomorphism is unique up to choice of T , each TV , and base point in Y .

We will casually refer to this algebraic structure as the graph of groups associated

to Y when there is no danger of ambiguity.

Definition 2.4 (edge path/edge loop; reduced/cyclically reduced). Let Y be a CW

complex. A map I ! Y (resp. S1 ! Y ) is called an edge path (resp. edge

loop) if there is a cell structure for I (resp. S1) such that the map takes vertices

to vertices and edges to edges. An edge path (resp. edge loop) is called reduced

(resp. cyclically reduced) if it does not contain any backtracking.

Definition 2.5 (admissible cyclically reduced edge loop). Let Y be a graph of CW

complexes. A cyclically reduced edge loop S1 ! Y is called admissible if it has

the property that whenever a subpath of positive length maps to a loop in a single

vertex space, then that loop is not nullhomotopic within that vertex space.

The following is a more topological definition of a staggered generalized

2-complex than that given in [10].

Definition 2.6 (staggered generalized 2-complex). A staggered generalized 2-com-

plex X is a topological space which admits a construction as follows.

� Begin with a graph of CW complexesXtot which we call the total space. Let

E.X/ denote the set of essential edges of Xtot.

� Attach the elements of a (possibly empty) set of 2-cells toXtot by their bound-

aries, with the property that each gluing is along an admissible cyclically re-

duced edge loop inXtot and contains an edge ofE.X/ in its image. Let C.X/

denote this set of 2-cells.

� We require that X admits a staggering:

� a linear order on C.X/,

� a linear order on E.X/,
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� for c; c0 2 C.X/, if c < c0 then max.c/ < max.c0/ and min.c/ <

min.c0/, where min.c/ is defined to be the least edge from E.X/ occur-

ring in the attaching map for c, and similarly for max.c/.

We call C.X/ the essential 2-cells of X and E.X/ the essential edges. When

comparing cells of X we will sometimes use the notation <X to refer to the linear

orders in the staggering. We will also sometimes write maxX.c/ instead of max.c/

to emphasize the staggering to which we are referring. We will reuse the phrase

vertex space of X to refer to a subspace of X coming from a vertex space of Xtot.

We will reuse the phrase vertex group of X to refer to the fundamental group of a

vertex space. See Figure 3 for an example.

Xtot W

e1

e2

e3

e4 e5

e6

e7

e8

C1

C2

C3

C4

p1

p2

p3

p4

V1

V2

V3

V4

Figure 3. A staggered generalized 2-complex. The four elements of C.X/ are represented

at the left of the figure. Each of the pi specifies an admissible cyclically reduced edge

loop and describes a portion of the attaching map of the corresponding ci . Let the

symbol v stand for an arbitrary path in any of the vertex spaces V1, V2, V3, or V4,

and suppose that p1 D ve1ve2, p2 D e3ve
�1
3
e2ve

�1
2
v, p3 D e�1

4
ve4ve5ve

�1
5

, and

p4 D ve5e6ve
�1
5
ve8, and that the boundaries @c1, @c2, @c3, @c4 are labeled p5

1
, p6

2
,

p1
3
, and p4

4
, respectively. Then the subscripts on E.X/ and C.X/ give a valid staggering

(e1 < e2 < e3 < e4 < e5 < e6 < e7 < e8 and c1 < c2 < c3 < c4).

Definition 2.7 (exponent/proper power/minimal exponent n.X/). For an essential

2-cell ˛ of C.X/, let R denote the admissible cyclically reduced edge loop in Xtot

along which it is attached. Define the exponent of ˛ to be m.˛/ D max¹k j R D

pk for some loop pº. If m.˛/ � 2 we say that ˛ is attached by a proper power.

We define the minimal exponent n.X/ D min¹m.˛/ j ˛ 2 C.X/º.

Definition 2.8 (tower/tower lift/maximal). A tower is a map f WY ! X between

connected CW complexes such that f D i0 ı p1 ı i1 ı � � � ı pk ı ik where each ij
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is an inclusion of a finite subcomplex and each pj is an infinite cyclic cover. Let

K and X be connected CW complexes and  WK ! X be a map. A tower lift is

a map �WK ! Y such that there is a tower f WY ! X and  D f ı �. The map

� is called maximal if any tower lift �0WK ! Y 0 of � has the property that the

associated tower f 0WY 0 ! Y is a homeomorphism.

The following remark is straightforward, since it is easily verified for infinite

cyclic covers (using the lifting criterion) and inclusions of finite subcomplexes.

Remark 2.9. If the attaching map of a 2-cell ˛ inX is a proper power of exponent

k, then for any 2-cell ˇ in Y with f .ˇ/ D ˛ under a tower f WY ! X , the attaching

map of ˇ is a proper power of exponent k.

Definition 2.10 (indicable/locally indicable). A group is called indicable if it

has Z as a quotient, and locally indicable if every nontrivial finitely generated

subgroup is indicable.

Convention 2.11. Let Y be a CW complex.

1. Whenever we name an edge e in Y .1/, we implicitly specify an orientation of

e (or refer to one which has been previously defined). This orientation should

not be taken to be absolute and may be modified freely when there is no risk

of confusion or inconsistency.

2. In what follows, when we refer to a k-cell ˛ in Y as a subspace of Y , it

should be understood that this refers to all points x of that cell such that

the preimage of x under the characteristic map has a neighborhood which is

homeomorphic to R
k, which we also call the interior of ˛ in a slight abuse

of terminology (depending on k). When we need to explicitly refer to the

closure of ˛ in Y , we will use the notation N̨ .

Definition 2.12 (combinatorial map). A combinatorial map between CW com-

plexes is one whose restriction to the interior of each cell is a homeomorphism.

2.2. The interplay between staggerings and local indicability. Let X be a

staggered generalized 2-complex.

Let K be a compact and connected CW complex and let  WK ! X be a

combinatorial map. Howie shows [7, Lemma 3.1] that  has a maximal tower lift

�WK ! Y . For us K will be an object similar to a van Kampen diagram, and we

will use a maximal tower lift to study its boundary. By replacing Y with �.K/ and

restricting the first inclusion, we may assume that maximal tower lifts are always

surjective.

Note that a tower lift �WK ! Y is not maximal if �1.K/ is not indicable (e.g.,

ifK is simply connected) and�1.Y / is. Indeed, for any nontrivial homomorphism
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gW�1.Y / ! Z, Y admits an infinite cyclic cover Y 0 ! Y corresponding to ker.g/,

and � lifts since ��.�1.K// lies in ker.g/ by the fact that �1.K/ is not indicable.

It is precisely this phenomenon which connects towers and local indicability.

Informally, the map K ! X may be hard to study because the image of K in X

will be highly non-injective. In considering a maximal tower lift K ! Y , we will

iteratively “unwind” the image of K through each successive infinite cyclic cover

in the tower. Once at the top of the tower, we will use local indicability of vertex

groups and other facts to draw conclusions about the boundary of K. This will in

turn allow us to make conclusions about X .

The property of having a staggering is a flexible notion because it is preserved

under towers. To see this, first note that staggerings are preserved under the maps

a tower comprises:

Lemma 2.13. If X is a staggered generalized 2-complex and f WY ! X is

inclusion of a connected subcomplex or an infinite cyclic cover, then Y may also

be expressed as a staggered generalized 2-complex.

Proof. The essential cells of Y are exactly those which map to essential cells

of X . In case f is inclusion of a connected subcomplex, note that the staggering

of X restricts to a staggering of any subcomplex of X . In case f is an infinite

cyclic cover, let � be a generator of the deck group of the cover, and define a

“lexicographic” staggering on both the 1-cells and 2-cells of Y by the prescription

that ˛ < ˇ if f .˛/ < f .ˇ/ or �k.˛/ D ˇ for some positive integer k. It is easy to

check that this gives a staggering of Y . �

Lemma 2.14 (cf. [9, Lemma 2]). If f WY ! X is a tower and X is a staggered

generalized 2-complex, then Y may also be expressed as a staggered generalized

2-complex.

Proof. Write f D i0 ıp1 ı i1 ı � � � ıpk ı ik where each ij is an inclusion of a finite

subcomplex and each pj is an infinite cyclic cover. Apply Lemma 2.13 from left

to right, starting with i0. �

Remark 2.15. In general, there may be multiple ways to stagger Y . Whenever

Y ! X is a tower, we make the convention that the staggering on Y arises in the

manner just described. This gives a unique staggering of Y up to choice of deck

group generator of each cover.

Lemma 2.16 (cf. [9, Lemma 3] and [12, Lemma 2.6]). Suppose thatX is compact

and has locally indicable vertex groups. Suppose additionally that X has no

infinite cyclic cover and that ˛ is the greatest essential 2-cell of X . If ˛ is not

attached along a proper power in �1.Xtot/, then X collapses across ˛ with free

edge max ˛, i.e.,X is homotopy equivalent to the complex obtained after removing

˛ and max ˛ from X through a homotopy supported on N̨ .
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Remark 2.17. Recall that the following are equivalent for any topological space Y :

(1) �1.Y / is indicable; (2) H 1.Y;Z/ ¤ 0; (3) Y has an infinite cyclic cover.

Proof. We follow Howie’s proof in [9] – only minor changes are necessary. We

say that Xtot is a tree of spaces if there is a unique choice of spanning tree T in

the third step of Remark 2.3.

Now, if some essential 2-cell ˇ is attached by a path of the form pm in Xtot

for some m � 2, then replacing ˇ with the 2-cell ˇ0 attached by p will not affect

H 1.X/, and giving ˇ0 the same position as ˇ in the ordering of the 2-cells will

not affect the staggering of X . So we may assume no essential 2-cell is attached

by a proper power.

We induct on the number of essential 2-cells in X . If there is only one, then

the rank of H 1.Xtot/ is at most one, since H 1.X/ D 0. If Xtot is a tree of

spaces, then at most one vertex space can have nontrivial first cohomology by

the Mayer-Vietoris Theorem. Also, since the attaching map of ˛ is admissible and

has positive length, there exists a closed subpath p0 of the attaching map p of ˛

which lies in a vertex spaceV ofXtot for whichH 1.V / D 0. Sincep is admissible,

p0 represents a nontrivial element g of �1.V /. Since �1.V / is locally indicable

and finitely generated sinceX is compact, we obtain a surjective map from �1.V /

to Z, giving us an infinite cyclic cover of V and contradicting that H 1.V / D 0.

On the other hand, if Xtot is not a tree of spaces, then we must have H 1.V / D 0

for each vertex space, and there is a unique simple cycle in the underlying graph

of Xtot. The attaching map of ˛ must travel exactly once around this cycle, so that

it uses max˛ exactly once, and we can see that X collapses across ˛ with free

edge max˛.

For the inductive step, consider the Mayer-Vietoris sequence

� � � ! H 1.X/ ! H 1.X n ˛/˚H 1.D2/ ! H 1.S1/ ! � � �

associated to attaching ˛ to the rest of X . Exactness shows that the rank of

H 1.X n ˛/ is at most one. Let X 0 be the subcomplex of X formed by removing

˛ and max ˛ from X . If X 0 is connected, then H 1.X n ˛/ D H 1.X 0/ ˚ Z, so

H 1.X 0/ D 0. Otherwise X 0 has two components X1 and X2 (say), and H 1.X n

˛/ D H 1.X1/˚H 1.X2/; assume without loss of generality thatH 1.X1/ D 0. In

this case, note that X1 must contain at least one essential 2-cell whose attaching

map lies entirely inside it. If not, then H 1.X1/ D 0 implies that X1 is a tree

of spaces, with each vertex space having trivial first cohomology. Then since the

attaching map p of ˛ usesX1 and is admissible, there exists a closed subpath p0 of

p lying in some vertex space V of X1 such that p0 represents a nontrivial element

g of �1.V /. As before (using compactness of X), indicability of �1.V / gives rise

to an infinite cyclic cover of V , contradicting that H 1.V / D 0.

Thus we may apply the inductive hypothesis either to X 0 (in case X 0 is con-

nected) or X1 (in case X 0 is not connected), but using the staggering opposite to
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that inherited from X (i.e., the orderings of the 1-cells and 2-cells are reversed).

By induction, the complex in question collapses across its least essential 2-cell ˇ

(in the original ordering) with free edge minˇ. But the attaching map of ˛ does

not use minˇ since ˇ < ˛, soX also collapses across ˇ with free edge minˇ. Let

X 00 D X n ¹ˇ;minˇº be the result of this collapse.

Now X 00 has fewer essential 2-cells than X , so again apply the inductive

hypothesis to X 00 (using the original ordering) to see that X 00 collapses across ˛

with free edge max˛. But the attaching map of ˇ does not use max˛ since ˇ < ˛.

Thus X D X 00 [ ¹ˇ;minˇº also collapses across ˛ with free edge max˛. �

Lemma 2.18 (cf. [17, Lemma 3.10] and [12, Lemma 2.7]). Suppose that X is

compact and has locally indicable vertex groups. Suppose additionally that X

has no infinite cyclic cover and that ˛ is the greatest essential 2-cell of X . Then

˛ is attached along a path pm where p is a closed path in Xtot passing through

max.˛/ exactly once. Moreover, no other 2-cell has the edge max.˛/ in the image

of its attaching map.

Proof. The proof is identical to the proof of [12, Lemma 2.7], except that we

appeal to Lemma 2.16 rather than [12, Lemma 2.6]. The idea is to replace ˛ by

its “mth root” and apply the previous lemma. �

3. Reduced diagrams and extreme 2-cells

Throughout this section, let X be a staggered generalized 2-complex.

3.1. The topology of van Kampen diagrams over X . We will now prove some

helpful results about “van Kampen diagrams” over X . For our purposes it will be

useful to allow diagrams which are not planar. In what follows, the boundary of

a 2-complex E, denoted @E, is the closure of the union of the 1-cells of E which

lie in the image of the attaching map of at most one 2-cell of E.

Let E ! X be a combinatorial map. We refer to cells of E as essential or not

according to whether or not their images in X are essential.

Definition 3.1 (cancelable pair/folding edge/reduced/diagram). Let Y be a CW

complex and E a 2-complex. Let �WE ! Y be a combinatorial map. Let ˛ and

ˇ be a pair of 2-cells of E with attaching maps ˆ˛ and ˆˇ . We say that ˛ and ˇ

form a cancelable pair if there is a decomposition of @˛ as a loop e1�1 for some

edge e1 and a decomposition of @ˇ as a loop e2�2 for some edge e2 such that

ˆ˛.e1/ D ˆˇ .e2/ and � ı ˆ˛.�1/ D � ı ˆˇ .�2/. We call ˆ˛.e1/ D ˆˇ .e2/ a

folding edge. The map � is called reduced if E does not contain a cancelable pair.

It is called a diagram if E is compact and simply connected.
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The following remarks are straightforward.

Remark 3.2. Let Y be a CW complex,  WD ! Y a diagram, and �WD ! Z a

lift of  to a cover Z ! Y . Then � is reduced if and only if  is reduced.

Remark 3.3. Let Y be a CW complex,  WD ! Y a diagram, and �WD ! T a

maximal tower lift. Then � is reduced if and only if  is reduced.

The following fundamental result is due to van Kampen:

Theorem 3.4. Let Y be a CW complex and let u be a closed path in Y .1/. Then u

is nullhomotopic if and only if there exists a reduced diagram D ! Y with D a

planar 2-complex such that there is a parametrization of @D mapping to u.

3.1.1. Finding exposed essential 2-cells

Definition 3.5 (position). Let �WE ! X be a combinatorial map. Let ˛ be an

essential 2-cell of E such that �.˛/ is of exponentm and attached by a path of the

form pm in X . Two consistently-oriented 1-cells e1 and e2 on the boundary of ˛

are in the same position in ˛ if a subpath  of @˛ running from the terminal 0-cell

of e1 to the terminal 0-cell of e2 has the property that �./ is a cyclic conjugate

of pj for some j 2 Z. For a 1-cell e in @˛ we let Œe�˛ denote the collection of the

m 1-cells in the same position as e in ˛.

Definition 3.6 (external/internal/exposed). Let �WE ! X be a combinatorial

map. An essential 2-cell ˛ inE is external if there is an essential 1-cell in @˛\@E;

otherwise it is called internal. An essential 2-cell ˛ in E is exposed if there is an

essential 1-cell e in @˛ such that every 1-cell in Œe�˛ lies in @E. In this case we

also say e is an exposed edge.

We emphasize that only essential edges can be exposed. Note that if �WE ! X

is a combinatorial map, then any total order<X of a set of cells ofX (such as those

coming from the staggering) induces an order of the preimages of those cells ofX

in E, which we will also denote by<X . Since two cells ofE may map to the same

cell of X , it may be the case that ˛ DX ˇ for cells ˛ and ˇ of E. In this sense,<X

is a quasi-order on the cells of E. By Remark 2.15, if E ! T is a tower lift of �

and ˛ <X ˇ for essential cells ˛ and ˇ of E, then ˛ <T ˇ .

Definition 3.7 (adjacent/adjacent along). Let E be a CW complex. We say that

2-cells ˛ andˇ are adjacent (along e) if there is an edge e belonging to @˛\@ˇ. For

a path  W I ! E in E.1/, we say ˛ is adjacent to  along e if e lies in im./\ @˛.
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Lemma 3.8 (cf. [17, Lemma 4.7] and [12, Lemma 4.1]). Suppose X has locally

indicable vertex groups. Let �WD ! T be a maximal tower lift of a reduced

diagram  WD ! X . If ˛ is a greatest (resp. least) 2-cell ofD (under<T ), then ˛

is exposed with exposed edge maxT ˛ (resp. minT ˛). In particular, every reduced

diagramD ! X with at least one essential 2-cell has an exposed essential 2-cell.

Proof. Note that T is compact sinceD is. Let ˛0 be the unique greatest 2-cell of T .

By Lemma 2.18, ˛0 is the unique 2-cell whose attaching map uses the edge max˛0,

and it uses it exactlym times ifm is the exponent of ˛0. Since we may assume that

� is surjective, �.˛/ D ˛0. Let e be an essential 1-cell of ˛ mapping to max˛0

under �. Assuming ˛ is not exposed in D, there is a 2-cell ˇ of D adjacent to ˛

along some essential 1-cell e0 belonging to Œe�˛ which also maps to max ˛0. Since

˛0 is the unique 2-cell using max˛0, we must have �.ˇ/ D ˛0. Since the attaching

map of ˛0 uses max˛0 exactly m times and is a proper power of exponent m, we

must have that �˛, the longer path from the terminal to the initial vertex of e0 in

@˛, and �ˇ , the analogous path in @ˇ, must map to the same path in T . This shows

that ˛ and ˇ form a cancelable pair and contradicts that the map � is reduced (by

Remark 3.3). �

3.1.2. Essential 2-cells embed in diagrams. Let ˛ be an essential 2-cell of X

which is attached along a closed path p. Our next goal is to use known results to

prove that no proper closed subpath of p is nullhomotopic inX . This fact is stated

as Lemma 3.13 below.

Definition 3.9 (Magnus subcomplex, cf. [17, Definition 3.6]). A Magnus sub-

complex Z � X is a subcomplex with the following properties:

i. the subcomplex Z contains the union of all vertex spaces;

ii. if ˛ is an essential 2-cell of X with the property that all essential boundary

1-cells of ˛ lie in Z, then ˛ lies in Z;

iii. the essential 1-cells of X contained in Z form an interval.

Note that we do not require Z to be connected.

The following lemma is equivalent to Howie’s “locally indicable” Freiheitssatz

[7, Theorem 4.3]. We will reprove it for completeness.

Lemma 3.10 (cf. [12, Theorem 6.1]). Suppose thatX has locally indicable vertex

groups. If Z is a Magnus subcomplex of X , then the inclusion i WZ ! X is �1-

injective for any choice of base point in Z.

Remark 3.11. This implies in particular that the vertex groups of X embed in

�1.X/.
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Proof. We follow the proof in [12] – only minimal modifications are necessary.

Let g 2 ker i�, and let u be a topological representative for g in Z for some

choice of base point. Then u is nullhomotopic inX , so we may apply Theorem 3.4

to construct a reduced diagram WD ! X whereD is a compact planar 2-complex

and  .@D/ D u. We will show that every 2-cell of D maps to Z; this will imply

u is nullhomotopic in Z and so g D 1 in �1.Z/.

If every essential 1-cell in D maps to Z (or no essential 1-cells appear in D),

then conditions (i) and (ii) imply that every 2-cell in D maps to Z and we are

done. So suppose there is an essential 1-cell in D not mapping to Z (for brevity,

say D has a 1-cell not in Z). Reversing the staggering of X if necessary, we may

assume by condition (iii) that D has a 1-cell not in Z which is greater than any

essential 1-cell in Z. Let �WD ! T be a maximal tower lift of  . Note that for

any edge e 2 D with the property that e is greater (under <X ) than any essential

1-cell inZ, e is greater (under<T ) than any essential 1-cell of T mapping toZ by

the tower T ! X . Surjectivity of � implies that the greatest essential 1-cell of T ,

which we call e0, does not map to Z. Therefore no edge in ��1.e0/ lies in @D.

Since e0 is in the image of the surjective map �, this last fact implies that e0

must lie on the boundary of some essential 2-cell in T . Thus e0 is maxT ˛ for the

greatest essential 2-cell ˛ of T . Applying Lemma 3.8, any essential 2-cell in D

mapping to ˛ under � is exposed with some exposed edge e00 in ��1.e0/. This

contradicts that no edge in ��1.e0/ lies in @D. �

Recall the following fact, the proof of which is technical but requires only

Bass-Serre theory and Howie’s Freiheitssatz (see [8]):

Lemma 3.12 ([8, Proposition 3.3]). Let .G; Y / be a graph of groups with trivial

edge groups and locally indicable vertex groups. Let w1; : : : ; wm (m � 2)

be reduced closed words in .G; Y /, not all of Bass-Serre length zero, such that

w D w1 : : :wm is defined and is cyclically reduced (in the algebraic sense). Let

N denote the normal closure of w in �.G; Y /. If w1N D � � � D wmN , then either

1. w1 D � � � D wm … N or

2. all but one of the wi are the empty word.

We may use the previous two results to prove the following:

Lemma 3.13 (cf. [17, Corollary 3.9]). Suppose thatX has locally indicable vertex

groups. Let p be a nontrivial proper subpath of the attaching map of an essential

2-cell ˛, and suppose that p is a closed path in X . Then p is not nullhomotopic

in X .

Proof. Let Z be the Magnus subcomplex of X consisting of all vertex spaces and

the 2-cell ˛. Let Z0 be the component of Z containing ˛, and let q be the closed

path in X such that ˛ is attached along the path pq. After following the procedure
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of Remark 2.3, note that �1.Z
0 n ˛/ is isomorphic to the fundamental group

�.G; Y / of a graph of groups .G; Y / satisfying the hypotheses of Proposition 3.12.

Let wp and wq be the images in �.G; Y / of Œp� and Œq�, respectively, under this

isomorphism, and let w D wpwq . Since the attaching map of ˛ is along an

admissible cyclically reduced edge loop and includes an essential edge in its

image, we conclude that neither wp nor wq is the empty word, and that at least

one of wp or wq has positive length in �.G; Y /. Let N be the normal closure of

w in �.G; Y /. Now we claim that wp … N . Indeed, if wp 2 N , then Lemma 3.12

implies that wpN ¤ wqN . On the other hand, wqN D .wpN/
�1.wpwqN/ D N ,

so wpN D wqN , a contradiction.

Thus p is not nullhomotopic in Z0. But �1.Z/ D �1.Z
0/ for appropriate

choice of base point, and �1.Z
0/ injects into �1.X/ by Lemma 3.10. Thus p

is not nullhomotopic in X . �

Corollary 3.14. Suppose X has locally indicable vertex groups. Let D ! X be

a reduced diagram, and ˛ an essential 2-cell ofD. Then @˛ is embedded inD. In

particular, N̨ is a simply connected subset of D.

Proof. If @˛ is not embedded in D, there is a closed loop in @˛ which maps to a

nontrivial proper subpath p of the attaching map of an essential 2-cell of X . A

nullhomotopy of this closed loop in D (which is simply connected) gives rise to

a nullhomotopy of p in X , contradicting Lemma 3.13. �

3.1.3. Other simply connected subdiagrams. We now observe some conse-

quences of Corollary 3.14.

Definition 3.15 (internally intersects and other notation for paths). Let Z be a

subspace of a space Y and  W I ! Y a path. We say  internally intersects Z if

..0; 1// \ Z ¤ ;. We will frequently abuse notation and refer to .I / as  and

..0; 1// as int./ when there is no risk of confusion. In case  is an edge path in

a CW complex, we will also use j j to mean the number of edges in  .

The following basic topological fact will be quite useful throughout. The proof

is straightforward.

Lemma 3.16 (snipping lemma). LetE be a simply connected 2-complex. Let  be

an embedded, locally separating arc in E between two points x and y in @E, and

suppose that  does not internally intersect @E. We call  a snipping arc. Then

E n  is disconnected (i.e,  is separating). In particular, suppose int./ \ E is

contained in a single 2-cell ˛, and fix a parametrization pWS1 ! @˛. Let v and w

be two points of S1 which lie in distinct components of S1 n p�1./. Then there

is no path from p.v/ to p.w/ in E n  .
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Lemma 3.17 (cf. [17, Lemma 4.9]). Suppose that X has locally indicable vertex

groups. Let D ! X be a reduced diagram. Suppose an essential 2-cell ˛ of D

is external. Let B be a component of D n N̨ . Then B \ N̨ , B , and B [ N̨ are all

simply connected.

Proof. By van Kampen’s Theorem and Corollary 3.14, it suffices to prove that B

and B \ N̨ are simply connected.

Observe thatB\ N̨ is connected. To see this, suppose thatB\ N̨ is disconnected

and pick points v and w in distinct components therein. Also choose two points

v0 and w0 in distinct components of @˛ n B . Connect v0 and w0 by a snipping arc

 through the interior of ˛. The fact that there is a path from v to w in B (thus

avoiding ) contradicts the snipping lemma. Thus B \ N̨ is connected.

Since ˛ is external, and by Corollary 3.14, B \ N̨ is homeomorphic to an

interval and is thus simply connected.

To prove that B is simply connected, note thatD is the union of B andD n B ,

and that B \D n B D B \ N̨ . Since D and B \ N̨ are simply connected, so is B

by van Kampen’s Theorem. �

3.2. Branches, extreme 2-cells, and a Spelling Theorem

Definition 3.18 (branch). Let D ! X be a reduced diagram. If ˛ is an exposed

2-cell of D with exposed edge e, then the components of D n N̨ which contain at

least one essential 2-cell are called the branches of D at .˛; e/.

Lemma 3.17 implies the following:

Lemma 3.19. Suppose that X has locally indicable vertex groups. Let D ! X

be a reduced diagram, and suppose ˛ is an exposed 2-cell ofD with exposed edge

e. Let B be a branch of D at .˛; e/. Then B [ N̨ is simply connected.

Definition 3.20 (auxiliary diagram/extreme). Let �WE ! X be a combinatorial

map. The auxiliary diagram {E associated to E is obtained from E by collapsing

all maximal (under inclusion) connected regions ofE which map to vertex spaces

of X to points. For any subset S of E, denote the image of S in {E by {S . Let ˛

be an essential 2-cell of E of exponent m. We say that ˛ is extreme if there is a

subpath  of @˛ (called an extreme subpath) such that  contains the union of allm

elements of Œe�˛ for some exposed edge e in ˛, and L does not internally intersect
NĽ for all essential 2-cells ˇ ¤ ˛ of E.

Remark 3.21. All extreme 2-cells are exposed. When m D 1 the definitions of

exposed and extreme coincide. A generic (planar) reduced diagram is depicted in

Figure 4.
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˛

ˇ!

e

f

Figure 4. A generic planar reduced diagram. The regular bold pentagonal cells are exactly

the essential 2-cells and persist in the auxiliary diagram. The essential 2-cell ˛ is both

exposed and extreme, as demonstrated by the path  which contains all 5 elements of Œe�˛ .

The essential 2-cell ˇ is exposed (consider Œf �ˇ) but not extreme. The essential 2-cell ! is

neither exposed nor extreme since at least 1=5th of a contiguous portion of its boundary is

internal.

Lemma 3.22. Suppose that X has locally indicable vertex groups and let

 WD ! X be a reduced diagram. Let ˛ be an exposed essential 2-cell in D with

exposed edge e, and suppose that there is at most one branch ofD at .˛; e/. Then

˛ is extreme.

Proof. This is obvious if there are no branches of D at .˛; e/, so assume there

is exactly one and call it B . By Lemma 3.17, B \ N̨ is contained in an arc of

@˛ between two consecutive elements of Œe�˛, e1 and e2. Let  be the arc of

@˛ containing e1 and e2 which does not intersect B . Note that  contains Œe�˛.

Collapse D to the auxiliary diagram {D. Let ˇ be an essential 2-cell of B . Since

 does not internally intersect B , L does not internally intersect the closure of Ľ.
Thus ˛ is extreme. �

We can now prove our first diagram result:

Proposition 3.23 (cf. [17, Theorem 4.11]). Suppose that X has locally indicable

vertex groups. Let  WD ! X be a reduced diagram and suppose thatD contains

at least two essential 2-cells. Then D contains at least two extreme essential

2-cells.
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Proof. The proof is quite similar to that of [17, Theorem 4.11].

To prove the proposition, we induct on the number of essential 2-cells in D.

Let �WD ! T be a maximal tower lift of  with associated tower f WT ! X , and

note that T is compact since D is.

First suppose there are exactly two essential 2-cells inD, ˛ and ˇ. Then ˛ and

ˇ are both either greatest or least essential 2-cells (under <T ), and so Lemma 3.8

implies that they are both exposed. We claim that ˛ and ˇ are both extreme. To see

˛ is extreme, let e be an exposed essential edge of ˛ and note that there is a single

branch B of D at .˛; e/. By Lemma 3.22, ˛ is extreme. An identical argument

shows that ˇ is extreme.

For the inductive step, note first that we can find two exposed 2-cells ˛ and ˇ

inD. Indeed, if T has only one essential 2-cell, then every essential 2-cell ofD is

a greatest 2-cell and so is exposed by Lemma 3.8, so choose ˛ and ˇ arbitrarily.

On the other hand, if T has two or more essential 2-cells, and since � is surjective,

we can find a 2-cell in D (˛, say) mapping to the greatest 2-cell of T , and a 2-cell

in D (ˇ, say) mapping to the least 2-cell of T ; Lemma 3.8 implies that ˛ and ˇ

are exposed. If ˛ and ˇ are extreme we are done, otherwise assume without loss

of generality that ˛ is not extreme. Then for an exposed edge e of ˛, there are

at least two branches of D at .˛; e/ by Lemma 3.22. Call them B1 and B2. Now

B 0
1 D B1 [ N̨ and B 0

2 D B2 [ N̨ are simply connected by Lemma 3.19, and thus

f ı �jB0
i

is a reduced diagram for i D 1; 2 with fewer essential 2-cells than  .

By induction, there is an extreme essential 2-cell ˛1 ¤ ˛ in B 0
1. Observe that ˛1

is also extreme in D since ˛ separates B1 from all other branches of D at .˛; e/.

Similarly, we can find an extreme cell ˛2 ¤ ˛ in D which lies in B 0
2. They are

distinct since ˛1 lies in B1 and ˛2 lies in B2. �

Note. This generalizes part of the Spelling Theorem of Howie and Pride [10,

Theorem 3.1(iii)], since the diagrams considered in that paper are planar.

The following is a simple topological criterion for identifying when an essen-

tial 2-cell in a diagram is not extreme which we record for reference. We will not

use it until later.

Lemma 3.24. Let �WE ! X be a combinatorial map and let ˛ be an essential

2-cell of E mapping to an essential 2-cell of X of exponentm. Suppose that there

are two vertices x and y lying in @˛ with the following properties:

i. both paths from x to y in @˛ contain at least j@˛j=m edges;

ii. each of the vertices Lx and Ly lies in the closure of at least two essential 2-cells

in {E.

Then ˛ is not extreme in E.
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Proof. Let  be a subpath of @˛ such that  contains every 1-cell in Œe�˛ for an

arbitrary essential edge e in ˛. Condition (i) implies that either x or y lies in int./,

and condition (ii) implies that L internally intersects the closure of some 2-cell of
{E other than the closure of L̨ . Thus ˛ is not extreme. �

4. Additional extreme 2-cells

Standing assumptions from this point onward. Let X be a staggered general-

ized 2-complex with locally indicable vertex groups.

In this section, we will prove an additional criterion for the existence of extreme

essential 2-cells in a reduced diagram D ! X .

Recall the main theorem from [8]:

Lemma 4.1 ([8, Theorem 4.2]). Let A and B be locally indicable groups, and let

G be the quotient of A � B by the normal closure of a cyclically reduced word w

(in the algebraic sense) of length at least 2 in the free product. Then the following

are equivalent:

i. G is locally indicable;

ii. G is torsion free;

iii. w is not a proper power in A � B .

Howie sketches the following corollary [8], which we prove here for complete-

ness:

Corollary 4.2 (cf. [8, Corollary 4.5]). Suppose X is such that the attaching map

of each essential 2-cell is not a proper power. Then �1.X/ is locally indicable.

Proof. Consider the set of all staggered generalized 2-complexes X 0 which have

all of the same data asX , except that C.X 0/ is a finite subset ofC.X/. Then the set

of the groups �1.X
0/ forms a directed system for which �1.X/ is the direct limit.

Since a direct limit of locally indicable groups is locally indicable, it suffices to

assume that C.X/ is finite.

Induct on the number of essential 2-cells in X .

For the base case, note that if there are no essential 2-cells in X , then �1.X/

is locally indicable as the free product of locally indicable groups (by, e.g., the

Kurosh Subgroup Theorem).

For the inductive step, let ˛ be the greatest essential 2-cell of X and let

e D max˛. Then no other essential 2-cell uses e. If e separates X n ˛, then

let XA and XB be the two components. Let A D �1.XA/, B D �1.XB/, and

w D Œ@˛�. Now XA and XB are staggered generalized 2-complexes with locally

indicable vertex groups and fewer essential 2-cells, and so A and B are locally
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indicable by induction. Now apply Lemma 4.1. On the other hand, if e does not

separate X n ˛, we can see that �1.X n ˛/ decomposes as a free product A � hti,
where A D �1.X n ¹˛; eº) and t corresponds to a loop with winding number 1

over e, since no essential 2-cell uses e except ˛. Again observe that A is locally

indicable by induction. Lemma 4.1 again applies with B D hti and w D Œ@˛� to

give the result. �

We can use this fact to get a strong amplification of Remark 3.3:

Lemma 4.3 (cf. [17, Lemma 4.6]). Let  WD ! X be a reduced diagram. Let

�WD ! T be a maximal tower lift of  . If ˛ and ˇ are adjacent essential 2-cells

of D then �.˛/ ¤ �.ˇ/.

Proof. The proof is in the same spirit as that of [17, Lemma 4.6].

Suppose that �.˛/ D �.ˇ/ and let e be a 1-cell in N̨ \ Ň (essential or not).

Observe that  .˛/ D  .ˇ/. Let p be an edge loop of X such that pm is the

boundary path of  .˛/ D  .ˇ/ and p is not a proper power. By Remark 2.9,

the boundary path of �.˛/ D �.ˇ/ is of the form Opm where Op is a lift of p to T .

In particular, Op is a closed loop in T , and the map � is periodic of period j Opj on

the edges of @˛. Let � be the path of length j Opj in @˛ which begins at the initial

point of e and traverses e in the positive direction. Since ˛ and ˇ are identified

under � but do not form a cancelable pair, and all elements of Œe�˛ and Œe�ˇ map

to �.e/, there an edge contained in � which is not equal to e but which also maps

to �.e/. This shows that there is a proper closed subpath of �.�/ in T . Thus there

is a proper closed subpath  of Op in T . See Figure 5.

e

q˛

ˇ

¹

´

Figure 5. The path q (or possibly q n e) maps to a closed loop in T .
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Let X 0 be the staggered generalized 2-complex associated with X having

nonperiodic attaching maps, built as follows. Let X 0
tot D Xtot. Each element of

C.X/ of exponent m gives rise to an exponent 1 element of C.X 0/ whose gluing

map is the mth root of the original, and the staggering on X 0 is the obvious one.

Consider the map X ! X 0 which is the identity on Xtot, and an m-fold

branched cover on each essential 2-cell if m is the exponent of that 2-cell. Let

 0 be the image of  in X 0. By Lemma 3.13,  0 represents a nontrivial element of

�1.X
0/. Thus, via ��, �1.T / maps homomorphically to a nontrivial subgroup of

�1.X
0/, and that subgroup is finitely generated since T is compact. Since �1.X

0/

is locally indicable by Corollary 4.2, there exists a surjective homomorphism

�1.T / ! Z. Thus T has an infinite cylic cover and the tower lift D ! T is

not maximal, a contradiction. �

Now we can study connected subdiagrams of a reduced diagram:

Lemma 4.4 (cf. [17, Lemma 5.1]). Let D ! X be a reduced diagram. Let D0

be a connected subcomplex of D, and let ˛ be a greatest 2-cell of D0. Then ˛ is

exposed in D0.

Note. The proof below is slightly more complicated than Lauer and Wise’s proof

of [17, Lemma 5.1]. There, the authors seem to assume that the analogue of the

subcomplex B defined in the proof below is simply connected without justifica-

tion.

Proof. Let D ! T be a maximal tower lift of the diagram D ! X . By

Lemma 4.3 applied to the mapD ! T , each essential 2-cell adjacent to ˛ inD0 is

strictly below ˛ (under <T ). Let B be the smallest subcomplex of D0 containing

˛ and all 2-cells adjacent to ˛. Let B 0 be a minimal simply connected subcomplex

of D containing B (under inclusion). Let B 0 ! T 0 be a maximal tower lift of the

composition B 0 ,! D ! T , and let ˛0 be a greatest essential 2-cell of B 0 under

<T 0 . Now Lemma 3.8 implies ˛0 is exposed in B 0. Note that since all essential

2-cells in B n ˛ are below ˛ under <T , they are also below ˛ under <T 0 . Thus

˛0 … B n ˛. If ˛0 ¤ ˛, then consider the component of B 0 n ˛0 containing ˛.

This subcomplex of D contains B , is simply connected (by Lemma 3.17), and it

is strictly contained in B 0. This violates minimality of B 0. Thus ˛0 D ˛, so ˛ is

exposed in B 0. But B 0 contains all 2-cells inD0 adjacent to ˛, so ˛ is also exposed

in D0. �

LetD ! X be a reduced diagram. Let V be the preimage in D of the disjoint

union of the vertex spaces of X , and let ˛ be an essential 2-cell of D. Define the

following subcomplexes of D:

cG˛ D
[

¹ Ň 2 Djˇ �X ˛º [ V;

cL˛ D
[

¹ Ň 2 Djˇ <X ˛º [ ¹ N̨ º [ V:



Cubulating one-relator products with torsion 713

Let G˛ and L˛ be the components of cG˛ and cL˛ , respectively, containing ˛.

Lemma 4.5 (cf. [17, Lemma 5.3]). The components of cG˛ and cL˛ are simply

connected.

Proof. The proof is nearly identical to that of [17, Lemma 5.3]. We obtain cG˛ by

successively removing the closure of a least essential 2-cell fromD and passing to

components of the closure of what remains. Reversing the staggering, Lemma 4.4

ensures that each successive essential 2-cell will be exposed, and Lemma 3.17

implies that removing each successive cell leaves simply connected components.

In finitely many steps we obtain cG˛, and the argument is essentially the same

for cL˛ . �

We are ready to prove our second main criterion about extreme 2-cells in

diagrams:

Proposition 4.6 (cf. [17, Theorem 5.4]). Let D ! X be a reduced diagram. If

D has an internal essential 2-cell that maps to an exponentm 2-cell of X , thenD

contains at least 2m extreme 2-cells.

Proof. The proof is essentially the same as that of [17, Theorem 5.4].

Let D ! T be a maximal tower lift of D ! X , and let ˛ be an internal

essential 2-cell of D of exponent m. Define cG˛ and cL˛ with respect to <T . Now

Lemma 4.4 implies that ˛ is exposed in both G˛ and L˛, so there exist essential

1-cells eG and eL in ˛ such that each 1-cell in ŒeG �˛ lies in @G˛ and each 1-cell

in ŒeL�˛ lies in @L˛ . Since ˛ is internal in D, ŒeG �˛ and ŒeL�˛ must be disjoint.

By Lemma 4.5, G˛ ! X is a reduced diagram, so Lemma 3.17 implies that each

branch of G˛ at .˛; eG/ intersects @˛ in an arc. This fact, together with the fact

that them elements of ŒeL�˛ are internal in G˛ (and them elements of ŒeG �˛ lie on

@G˛), implies that there are m branches of G˛ at .˛; eG/ adjacent to ˛ along the

m elements of ŒeL�˛ . Call them B1; : : : ; Bm. Let Gi be the component of cL˛ [Bi

containing ˛. Note that Gi contains at least one essential 2-cell strictly greater

than ˛ since Bi contains an essential 2-cell adjacent to ˛ (applying Lemma 4.3 to

D ! T ). So any greatest 2-cell of Gi lies in Bi . Now Lemma 4.4 implies that

there exists an essential 2-cell ˛0 in Bi which is exposed in Gi . Note that ˛0 is

exposed in D since if ˇ is a 2-cell of D adjacent to ˛0, then ˇ lies in cL˛ if ˇ < ˛

and lies in Bi if ˇ � ˛, so ˇ lies in Gi already. Thus we obtainm distinct exposed

2-cells in D, one in each Bi , and all strictly greater than ˛.

We repeat almost the same argument for L˛ to obtainmmore distinct exposed

2-cells in D, all strictly less than ˛ (in this case, the argument is actually simpler,

as we don’t need to apply Lemma 4.3). Thus we obtain 2m distinct exposed 2-cells

in D. This completes the proof in the case m D 1, as the definitions of exposed

and extreme coincide.

Thus assume m � 2, and let ˛1; : : : ; ˛2m be the 2m exposed 2-cells of D

identified above. If ˛i is not extreme, then D has at least two branches at .˛i ; ei/
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for some ei by Lemma 3.22. Let Ci be a branch not containing ˛, and note that

Ci [ ˛i is simply connected by Lemma 3.19. By Proposition 3.23, there are at

least two extreme essential 2-cells in Ci [ ˛i ; any one of these not equal to ˛i is

extreme in D. Call such a cell ˇi and replace ˛i by ˇi in this case. Repeating for

each i , we obtain 2m extreme 2-cells.

It remains to show that these 2m cells are distinct. Note first that ˛i does not lie

in Cj for any i ¤ j , since ˛i lies in the branch ofD at . j̨ ; ej / containing ˛. Thus

˛i ¤ ǰ for all i ¤ j (when ǰ is defined). On the other hand, if ˇi D ǰ for some

i ¤ j , then Ci \Cj ¤ ;. Choose two elements of Œej � j̨
such that there is no path

in @ j̨ between Cj and the branch ofD at . j̨ ; ej / containing ˛, and connect these

edges by a snipping arc running across the interior of j̨ . LetB be the branch ofD

at . j̨ ; ej / containing ˛ (which contains ˛i as remarked above). Now the complex

Ci [˛i [Cj [ j̨ [B shows that the snipping arc is non-separating, contradicting

the snipping lemma (Lemma 3.16). Thus ˇi ¤ ǰ for all i ¤ j (when ˇi and ǰ

are defined) and the 2m extreme 2-cells we have found are distinct. �

5. Geometry of the universal cover

Standing assumptions from this point onward. Let X be a staggered general-

ized 2-complex with locally indicable vertex groups. From now on, we assume

that each essential 2-cell of X is attached by a proper power, that is, n.X/ � 2.

We will soon be assuming that the vertex groups of X are cubulated. This

section contains a collection of results about the geometry of X which do not

depend on this assumption. In what follows, we will be working in a space xX

which is closely related to zX , the universal cover ofX . Let Y denote the preimage

of Xtot in zX .

Definition 5.1 ( xX). By Lemma 3.10, �1.V / embeds naturally in �1.X/ for each

vertex space V of X , and thus Y may be viewed as a graph of simply connected

CW complexes (each vertex space of which is zV for some vertex space V of X)

with preimages of essential edges running between them. Let xX be the space

obtained from zX by identifying lifts of essential 2-cells of X which have the

same attaching map up to cyclic permutation. The space xX may be viewed as

a subcomplex of zX which contains Y , and there are thus combinatorial maps
xX ! zX ! X .

Give Y .1/ the combinatorial metric in which every edge has length 1. All of

the metric statements in this section are really about Y .1/ D xX .1/, and all paths of

interest are edge paths.

5.1. Admissible pseudometrics and relative geodesics. We will work with

paths in xX which generalize geodesics. The idea of relative geodesics as defined
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below is that they allow for the possibility that paths may be “shorter than they

look” in vertex spaces. At certain times in what follows, we will be strategically

“augmenting” xX in a manner which introduces this sort of behavior.

Definition 5.2 (admissible pseudometrics/relative length/relative geodesic). Let

d denote the metric on xX .1/ where every edge has length one. For each vertex

space zV , choose a pseudometric d zV on zV .0/. We require that this choice of

pseudometrics is invariant with respect to the action of G D �1.X/ on xX . If

this holds we say the choice of pseudometrics is admissible.

Let  W I ! xX be an edge path whose endpoints are 0-cells x and y of xX .

Decompose  as a concatenation v1
e1 : : : vk

ekvkC1
, where each vi

is a (pos-

sibly degenerate) maximal edge path mapping to a vertex space zVi of xX , and the

ei are essential edges. We define the relative length of  , `r./, by the following

formula:

`r ./ D k C

kC1X

iD1

d zVi
.i.vi

/; t .vi
//;

where i.�/ and t .�/ denote the initial and terminal vertices, respectively, of a

path or edge �. We say  is a relative geodesic if `r ./ is minimal among all paths

from x to y. If we have not made an explicit choice of admissible pseudometrics

on vertex spaces, the statement that  is a relative geodesic should be taken to

mean that there is a choice of admissible pseudometrics which makes  a relative

geodesic.

Some examples of admissible choices of pseudometrics are as follows (pro-

vided that the choices are made in a G-invariant manner):

� use the induced metric from xX . For some/all zV , define d zV
.x; y/ D d.x; y/

for some/all x; y 2 zV .0/. Thus geodesics are relative geodesics;

� “Electrify” some/all zV by defining d zV
.x; y/ D 0 for all x; y 2 zV ;

� “cone off” some/all zV by adding a new vertex and connecting all vertices of
zV to it by an edge of length 1/2, and define d zV by the metric this procedure

induces, so that d zV .x; y/ D 1 for all distinct x; y 2 zV ;

� for some/all zV , choose d zV
so that there is a constant C such that

jd zV .x; y/ � 2 log.d.x; y/C 1/j < C

for all x; y 2 zV . This is the choice we will make later on when we attach

so-called combinatorial horoballs to each zV .
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5.2. Local geometry of essential 2-cells. The following fact is a crucially im-

portant statement about the boundaries of essential 2-cells in xX .

Lemma 5.3. Suppose X is a staggered generalized 2-complex with locally indi-

cable vertex groups and n.X/ � 2. Let  a relative geodesic in xX . Let e be an

essential edge of an essential 2-cell ˛. Then there exists an element of Œe�˛ not

contained in  .

Proof. Suppose that the lemma is false. Among all triples .˛; e; / with the

property that all members of Œe�˛ (for some essential edge e of some essential

2-cell ˛) lie in the relative geodesic  , choose one for which `r ./ is minimal.

Note that  contains at least two edges.

Label the elements of Œe�˛, e1; : : : ; em (where m � 2 is the exponent of ˛) in

the order that they occur along  , and orient them consistently with  . Let i.ej /

and t .ej / be the initial and terminal vertices, respectively, of ej for j 2 ¹1; : : : ; mº.

We may also assume that the initial point of  is i.e1/ and the terminal point is

t .em/ by removing edges from  if necessary. Let �j be the subpath of  between

t .ej / and i.ej C1/, for j 2 ¹1; : : : ; m � 1º. Choose � 2 ¹�j º such that `r .�/ is

minimal. See Figure 6. Decompose the image of @˛ in X as a path pm where p is

not a proper power. Then p corresponds to an orderm element w of �1.X/ which

acts on xX by “rotation” through a point in the interior of ˛. Consider the paths

¹wj�º for j 2 ¹0; : : : ; m � 1º. Each path connects two elements of Œe�˛, and the

orbits chain together to form anm-pointed star shape with corners on members of

Œe�˛ (there are two cases according to whether the ¹wj�º meet at their endpoints

or have endpoints separated by the elements of Œe�˛).

e1
e2

e3

e4

e5

1

2

3

4
˛

Figure 6. Decomposition of  into the �j . Suppose that � D �4.
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Now, find a shortest relative path � in xX connecting i.e1/ to t .em/ using

only w-orbits of � and members of Œe�˛. See Figure 7. It is clear that `r .�/ �
m
2
`r .�/C m

2
C 1. On the other hand, since  is a relative geodesic with the same

endpoints as �, we have that `r .�/ � m`r .�/Cm. Unlessm D 2, this contradicts

the inequality
m

2
`r.�/C

m

2
C 1 < m.`r .�/C 1/;

which trivially holds whenever `r .�/ � 0 and m � 3.

e1
e2

e3

e4

e5

˛

Figure 7. In this example, � is made up of two orbits of � and the edges e1 and e2.

Thus, we have reduced to the case m D 2. We may assume that � does not

cross e1 or e2, as this would provide an obvious way to decrease the relative length

of  . We may also assume that � connects antipodal points of @˛, for otherwise

w� connects i.e1/ to t .e2/ and `r .w�/ < `r ./ since w� avoids e1 and e2.

Let � be the characteristic map of ˛. Let ˛0 D ��1.˛/ and e0
i D ��1.ei/

for i 2 ¹1; 2º. Consider the complex E D ˛0
F

¹��1.i.�//;��1.t.�//º � , which has

�1.E/ D Z and a natural map to xX . The assumption of the previous paragraph

implies that � joins the two distinct components of @˛0 n .e0
1 [ e0

2/. Let q be a

cyclically reduced path in E which represents a generator of �1.E/, andD0 ! xX

a reduced disk diagram with boundary filling the image of q. Let D D E
F

q D
0.

IfD is not reduced, then there is an essential 2-cell ˇ ofD0 such that ˛0 and ˇ form

a cancelable pair and share an edge f in their common boundary. If this happens,

then “fold” ˇ over ˛0 by identifying the paths @ˇ n ¹f º and @˛0 n ¹f º and deleting

ˇ from D. This is a homotopy equivalence and has the effect of modifying q and

deleting an essential 2-cell from D0. This process terminates after finitely many

steps, so we may assume thatD is reduced. Note that @D is contained in @˛0 [ � .
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Note also that at most one of e0
1 and e0

2 lies in @D. Otherwise, connect a point of

e0
1 to a point of e0

2 by a snipping arc running across the interior of ˛0, and observe

that the path � contradicts the snipping lemma (Lemma 3.16) since D is simply

connected. Without loss of generality, assume that e0
1 is internal in D. Thus e0

1

lies in the boundary of at least two distinct essential 2-cells of D.

Thus there exist at least two essential 2-cells inD. Choose an inclusion xX ! zX

and consider the natural reduced map D ! X . By Proposition 3.23, there is an

extreme essential 2-cell ˇ of D distinct from ˛0 with exposed edge f , say. Since

@D is contained in @˛0 [ � , all elements of Œf �ˇ are contained in this complex as

well. In fact, all elements of Œf �ˇ are contained in � since they lie on the boundary

ofD. Thus the triple .ˇ; f; �/ yields a counterexample to the lemma. The fact that

`r .�/ < `r ./ contradicts minimality of .˛; e; /, and the lemma is proved. �

An immediate consequence of this lemma is convexity of vertex spaces.

Lemma 5.4. The vertex spaces of xX are convex.

Reminder. We are using the path metric on xX .1/.

Proof. Let  be a geodesic edge path between vertices x and y of a vertex space zV .

By passing to an innermost subpath outside of zV , we may assume for contradiction

that \ zV D ¹x; yº. Let  0 be a shortest path from x to y in zV . Fill the loop . 0/�1

with a reduced diagram D using Theorem 3.4. Since all edges of  lie outside of
zV ,  contains an essential edge. Since D is simply connected, this edge shows

that D contains an essential 2-cell. Lemma 3.8 implies that there is an exposed

essential 2-cell ˛ with exposed edge e. Since  0 consists only of edges which are

not essential, all elements of Œe�˛ lie on  . This contradicts Lemma 5.3. �

5.3. Patchings. The following construction is of critical importance for later

arguments. It is a technique we will use to turn certain reduced maps �WE ! xX
into reduced diagrams without introducing extra exposed or extreme 2-cells.

Definition 5.5 (patching). Let �WE ! xX be reduced, whereE is compact but not

necessarily simply connected. A patching for � is a simply connected 2-complex

E# and a reduced diagram �#WE# ! xX such that E# contains E as a subcomplex,

�#jE D �, and none of the essential 2-cells of E# nE are exposed in E#.

Remark 5.6. Fix an inclusion of xX into zX . In view of the composition xX !
zX ! X , reduced diagrams D ! xX give rise to reduced diagrams D ! X

and vice versa by Remark 3.2. Whenever we have a patching E# ! xX , we will

casually confuse it with the corresponding reduced diagram E# ! X in order to

apply Propositions 3.23 and 4.6.
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An isolated edge of a CW complex is one which is not in the boundary of any

2-cell. The following lemma formalizes the induction required in the key patching

lemma, Lemma 5.8.

Lemma 5.7. Let F be a compact connected 2-complex which is a subcomplex

of xX . Let FC be a compact connected 2-complex with the following properties:

1. F is a subcomplex of FC;

2. FC admits a reduced combinatorial map

�CWFC �! xX

(with �CjF equal to the inclusion map).

Letp be a cyclically reduced edge loop inFC. Then there is a simply connected

planar 2-complex D (homeomorphic to a disk if p is embedded) and boundary

gluing map p0 (homotopy equivalent to p in FC, and which we can arrange to be

embedded if p is), such that FCC D FC

F
p0 D has the following properties:

i. FC is a subcomplex of FCC;

ii. FCC admits a reduced combinatorial map

�CCWFCC �! xX

(with �CCjFC
D �C).

Moreover, we can arrange that the following hold:

a. any isolated edge in FCC is also isolated in FC;

b. any exposed essential 2-cell ˛ belonging to FCC n FC with exposed edge e

has the property that all elements of Œe�˛ are isolated edges of FC.

Proof. Fill the image loop �C.p/ with a reduced planar disk diagram D ! xX
using Lemma 3.4, and pull back the attaching map ofD to FC along �C so thatD

is attached to FC along p. If p is embedded, then D is homeomorphic to a disk.

Define p0 D p and FCC D FC

F
p0 D, and use the defining map for D and �C to

define the combinatorial map �CCWFCC ! xX . If �CC is reduced, (i) and (ii) are

clear.

Otherwise, �CC is not reduced, and there is a cancelable pair of 2-cells ˛D

and ˛C (essential or not) belonging to D and FC, respectively. Let e denote a

folding edge in p0 for the cancelable pair (˛D , ˛C). Let � be a maximal subpath

of p0 contained in ˛D [ ˛C, and orient it consistently with p0. Since D is planar,

@˛D is embedded in D. Let ı be the closure of @˛D n � and orient it so that it has

the same initial and terminal vertices as � . Modify FCC and �CC by replacing

D by D n ˛D and replacing p0 by .p0 n �/ [ ı. Note that this process preserves

that FC is a subcomplex of FCC. It also preserves that p0 is an embedded edge
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loop in xX and thatD is homeomorphic to a disk (assuming that p0 was originally

embedded and D was originally homeomorphic to a disk) and that D is a planar

reduced disk diagram filling p0. Repeating as many times as necessary, we may

assume that �CC is reduced. This proves (i) and (ii).

Now (a) holds since the operation outlined in the previous paragraph cannot

introduce isolated edges. The second observation (b) follows from (a): with ˛ as

described, every edge of Œe�˛ also lies in @D, and all such edges on @FCC must

have been isolated in FC already. �

Lemma 5.8. Let F be a compact connected 2-complex which is a subcomplex

of xX , and let FC and �C have properties (1) and (2) as in Lemma 5.7. Suppose

that there is a path � in FC with the property that � contains every isolated edge

of FC and maps to a relative geodesic in xX . Then a patching for �C exists.

Proof. Fix k � 0 elements g1; : : : ; gk of �1.FC/ which generate this group. The

list is finite since FC is compact.

Induct on k. If k=0, then FC is simply connected and �C is a reduced diagram,

so set .�C/# D �C and we are done.

If k > 0, let pk be a cyclically reduced edge loop in FC such that Œkpk
�1
k
� D

gk after choice of base point and appropriate k .

Apply Lemma 5.7 with pk as defined to obtain the compact, connected sub-

complex FCC and the reduced map �CC. Observe that F is a subcomplex of FC,

since F is a subcomplex of FC, and FC is a subcomplex of FCC. Also observe

that �CCjF is equal to the inclusion map, since �CCjFC
D �C and �CjF is equal

to the inclusion map. The first additional observation of Lemma 5.7 implies that

all isolated edges of FCC belong to �, since all isolated edges of FC belong to �.

The diskD from the application of Lemma 5.7 shows that the group �1.FCC/

is generated by the elements corresponding to the paths p1; : : : ; pk�1. By the

inductive hypothesis, a patching �#WF# ! xX for �CC exists, with the property

that �#jFCC
D �CC, and none of the essential 2-cells of F# n FCC are exposed in

F#. Note that �#jFC
D �C since �CCjFC

D �C.

We claim that none of the essential 2-cells ofF#nFC are exposed inF#. Indeed,

we already know that none of the essential 2-cells of F# nFCC are exposed in F#.

On the other hand, no essential 2-cell ˛ in FCC n FC is exposed in FCC by the

second additional observation of Lemma 5.7 and Lemma 5.3. Thus, no such ˛ is

exposed in F#, either.

This claim implies that �# is a patching for �C as well, and the proof is

complete. �

Lemma 5.9. Let �WF ! xX be an inclusion of a compact connected 2-complex.

Suppose that there is a path � in F with the property that � contains every isolated

edge of F and maps to a relative geodesic in xX . Then a patching for � exists.

Proof. Apply Lemma 5.8 with FC D F and �C equal to inclusion. �
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5.4. More local geometry of essential 2-cells. With patchings as the fundamen-

tal tool, we now prove some other useful statements about the local geometry of

essential 2-cells.

Lemma 5.10. Let ˛ be an essential 2-cell of xX . Then N̨ embeds in xX .

Proof. The subcomplex E D N̨ satisfies the hypotheses of Lemma 5.9, so let

E# ! X be a patching (writing X instead of xX in the abuse of notation justified by

Remark 5.6). Since N̨ is embedded in E# (Corollary 3.14) and E is a subcomplex

of xX , the result follows. �

Lemma 5.11. Let ˛ and ˇ be distinct essential 2-cells of xX . Let e be an essential

edge of ˛. Then at most one element of Œe�˛ lies in @ˇ.

Proof. Suppose that two elements e1 and e2 of Œe�˛ lie in @ˇ. Then the complex

E D N̨ [ Ň satisfies the hypotheses of Lemma 5.9, so let E# ! X be a patching

(writing X instead of xX in the abuse of notation justified by Remark 5.6). By

Proposition 3.23, ˛ is extreme in E# with exposed edge f . Note that f … Œe�˛
since e1 and e2 are internal in E#. Thus there are two elements of Œf �˛ , f1

and f2, lying in distinct components of @˛ n .e1 [ e2/. Connect midpoints of f1

and f2 by a snipping arc running through the interior of ˛, and observe that any

path between e1 and e2 through the interior of ˇ contradicts the snipping lemma

(Lemma 3.16). �

The following strong statement rules out several more pathologies for a relative

geodesic which intersects the boundary of an essential 2-cell in xX .

Lemma 5.12. Let ˛ be an essential 2-cell of xX , and let  be a relative geodesic

which uses at least 2 essential edges of @˛. Index the essential edges of  from e1

to ek, where e1 and ek are the first and last essential edges in  which lie in @˛,

and the labels are with respect to an orientation of  . The following statements

hold:

i. each ei lies in @˛;

ii. for i 2 ¹1; : : : ; k � 1º, there is a path �i in @˛ connecting ei to eiC1 which

does not use any essential edges;

iii. the orientations of the ei are consistent with either orientation of @˛.

Proof. Let E D N̨ [  . Then E satisfies the hypothesis of Lemma 5.9, so let E#

be a patching for E. By Proposition 3.23, there is only one essential 2-cell in E#.

(i) Assume that some ei does not lie in @˛. In particular, i … ¹1; kº. The fact

that E# is simply connected implies ei is contained in an essential 2-cell of E#

distinct from ˛, but this is a contradiction.



722 B. Stucky

(ii) For fixed i 2 ¹1; : : : ; k � 1º, let �1 and �2 be the two subpaths of @˛

connecting ei to eiC1 which do not internally intersect ei or eiC1, and assume

for contradiction that they both use at least one essential edge. Note that at least

one of �1 or �2 has the property that all essential edges therein lie in the interior

of E#: otherwise, we may join two boundary essential edges of �1 and �2 by a

snipping arc running across the interior of ˛, and observe that the portion of 

between ei and eiC1 contradicts the snipping lemma (Lemma 3.16). Without loss

of generality, we may assume �1 has this property. By the initial assumption, �1

contains an essential edge e. Now Lemma 5.10 implies that there is an essential

2-cell ofE# distinct from ˛ which is adjacent to ˛ along e. This is a contradiction.

(iii) If this statement is false, then there is a pair of edges ei and eiC1 which

have opposite orientations in @˛. Now, observe that at least one of ei or eiC1 is

internal inE#. Indeed, if this is not the case, then connect ei and eiC1 together by a

snipping arc running across the interior of ˛. Because of the opposite orientation

of ei and eiC1 in @˛, the portion of  between ei and eiC1 now contradicts the

snipping lemma (Lemma 3.16). Thus at least one of ei or eiC1 is internal. As in

(ii), there is an essential 2-cell in the diagram distinct from ˛, a contradiction. �

Let dxe be the smallest integer greater than or equal to x. The following is also

useful:

Lemma 5.13. Let ˛ be an essential 2-cell in xX of exponentm and boundary path

pm in X , and let  be a relative geodesic. Let e be an essential edge of @˛. Then

 contains at most dm
2

e elements of Œe�˛.

Proof. The path p is a loop in X which corresponds to an order m element w of

�1.X/ which acts by “rotation” of xX through a point in the interior of ˛. Assume

for contradiction that  contains k elements of Œe�˛, where k � dm
2

e C 1. After

possibly replacing  by a path with fewer edges, we may assume that the first and

last edges of  are elements of Œe�˛. Let e1; : : : ; ek be the elements of Œe�˛ lying

in  . By Lemma 5.12, there is an orientation of  such that  traverses each of e1

through ek in the positive direction, in turn, and wei D eiC1 for i 2 ¹1; : : : ; k� 1º
(after possibly replacing w by w�1).

Now  runs from i.e1/ to t .ek/, and since k � dm
2

eC1,wk�1 runs from i.ek/

to t .ek0/ for some k0 2 ¹1; : : : ; k� 1º. The observations of the previous paragraph

imply that wk�1 contains the points t .ek/ and i.e1/ in its interior. Let  0 be the

subpath ofwk�1 running from t .ek/ to i.e1/. Note that `r .
0/ < `r .w

k�1/ since

wk�1 uses ek and e1 but  0 does not. Since `r.w
k�1/ D `r ./ by G-invariance

of `r , the path  0 is an “`r -shortcut” between i.e1/ and t .ek/. This contradicts that

 is a relative geodesic. �
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6. Relative hyperbolicity

Standing assumptions from this point onward. Let X be a staggered gener-

alized 2-complex with locally indicable vertex groups and n.X/ � 2. From this

point onward, assume thatXtot is a finite graph of CW complexes. In other words,

the graph obtained by collapsing each vertex space ofXtot to a point is finite. Note

that this does not imply thatXtot is compact as vertex spaces may not be. However,

the staggering does imply that C.X/ is finite.

A result of crucial importance later on is that �1.X/ is relatively hyperbolic

with these assumptions. We prove this now.

Definition 6.1 (finite relative presentation/finite relative generating set). Suppose

P is a finite collection of infinite subgroups of a countable group G (called

peripheral subgroups) and let P be the union of all P 2 P. We say that .G;P/

has a finite relative presentation with finite relative generating set S if S is finite

and symmetrized (S D S t xS ), S [ P is a generating set for G, and the kernel of

the natural map from F.S/� .�P 2PP / ! G is finitely normally generated, where

F.S/ denotes the free group on the set S .

Definition 6.2 (linear relative Dehn function). Suppose .G;P/ has a finite relative

presentation with finite relative generating set S D S t xS . Let P be the union of

all P 2 P. Let H D F.S/ � .�P 2PP / and R be a finite and symmetrized normal

generating set for the kernel of the natural map H ! G. For any word W over

S [ P representing the identity of G (called a trivial word), we have an equation

in H of the form W D …k
iD1h

�1
i Rihi where Ri 2 R and hi 2 H for each i .

The smallest such k (ranging over equations of this form) is called the area of

W and denoted by A.W /. We say .G;P/ has a linear relative Dehn function for

this relative presentation if there is a linear function f WN ! N such that for each

trivial word W of length at most m in S [ P, A.W / � f .m/.

Definition 6.3 (relatively hyperbolic [11, Definition 3.7]). Suppose .G;P/ has a

finite relative presentation. If .G;P/ has a linear relative Dehn function for some

finite relative presentation of .G;P/, then we say .G;P/ is relatively hyperbolic

(or G is hyperbolic relative to P).

Note. The definition above was introduced in a more general form by Osin in [21].

Hruska shows it is equivalent to no fewer than five others in the case that the set

of peripheral subgroups is finite [11].

Proposition 6.4. Suppose X is a staggered generalized 2-complex with locally

indicable vertex groups, n.X/ � 2, andXtot is a finite graph of CW complexes. Let

P be the collection of vertex groups ofX . Then .�1.X/;P/ is relatively hyperbolic.
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Remark 6.5. This result seems to be known, though we were unable to find a

suitable reference in the literature. However, the isoperimetric inequality proved

in [5, Theorem 3.3] implies that the pair
�

A�B
hhwmii

; ¹A;Bº
�

(for A and B locally

indicable, w not conjugate into A or B , andm � 2) is relatively hyperbolic, which

covers the case that Xtot is a dumbbell space.

Proof. We first construct a finite relative generating set for G D �1.X/. Within

Xtot, choose TV for each vertex space V of X as in Remark 2.3, and let qWXtot !
zXtot be the quotient map and homotopy equivalence which is the result of col-

lapsing each TV to a point. Choose a spanning tree T 0 of essential edges in zXtot

(including endpoints), and let T D q�1.T 0/. Note that T contains the union of the

TV and is a finite tree. Define S as follows. Fix a base vertex x in T and orient

the essential edges of Xtot n T . Each essential edge e therein contributes an ele-

ment to S corresponding to a reduced path which starts and ends at x, traverses

e exactly once in the positive direction, and otherwise does not leave the tree T .

Let S D S t xS (where xS is the collection of inverses of elements of S ).

For each P 2 P, let tP be the shortest path in T from x to the vertex

space VP corresponding to P , and let xP be the other endpoint of this path.

For each nontrivial group element p 2 P , choose a representative loop of the

form tP�t
�1
P where � is a cyclically reduced edge loop of minimal length in VP

such that Œ�� D p under the isomorphism between �1.VP ; xP / and P . These

representatives give rise to a natural surjective homomorphism H ! �1.X; x/,

where H D F.S/ � .�P 2PP /. Note also that this homomorphism factors through

an isomorphism H ! �1.Xtot; x/.

Let P be the union of all P 2 P. For each essential 2-cell ˛ of X , choose a

reduced edge path in Xtot from x to a point of @˛. We may thus view @˛ with a

particular orientation as an element of �1.X; x/ expressed as word R˛ over S[ P

(using the surjection above). Note that R˛ gives rise to a particular loop based

at x (expressed as a product of the based loops previously defined) which is freely

homotopic to @˛ in Xtot. Fix such a homotopy f˛ and let x˛ be the image of

the base point x in @˛. Let R be the set of the R˛ and their inverses. Applying

van Kampen’s Theorem, we see that R normally generates the kernel of the map

from the previous paragraph and is in one-to-one correspondence with the set of

oriented boundary paths of essential 2-cells of X (and their inverses). Thus S is a

finite relative generating set for .G;P/.

We now make and prove the following claim, which amounts to one direction

of a “relative” van Kampen Lemma (cf. [18, Lemma 1.2, p. 239]). Let D ! X

be a planar reduced diagram with k essential 2-cells. Then there is a trivial word

W over S[P such thatW D …k
iD1h

�1
i Rihi where Ri 2 R and hi 2 H for each i ,

and the topological representation of W is freely homotopic to @D in Xtot.

We prove the claim above by induction on k. When k D 0, @D is nullhomotopic

in Xtot. By the isomorphism H ! �1.Xtot; x/, we see that W D 1.
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For the inductive step, Lemma 3.8 implies that there is an essential edge on @D.

At least one endpoint of this edge maps to T . Connect this endpoint to x within

T and glue the resulting path to the diagram D; the result is a planar reduced

diagram which is naturally homotopic to D. Thus, we may assume without loss

of generality that there is a point of @D mapping to the base point x. Fix such a

point on @D and call it xD. Now, traverse @D in the counterclockwise direction

starting at xD . Again by Lemma 3.8, we will encounter a point mapping to an

essential 2-cell ˛. Let x1 be the first such point, and call the path traversed from

xD to x1 in D, p1. This path gives rise to a diagram D1 which consists solely of

the path p1 glued to the 2-cell ˛ at the point x1. Let q1 denote the maximal initial

segment of @˛, starting from x1 and proceeding counterclockwise, which lies on

@D. Now, let D0 D D n .˛ [ q1/ and observe that D is naturally homotopic to

D0
F

xD
D1 by a homotopy which “peels away” ˛ from D.

Now define a path extending p1 as follows. Traverse @˛ in the counterclock-

wise direction from x1 until reaching the unique point which maps to x˛ . Follow-

ing the homotopy f˛ (or its “mirror image” depending on the orientation of ˛),

we end at another point which maps to x. The image of this extended path in Xtot

defines a loop in Xtot based at x. Let h1 be the corresponding group element of

H . If reading @˛ counterclockwise from x˛ agrees with the orientation chosen to

define R˛ , then the diagramD1 gives rise to a based homotopy between @D1 and

the topological realization of the word h1R˛h
�1
1 . Otherwise, the same is true with

R˛ replaced by R�1
˛ . Let R1 D R˙1

˛ as the case may be.

Now apply the inductive hypothesis toD0 to obtain a trivial wordW 0 over S[P

such that W 0 D …k
iD2h

�1
i Rihi where Ri 2 R and hi 2 H for each 2 � i � k,

and the topological representation of W 0 is freely homotopic to @D0 in Xtot. Let

W D h1R1h
�1
1 W 0 and note that gluing this homotopy and the homotopy from the

previous paragraph along xD gives rise to a free homotopy between the topological

representation ofW andD0
F

xD
D1 in Xtot. A caveat is that xD may not be fixed

through the homotopy of @D0; this may necessitate a modification of the homotopy

in the previous paragraph (so that it is no longer based) and/or h1. Finally, @D is

freely homotopic to D0
F

xD
D1. This proves the claim.

Now let W be a trivial word over S [ P of length m. Viewing the elements of

S [ P as loops in Xtot based at x, we may associate a topological representative

pW to W which is an edge loop in Xtot (with backtracking) based at x. Let

L.pW / denote the number of essential edges of pW in Xtot nT plus the number of

nontrivial maximal subpaths of pW which lie entirely in V nTV for a single vertex

space V . By the choice of the topological representatives of S [ P, it is clear that

L.pW / D m.

Now pW is nullhomotopic in X . Let D ! X be a planar reduced diagram

for pW which uses a minimal number of essential 2-cells, and call the number of

essential 2-cells in such a diagram A.pW /. By the claim proved above, A.W / �

A.pW /.
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For an arbitrary edge path p in Xtot, define `.p/ to be the number of essential

edges in p. Since A.W / � A.pW / and L.pW / D m, the result follows from the

following claim:

1. `.pW / is bounded above by a linear function of L.pW / and

2. A.pW / is bounded above by a linear function of `.pW /.

It remains to prove the claim.

Let p D pW . To see the first claim, note that since T is a finite tree and all of

the topological representatives of the elements of S[P exit T , there is a constant

c such that any subpath of p which stays entirely inside T uses at most c essential

edges. Thus if p0 is a subpath of p with `.p0/ D cC1, then p0 contains an essential

edge of Xtot n T and contributes at least one unit of length to L.p/. This shows

that
`.p/

c C 1
� 1 � L.p/;

i.e.,

`.p/ � .c C 1/L.p/C .c C 1/:

For the second claim, use Dehn’s algorithm. LetD ! X be a reduced diagram

for p which uses a minimal number of essential 2-cells. Suppose first that D

contains at least two essential 2-cells. Then D contains an extreme essential 2-

cell ˛ by Proposition 3.23. Since n.X/ � 2, ˛ has exponent at least 2, and thus

strictly more than half of the essential edges of @˛ lie on @D. Let D0 be the

unique component of D n ˛ which contains essential 2-cells (it is unique since

˛ is extreme). The path p0 D im.@D0/ has the property that `.p0/ � `.p/ � 1.

Also, D0 uses a minimal number of essential 2-cells since D does. By induction

on `.p/, we may assume that there exist positive constants a0 and b0 such that

A.p0/ � a0`.p0/C b0. Assume without loss of generality that a0; b0 � 1. We have

that

A.p/ D A.p0/C 1 � a0`.p0/C b0 C 1 � a0`.p/ � a0 C b0 C 1 � a0`.p/C b0

as well. On the other hand, if D contains one or fewer essential 2-cells, then

A.p/ � 1. In particular, we again have that A.p/ � a0`.p/C b0. �

7. Walls and trellises

Standing assumptions from this point onward. From now on, assume that the

staggered generalized 2-complex X with n.X/ � 2 and locally indicable vertex

groups has the additional property that each of the vertex groups of X admits a

proper and cocompact action on a CAT.0/ cube complex. We also continue to

assume that Xtot is a finite graph of CW complexes, so that C.X/ is finite. We

will not be adding any additional standing assumptions for the rest of the paper.
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Remark 7.1. Our standing assumptions imply that X is compact. Indeed, since

locally indicable groups are necessarily torsion-free, our assumption that the

vertex groups are cubulable implies that each vertex group acts freely on its

associated cube complex. We may thus assume that each vertex space V is a

compact non-positively curved (NPC) cube complex, and the universal cover zV is

a CAT.0/ cube complex. Note that this implies in particular that each vertex group

is finitely presented, since V is a finite K.G; 1/ for its vertex group. Since C.X/

is finite, this also implies that the complex xX is locally finite and X is compact.

Remark 7.2. Since the non-essential 2-cells ofX ( xX) are precisely 2-dimensional

cubes in vertex spaces, we will use the term square to refer to a 2-cell which is not

essential in the sequel. Thus the 2-cells in diagrams mapping to X and xX obey

the inheritance relationships depicted in Figure 8.

essential non-essential

(square)
exposed

extreme

Figure 8. Inclusion relationships of 2-cells in diagrams mapping to X ( xX ).

In this section, we will define walls as codimension-1 immersed hyperspaces

in xX . The construction of [24] will be used to obtain an action of G D �1.X/ on

an associated dual cube complex.

For metric statements in what follows, we will use the `1 metric in the 1-

skeleton of zV unless otherwise specified.

Definition 7.3 (walls). Similarly to the description in [19], we define walls as

components of a “midcube complex,”M. xX/, which comes equipped with a natu-

ral map to xX :

� We first describe the disjoint union of the cubes of M. xX/. Fix 1
2
> � > 0.

Each cell of xX is either a cube of some dimension or an essential 2-cell.

Each k-dimensional cube C of xX contains k midcubes of codimension 1

obtained by setting exactly one coordinate equal to 1
2
. For us, each of these

midcubesC 0 will give rise to exactly two .k�1/-dimensional cubes ofM. xX/
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equipped with homeomorphisms to two parallel copies of C 0 distance � from

C 0 on opposite sides of C 0. On the other hand, each essential 2-cell ˛ of xX
contributes edges toM. xX/ as follows. Suppose that ˛ is of exponentm. Each

edge e in @˛ is either an essential edge or a 1-dimensional cube in some zV . In

either case, consider two points in the interior of e which are distance � from

the midpoint of e. After choosing an orientation of @˛ we may label them

v�
e and vC

e . There are an analogous pair of points in each edge of Œe�˛, and

we add m edges (1-dimensional cubes) to M. xX/ where each edge maps to a

path in N̨ running from the vC
e in each edge of Œe�˛ to the v�

e in the next edge

of Œe�˛ through int.˛/, and such that the images of these n edges are disjoint.

Moreover, we arrange that the image of edges ofM. xX/mapping to essential

2-cells is invariant with respect to the action of �1.X/ on xX .

� Now identify faces of cubes of M. xX/ as follows. Whenever one of the face

identifications of xX identifies the images of two faces of cubes ofM. xX/, we

identify those faces in M. xX/. The walls of xX are defined as the components

of M. xX/. Figure 9 shows an illustration of some portions of walls in xX .

Figure 9. Some portions of walls in xX . Not all walls are shown.

Each wall comes equipped with a natural map to xX which is the restriction of

the mapM. xX/ ! xX . Note that the action of �1.X/ on xX preserves the system of

walls just defined.

Definition 7.4 (types of walls). There are two types of walls in xX .

� The type 1 walls are those which are dual to essential edges and do not

intersect any zV ; these walls are graphs.
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� The type 2 walls are those which nontrivially intersect some zV . These

walls may be higher dimensional. More precisely, these walls are graphs

of hyperplanes, i.e., they consist of hyperplanes of vertex spaces which are

joined to each other by edges crossing essential 2-cells, with the property that

the endpoints of each edge are connected to vertices of hyperplanes.

A straightforward observation about walls is that they are locally determined:

Lemma 7.5. For any cell ! and walls ƒ and ƒ0 of xX , if im.ƒ/ \ ! is nonempty

and im.ƒ/ \ ! D im.ƒ0/ \ !, then ƒ D ƒ0.

It is not clear that the walls we have just defined are well-behaved in xX . For

one, walls may not map to xX injectively. A priori, a wall could travel in some

vertex space zV , leave the space through some essential 2-cell ˛, and later come

back to that same vertex space so that its image in xX intersects itself.

However, we can make some basic observations about walls, vertex spaces of
xX , and how walls behave therein. These facts follow directly from the definition of

a CAT.0/ cube complex and the well-known behavior of the hyperplanes therein,

and the proofs are omitted. See [27], for example.

Lemma 7.6. Let zV be a vertex space of xX . Let ƒ # xX be a wall and let ƒV be

a maximal connected component of the preimage of zV in ƒ. Let  be a geodesic

edge path in zV and let s be a square of zV . Then

� ƒ is an NPC cube complex;

� @s embeds in xX ;

� ƒV embeds in xX (since it is a hyperplane of a CAT.0/ cube complex);

� s \ƒV is either empty or a single edge of ƒV ;

�  \ƒV is either empty or a single point.

Since each wall is an NPC cube complex, it makes sense to speak of a local

geodesic in the 1-skeleton of a wall.

Definition 7.7 (carrier/cable/trellis). For a wall ƒ # xX , the carrier of ƒ is the

smallest subcomplex of xX containing the image of ƒ. A cable � in a wall ƒ is

a local geodesic in ƒ.1/, embedded except possibly at its endpoints. The trellis

associated to � is the smallest subcomplex of xX containing the image of �.

Remark 7.8. This is a modification of the terminology in [17]. There, the authors

use the term wall segment to refer to a cable, and ladder to refer to a trellis.

Note that trellises are necessarily at most 2-dimensional subcomplexes of xX .
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8. Walls embed and separate

In [17], trellises turn out to be simply connected. This is not necessarily true in

our case, but they can be patched:

Lemma 8.1. Let H be the trellis associated to a cable. ThenH contains at most

two extreme essential 2-cells, and there is a patching H# ! xX for H .

Proof. Consider the inclusion of H into xX , which is a reduced map. Note that

the first and last essential 2-cells ofH are the only candidates for extreme 2-cells.

Indeed, let � be the cable for which H is the associated trellis, and observe that

Lemma 3.24 may be applied to any essential 2-cell ˛ of H which is not the first

or last (taking the points x and y to be respective endpoints of the two edges of

@˛ dual to � and on opposite sides of � in ˛). Note also that H has no isolated

1-cells unless H is a single edge, so the hypotheses of Lemma 5.9 are satisfied

and H# ! xX exists. �

The fact that walls embed and separate is a consequence of the following

lemma.

Lemma 8.2. Let ˛ be a 2-cell of xX (essential or not). If � is a cable with both

endpoints mapping to ˛, then im.�/ is contained in ˛.

Proof. LetH be the trellis associated to � and letK D ˛[H . Note that @˛ embeds

in xX by either Corollary 5.10 or Lemma 7.6. We will show that K contains no

2-cells besides ˛, which proves the lemma.

If K contains a 2-cell besides ˛ then we may choose distinct points u and v in

@˛ \ im.�/ such that the portion of � (of positive length) whose image is a path

from u to v (which we denote by �0) does not have image internally intersecting

˛. Let H 0 be the trellis associated to �0, and note that K 0 D ˛ [ H 0 is itself a

trellis (by possibly extending �0 across ˛ if necessary). By Lemma 8.1, K 0 has a

patching K 0
# ! xX .

First suppose that ˛ is a square. Then the image of �0 passes through an

essential 2-cell by Lemma 7.6. Let u0 and v0 be the first points along im.�0/ from

u and v, respectively, which lie in the boundary of some essential 2-cells ˛u and

˛v , which may or may not be distinct. Note that ˛u and ˛v are the only candidates

for extreme essential 2-cells of K 0
# by Lemma 8.1. On the other hand, u0 and v0

become identified in the auxiliary diagram, so in fact neither ˛u nor ˛v can be

extreme by Lemma 3.24. The complex K 0
# contradicts Proposition 3.23.

Now suppose ˛ is an essential 2-cell. By extending �0 through ˛ if necessary,

we see that ˛ is both the first and last essential 2-cell through which � passes. Since

˛ is the only candidate for an extreme 2-cell ofK 0
# by Lemma 8.1, Proposition 3.23

implies that ˛ is the only essential 2-cell of K 0
#. Thus H 0 is made entirely of

squares. Let eu and ev be the edges of @˛ containing u and v. Let � and � 0
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be the two arcs of @˛ n ¹u; vº. Suppose one of these arcs, say � , contains no

essential edges. The arc eu [ � [ ev is a combinatorial geodesic in a CAT.0/ cube

complex, and the cable �0 shows that some cable (lying entirely in that CAT.0/

cube complex) crosses it twice. This contradicts Lemma 7.6. Thus there are

essential edges e and e0 in � and � 0 respectively. On the other hand, e and e0

lie on @K 0
# by the fact that ˛ is the only essential 2-cell of K 0

# and Corollary 3.14.

Connect midpoints of e and e0 by an arc running through the interior of ˛. The

cable �0 shows that this arc is non-separating. This contradicts the snipping lemma

(Lemma 3.16).

It follows that K contains no 2-cells besides ˛, and the lemma is proved. �

Lemma 8.3 (cf. [17, Theorem 7.4]). Each wall is a tree of hyperplanes and

embeds in xX .

Proof. If some wall ƒ is not simply connected, then there exists a cable � of

positive length in ƒ.1/ which is a loop. Let H be the trellis associated to �. Note

that H contains at least two 2-cells since the boundaries of 2-cells of xX embed

and by Lemma 7.6 and Corollary 5.10. Pick a 2-cell ˛ in H . Note that we may

find an arc of � with endpoints mapping to @˛ whose image does not internally

intersect ˛. This contradicts Lemma 8.2.

Thus ƒ is simply connected. Since it is an NPC cube complex, it is in fact a

CAT.0/ cube complex. We thus see that ƒ is a tree (a tree of trivial hyperplanes)

if it is a wall of type 1, and a tree of hyperplanes if it is a wall of type 2.

Now suppose that a wall ƒ does not embed in xX . Then ƒ intersects itself in

some essential 2-cell ˛ or some cube c. In the latter case, there is some 2-dimen-

sional face of c which witnesses the intersection of ƒ with itself. Thus we may

choose a cable �which intersects itself exactly once in a 2-cell ˛ (essential or not)

and let H be the trellis associated to �. Note that H contains at least two 2-cells

since the boundaries of 2-cells of xX embed by Lemma 7.6 and Corollary 5.10.

Thus, we may find an arc of � with endpoints mapping to @˛ whose image does

not internally intersect ˛. This contradicts Lemma 8.2. �

This result permits us to casually confuse a wallƒwith its image in xX , a liberty

we will take freely in what follows.

Corollary 8.4. Each wall in xX is separating.

Proof. For any point p in a wall ƒ, ƒ separates a neighborhood of p into ex-

actly two components, by Lemma 8.3 and construction. Thus each wall is locally

separating and has an I -bundle neighborhood. And since each wall is a tree of

hyperplanes (and by Lemma 8.3), each wall is a contractible subspace of xX . Thus

each I -bundle neighborhood is actually a product ƒ � I . Thus for each wall,



732 B. Stucky

xX decomposes as a graph of spaces with a single simply connected edge space.

SinceH 1. xX/ D 0, this graph of spaces is a dumbbell space (not a loop), and each

wall is separating. �

Here are some miscellaneous convenient lemmas about the geometry of walls.

Lemma 8.5. Let  be a relative geodesic edge path in a vertex space zV of xX . Let

ƒ be a wall. Then ƒ \  is either empty or a single point.

Proof. Since  lies in a vertex space, it is a combinatorial geodesic. Suppose ƒ

intersects  in two distinct points x and y. Let � be a cable connecting x to y

and let H be the associated trellis. The subcomplex K D H [  satisfies the

hypotheses of Lemma 5.9, so let K# be a patching. Note that K# has a maximum

of two extreme 2-cells by Lemma 8.1 applied to H . If K# has an essential 2-cell,

then H contains essential 2-cells and the first one ˛ through which � passes is

extreme inK# by Proposition 3.23. Let e be an exposed essential edge lying in the

boundary of ˛, and choose two elements e1 and e2 of Œe�˛ which lie on opposite

sides of � \ ˛. Connect e1 and e2 by a snipping arc across the interior of ˛, and

observe that this snipping arc is non-separating, contradicting the snipping lemma

(Lemma 3.16). Indeed we can get from one side to the other by following � to  ,

traversing  from x to y (or y to x), and then going through the other portion of

� until reaching the snipping arc. This works because there are no essential edges

in  . Thus there are no essential 2-cells in K#. But this means that a connected

component of ƒ \ zV (which is a hyperplane in zV by Lemma 7.6) crosses the

geodesic  twice, which contradicts the behavior of hyperplanes in CAT.0/ cube

complexes. �

We record the following immediate corollary.

Corollary 8.6. For each wall ƒ and each vertex space zV , ƒ \ zV is either empty

or consists of a single hyperplane in zV .

Lemma 8.7. Let  be a geodesic in xX and suppose ƒ \  consists of at least

two distinct points x and y. If � is a cable in ƒ connecting x to y, then � passes

through at least one essential 2-cell.

Proof. Let H be the trellis associated to �, and let K D H [  . Then K satisfies

the hypotheses of Lemma 5.9, so let K# ! xX be a patching. If � does not pass

through an essential 2-cell, then H is made entirely of squares, and thus so is K#

by Lemma 3.8. This implies that there are no essential edges in  , because any

such edge is isolated and non-separating in K#. Thus K# maps to a single vertex

space zV of xX . Thus  is a combinatorial geodesic in that vertex space. The fact

that ƒ\ zV crosses  twice is a contradiction to Lemma 7.6. �
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9. Walls are relatively quasiconvex

In [17], walls turn out to be quasi-convex. This is used in conjunction with the fact

that one-relator groups with torsion are hyperbolic to apply a theorem of Sageev

and conclude that the action of such a group on its associated dual cube complex

is cocompact.

We will use a relative version of this argument. As we argued in Proposi-

tion 6.4, G D �1.X/ is hyperbolic relative to the vertex groups. In this secton,

this will be an ingredient in a proof that each wall stabilizer is quasiconvex rela-

tive to the vertex groups, a notion to be made precise in what follows. This result

will be used in Section 11 when we apply a generalization of Sageev’s theorem by

Hruska–Wise to conclude that the action on the dual cube complex is cocompact.

9.1. Geometric relative quasiconvexity. We will first prove the following geo-

metric relative quasiconvexity statement about wall carriers and then translate it

to the algebraic relative quasiconvexity of wall stabilizers. In this lemma, we only

use the metric on xX .1/.

Lemma 9.1 (cf. [17, Theorem 8.4]). Let X be a compact staggered generalized

2-complex with locally indicable, cubulable vertex groups. Suppose that n.X/�4.
Let ƒ be a wall in xX . There is a constant W D W.X/ such that if  is a relative

geodesic in xX .1/ between vertices in the carrier C of ƒ, then every vertex of 

which lies in an essential edge is within distance W of C .

Proof. First note that since C.X/ is finite by our standing assumptions, there is

an upper boundWX on the number of edges (essential or not) in the attaching map

of any element of C.X/. We will show that W D WX satisfies the conclusion of

the lemma.

Let  be a relative geodesic in xX .1/ whose endpoints x and y are vertices in C .

If  is contained in C , then we are done. By passing to an innermost subpath of

 which lies outside of C , we may assume that  \C D ¹x; yº. Since x and y lie

in C , there is a trellis H in C containing x and y with associated cable �, and 

does not internally intersect H .

Let � be an embedded edge path in H between x and y. Since � and  are

embedded in xX and  does not internally intersect H , the loop � [  is also

embedded. With p D � [  , the complex H [  satisfies the hypothesis of

Lemma 5.7 with F D FC D H [  . Applying Lemma 5.7, there exists a planar

reduced disk diagram D (homeomorphic to a disk) such that D
F

p0 .H [ / has

a reduced map to xX , where p0 embeds in H [  and is homeomorphic to � [  .

Redefine � to be the embedded edge path p0 n  .

In fact, the complex K D D
F

�[ .H [ / satisfies the hypotheses of

Lemma 5.8 (with F D .H [ / and FC D K), so there is a patching K# ! xX .
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By construction, D is a planar subcomplex of K# (homeomorphic to a disk),  is

one arc of @D, and the other arc (�) lies in H . Note also that � has no edges on

@K# since H has no isolated edges.

By construction, K has no more extreme 2-cells than H , and the patching

property implies that K# has no more extreme 2-cells than K. By Lemma 8.1, H

has a maximum of two extreme 2-cells. Thus,K# has a maximum of two extreme

2-cells.

Now Proposition 4.6 implies that every essential 2-cell ofK# is external (since

n.X/ � 2). In particular, this holds for every essential 2-cell of D, and in fact

every essential 2-cell of D has an essential edge lying along  since H has no

isolated edges.

Let A be the union of essential 2-cells of D whose closures intersect H (i.e.,

their boundaries intersect �). Let z be a point in an essential edge e of  . We will

show all such z are uniformly close to H . If z 2 xA, then d.z;H/ � WX

2
. If z … xA,

let ı be the maximal connected subpath of  containing z such that int.ı/ \ xA

is empty. Since every 2-cell of A has an edge on  , the complex D n xA is a tree

of disks. Let D0 be the maximal subcomplex of D n xA which contains z and is

homeomorphic to a disk. Let ı0 be the path @D0 n int.ı/ (the other boundary arc

of D0), and label the endpoints of ı0, x0 and y0 in such a way that x0 lies on the

subpath of  between y0 and x. See Figure 10.

x
y

z

x0
y0

ˇ

A
AD0

ı

´

ı1

ı2

ı3

Figure 10. An illustration of the general case. Because ı1 and ı3 are so short, ı is a relative

geodesic, ı2 contains no essential edges, and n.X/ � 4, any candidate ˇ for an extreme

essential 2-cell of D0 must have exposed edges on all of ı1, ı, and ı3. This shows that D0

contains a single essential 2-cell which contains z and intersects ı1 [ ı3, so that z is close

to A.

We claim that at most two essential 2-cells in A are adjacent to ı0 along

essential edges. Indeed, if there are three or more let ˛ be one which is not the first,

˛1, or the last, ˛2, encountered while traversing ı0 in the positive direction (for a
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chosen orientation). Since ˛ is external in K# and lies in D, there is an essential

edge f of ˛ on @K#, and f lies on  . Without loss of generality, suppose that f

lies in the portion of  between z and x. Because D is planar, whichever of ˛1

or ˛2 intersects the subpath of ı0 between N̨ \ ı0 and x0 cannot also intersect � ,

contradicting that it lies in A. This proves the claim.

The above claim shows that ı0 decomposes as a path ı1ı2ı3, where ı1 and ı3 are

(possibly degenerate) paths, each of which lies along the boundary of an essential

2-cell of A, and ı2 is a (possibly degenerate) subpath of � which does not use any

essential edges and maps to a single vertex space.

Next, we claim thatD0 contains at most one essential 2-cell. To see this claim,

suppose that D0 contains two or more essential 2-cells. Then D0 contains at least

two extreme 2-cells ˛ and ˇ by Proposition 3.23, with, say, exposed edges f and

g, respectively. Note that all elements of Œf �˛ and Œg�ˇ lie along ı1[ı[ı3 since ı2

contains no essential edges. In fact, it must be the case that at least two elements

f1 and f2 of Œf �˛ lie along ı1 [ ı3. Indeed, otherwise m� 1 elements of Œf �˛ lie

along ı, where m is the exponent of ˛. Since m � n.X/ � 4, m � 1 � dm
2

e C 1,

but this contradicts Lemma 5.13 since ı is a relative geodesic. Similarly, at least

two elements g1 and g2 of Œg�ˇ lie along ı1 [ ı3. Now consider the following

statements:

� f1 and f2 lie along ı1;

� f1 and f2 lie along ı3;

� g1 and g2 lie along ı1;

� g1 and g2 lie along ı3.

If none of these statements hold, then both ˛ and ˇ have boundary intersecting

both ı1 and ı3, so either ˛ or ˇ is internal in K# by planarity of D0. This

contradicts Proposition 4.6. On the other hand, if any of these statements hold,

we immediately obtain a contradiction to Lemma 5.11, since ı1 and ı3 both lie in

the boundary of a single essential 2-cell. This contradiction proves the claim.

Since z … A, D0 contains a single essential 2-cell ˛, and z 2 @˛. By

Lemma 3.8, ˛ is exposed in D0 with exposed edge e, say. By Lemma 5.3, some

element of Œe�˛ lies in ı1 [ ı3. This shows that d.z; A/ � WX

2
and d.z;H/ � WX ,

so setting W D WX proves the lemma. �

Remark 9.2. We wonder if Lemma 9.1 holds when n.X/ 2 ¹2; 3º. One seems to

run into trouble when trying to rule out the case where D0 contains a “fat” region

of squares in its interior. Lauer and Wise do not experience this difficulty in [17].

To apply the Hruska–Wise cocompactness criterion, we also need to know that

wall stabilizers act cocompactly on their associated walls:

Lemma 9.3. Let ƒ be a wall of xX . Then H D stab.ƒ/ acts cocompactly on the

carrier of ƒ, and thus on ƒ.
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Proof. Let C be the carrier of ƒ in xX . We claim that there are finitely many H -

orbits of cells of C , which implies the result. To see this, let �W xX ! X be the

natural map and let ˇ be any 2-cell of X which intersects �.C /. Now .�jƒ/
�1.ˇ/

consists of a collection of cables of ƒ. Each such segment � has the property that

�.�/ separates ˇ into two components, and �.�/ is one of finitely many possibly

images. Enumerate these images �1; � � � ; �k. By Lemma 8.2, any 2-cell ˛ of C

which maps to ˇ has a well-defined type i 2 ¹1; � � � ; kº, defined to be the unique

index for which ��1.�i / \ ˛ lies in ƒ. Fix i and suppose ˛ and ˛0 are cells of

type i . Since the action ofG D �1.X/ on xX is essentially a covering space action,

there is an element g 2 G which takes ˛ to ˛0. Moreover, because these cells are

both of type i , ��1.�i/ \ ˛0 lies in both gƒ and ƒ. Now, since walls are locally

determined (Lemma 7.5), this shows that g in fact stabilizes ƒ, i.e. g 2 H . Thus

the number of H -orbits of ��1.ˇ/ \ C is bounded above by k. This proves the

claim and the lemma. �

9.2. Algebraic relative quasiconvexity. To show wall stabilizers are relatively

quasiconvex, we will use the following definition of relative quasiconvexity, which

we quote from [11]. In that paper, Hruska shows that this notion of relative

quasiconvexity is well-defined and equivalent to no fewer than four others, at least

in the case that the peripheral subgroups are finitely generated and there are finitely

many of them. See [11] for the definitions of cusp-uniform action and truncated

space.

Definition 9.4. [relatively quasiconvex [11, Definition 6.6] (“QC-3”)] Suppose

G is countable, P D ¹P1; : : : ; Pmº is a finite collection of subgroups, and that

.G;P/ is relatively hyperbolic. A subgroup H � G is relatively quasiconvex

(with respect to P) if the following holds. Let .Y; �/ be a proper ı-hyperbolic

metric space on which .G;P/ has a cusp-uniform action. Let Y nU be a truncated

space for G acting on Y . For some base point x 2 Y nU , there is a constant� � 0

such that whenever  is a geodesic in Y with endpoints in the orbit Hx, we have

 \ .Y n U/ � N�.Hx/;

where the �-neighborhood N�.Hx/ of Hx is taken with respect to the metric �

on Y .

We will proceed by “augmenting” the space xX .1/, which is decidedly not ı-

hyperbolic, in general, by attaching “combinatorial horoballs” to form a proper

ı-hyperbolic metric space A. xX .1// on which G acts in a cusp uniform manner.

The space A. xX .1// will play the role of Y in the definition above, and the disjoint

union of essential edges of xX .1/ will play the role of Y n U .

Proposition 9.5. Let X be a compact staggered generalized 2-complex with

locally indicable, cubulable vertex groups and n.X/ � 4. Then the stabilizer

of each wall in xX is quasiconvex relative to the collection of vertex groups of X .
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Proof. Let G D �1.X/. As in the first paragraph of the proof of Proposition 6.4,

construct a tree T in Xtot which is the union of paths TV in each vertex space V

(chosen as in Remark 2.3) with a spanning tree T 0 of essential edges in the space

formed from Xtot by collapsing each TV . Let P be the set of vertex groups of X .

Let S D S t xS be the set of oriented essential edges ofX not in T and their formal

inverses. As argued in the first paragraph of the proof of Proposition 6.4, S is a

finite relative generating set for .G;P/. The Cayley graph � of G with respect to

S is disconnected, in general.

Now, attach Groves-Manning combinatorial horoballs to � to form the aug-

mented space A.�/ associated to the data .G;P; S/. See [11, Definitions 4.1

and 4.3] for the precise construction. To each P 2 P is associated a CAT.0/

cube complex which induces a natural left-invariant metric dP on it. The rough

idea is that for each coset gP , we begin with a set of copies of the coset gP in-

dexed by the naturals (called levels). Form a graph as follows. For each j � 0 and

each element of gP at level j , attach a vertical edge to the corresponding element

in level j C 1. For each pair of elements of gP at level j whose dP -distance is

less than or equal to 2j , attach a horizontal edge connecting the pair. Now glue

this graph to � by identifying the vertices at level 0 with the subset of vertices

of � corresponding to the coset gP . Identify any duplicate edges at level 0. Let

H�.g; P / be the combinatorial horoball above the coset gP , which by convention

includes the original gP at level 0, as well as any edges added there. By [11, The-

orem 4.4] (originally proved by Groves and Manning) and relative hyperbolicity

of .G;P/, the augmented space A.�/ is connected and ı-hyperbolic.

Next we build the augmented space A. xX .1//. Each vertex space of xX .1/

is stabilized by gPg�1 for some g 2 G and P 2 P; this is a one-to-one

correspondence. We label this vertex space zV P
g . The space A. xX .1// is built by

attaching a combinatorial horoballHX.g; P / above the zero-skeleton of zV P
g , again

with respect to the cube complex metric, for each .g; P / (as before, identify any

duplicate edges at level 0, and adopt the convention that HX.g; P / includes the

one-skeleton of zV P
g ). The spaceA. xX .1// is proper since it is a locally finite graph.

Let p denote the natural map from xX .1/ to X .1/. By covering space theory,

p�1.T / consists of disjoint, homeomorphic copies of T which become identified

under the action of G on xX .1/. Pick any 0-cell x 2 p�1.T /, and consider the orbit

map �WG ! xX .1/. Via �, embed the vertices of � into xX .1/. Each vertex of �

belongs to a unique component of p�1.T /, and all components of p�1.T / contain

a vertex of �. By construction of the finite relative generating set S and general

covering space theory, there is a one-to-one correspondence between edges of �

connecting group elements g and h with reduced edge paths of xX .1/ connecting

�.g/ to �.h/ which stay entirely inside of p�1.T / except to traverse exactly one

essential edge of xX .1/ n p�1.T /. This observation gives rise to a G-equivariant

inclusion of � into xX .1/.
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We may identify the group elements of gPg�1 with vertices of zV P
g via the orbit

map with respect to x. This shows that H�.g; P / is a full subgraph of HX .g; P /.

The inclusion described in the previous paragraph thus extends to aG-equivariant

inclusion A.�/ ,! A. xX .1//, which we now claim is a quasi-isometry. Assuming

this claim, we have that A. xX .1// is ı-hyperbolic (after possibly modifying ı).

To see the claim, let d be the graph metric on X .1/, and choose K >

maxx2X.1/ d.x; p.�//, which is defined since X is compact. It is clear that

A.�/ is K-cobounded in A. xX .1//. It remains to show that A.�/ is quasi-

isometrically embedded. For points x and y of A.�/.0/, it is also clear that

dA. xX.1//.x; y/ � dA.�/.x; y/. It thus remains to find a constant K 0 such that

dA.�/.x; y/ � K 0dA. xX.1//.x; y/ C K 0. Let  be a geodesic in A. xX .1// between

x and y. Then  decomposes as a path of the form 0e11e2 : : : ekk where each

ej is an essential edge and each j is a (possibly degenerate) edge path in some

HX .g; P /. By [6, Lemma 3.10], we may assume that each j consists of at most

two vertical segments and a single (possibly degenerate) horizontal segment of

length at most 3. This implies that each such vertical segment must contain an

endpoint of j . Since each vertex of H�.g; P / at level 0 lies in the image of

the orbit map, each such vertical segment also lie in H�.g; P /. Now, the hor-

izontal segment hj may not belong to H�.g; P /, but because its endpoints are

connected by a path of length at most 3, there is a path h0
j of length 5 in H�.g; P /

between its endpoints, where h0
j consists of two vertical segments of length 2 and

a single horizontal edge two levels above hj . Replacing each hj by h0
j , we ob-

tain a path  0 between x and y in A.�/, and since jh0
j j � jhj j C 4, we have that

j 0j � j j C 4.k C 1/. But also dA.�/.x; y/ � j 0j and k � j j D dA. xX.1//.x; y/,

so dA.�/.x; y/ � 5dA. xX.1//.x; y/C 4. Thus, the claim is true with K 0 D 5.

Now, we claim that G has a cusp-uniform action on A. xX .1// with truncated

space the disconnected union of all essential edges of xX .1/. In other words, the

vertex spaces of xX .1/, along with their combinatorial horoballs, form a collection

of disjoint G-equivariant horoballs (in the cusp-uniform sense) centered at the

parabolic points of G. It is clear that G acts coboundedly on this truncated space

with quotient the essential edges of X .

To see the claim, one can construct explicit horofunctions on these horoballs.

For each vertex space zV of xX .1/, let H zV be the combinatorial horoball above it.

Let dA be the graph metric on A. xX .1//. Define a function zvWA. xX .1// ! R by

zv.x/ D

´
dA.x; zV / if x 2 H zV ;

�dA.x; zV / otherwise.

It is easy to check using elementary hyperbolic geometry that zv is a horofunc-

tion centered at the parabolic point in the Gromov boundary ofA. xX .1//which can

be identified with any geodesic ray starting in zV .0/ and using only vertical edges.

This proves the claim.
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For each vertex space zV of xX , define d zV .x; y/D dA.x; y/ for all x; y 2 zV .0/.

The property of G-invariance is clear, so this is an admissible choice of pseudo-

metrics.

To complete the proof, pick a base point vertex x in the carrier C of ƒ and let

H D stab.ƒ/, so that Hx lies in C . Let x0; y0 in Hx, and let  be a geodesic in

A. xX .1// between x0 and y0. Note that the intersection of  with the truncated space

is precisely the set of essential edges of  . Form a relative geodesic  0 in xX .1/ (with

respect to the admissible choice of pseudometrics above) which agrees with  on

essential edges by deleting the maximal subpaths of  which map to horoballs

and replacing them by arbitrary edge paths in the associated vertex spaces with

the same endpoints. Applying Lemma 9.1 to  0, we see that every essential edge

of  0 lies uniformly close to C , and thus to HX . Thus the same is true for  , and

the proposition is proved. �

10. Bridges and linear separation

In this section, we continue to assume that X is a compact staggered generalized

2-complex with locally indicable, cubulable vertex groups and n.X/ � 2.

In order to conclude that the action of G D �1.X/ on its associated dual cube

complex is proper, we will argue that the walls in xX satisfy the linear separation

property, which roughly means that the number of walls separating pairs of points

in xX grows at least linearly with their distance. Hruska and Wise describe how the

linear separation property leads to properness of the dual cube complex action in

[13, Theorem 5.2].

The precise statement we will prove is as follows.

Proposition 10.1. Suppose that n.X/ � 4. Let d be the graph metric on xX .1/ as

before. There are constants � > 0 and � such that for any vertices x; y 2 xX , the

number of walls separating x and y is at least �d.x; y/ � �.

We will be assuming for contradiction that walls repeatedly cross geodesics in

the sense of the following definition.

Definition 10.2 (bridges/bridge). Let  be a geodesic in xX .1/ between two 0-cells

x and y of xX . For every edge e of  , there are two walls dual to e which intersect

e in the points vx
e and v

y
e , labeled so that d.x; vx

e / < d.x; v
y
e /. Call the wall

which passes through vx
e , ƒx

e , and the wall passing through v
y
e , ƒ

y
e . We say that

ƒx
e bridges  if there is a cable � in ƒx

e between vx
e and another distinct point

along  . Starting from vx
e and traversing �, give the label ux

e to the first such point

encountered. Define �x
e to be the portion of � between vx

e and ux
e . There is a

unique trellis H x
e associated to �x

e . Let x
e be the subsegment of  connecting the

edges containing vx
e and ux

e . Let Y D Y x
e D x

e [H x
e . We call the subcomplex

Y x
e a bridge of  at .e; x/, if it exists. See Figure 11 for an illustration.
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Figure 11. Some bridges. The trellis Hx
e bends in the direction of x, and Hx

f
bends in the

direction of y. Here the rank of �1.Y
x

e / is 2. Some pathologies for bridges may be ruled

out immediately. For example, the depicted half-twist inHx
f

is ruled out by Corollary 8.4.

Definition 10.3 (returns). Let Y x
e be a bridge of  at .e; x/, with associated trellis

H x
e . We say that Y x

e (or H x
e ) returns through an essential 2-cell if that 2-cell is

the first or last essential 2-cell of Hx
e through which the cable �x

e passes, as we

traverse �x
e starting from vx

e . We use the notation ˛x
e for the first 2-cell through

which Y x
e returns, and !x

e for the last.

Lemma 8.7 implies that whenever Y x
e is a bridge, ˛x

e and !x
e always exist, and

they are clearly unique. It is possible that ˛x
e D !x

e .

Definition 10.4 (bends in the direction of ). Let z 2 ¹x; yº. Let Y z
e be a bridge

of  at .e; z/ with associated trellis H z
e . We say that Y z

e (or H z
e ) bends in the

direction of x if d.uz
e ; x/ < d.v

z
e ; x/. Otherwise we say that Y z

e (or H z
e ) bends in

the direction of y.

The following lemma allows us to determine the direction in which walls bend,

but only when n.X/ � 4. The lemma is false for n.X/ 2 ¹2; 3º.

Lemma 10.5. Suppose that n.X/ � 4. Let  be a geodesic in xX .1/ between two

0-cells x and y of xX . For some edge e of  , suppose that the wall ƒx
e bridges  .

Then there exists a bridge Y x
e of  at .e; x/with associated trellisH x

e which bends

in the direction of x.

Proof. Let Y D Y x
e be a bridge with the property thatƒx

e does not cross  between

v D vx
e and u D ux

e . We will show that this bridge bends in the direction of x.

For contradiction, assume that it bends in the direction of y.

By Corollary 8.4, xXnƒx
e decomposes into two components xXin and xXout. Label

these so that the  0 D x
e maps to xXin.

Let ˛ D ˛x
e and let e1 and e2 be the edges of @˛ which are dual to � D �x

e

(they may be essential or not), labeled so that there is a path from e1 to v inside
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� which does not internally intersect ˛. Orient e1 so that it crosses � in the same

direction that e crosses it, and extend this orientation to @˛. Let �in and �out be the

two subpaths of @˛ n ¹e1; e2º, oriented consistently with @˛, and labeled so that

�in maps to xXin and �out maps to xXout (we may do this since ˛ \ƒx
e consists only

of the arc ˛ \ � by Lemma 8.2). Thus no point of �out lies along  0. Note that all

elements Œe1�˛ distinct from e1 and e2 lie along �in. Thus there are no elements of

Œe1�˛ properly contained within �out. See Figure 12.

˛

e

e1
e2

0

out

in

x

v
u y

Figure 12. Proving Lemma 10.5.

Note that Y satisfies the hypotheses of Lemma 5.9 and let Y# be a patching

for Y . By Lemma 8.1, ˛ and !x
e are the only essential 2-cells of Y# which can be

extreme, and in fact ˛ is exposed by Lemma 3.8 or Proposition 3.23. We claim

that �out is not internal in Y#. To see this, let f be an exposed essential edge of

˛. Suppose im.@˛/ D pm in X , where p is not a proper power. Since �out has

length jpj � 1, either some element of Œf �˛ lies along �out, in which case we are

done, or e1 and e2 belong to Œf �˛. In the latter case, ˛ D !x
e and both e1 and e2

lie along  0. Lemma 5.12 implies that every element of Œf �˛ lies along  0, which

contradicts Lemma 5.3. This proves the claim.

Since e1 and e2 do not lie in Œf �˛ , we may choose f to be the element of

Œf �˛ which lies in �out. The other m � 1 elements of Œf �˛ lie in �in. Note that

every such element must lie along  0. Indeed, if this is not the case then given an

element f 0 2 Œf �˛ which lies in �in but not along  0, we may join f and f 0 by a

snipping arc running through the interior of ˛. The graph Y \ . [ �/ shows that

this arc is non-separating, contradicting the snipping lemma (Lemma 3.16). Thus

the geodesic  0 visits m � 1 elements of Œf �˛ . Since m � 4, m � 1 � dm
2

e C 1.

This contradicts Lemma 5.13. �
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The following definition describes an impossible configuration of a pair of

bridges in xX . We will show that if linear separation fails we can find such a

configuration.

Definition 10.6 (double bridge). Let  be a geodesic in xX .1/ with endpoints 0-

cells x and y. Let ea and eb be adjacent edges along  . Suppose that Ya and Yb

are bridges at .ea; za/ and .eb; zb/, respectively, where za; zb 2 ¹x; yº. Suppose

further that Ya and Yb bend in the same direction and that ˛a D ˛
za
ea

and ˛b D ˛
zb
eb

are distinct. In this case we call the subcomplex Y D Ya[Yb of xX a double bridge.

We denote by !a the last essential 2-cell through which Ya returns, �a the cable

associated to Ya, and Ha its associated trellis. Similarly define !b, �b, and Hb.

Lemma 10.7. There does not exist a double bridge in xX .

Remark 10.8. This lemma is true when n.X/ 2 ¹2; 3º. This is what makes the

following proof so technical.

Proof. Let Y D Ya [ Yb be a double bridge. Suppose without loss of generality

that Ya and Yb bend in the direction of x. Note that Y satisfies the hypotheses

of Lemma 5.9, and let Y# be a patching. By Lemma 8.1, the only candidates for

extreme 2-cells of Y# are ˛a, !a, ˛b , and !b. We also know that Y# contains at

least two essential 2-cells since ˛a and ˛b are distinct. Observe that Ha and Hb

embed in Y#, but they may overlap with each other.

We will prove the following statements:

i. if ˛a ¤ !a, then ˛a is not extreme;

ii. if ˛b ¤ !b, then ˛b is not extreme;

iii. if !a ¤ !b, then at most one of !a and !b can be extreme.

Taken together, these statements imply that Y# contains at most one extreme

essential 2-cell. This contradicts Proposition 3.23.

To see statement (i), temporarily orient ea and eb so that their terminal points

coincide. Let fa and ga be the edges of @˛a which are dual to �a (they may be

essential or not), labeled so that there is a path from fa to ea inside �a which does

not internally intersect ˛a. Suppose im.@˛/ D pm in X , where p is not a proper

power. Orient fa so that it crosses �a in the same direction that ea crosses it, and

extend this orientation to @˛a. Now the terminal points t .fa/ and t .ga/ of fa and

ga are the length of p apart in @˛a. Moreover, in the auxiliary diagram {Y , Qt .fa/

lies in z̨b and Qt .ga/ lies in Ľ for some essential 2-cell of Ya distinct from ˛a, since

˛a ¤ !a. Lemma 3.24 proves the claim. Note that this argument does not depend

on the direction in which �a bends. Switching the symbols a and b, an identical

argument shows that ˛b is not extreme if ˛b ¤ !b, and statement (ii) is proved.

See Figure 13.
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˛a

˛b

!a

!b

ea

eb

x

y

Figure 13. Proving statements (i) and (ii). The point is that ˛a and ˛b prevent each other

from being extreme, provided that Ha and Hb both contain at least two essential 2-cells.

The following claim will be useful in proving statement (iii). Suppose !a is

extreme with exposed essential edge fa. Then some element of Œfa�!a
lies along  .

To see this, first note that the claim is obvious if some element of Œfa�!a
contains

the terminal point of �a along  . Otherwise, we may pick two elements from

Œfa�!a
on opposite sides of �a, neither of which lies along  , for contradiction.

Connect these two edges by a snipping arc running across !a. This arc is non-

separating in Y#, since there is a path from one side to the other in the graph

. [ �a/ \ Ya; this contradicts Lemma 3.16. Similarly, if !b is extreme with

exposed essential edge fb, then some element of Œfb�!b
lies along  .

We now prove statement (iii). Suppose for contradiction that !a ¤ !b, but

both are extreme. Among all exposed essential edges e0 of !a (meaning that all

members of Œe0�!a
lie on the boundary of Y#), choose the one which is on  and

closest to x along  , and call it fa. Define fb similarly. Note fa ¤ fb since all

elements of both Œfa�!a
and Œfb�!b

lie in @Y#. There are two cases according to

whether fb is closer to x than fa or vice-versa.

Suppose first that fb is closer to x than fa. In this case we will show that there

are two edges in @!a \ @Y# which can be connected together by a non-separating

snipping arc through !a, contradicting Lemma 3.16. Orient fa so that it points

towards x along  and extend this orientation to @!a. Let ga be the next element
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of Œfa�!a
after fa. Note that ga does not lie along  . Indeed, if it does, then by

choice of fa, ga lies closer to y along  than fa by Lemma 5.12. Lemma 5.12 also

implies that every element of Œfa�!a
lies along  , which contradicts Lemma 5.3.

Connect midpoints of fa and ga together by a snipping arc that runs across !a

and let S be a closed neighborhood of this arc which includes the vertices i.fa/,

t .fa/, i.ga/, and t .ga/ but is small enough so that @S \ @!a D fa [ ga. Orient S

by declaring that the edge of S running from t .fa/ to i.ga/ is the front edge of S ,

and the edge running from i.fa/ to t .ga/ is the back edge. Let va denote the first

point (with respect to the orientation of �a) in !a \ �a. Note that va is the first

point of !a \�a in @!a after fa with respect to the given orientation of @!a. Note

that va does not lie in S , for otherwise �a runs through the center of S connecting

ga to fa, but because ga lies on the boundary of Y# this would mean ga D ea,

contradicting that ga does not lie on  . Note also that ea ¤ fa, as this scenario

implies ˛a D !a and forces ga to lie on  (after possibly applying Lemma 5.12),

which we have already ruled out.

There are now two cases to consider.

� Case 1. The vertices va and t .fa/ lie in different components of !a n S .

This case is illustrated in Figure 14. In this case we find a path from t .fa/ to

the back edge of S in Y# n S as follows.

Starting from t .fa/, travel along  until reaching fb. From i.fb/, travel

inside the interior of !b to reach �b. Next, travel backwards along �b all the

way through Hb until reaching eb. If at any point we cross S , then it means

that !a is identified with an essential 2-cell in the trellisHb distinct from !b,

but this cannot happen since we already know that none of these 2-cells are

extreme. Once arriving at eb, travel within eb [ ea to �a. Here, we will not

touch S because ea ¤ ga and eb ¤ ga since ga does not lie on  , eb ¤ fa

since ˛b ¤ !a but fa lies on the boundary of Y#, and ea ¤ fa as previously

observed. Finally, continue along �a all the way through Ha until entering

!a through va and reaching the back edge of S in !a (we will not touch S

in any other essential 2-cell since Ha is a subcomplex of xX). The path we

have found connects the front and back edges of S in Y# n S and contradicts

Lemma 3.16.

� Case 2. The vertices va and t .fa/ lie in the same component of !a n S .

This case further breaks into two subcases. Note that ea ¤ fa as previously

observed.

– Subcase 1. The edge ea is strictly closer to y along  than fa is. This

subcase is illustrated in Figure 15. In this case we find a path from t .fa/

to the back edge of S in Y# n S as follows.

Starting from t .fa/, travel along  to i.fb/, and then through the

interior of !b to reach �b. Travel backwards through �b to reach eb
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(for the same reasons as the previous case, this path does not touch the

interior of S ). Since eb is adjacent to ea and eb ¤ fa (as in the previous

case), it is the case that eb is strictly closer to y along  than fa is. Thus

there is a path in  from the initial point of �b to i.fa/ which avoids S .

We have again contradicted Lemma 3.16.

– Subcase 2. The edge ea is strictly closer to x along  than fa is. This

subcase is illustrated in Figure 16. Let e0
a be the edge of  which is dual

to the terminal edge of �a, and oriented so that it points in the direction

of x. Note that ea ¤ e0
a by Lemma 8.2, and e0

a is strictly closer to x

along  than ea. Let wfront
a and wback

a be the vertices of S \ �a, labeled

according to whether they are on the front or back edge of S . In this

case we find a path from wback
a to wfront

a in Y# n S as follows.

Travel from wback
a to e0

a along �a in the forward direction, and travel

backwards along  from e0
a to ea. Then simply travel forward along �a

through Ha until reaching wfront
a . This again contradicts Lemma 3.16.

For the case in which fa is closer to x than fb, the argument is identical, except

that we exchange the roles of a and b in the above argument. Note that the above

argument does not depend on the order in which ea and eb occur along  , but only

uses that these edges are adjacent in  . �

ea

eb

fa

fb

ga

wb

wa

va

a

b

x
y

S

Figure 14. An example of what could happen in Case 1. The highlighted path gives the

contradiction to Lemma 3.16.
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ea

eb

fa

fb

ga

wb

wa

va

a

b

x
y

S

Figure 15. An example of Subcase 1. The highlighted path gives the contradiction to

Lemma 3.16.

fa
ea

eb
fb

ga

wb

wa

va

a

b

xy

S

wfront
a

wback
a

e0

a

Figure 16. The general picture in Subcase 2. The highlighted path gives the contradiction

to Lemma 3.16.
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The following lemma now easily implies linear separation.

Lemma 10.9. There is a constant W D W.X/ so that the following holds. Let 

be a geodesic in xX .1/ with endpoints 0-cells x and y. Suppose that n.X/ � 4. For

any 1-cell e of  , there exists a wall that intersects  exactly once, and the point

of intersection is within W edges of e.

Proof. As in the proof of Lemma 9.1, let WX be an upper bound on the number

of edges (essential or not) in the attaching map of any element of C.X/. We will

show that W D WX C 1 satisfies the conclusion of the lemma.

If either wall dual to e does not bridge  , then we are done. Thus, assume

that ƒx
e bridges  . Fix a cable �x

e associated to this bridging and let Y x
e be the

associated bridge. By Lemma 10.5, we may assume that Y x
e bends in the direction

of x. Let ˛a D ˛x
e . Let x be the subsegment of  between e and x, including e.

Consider the sequence of successive edges of x starting with e and moving

towards x, ¹e D e1; e2; e3; : : : º. Let k be the largest integer with the property that

ƒx
ek

bridges  and such that ˛a is the first essential 2-cell through which some

cable �x
ek

in ƒx
e returns. Since there are at most WX cables passing through ˛a,

k � WX . Define Ya to be the bridge associated to �x
ek

. By Lemma 10.5, we may

assume Ya bends in the direction of x. In particular, ekC1 exists.

Now, observe that the wall ƒx
kC1

crosses  exactly once. Indeed, if not, then

there is a bridge Yb D Y x
kC1

at .ekC1; x/ which bends in the direction of x by

Lemma 10.5, and ˛a ¤ ˛b by definition of k. Thus Ya [ Yb is a double bridge.

This contradicts Lemma 10.7. Thus W D WX C 1 satisfies the conclusion of the

lemma. �

Proof of Proposition 10.1. By Lemma 10.9, �D 1
WX C1

and �D1 do the trick. �

Remark 10.10. Just as Lauer and Wise ask in [17], we wonder – Does xX satisfy

the linear separation property relative to its walls when n.X/ 2 ¹2; 3º? It appears

difficult to produce a double bridge in this situation, since one has less control

over the direction in which bridges bend.

11. Existence of the action

In this section we will prove the main theorem, that is that �1.X/ acts properly and

cocompactly on a CAT.0/ cube complex. We first invoke the so-called “Sageev

contruction” to obtain an action of �1.X/ on a CAT.0/ cube complex.

Definition 11.1 (wallspace/dual cube complex). Let Y be a metric space and let

W be a collection of closed, connected subspaces of Y , each of which separates

Y into two components. We call .Y;W/ a (geometric) wallspace. If a group G



748 B. Stucky

acts properly and cocompactly on Y preserving both its metric and wallspace

structures, then Sageev shows thatG acts on a CAT.0/ cube complex C.Y /, called

the dual cube complex [24].

We strongly suggest that the reader become familiar with the construction

above before proceeding. A summary can be found in [13, Construction 3.2,

Theorem 3.7, Remark 3.11].

Properness of this action in our setting will follow immediately from what

we proved in Section 10. Cocompactness will follow by an application of [13,

Theorem 7.12]. We state a simplified version of this theorem below.

Theorem 11.2 (cf. [15, Theorem 3.1]). Let .Y;W/ be a wallspace. Suppose G

acts properly and cocompactly on Y preserving both its metric and wallspace

structures, and the action on W has only finitely many G-orbits of walls. Suppose

G is hyperbolic relative to P with P finite. Suppose stab.ƒ/ acts cocompactly

on ƒ and is relatively quasiconvex for each wall ƒ 2 W. For each P 2 P

let YP � Y be a nonempty P -invariant P -cocompact subspace. Let C.Y / be

the cube complex dual to .Y;W/ and for each P 2 P let C�.YP / be the cube

complex dual to .YP ;WP /, where WP consists of all walls ƒ with the property

that diam.ƒ\ Nd .YP // D 1 for some d D d.ƒ/.

Then there exists a compact subcomplex K such that

C.Y / D GK [
[

P 2P

GC�.YP /:

In particular, G acts cocompactly on C.Y / provided that each C�.YP / is P -

cocompact.

For us, G D �1.X/, Y D xX , W is the collection of walls we defined in xX ,

and P is the finite collection of vertex groups of X . Each vertex group P has an

associated vertex space VP in X (a compact NPC cube complex). Fix a base point

in xX and let YP to be the copy of the universal cover of VP in xX (a CAT.0/ cube

complex) with stab.YP / D P .

The bulk of the remaining work needed to apply this theorem is to show that

each C�.YP / is P -cocompact. The following key lemma says, roughly, that a

geodesic with large projection to YP comes very close to YP .

Lemma 11.3. Fix YP . Suppose  is a geodesic in xX .1/ with endpoints 0-cells x

and y, at least one of which does not belong to YP . Let �x and �y be nearest-point

projections of x and y to the vertex set of YP . For all d � 0, there exists R � 0

such that if d.x; �x/ � d , d.y; �y/ � d , and d.�x; �y/ > R, then there is an

essential edge e of  within WX=2 edges of YP (where WX is an upper bound on

the lengths of attaching maps of essential 2-cells in X).
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Proof. Let d be given and assume d.x; �x/ � d and d.y; �y/ � d . We claim that

the conclusion of the lemma is satisfied with R D WX C 4d C 2. Assume that

d.�x ; �y/ > R. By the triangle inequality, this implies that d.x; y/ > 2d .

Since either x or y does not belong to YP , note that if any edge of  maps to YP ,

then  contains at least one essential edge. In that case, the closest essential edge

along  to this edge has distance 0 to YP , and we are done.

Form a quadrilateral as follows. Let x (resp. y) be a geodesic edge path

between x and �x (resp. y and �y), and let  0 be a geodesic edge path from �y

to �x. Orient the paths so that � D y
0x is a closed loop. Note that  0 lies

in YP by Lemma 5.4. Also note that there is no backtracking in any of  , y , x,

or  0, so there can only be backtracking where these paths meet at their endpoints.

Note that there is no backtracking of � at �x or �y by the fact that these points

are nearest-point projections of x and y to YP and  0 lies in YP . There may be

backtracking at x. Let x0 be the last vertex along  (from x) in the image of x , and

similarly define y0 to be the last vertex along  (from y) in the image of y . The

fact that d.x; y/ > 2d ensures that there will remain at least one edge of  running

from x0 to y0. Note also that if x0 D �x or y0 D �y, then  \ YP is nonempty

and we are done. Let 0 D  jŒx0;y0�, y0 D yjŒy0;�y �, and x0 D x jŒ�x ;x0�. See

Figure 17.

x x0

0 f
y0

y

x0

D ˇ
y0

D0 e 1

x

0

y

Figure 17. The general case in this lemma. The subdiagram D0 maps entirely to YP . By

choosing �x and �y sufficiently far apart, we can find the essential 2-cell ˇ which does

not intersect x0 or y0 . Since ˇ is external in D0, we can find the essential edge f on  ,

showing that  passes close to YP .

Fill the loop 0y0 0x0 with a planar reduced disk diagram D ! xX using

Lemma 3.4. If D has no essential 2-cells then all of D maps to YP . In particular

0 maps to YP and we are done. Otherwise, Suppose ˛ is an exposed 2-cell of D

with exposed edge e. We make the following observations.

� It cannot happen that there exist e; f 2 Œe�˛ with e along x0 and f along

y0 . Indeed, if this happens, then @˛ offers a shortcut between x0 and y0 so

that d.�x; �y/ � WX=2C 2d < R, a contradiction.



750 B. Stucky

� For each of x0 , y0 , and 0, there is an element of Œe�˛ not belonging to it,

since all of these paths are relative geodesics (by Lemma 5.3).

� No element of Œe�˛ lies along  0 (since by Lemma 5.4 no edge of  0 is

essential).

It may be the case that ˛ straddles x0 in the following sense: at least one

element of Œe�˛ lies in 0 and at least one in x0 , and all elements of Œe�˛ lie

in x0 [ 0. Alternatively, ˛ could straddle y0. However, these are the only

possibilities allowed by the observations above.

Now we claim thatD contains at most 2 extreme 2-cells. To see this, first note

that there is a natural linear order on the extreme two cells of D induced by the

order in which their boundaries are encountered while traversing 0 from x0 to y0.

If there are three or more extreme essential 2-cells, then we may choose one which

is not the first or last with respect to this order. Call this 2-cell ˛ and suppose that

˛ is exposed with exposed edge e. Without loss of generality, we may assume that

˛ straddles x0. Let e1 be an element of Œe�˛ along 0 and e2 an element of Œe�˛
along x0 . Let 1 and 2 be the two minimal paths in @˛ containing e1 and e2,

and labeled so that the component of D n 2 which contains x0 also contains ˛.

If pm is the boundary path of the image of @˛ in X for p not a proper power,

then j1j; j2j � jpj C 1. Also note that the image of 1 in the auxiliary diagram
{D internally intersects an essential 2-cell of {D which lies before ˛ in the order

determined by 0. Similarly, the image of 2 in {D internally intersects an essential

2-cell of {D which lies after ˛ in the order determined by 0. By Lemma 3.24, ˛

is not extreme.

Using this claim and applying Proposition 4.6 and Lemma 3.8, we see that

every essential 2-cell of D is external.

Now, let D0 be the maximal connected subdiagram of D containing  0 and

mapping to YP . Call the other arc of @D0 from �y to �x, 1. Note that no edge of

1 lies in x0 or y0 since �y and �x are nearest-point projections. If any edge of

1 belongs to 0, then some edge of  maps YP and we are done. Thus we may

assume that every edge of 1 belongs to an essential 2-cell of D lying in D nD0.

Since j1j � j 0j > R � WX C 2d C 2, we may choose an edge e of 1 with

the property that d.e; �x/ > WX=2C d and d.e; �y/ > WX=2C d . Let ˇ be the

essential 2-cell of D with e in its boundary. The observation above implies ˇ is

external with essential edge f (say) along @D. Observe that f does not lie along

x0 , as this would offer a shortcut through @ˇ from e to �x of length less than or

equal to WX=2 C d , contradicting the triangle inequality. Similarly, f does not

lie along y0 . Thus f lies along 0. Now the shorter path along @ˇ from e to f

maps to a path in xX from YP to an essential edge of  of length less than or equal

to WX=2, and we see that R satisfies the conclusion of the lemma. �

Lemma 11.4. Each C�.YP / is P -cocompact.
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Proof. Suppose thatƒ is a wall of xX with the property that diam.ƒ\Nd .YP // D

1 for some d . We claim thatƒ passes within distance d 0 D 3WX=2 of YP , where

WX is an upper bound on the lengths of attaching maps of essential 2-cells in X .

To see this, note that we may choose vertices x and y ofƒ\Nd .YP / with d.x; y/

arbitrarily large by assumption. By the triangle inequality, d.�x ; �y/ grows with

d.x; y/, so we may assume that d.x; y/ is large enough that d.�x; �y/ > R,

where R.d/ is chosen according to Lemma 11.3. Moreover, we may assume that

x does not belong to YP , for otherwise the claim is obvious. Let �x and �y be the

projections of x and y to YP , and let  be a geodesic edge path between them. By

Lemma 11.3, there is a point z in YP within distance WX=2 of an essential edge

e of  . By geometric relative quasiconvexity of wall carriers (Lemma 9.1), the

distance from e to the carrier of ƒ is bounded by WX , which means the distance

from e to ƒ is bounded by 3WX=2 since any point in the carrier is within WX=2

of ƒ. This proves the claim.

Now, since P D stab.YP / acts cocompactly on YP (its action is a covering

space action and the vertex space for P is a compact NPC cube complex), P also

acts cocompactly on Nd 0.YP / by local finiteness of xX . Since every wall ƒ with

diam.ƒ \ Nd .YP // D 1 for some d meets Nd 0.YP / as shown above, there are

finitely many P -orbits of such walls. This is exactly what it means for C�.YP / to

be P -cocompact. �

Putting everything together, we have the main theorem for staggered general-

ized 2-complexes with locally indicable vertex groups and n.X/ � 4.

Theorem 11.5. Let X be a compact staggered generalized 2-complex. Suppose

that X has locally indicable vertex groups and that n.X/ � 4. Suppose that for

each vertex spaceV ofX , �1.V / acts properly and cocompactly on a CAT.0/ cube

complex. Then �1.X/ acts properly and cocompactly on a CAT.0/ cube complex.

Proof. As before, let G D �1.X/. Let W be the collection of walls in xX coming

from the construction of Section 7. Let C be the cube complex dual to the action

of G on the wallspace . xX;W/.

By Proposition 10.1, the wallspace . xX;W/ satisfies linear separation. By [13,

Theorem 5.2], the action of G on C is proper.

Let P be the finite collection of vertex groups of X . Each vertex group P has

an associated vertex space VP in X (a compact NPC cube complex). Fix a base

point in xX and let YP to be the copy of the universal cover of VP in xX (a CAT.0/

cube complex) with stab.YP / D P .

Observe that all hypotheses of Theorem 11.2 are satisfied. Indeed, it is

clear that G acts properly and cocompactly on xX preserving both its metric and

wallspace structures, and the action onW has only finitely manyG-orbits of walls.

Relative hyperbolicity of .G;P/ was shown in Proposition 6.4. For each wall ƒ,
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Lemma 9.3 implies stab.ƒ/ acts cocompactly on it, and we showed stab.ƒ/ is rel-

atively quasiconvex in Proposition 9.5. Finally, each C�.YP / is P -cocompact by

Lemma 11.4.

Applying Theorem 11.2, the action of G on C is cocompact and the theorem

is proved. �

Corollary 11.6. Let A and B be locally indicable, cubulable groups,w a word in

A �B which is not conjugate into A or B , and n � 4. Then G D A �B=hhwnii is

cubulable.

Proof. Build a model spaceX for G D A�B=hhwnii by starting with a dumbbell

space XA _ XB of non-positively curved cube complexes with �1.XA/ D A and

�1.XB/ D B . Choose a base point and topological representative of wn which is

of period at least n, and attach a 2-cell to a path corresponding to the word wn,

so that �1.X/ D G. By performing free reductions and deletions of trivial loops

in vertex spaces (while preserving periodicity), we may assume that the attaching

map is along an admissible cyclically reduced edge loop and the essential 2-cell

has exponent at least n. Note also that the attaching path uses the single essential

edge of the dumbbell since w is not conjugate into A or B . Observe that X is

trivially staggered generalized and Theorem 11.5 applies. �
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