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On spherical unitary representations

of groups of spheromorphisms of Bruhat–Tits trees

Yury A. Neretin1

Abstract. Consider an infinite homogeneous tree Tn of valence n C 1, its group Aut.Tn/

of automorphisms, and the group Hier.Tn/ of its spheromorphisms (hierarchomorphisms),
i.e., the group of homeomorphisms of the boundary of Tn that locally coincide with trans-
formations defined by automorphisms. We show that the subgroup Aut.Tn/ is spherical
in Hier.Tn/, i.e., any irreducible unitary representation of Hier.Tn/ contains at most one
Aut.Tn/-fixed vector. We present a combinatorial description of the space of double cosets
of Hier.Tn/ with respect to Aut.Tn/ and construct a “new” family of spherical represen-
tations of Hier.Tn/. We also show that the Thompson group Th has PSL.2;Z/-spherical
unitary representations.
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1. Introduction

1.1. Groups of spheromorphisms of trees. Fix an integer n > 2. The Bruhat–
Tits tree Tn is the infinite tree such that each vertex belongs to n C 1 edges, see
Figure 1. Denote by Aut.Tn/ the group of all automorphisms of Tn. It is a totally
disconnected locally compact group, its topology is defined by the condition:
stabilizers of finite subtrees are open in Aut.Tn/.

Recall that Bruhat and Tits in 1966-1967 (see [3]) invented simplicial com-
plexes (Bruhat–Tits buildings), which are p-adic counterparts of noncompact Rie-
mannian symmetric spaces. Analogs of rank one noncompact symmetric spaces
(as the Lobachevsky plane) are Bruhat–Tits trees with n being powers of prime p.
In particular, p-adic PSL.2/ acts on the tree Tp. This fact became an initial point
for investigations of groups acting on trees, see, e.g., Tits [58] and Serre [55].
Cartier [5] observed that the groups Aut.Tn/ are interesting objects from the point
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of view of representation theory and non-commutative harmonic analysis, and
these groups are relatives of SL.2/ over real and p-adic fields. G. Olshanski es-
tablished that Aut.Tn/ are type I groups [46] and obtained a pleasant classifi-
cation [47] of irreducible unitary representations of Aut.Tn/ (see an exposition
in [11], see also the work [8] on tensor products).

The boundary (or absolute) Abs.Tn/ of Tn is a totally disconnected compact
set, for a prime n D p it can be identified with the p-adic projective line. The
group Aut.Tn/ acts by homeomorphisms of the boundary. A spheromorphism (or
hierarchomorphism) of Tn is a homeomorphism q of Abs.Tn/ such that for each
point y 2 Abs.Tn/ there is a neighborhood N.y/, in which q coincides with some
ry 2 Aut.Tn/. In other words, we cut a finite number of mid-edges of the tree and
get a collection of finite pieces Wi and infinite pieces Uj . We forget finite pieces
and choose embeddings �j W Uj ! Tn such that images of �j are mutually disjoint
and cover the whole tree (may be) without a finite subtree, see Figure 1.

Figure 1. Cf. Subsection 1.1. A piece of the Bruhat–Tits tree T2. Transposing the thick
branches we get an spheromorphism.

The group Hier.Tn/ of all spheromorphisms of the tree Tn is a locally compact
topological group (see [14]). The topology is defined by the condition: the
subgroup Aut.Tn/ is open and closed (clopen) in Hier.Tn/. The (countable) space
of cosets Hier.Tn/= Aut.Tn/ has a discrete topology.

Remark. So we have a group G D Hier.Tn/ and a subgroup K D Aut.Tn/ such
that K is a non-discrete totally disconnected group and the homogeneous space
G=K is discrete. Topologies of this kind arise in representation theory of infinite
symmetric groups, see [42], Subsection 3.7; a group with such a topology is used
below in Section 4.
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We can imagine the Bruhat–Tits tree as drawn on the plane R
2. Then we get a

structure of a cyclically ordered set on the boundary Abs.Tn/. The Thompson
group Th is the group of all spheromorphisms preserving the cyclic order on
Abs.T2/. Initially R. Thompson proposed the group Th as a counterexample, this
countable group really has strange properties but also it is an interesting positive
object (see, e.g., [17], [6], [21], [50], [26], [4], [31], and [12]).

The groups Hier.Tn/ were introduced in 1984 ([37] and [38]) by the following
reasoning:

1. for prime n D p the group Hier.Tp/ contains the group of locally analytic
diffeomorphisms of the p-adic projective line;

2. part of constructions of unitary representations of the group of diffeomor-
phisms of the circle have twins for the groups Hier.Tn/;

3. the groups Hier.Tn/ have several families of unitary representations that are
spherical (see below) with respect to (noncompact) subgroup Aut.Tn/; in
Addendum we explain why this property seems to be distinguished.

The topic of the present paper are unitary representations, we list some ref-
erences on a wider context. The groups Hier.Tn/ are simple as abstract groups
(Kapoudjian [23]), uniformly simple (Gal and Gismatullin [13]), compactly gen-
erated (Caprace and De Medts [7]) compactly presentable (Le Boudec [30]), they
have nontrivial Z2-central extensions constructed by Kapoudjian [24] (it is inter-
esting to find faithful unitary representations of this extension). They don’t have
property (T) (Navas [36]1). These groups are simple locally compact groups that
do not admit a lattice (Bader, Caprace, Gelander, and Mozes [2], this is the first
example of such kind). See Kapoudjian [25] and Sauer and Thumann [52] on the
action of Hier.Tn/ on CW-complexes. These groups can be included to families
of relatives [39], [32], and [52].

It seems to the author that these groups while locally compact have various
properties of infinite-dimensional (or “large”) groups. For instance, constructions
of spherical representations both in [37] and [38] and below in Section 4 are
distinctive construction for infinite-dimensional groups. On the other hand, a
parallel with infinite-dimensional groups also is incomplete, apparently the groups
Hier.Tn/ have no trains in the sense of [40].

1.2. Sphericity. Let G be a topological group, K a closed subgroup. Let � be
an irreducible unitary representation of the group G in a Hilbert space H . We say
that a representation � is K-spherical if H contains a unique up to a scalar factor
nonzero K-fixed vector v (the spherical vector). Its matrix element

ˆ.g/ D h�.g/v; viH ; where kvk2 D 1,

1 Notice that families of spherical representations of Hier.Tn/ in the boson and fermion Fock
spaces constructed in [38] approximate the trivial one-dimensional representation
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is called a spherical function. This function is automatically K-biinvariant, i.e.,

ˆ.k1gk2/ D ˆ.g/ for g 2 G, h1, h2 2 K.

In other words, a spherical function is defined on the double coset space K nG=K.

Definition 1.1. Let G be a topological group, K a closed subgroup. The subgroup
K is spherical if

A. for any irreducible unitary representation of G the subspace of K-fixed
vectors has dimension 6 1;

B. There is a faithful unitary representation2 of G and a vector v such that the
stabilizer of v is K.

Remark. a) The second condition is necessary for the following reason. Quite
often (if K is not compact or “heavy” in the sense of [40]) a restriction of any
nontrivial irreducible unitary representation of G to K has no nonzero K-fixed
vector. More generally, if a vector v is fixed by K, then quite often v is automati-
cally fixed by a certain larger group zK � K. Such phenomena were widely used in
classical ergodic theory after Gelfand, Fomin [16] and Mautner [34]. A detailed
investigation of such phenomena for Lie groups were done by Moore [35] and
Wang [60], for p-adic groups by Wang [60] and [61]. Kaniuth and Lau [22] and
Losert [33] discussed stabilizers of vectors in unitary representations of general
locally compact groups (in their terminology subgroups that can be stabilizers of
vectors “satisfy separation property”).

b) For Lie groups there are weak analogs of sphericity for noncompact sub-
groups. One variant is “generalized Gelfand pairs” G � K, see [10]; in this case
one considers spaces H 1 of G-smooth vectors and fixed vectors in spaces .H 1/0

dual to H 1. Another variant is “commutative spaces” (see, e.g., [59]), in this case
one considers pairs G � K, for which algebras of K-invariant differential opera-
tors on G are commutative. Both definition do not require existence of K-invariant
vectors in spaces of unitary representations.

1.3. The purposes of the paper. We prove the following statements.

Theorem 1.2. The subgroup Aut.Tn/ is spherical in Hier.Tn/.

Proposition 1.3. Let ˆ1.g/, ˆ2.g/ be Aut.Tn/-spherical functions on Hier.Tn/.
Then ˆ1.g/ ˆ2.g/ is a spherical function.

For known spherical pairs G �K (finite-dimensional and infinite-dimensional)
double coset spaces K nG=K admit explicit descriptions. In Section 3, we present
such a description for the double coset space

Aut.Tn/ n Hier.Tn/= Aut.Tn/:

2 It can be reducible.
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Double cosets correspond to .n C 1/-valent graphs � consisting of two disjoint
trees TC and T� and a collection of edges connecting vertices of TC with vertices
of T� (cf. “tree pairs diagrams” in [4]).

In Section 4 we apply Nessonov’s construction [45] of representations of
infinite symmetric group to obtain a “new” family of spherical representations
of Hier.Tn/.

The Addendum contains some comments on problem of sphericity for locally
compact groups. We also show that the Thompson group Th has PSL.2;Z/-
spherical representations.

1.4. Some questions. Theorem 1.2 implies the following questions.

1. Is it possible to classify Aut.Tn/-spherical functions on Hier.Tn/?

2. Is Hier.Tn/ a type I group?

3. Is it possible a harmonic analysis on the space Hier.Tn/= Aut.Tn/ in some
sense? This is not a question about the decomposition of `2 on this space, see the
Addendum, Proposition A.3.

4. Let � be a spherical representation of Hier.Tn/, let P be the operator
of orthogonal projection to the Aut.Tn/-fixed line. Consider the closure �� of
�.g/, where g ranges in Hier.Tn/, in the weak operator topology. Obviously
(see Lemma 2.4) the semigroup �� contains P , therefore �� n Hier.Tn/ contains
operators of the form �.g1/P�.g2/ with g1, g2 2 Hier.Tn/. Does it contain
something else?

Remark. The analog of the group of spheromorphisms for n D 1 and its unitary
representations are topics of a separate paper [41].

2. Sphericity

2.1. Notation. A ray in the Bruhat–Tits tree is a sequence of vertices aj such
that ai and aiC1 are adjacent and aiC2 ¤ ai for all i . We say that rays ai and bj

are equivalent if ai D biCk starting from some i . The boundary (the notation:
Abs.Tn/) of Tn is the space of classes of equivalent ways.

Let us cut the tree Tn at the middle of an edge. We call branches the two
pieces of the tree. Each branch U determines a subset B D BaŒU � in the boundary
corresponding to rays lying in U . Such subsets are called balls. For a given ball B

denote by BrŒB� the corresponding branch of the tree. In particular, each mid-edge
determines a partition of Abs.Tn/ into two disjoint balls. We define the topology
on Abs.Tn/ assuming that balls are clopen subsets in Abs.Tn/, this defines on
Abs.Tn/ a structure of a totally disconnected compact set.
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If B1, B2 are two balls, then

B1 � B2; or B2 � B1; or B1 \ B2 D ¿: (2.1)

Lemma 2.1. Let B1 � B2 � : : : be an increasing sequence of balls. Then it has
a maximal element or Abs.Tn/ n [j Bj is one point.

Proof. Let a sequence of balls Bj D BaŒUj � strictly decrease. Let uj be the
corresponding mid-edges, Œpj qj � the corresponding edges and assume pj … Uj ,
qj 2 Uj . Then the points q1, p1, q2, p2, . . . lye on a ray. Let a 2 Abs.Tn/ be the
limit of this ray. Then [Bj D Abs.Tn/ n a. �

We say that h 2 Aut.Tn/ is hyperbolic if it has two fixed points a, b on Abs.Tn/

and induces a nontrivial shift on the bi-infinite ray : : : x�1, x0, x1, . . . connecting a

and b. Let c be a point of the boundary. The parabolic subgroup Pc � Aut.Tn/ is
the group of transformations g such that g fixes c, and for any ray x1, x2, . . . going
to c we have gxN D xN for sufficiently large N .

2.2. Proof of Theorem 1.2. The group Aut.Tn/ has a normal subgroup AutC.Tn/

of index 2 defined as follows. Let us color vertices of Tn black and white in such
a way that each edge has edges of different colors. Then AutC.Tn/ is the sub-
group of those automorphisms of Tn which preserve the coloring. This defines a
homomorphism of Aut.Tn/ to the group Z2 and therefore a one-dimensional rep-
resentation of Aut.Tn/. Other nontrivial irreducible representations of Aut.Tn/

are infinite-dimensional. It is sufficient to prove the following statement:

Proposition 2.2. Consider an irreducible unitary representation � of Hier.Tn/ in
a Hilbert space H . Denote by H AutC the subspace of all AutC.Tn/-fixed vectors.
Then dim H AutC is 6 1.

Denote by P the operator of orthogonal projection to H AutC . Clearly,

P�.h/ D �.h/P D P for all h 2 AutC.Tn/. (2.2)

For g 2 Hier.Tn/ we define the operator O�.g/W H AutC ! H AutC by

O�.g/ WD P�.g/P:

Clearly, O�.g/ depends only on the double coset AutC.Tn/ � g � AutC.Tn/.

Lemma 2.3. The operators O�.g/ commute, i.e., for any g1, g2 2 Hier.Tn/

O�.g1/ O�.g2/ D O�.g2/ O�.g1/: (2.3)
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Reduction of Theorem 1.2 to Lemma 2.3. Let the conclusion of the lemma
hold. Assume that dim H AutC > 1. Notice that O�.g�1/ D O�.g/�, therefore
commuting bounded operators

O�.g/ C O�.g�1/; i. O�.g/ � O�.g�1//;

are self-adjoint. Therefore all operators O�.g/ have a proper common invariant
subspace V � H AutC . Then AutC.Tn/-cyclic span of V is a proper AutC.Tn/-
subspace in H . Indeed, let v 2 V . Then

P�.g/v D P�.g/P v D O�.g/v 2 V;

and the projection of the cyclic span to H AutC is contained in V . This contradicts
to the irreducibility of �.

Lemma 2.4. Let hj 2 AutC.Tn/ tend to infinity3. Then for any unitary repre-
sentation � of AutC.Tn/ the sequence �.hj / converges to P in the weak operator
topology.

Indeed, by [29], for any nontrivial irreducible representation of AutC.Tn/ the
sequence �.hj / weakly converges to 0.

On the other hand this can be easily verified case-by-case starting Olshanski’s
classification theorem [47]. Notice also that this is a counterpart of the well-known
Howe–Moore theorem [20] about real Lie groups.

In fact, we need the following special case of Lemma 2.4.

Corollary 2.5. Let h 2 AutC.Tn/ be a hyperbolic element. Then for any unitary
representation � of AutC.Tn/ the sequence �.hm/ weakly converges to P .

Proof of Lemma 2.3. Fix a ball B � Abs.Tn/. Denote by G.B/ the subgroup in
Hier.Tn/ consisting of spheromorphisms trivial outside B . Clearly,

AutC.Tn/ � G.B/ � AutC.Tn/ D Hier.Tn/;

i.e., any double coset has a representative in G.B/. Choose two disjoint balls B1

and B2. For a verification of (2.3) we can assume g1 2 G.B1/, g2 2 G.B2/.
Choose a hyperbolic element U 2 AutC.Tn/ with an attractive fixed point a 2 B2.
For k > 0 we have

U kg2U �k 2 G.U kB2/ � G.B2/:

Hence g1 and U kg2U �k have disjoint supports, therefore they commute. Thus,

�.g1/ �.U k/ �.g2/ �.U �k/ D �.U k/ �.g2/ �.U �k/ �.g1/:

3 We say that hj tends to 1 if any compact subset of AutC.Tn/ contains only a finite number
of elements hj . In other words hj tends to infinity in the Alexandroff compactification of a locally
compact space AutC.Tn/.



808 Y. A. Neretin

Multiplying this from the left and the right by P and keeping in mind (2.2), we
get

P�.g1/�.U k/�.g2/P D P�.g2/�.U �k/�.g1/P:

Passing to the weak limit as k ! C1 and applying Lemma 2.4 we arrive to

P �.g1/ P �.g2/ P D P �.g2/ P �.g1/ P:

This is the equality (2.3). �

Proof of Proposition 1.3

Proposition 2.6. Let G � K be topological groups. Assume that K does not
admit nontrivial finite-dimensional unitary representations. Let ˆ1.g/, ˆ2.g/ be
K-spherical functions on G. Then ˆ1.g/ ˆ2.g/ is a spherical function.

Recall the following lemma (see [53], Sublemma 1):

Lemma 2.7. Let �1, �2 be unitary representations of a group �. If the tensor
product �1 ˝ �2 contains a nonzero �-invariant vector, then both �1 and �2 have
finite-dimensional subrepresentations.

Proof of Proposition 2.6. Let �1 and �2 be K-spherical representations of G in
H1 and H2. Let v1, v2 be fixed vectors. By the lemma, v1 ˝ v2 is a unique
K-fixed vector in H1 ˝ H2. The cyclic span W of v1 ˝ v2 is an irreducible
subrepresentation. Indeed, assume that W D W1 ˚ W2 is a sum of invariant
subspaces. Then both projections of v1 ˝ v2 to W1, W2 are K-fixed, therefore
v1 ˝ v2 must be contained in one of summands, say W1, and thus the cyclic span
of v1 ˝ v2 is contained in W1, i.e., W D W1.

Now we consider the representation of G in W ,

h.�1.g/ ˝ �2.g//v1 ˝ v2; v1 ˝ v2iW D h�1.g/v1; v1iH1
� h�2.g/v2; v2iH2

D ˆ1.g/ ˆ2.g/: �

Proof of Proposition 1.3. Consider Aut.Tn/-spherical representations �1, �2 of
Hier.Tn/. They also are AutC.Tn/-spherical. Therefore their tensor product has a
unique AutC.Tn/-fixed vector. This vector also is Aut.Tn/-fixed. �

3. The space of double cosets

3.1. Terminology. Let T be a tree, A1, . . . , AN a collection of vertices. The
subtree spanned by A1, . . . , AN is the minimal subtree containing these points.

Let S be a finite tree. The boundary @S of S is the set of vertices of valence 1.
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We regard the Bruhat–Tits trees as 1-dimensional complexes with 0-cells
located at vertices of the tree and mid-edges. Respectively, 1-cells are half-edges,
see Figure 2.

Figure 2. Cf. to Subsection 3.1. The subdivision of the Bruhat–Tits tree.

Let R be a tree such that valences of all vertices are 6 .n C 1/ and number
of vertices is > 3. A thorn R is such a tree equipped with the following structure
of an 1-dimensional simplicial complex. Consider the subtree Rı (the skeleton
of the thorn) of R spanned by all vertices that are not contained in the boundary
@R. Then 0-cells of the thorn are vertices of R and mid-edges of Rı. Respectively,
1-cells are half-edges of Rı and edges of RnRı. We call vertices of Rı by vertices
of thorn, and points of @R by spikes of the thorn, see Figure 3(a).

a) b)

Figure 3. Cf. Subsection 3.1. a) A thorn (n D 3). The left vertex is perfect. Cutting the
adjacent mid-edge off we get a reduced thorn. b) A sub-thorn of the Bruhat–Tits tree T3.
On b) and figures below we omit mid-edges.

Figure 4. Cf. Subsection 3.1. A perfect thorn (n D 3).
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a) b)

Figure 5. a) The empty thorn. b) The thorn with one vertex and one spike.

Additionally, we allow an empty thorn and a thorn having 1 vertex and one
spike, see Figure 5.

Denote by spike.R/ the set of spikes of a thorn R, vert.R/ the set of vertices
of R. Two thorns R1, R2 are isomorphic if there is an isomorphism R ! R0 of
complexes sending vertices to vertices and spikes to spikes. Cutting a thorn in a
mid-edge we get two branches.

We embed thorns R to the Bruhat–Tits tree Tn isomorphically sending vertices
to vertices and spikes to mid-edges. We call images of such embeddings by sub-
thorns of the Bruhat–Tits tree, see Figure 3(b).

Let R be a thorn. We say a thorn is perfect if all its vertices have valence
.n C 1/, see Figure 4. We say that a vertex is perfect if it is contained in @Rı and
its valence is .n C 1/, see Figure 3(b). More generally, a branch of a thorn is
perfect if all its vertices have valences .n C 1/.

A thorn is reduced if it has no perfect vertices. Let R be an arbitrary thorn.
Cutting of all perfect branches off we come to a reduced thorn (in particular, if R

is perfect, then the corresponding reduced thorn is empty.)

3.2. Clopen sets. Denote by Clop.Tn/ the set of all nonempty clopen subsets
of Abs.Tn/, by Clop?.Tn/ the subset consisting of proper clopen subsets (i.e., we
remove the point of Clop.Tn/ corresponding the whole Abs.Tn/).

Clearly, any clopen subset � can be represented as a union of a finite number
of disjoint balls

� WD B1 t � � � t B�:

This representation is not unique, since any ball B can be canonically represented
as a disjoint union of n smaller balls. It is easy to observe (see [54], Addendum
“Structure of p-adic varieties”, or [38]), that the remainder �.�/ of � modulo n�1

is uniquely defined by �. According this, Clop?.Tn/ splits as a disjoint union

Clop?.Tn/ D

n�2
a

�D0

Clop?
� .Tn/: (3.1)

Proposition 3.1. a) Disjoint unions of balls B1 t � � � t B� are in one-to-one
correspondence with sub-thorns of Tn.

b) Partitions Abs.Tn/ D B1 t � � �t BN are in one-to-one correspondence with
perfect sub-thorns of Tn.

c) Nonempty clopen sets in Abs.Tn/ are in one-to-one correspondence with
reduced sub-thorns of Tn.

d) Orbits of Aut.Tn/ on Clop.Tn/ are numerated by equivalence classes of
reduced thorns.
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Description of the correspondence. Let p, q be adjacent vertices of Tn. Denote
by �!

pq the thorn having one vertex p and one spike in the mid-edge pq. Cutting the
edge pq at the mid-point we get two branches. We choose the branch U containing
q and the corresponding ball BŒ

�!
pq�, see Figure 6.

Figure 6. A spike and the corresponding branch (n D 2).

A sub-thorn �! a union of balls. Consider a sub-thorn in Tn. Then each spike
corresponds to a ball. Taking a union of these balls we get a clopen subset with a
given partition into balls.

Notice, that starting a perfect thorn we get the whole boundary Abs.Tn/.

A union of balls �! a sub-thorn. Conversely, fix a representation of � as a
disjoint union of balls B1 t� � �tBm. Let U1, . . .Um be the corresponding branches
of Tn. Let u1, . . . , um be mid-edges that cut these branches off. We consider the
minimal sub-thorn R of Tn containing u1, . . . , um.

A clopen set �! a reduced sub-thorn. Let � be a proper clopen set. By
Lemma 2.1, any sub-ball B � � is contained in a unique maximal sub-ball
zB � �. We take the partition of � into maximal sub-balls and take the corre-
sponding thorn. Clearly, it is reduced.

3.3. Double cosets and bi-thorns. A bi-thorn is the following collection of data
Bt.R; QI �/:

� an ordered pair of perfect thorns R, Q with the same number of vertices;

� a bijection � W spike.R/ ! spike.Q/.

We admit an empty bi-thorn.
Equivalently, we have an .nC1/-valent graph, which contains a pair of disjoint

subtrees Rı, Qı and the remaining edges connect vertices of Rı and vertices of Qı

(we admit several edges between two vertices), see Figure 7.
Consider a bi-thorn Bt.R; QI �/. Let a be a vertex of @.Rı/, a0 be a unique

adjacent vertex of Rı. Let b a vertex of @.Qı/ and b0 the adjacent vertex. We
say that a, b are similar if � sends all spikes at a to spikes at b, see Figure 7. In
this situation, we can cut the mid-edges of a0a and b0b. The thorn splits into two
pieces. We remove the piece with two vertices a and b and modify � saying that it
sends the mid-edge of a0a to the mid-edge of b0b. In this way we get a new thorn.

We say that a bi-thorn is minimal if it has not a pair of similar vertices.
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Proposition 3.2. There is a canonical one-to-one correspondence between the
double coset space Aut.Tn/ n Hier.Tn/= Aut.Tn/ and the set of minimal bi-thorns.

a)

b)

Figure 7. a) A bi-thorn. The left vertices of the upper and lower thorns are similar. b) We
cut off the left vertices and get a minimal bi-thorn (an additional “vertical” arc appears
instead of two cut vertical arcs).

Let us construct the correspondence. Let g 2 Hier.Tn/. Take a ball B D BaŒU �

and assume that gB is a ball, gB D BaŒV �. We say that g regards the ball B if the
map gW B ! gB is induced by an isomorphism of the branches U ! V .
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Let g regard a ball B . Then there is a unique maximal ball C D zB � B

regarded by g. Thus we get a partition

Abs.Tn/ D C1 t C2 t � � � t CN

consisting of maximal balls regarded by g and the corresponding partition

Abs.Tn/ D gC1 t gC2 t � � � t gCN

consisting of balls regarded by g�1. We take thorns R and Q corresponding to
this partitions, by construction g determines a bijection between their spikes. �

Corollary 3.3. Fix g 2 Hier.Tn/. Fix an Aut.Tn/-orbit O in Clop?.Tn/. Then for
all but a finite number of elements � 2 O we have g� 2 O.

Proof. According the previous proof, g canonically determines a pair of sub-
thorns R and Q of the Bruhat–Tits tree. The orbit O corresponds to a certain
reduced thorn T . Elements � of the orbit correspond to sub-thorns S in Tn

isomorphic to T . Clearly, if S \ R D ¿, then g� 2 O. �

4. A family of spherical representations

4.1. The infinite symmetric group with Young subgroup. Fix k. Consider k

countable sets …1, . . . , …k and their disjoint union

… WD …1 t � � � t …k:

First, consider the group G of all finitely supported permutations of … and its
(Young) subgroup K preserving each …j . Then G � K is a spherical pair and
according Nessonov [45] all K-spherical functions on G have the following form
ˆS (a detailed exposition of a proof of this theorem is contained also in [42],
Section 8). Consider a positive (semi)definite matrix S of size k � k with sjj D 1.
Then

ˆS .�/ D

k
Y

p;qD1

s
�p;q.�/
pq ; � 2 G; (4.1)

where �p;q.�/ is the number of elements ˛ 2 …p such that �˛ 2 …q .
To construct the corresponding unitary representations of G we consider a

Euclidean space V and a collection of unit vectors e1, . . . , ek such that one has
hep ; eqiV D sp;q (we can assume that V is spanned by these vectors). Consider
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the tensor product4
k

O

pD1

�

O

˛2…p

.V; ep/
�

;

we see that factors are enumerated by elements of the set …. The group G acts by
permutations of the factors. A unique K-fixed vector is

E WD ˝k
pD1e˝1

p :

The G-cyclic span of the vector E is an irreducible spherical representation of G

and the spherical function is given by the formula (4.1).

Second, we notice that our representation can be extended by the continuity
to a larger group G. It consists of all permutations � of the set … such that for
all p for all but a finite number of ˛ 2 …p, we have �˛ 2 …p (permutations of
factors in the tensor product are well defined for such �). The spherical subgroup
K consists of all permutations preserving each subset …p.

4.2. Embeddings of Hier.Tn/ to the group G. Consider a collection of reduced
thorns T1, . . . , TN , let they correspond to the same � in the decomposition (3.1).
Consider the corresponding Aut.Tn/-orbits O1, . . . , ON in Clop?

� .Tn/ and the
complement P to the union of these orbits. Thus we get a partition

Clop?
� .Tn/ D P t O1 t � � � t ON :

Consider the group G corresponding to this partition. By Corollary 3.3, the group
Hier.Tn/ is contained in G. Obviously, Aut.Tn/ � K. So we can apply the
Nessonov construction.

Remark. Fix � D 0; 1, . . . , n � 2. Consider a Hilbert space V and a countable
set of unit vectors eT enumerated by reduced thorns whose number of spikes is
� modulo n � 1. Let this set have a unique limit point e (and hence a sequence
composed of eS in any order converges to e. For a clopen subset � denote by
T .�/ the corresponding reduced thorn. Consider the following tensor product

H WD
O

�2Clop?
�

.V; eT .�//:

The action of the group Hier.Tn/ in H by permutations of factors is well defined
if and only if the following product absolutely converges for all hierarchomor-
phisms g:

ˆ.g/ D
Y

�2Clop?
�

heT .g�/; eT .�/iV :

4 Recall that a definition of a tensor product of an infinite family Hj of Hilbert spaces requires
a fixing of a distinguishedunit vector �j 2 Hj in each factor, a tensor product depends on a choice
of �j . For details, see, e.g., [19], Appendix A.
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Clearly, if the sequence eT converges fast enough, then this is the case. In this
situation, we get a spherical representation of Hier.Tn/ in H with the spherical
vector ˝�2Clop?

�
eT .�/ and the spherical function ˆ.g/.

It can be interesting to find precise conditions for a family eT providing well-
definiteness of this construction.

Addendum. Several comments on the sphericity phenomenon

A.1. General remarks on sphericity. Thus Aut.Tn/ is a noncompact spherical
subgroup in a locally compact group Hier.Tn/. According to [43], the subgroup
PSL.2;R/ is spherical in the group Diff3.S1/ of C 3-diffeomorphisms of the
circle S1. We explain why this seems distinguished.

Phenomenon of sphericity was discovered by Gelfand in 1950, [15]. He
showed that maximal compact subgroups K in semisimple Lie groups G � K

are spherical (as GL.n;R/ � O.n/ or Sp.2n;R/ � U.n/). Also symmetric
subgroups in semisimple compact Lie groups are spherical (as U.n/ � O.n/ or
O.2n/ � U.n/). The third family of spherical pairs is Cartan motion groups (as
the semidirect product of O.n/ and the additive group of real symmetric matrices
of order n, in this case the subgroup O.n/ is spherical). This case is degenerate in
a certain sense.

Related spherical representations of semisimple groups played a distinguished
role in theory of unitary representations, and spherical functions were an impor-
tant standpoint for development of modern theory of multi-dimensional special
functions.

In 1979 Krämer [28] observed that simple compact Lie groups can have
non-symmetric spherical subgroups as O.2n C 1/ � U.n/ or Sp.2n C 2/ �

Sp.2n/ � SO.2/, in the most of cases such pairs can be obtained from Gelfand
pairs G � K by a minor enlargement of G or minor reduction of K. Mikityuk and
Brion extended the Krämer classification to semisimple compact groups. There
is also a story with finite spherical pairs G � K, see, e.g., [9].

On the other hand infinite-dimensional limits of Gelfand pairs (as GL.1;R/ �

O.1/) are spherical. G. Olshanski [48] and [49] understood that such pairs have a
substantial representation theory, later there appeared related harmonic analysis.
For infinite-dimensional (large) groups the phenomenon of sphericity is more
usual than for Lie group, and at least representation theory can be developed
in quite wide generality (see, e.g., [44], [45], [42], and [41]), in Subsection 4.1
we used a construction of this kind. In a known zoo, spherical subgroups are
“heavy groups” in the sense of [40] (as the complete unitary group, the complete
symmetric group, the group of all measure preserving transformations).

Two examples mentioned in the beginning of the present subsection are outside
these two families. In one case a noncompact Lie group SL.2;R/ is a spherical
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subgroup in an infinite-dimensional group Diff3.S1/, in another case a noncom-
pact subgroup Aut.Tn/ is spherical in a locally compact group Hier.Tn/.

A.2. On compactness of stabilizers of vectors in unitary representations. In
examples of spherical pairs G � K of Lie groups discussed above subgroups
K are compact. The general statement “a spherical subgroup in a Lie group is
compact” formally is incorrect, but informally this is close to a truth.

There is a theorem of Moore [35] about possible stabilizers of vectors in unitary
representation, whose precise formulation is slightly sophisticated. We formulate
a simpler statement.

Let G be a connected Lie group, Z the center; denote by g � z their Lie
algebras. Denote by Adg.�/ the adjoint representation of G in g, in fact we have a
representation of the quotient group G=Z in the group GLŒg� of all linear operators
of the space g.

Let � be a faithful irreducible unitary representation of G in a Hilbert space V .
An irreducible faithful representation determines an injective homomorphism
from Z to the unit circle T on the complex plane. For this reason dim z 6 1,
and we have three possibilities: Z D T, Z is finite, Z is a dense subgroup in T.

Proposition A.1. Let G, �, V be as above.

i. Let the image of G=Z in the group GLŒg� be closed.

ii. Let the center Z be compact.

Then

a. the stabilizer Kv of a nonzero vector v is compact;

b. the stabilizer Lv of the line Cv is compact.

Proof. It is sufficient to prove the statement for the group Lv . By definition Lv

contains Z. Since Z is compact, the image of Lv in G=Z is closed. Since the
Ad-image of G in GLŒg� is closed, the Ad-image of Lv in GLŒg� also is closed.

We use Theorem 1.2 of Wang [60] (which is a strong version of the result of
Moore [35]). We say that an element g 2 GL.g/ is pre-periodic if it is semisimple
(i.e., it is diagonalizable after the complexification) and its eigenvalues �j satisfy
j�j j D 1. Equivalently, the closure of the set ¹gmº, where g 2 Z, is compact.
By [60], for any g 2 Lv there is a subgroup Mg such that

1. Mg � Kv;

2. denote by mg the Lie algebra of Mg , then the image of Ad.g/ in g=m is pre-
periodic.

However, if a normal subgroup fixes a vector v, then it acts trivially on the
whole space. Indeed, let r 2 G and m 2 Mg . Then

�.m/ �.g/ v D �.g/ �.g�1mg/ v D �.g/v:
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Our representation is faithful and therefore the subgroup Mg is trivial. Thus
the image Lv=Z of Lv in GLŒg� is closed and consists of pre-periodic elements.
It is more or less clear that Lv=Z is compact (to avoid a proof, we can refer to
Lemma 1.3 from [61] about a group with a dense set of pre-periodic elements).
Since Z is compact, Lv also is compact. �

Remark 1. There are several reasons, for which we can not simply say: for unitary
representations of Lie groups stabilizers of vectors (lines) are compact.

a. Obviously we must consider faithful representations, since any closed
normal subgroup H � G can be a kernel of a representation.

b. More serious sources of problems are twinings. Consider the group
Isom.2/ of orientation preserving isometries of the Euclidean plane. Denote
Q WD Isom.2/ � Isom.2/, we can regard an element of this group as a pair of
matrices of the form

�

eit z

0 1

�

;

�

eis w

0 1

�

; where t , s 2 R, z, w 2 C. (A.1)

Denote by S � Q the subgroup consisting of pairs of matrices with z D w D 0,
i.e., S D SO.2/ � SO.2/. It is more-or-less obvious that Q � S is a spherical
pair (the Wigner–Mackey trick, see, e.g., [27], 13.3, Theorem 1, immediately
gives a classification of irreducible unitary representations of Q). Next, choose an
irrational real � and take the subgroup G � Q consisting of pairs of matrices (A.1)
satisfying the condition s D � t , consider the corresponding subgroup K D S \G.
The group G is the Mautner group (see, e.g., [1]). Clearly, restricting an S -
spherical representation of Q to G we get a K-spherical representation of G.
However, K ' R is not compact.

c. Consider the universal covering G� of the group G D SL.2;R/ and the
universal covering R� of the subgroup of rotations, R� ' R. Let � be a faithful
irreducible representation of G� (see [51]). Then R� has a discrete spectrum.
For an eigenvector v we have Lv D R� and Kv ' Z. Both subgroups are non-
compact. However, this non-compactness again is artificial, in our case Lv=Z is
compact in G�=Z.

Remark 2. If G can be covered by a real algebraic group, then conditions (i)
and-(ii) are fulfilled automatically.

Notice that for p-adic groups stabilizers of vectors in unitary representations in
interesting cases are compact (such stabilizers were topic of works of Wang [60]
and [61]).
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A.3. The Mautner phenomenon for the groups for Hier.Tn/. Let � be a
unitary representation of a group G. Assume that a subgroup K fixes some
vector v. Then quite often v is automatically fixed by certain larger group zK.
For G D Hier.Tn/ we have the following statement:

Proposition A.2. Let � be a unitary representation of Hier.Tn/, let v be a vector
in the space of the representation.

a. Let h 2 Aut.Tn/ be a hyperbolic element and �.h/v D v. Then v is fixed by
the whole subgroup AutC.Tn/.

b. Let v be fixed by a parabolic subgroup Pc � Aut.Tn/. Then v is fixed by the
whole subgroup Aut.Tn/.

This is obvious: nontrivial irreducible representations of Aut.Tn/ have no fixed
vectors with respect to these subgroup (of course, this argument requires to look
at Olshanski’s list [47]). �

A trivial spherical representation of Hier.Tn/. Recall that the homogeneous
space Hier.Tn/= Aut.Tn/ is countable and is equipped with the discrete topology.
Therefore we have a quasi-regular representation of Hier.Tn/ in `2 on this space.
The natural orthogonal basis ız in `2 is indexed by points z 2 Hier.Tn/= Aut.Tn/,
where ız is the delta-function supported by z.

Proposition A.3. a. The representation of Hier.Tn/ in `2
�

Hier.Tn/= Aut.Tn/
�

is
irreducible and spherical, the spherical vector is ız0

, where the initial point z0 of
the coset space corresponds to the unit of the group. The spherical function is 1
on Aut.Tn/ and 0 outside this subgroup.

b. Let G be a topological group, L a closed subgroup, let the homogeneous
space G=L be countable and discrete. Let all orbits of L on G=L except ¹z0º be
infinite. Then the representation of G in `2.G=L/ is irreducible and spherical.
The spherical vector is ız0

and the spherical function is zero outside L.

Proof. (b) An L-invariant function on G=L must be constant on orbits of L. Since
a vector in `2 can not have infinite many nonzero equal coordinates, we get that
ız0

is the unique L-invariant vector. By the same argument as in the proof of
Proposition 2.6, the G-cyclic span of ız0

is an irreducible subrepresentation in `2.
However, this cyclic span contains all basis vectors ız .

(a) Keeping in mind Proposition 3.2, for any element of Hier.Tn/= Aut.Tn/ we
can assign a bi-thorn Bt.R; QI �/ and an embedding of the thorn Q to Tn. The
group Aut.Tn/ acts preserving the bi-thorn and changing embeddings. Clearly, if
the bi-thorn Bt.R; QI �/ is non-empty, then orbits are infinite. So, we can apply
the statement b). �
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A.4. A question about unitary representations of discrete groups. It is well
known that questions about unitary representations of discrete groups quite often
are tricky. By the Thoma theorem [57], discrete groups are not type I unless
they have Abelian normal subgroups of finite index. Absence of type I property
implies numerous unpleasant phenomena (see, at least, the Glimm theorem [18]
about a bad Borel structure on the dual space). However, we formulate the
following informal question.

Question A.4. Consider a pair of countable groups � � � and let all orbits of
� on �=� be infinite (except the initial point). Find such pairs with “interesting”
�-spherical representations of �.

Apparently, interesting situations are rare. However, there is a famous example
of such a pair, which was basically discovered in 1964 by Thoma [56] (see [49]).
We take the group S.1/ of finitely supported permutations of N, let � be S.1/ �

S.1/ and � ' S.1/ be the diagonal subgroup. This was the starting point of
a large program in representation theory of infinite symmetric groups. We only
mention that in this case spherical representations can be extended by continuity
to a larger (continuous) group (see [49] and [42]).

The pair of discrete groups G � K from Subsection 4.1 is spherical (and again
we have a continuous extension to a larger group G). A big zoo of examples of
spherical representations in [42] has a similar nature.

Next, consider the Thompson group Th realized as the group of all continuous
piece-wise PSL.2;Z/-transformations of the real projective line RP

1, see [50]
and [21], by this construction Th is embedded to Hier.T2/ and PSL.2;Z/ is
contained in Aut.T2/.

Proposition A.5. Consider a unitary Aut.T2/-spherical representation � of
the group Hier.T2/ with spherical vector v. Then the Th-cyclic span of v is a
PSL.2;Z/-spherical representation of Th.

Proof. It sufficient to show that the restriction of � to PSL.2;Z/ does not con-
tain additional PSL.2;Z/-fixed vectors. We take an hyperbolic element h of
PSL.2;Z/, say, h D

�

2 1
3 2

�

. It is hyperbolic in Aut.T2/. By Proposition A.2(a),
vectors fixed by h are fixed by the whole group AutC.T2/, and a vector fixed by
this subgroup is unique. �
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