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WWPD elements of big mapping class groups
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Abstract. We study mapping class groups of infinite type surfaces with isolated punctures

and their actions on the loop graphs introduced by Bavard and Walker. We classify all

of the mapping classes in these actions which are loxodromic with a WWPD action on the

corresponding loop graph. The WWPD property is a weakening of Bestvina and Fujiwara’s

weak proper discontinuity and is useful for constructing non-trivial quasimorphisms. We

use this classification to give a sufficient criterion for subgroups of big mapping class

groups to have infinite-dimensional second bounded cohomology and use this criterion to

give simple proofs that certain natural subgroups of big mapping class groups have infinite-

dimensional second bounded cohomology.
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1. Introduction

Mapping class groups of infinite type surfaces, commonly known as big mapping
class groups, have been a subject of intense study in the last several years. Re-

searchers have uncovered many similarities and differences with the study of finite

type mapping class groups. In this paper we consider two themes of (dis)similarity

between the families of finite type mapping class groups and big mapping class

groups.

1.1. Acylindrical hyperbolicity. Let S denote a finite type or infinite type sur-

face and let MCG.S/ denote its mapping class group,

MCG.S/ D �0.HomeoC.S//:

For the rest of the paper, all surfaces will be assumed to be orientable.

When S is finite type, there is a certain infinite diameter graph C.S/, known

as the curve graph acted on by MCG.S/. It was first proved by Masur and

Minsky in [16] that C.S/ is hyperbolic. Moreover, the action MCG.S/ Õ C.S/

has many nice properties. In particular, Bowditch proved in [9] that the action

https://creativecommons.org/licenses/by/4.0/
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is acylindrical, which may be thought of as a sort of proper discontinuity of

the action on “sufficiently distant pairs of points.” This fact is enough to prove

numerous results about the algebra and geometry of MCG.S/ in the finite type

case.

However, in [3], Bavard and Genevois proved that if S is infinite type then

MCG.S/ can never admit an acylindrical action on a hyperbolic graph. Nonethe-

less, there are natural infinite diameter graphs acted on by certain big mapping

class groups. In particular, if S has an isolated puncture p, then MCG.S Ip/, the

subgroup of MCG.S/ fixing p, admits an action on the loop graph L.S Ip/ (see

Section 2.4 for the definition). This action was first studied by Bavard in [2] in a

slightly different guise.

Although the action MCG.S Ip/ Õ L.S Ip/ is not acylindrical, we show that

it still retains some vestige of acylindricity. However, this vestige is confined to

mapping classes preserving finite type subsurfaces. To state our result, recall the

notion of weakly properly discontinuous (WPD) isometries of hyperbolic metric

spaces introduced by Bestvina and Fujiwara in [8]. A loxodromic element g in a

hyperbolic action is WPD roughly when the group action is acylindrical along
the axis of g. The condition WWPD was introduced by Bestvina, Bromberg,

and Fujiwara in [6]. It is a weakening of WPD which allows the loxodromic

element g to have a large centralizer, and is useful for constructing nontrivial

quasimorphisms. See Section 2.2 for the precise definitions of WPD and WWPD.

Our main theorem may be stated as follows:

Theorem 1.1. Let ' 2 MCG.S Ip/. Then ' is WWPD in the action of MCG.S Ip/

on L.S Ip/ if and only if there exists a finite type subsurface V � S containing p
such that

� '.V / D V ,

� 'jV is pseudo-Anosov.

In particular, if ' 2 MCG.S Ip/ does not preserve a finite type subsurface of

S then it cannot be WWPD. We will sometimes say that ' 2 MCG.S Ip/ contains
a pseudo-Anosov on a finite type witness if there exists a subsurface V � S as in

Theorem 1.1 for '.

Any group which admits a non-elementary action on a hyperbolic space with a

WPD element admits another non-elementary action on a hyperbolic space which

is acylindrical [18]. Thus, by [3] we see that there are no WPD elements in the

action MCG.S Ip/ Õ L.S Ip/. Hence the classification of Theorem 1.1 is in some

sense the best possible.

1.2. Bounded cohomology. One common theme in the study of big mapping

class groups and finite type mapping class groups has been the study of bounded

cohomology and quasimorphisms. In [8], Bestvina and Fujiwara showed that if S
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is finite type and �.S/ < 0 then any subgroup of MCG.S/ which is not virtually

abelian has infinite-dimensional second bounded cohomology.

Bavard and Walker proved a partial extension of this result to infinite type

surfaces with isolated punctures in [5] (see [5] Theorem 9.1.1). Their statement

relies on the notion of weights for loxodromic elements developed in that paper.

In particular they prove a corollary showing that certain subgroups of MCG.S Ip/
with mapping classes which contain a pseudo-Anosov on a finite type witness

have infinite dimensional second bounded cohomology. In Section 6 we prove a

strengthened version of their corollary.

Corollary 1.2. Let H � MCG.S Ip/ be a subgroup such that

� H contains a a pair of independent loxodromic elements in the action on
L.S Ip/,

� there exists ' 2 H which contains a pseudo-Anosov on a finite type witness.

Then H 2
b
.H IR/ is uncountably infinite dimensional.

Namely our corollary only requires the existence of one mapping class con-

taining a pseudo-Anosov on a finite-type witness whereas theirs requires two such

mapping classes of different weights.

We use Corollary 1.2 to give simple proofs that several natural subgroups of

MCG.S Ip/ have infinite-dimensional second bounded cohomology.

In light of Theorem 1.1, it is interesting to know that there are mapping classes

' 2 MCG.S Ip/which do not preserve any finite type witness but for which there

exists a quasimorphism qW MCG.S Ip/ ! R with q unbounded on the powers

of '. See [2].
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2. Background

2.1. Laminations and the coarse Hausdorff topology. Let V be a finite type

surface endowed with a hyperbolic metric of finite area.

Definition 2.1. Let � be a geodesic lamination on V . We say that � is an ending

lamination if it is

� minimal (every leaf of � is dense in �), and

� filling (every simple closed geodesic in V intersects � transversely).
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Definition 2.2. Let ¹�nº
1
nD1 be a sequence of laminations on V . We say that

�n coarse Hausdorff converges to a lamination �, denoted �nCH! �, if for any

subsequence ¹�ni
ºi such that �ni

Hausdorff converges to a lamination �, we have

� � �.

From now on we denote by

(1) ML.V / the space of measured laminations on V with the weak� topology,

(2) GL.V / the space of geodesic laminations on V with the topology of Haus-
dorff convergence,

(3) EL.V / the space of ending laminations on V with the topology of coarse
Hausdorff convergence.

We also denote by C.V / the curve graph of V which is the graph with vertex

set equal to the set of homotopy classes of essential simple closed curves on V and

edges joining pairs of homotopy classes that may be realized disjointly. Recall that

a simple closed curve is essential if it doesn’t bound a disk or a once-punctured

disk. The graph C.V / was proven to be Gromov hyperbolic by Masur and Minsky

in [16].

There is another natural way to put a topology on EL.V /. Namely, we may

consider the subset of ML.V / consisting of measured laminations whose under-

lying laminations are ending laminations. Then there is an equivalence relation

on this subset defined by � � � if the underlying laminations of � and � are the

same. The set of equivalence classes may be identified with EL.V / as a set and

we may endow EL.V / with the corresponding quotient topology. It was observed

by Hamenstädt in [12] that the resulting quotient topology is in fact equal to the

coarse Hausdorff topology.

With this characterization of the topology on EL.V /, Klarreich’s Theorem on

the boundary of C.V / is:

Theorem 2.3 ([14] Theorem 1.3). The Gromov boundary of C.V / is equivariantly
homeomorphic to EL.V /.

2.2. WPD and WWPD. Consider a group G acting by isometries on a hyper-

bolic metric space X .

Definition 2.4. We say that g 2 G is weakly properly discontinuous (WPD) if

� g is loxodromic,

� for every x 2 X and every C > 0, there exists N > 0 such that the set

¹h 2 G W d.x; h.x// � C; d.gN .x/; hgN .x// � C º

is finite.
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Bestvina and Fujiwara proved the following result in [8]:

Theorem 2.5 ([8] Proposition 11). Let V be finite type and ' 2 MCG.V / be
pseudo-Anosov. Then ' is WPD with respect to the action of MCG.V / on C.V /.

Later, in [9] Bowditch proved the stronger result that the action of MCG.V /

on C.V / is acylindrical. However, we will not use his result in this paper.

In [6], Bestvina, Bromberg, and Fujiwara defined a weakening of the WPD

condition which is useful for applications to bounded cohomology.

Definition 2.6. We say that g 2 G is WWPD if

� g is loxodromic with fixed points gC and g� on @X ,

� if hn 2 G with hn.g
C/ ! gC and hn.g

�/ ! g�, then there exists N > 0

such that for all n � N

hn.g
C/ D gC and hn.g

�/ D g�:

It is a fact that WPD elements are WWPD (see e.g. Handel and Mosher [13],

Corollary 2.4). Hence by Theorem 2.5, every pseudo-Anosov in MCG.V / is

WWPD in the action of MCG.V / on C.V /. As a corollary of this result and

Klarreich’s Theorem 2.3 we have the following:

Corollary 2.7. Let V be finite type and ' 2 MCG.V / be pseudo-Anosov. Let
�C; �� 2 EL.V / be the fixed laminations of '. Suppose that  n 2 MCG.V / and
 n.�

C/CH! �C and  n.��/CH! �� as n ! 1. Then there exists N > 0 such that
for all n � N ,

 n.�
C/ D �C and  n.�

�/ D �� for all n � N:

2.3. Quasimorphisms and second bounded cohomology. Let G be a group.

Definition 2.8. Let D � 0. A map qWG ! R is a quasimorphism of defect � D

if for all g; h 2 G, we have

jq.gh/ � q.g/ � q.h/j � D:

The quasimorphism q is trivial if there exists C > 0 and a homomorphism

r WG ! R with

jr.g/ � q.g/j � C

for all g 2 G.

Denote by QH.G/ the vector space of all quasimorphisms G ! R. The trivial

quasimorphisms form a subspace QHT .G/ of QH.G/ and we denote

eQH.G/ D QH.G/=QHT .G/

which we will call the space of nontrivial quasimorphisms of G.
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There is a well-known identification ofeQH.G/ with a subspace of the second
bounded cohomology of G. Namely, let H 2

b
.GIR/ denote the second bounded

cohomology of G with trivial real coefficients. There is a forgetful homomor-

phism H 2
b
.GIR/ ! H 2.GIR/ and eQH.G/ is identified with the kernel of this

homomorphism.

2.4. Loop graphs. Let S be a surface of infinite type with an isolated puncture

p. Associated to S is an infinite diameter hyperbolic graph L.S Ip/ defined by

Bavard and Walker in [5]. We now recall the definition.

Denote by E.S/ the space of ends of S . An embedding l W .0; 1/ ! S is a

(simple) loop based at p if it can be continuously extended to a map Œ0; 1� !
S [ E.S/ by setting l.0/ D l.1/ D p. The loop graph L.S Ip/ has as a set of

vertices the isotopy classes of simple loops in S based atp. Two vertices are joined

by an edge if the corresponding isotopy classes have disjoint representatives. For

use later, we also recall the definition of a (simple) short ray. An embedding

l W .0; 1/ ! S is a short ray based at p if can be continuously extended to a map

Œ0; 1� ! S [E.S/ with l.0/ D p and l.1/ 2 E.S/ n ¹pº.

Theorem 2.9 ([5] Theorem 5.4.1). The loop graph L.S Ip/ is hyperbolic.

Denote by MCG.S Ip/ the subgroup of MCG.S/ consisting of mapping classes

which fix the puncture p. In particular, if p is the only isolated puncture of S then

MCG.S/ D MCG.S Ip/. There is an obvious action of MCG.S Ip/ on L.S Ip/

by isomorphisms.

2.5. The boundary of the loop graph

2.5.1. A hyperbolic metric. Bavard and Walker identify the Gromov boundary

of L.S Ip/ with a space of rays based at p. To define this space of rays, it is

necessary to choose a convenient hyperbolic metric on S . For our purposes, it is

sufficient to choose a complete hyperbolic metric on S of the first kind. Recall

that a hyperbolic metric on a surface is said to be of the first kind if the limit set

of the corresponding Fuchsian group acting on H
2 is equal to all of @H2.

We will frequently conflate loops and short rays with their geodesic represen-

tatives, and therefore we also assume that all loops and short rays have been put

pairwise in minimal position.

Given an essential finite type subsurface V � S , we may realize the compo-

nents of @V by their geodesic representatives in S . The component of the com-

plement of these geodesics containing a neighborhood of p is a subsurface of S

homeomorphic to the interior of V . We will frequently conflate V with this repre-

sentative. Note that this representative has the property that any simple complete

geodesic on S which is contained in V up to isotopy is contained in this represen-

tative.
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2.5.2. The boundary. All of the remaining material in this section is taken from

Bavard and Walker [4] and [5].

With our hyperbolic metric in hand, we may define a long ray on S to be a

simple bi-infinite geodesic in S which limits to p at one end and does not limit to

any point of E.S/ on the other end.

To investigate the boundary of L.S Ip/, Bavard and Walker define the com-
pleted ray graph R.S Ip/. The vertices of R.S Ip/ are the isotopy classes of all

loops, short rays, and long rays on S . Two vertices are joined by an edge if the

corresponding isotopy classes have disjoint representatives.

The graph R.S Ip/ has numerous components:

Theorem 2.10 ([5] Theorem 5.7.1). There is a component of R.S Ip/ containing
all loops and short rays. This component is quasi-isometric to L.S Ip/.

The other components of R.S Ip/ are cliques and each clique consists of long
rays.

We call a ray high-filling if it lies in a clique as described in the second bullet

point the Theorem 2.10. Denote by H.S Ip/ the set of high-filling rays based at p.

The Gromov boundary ofL.S Ip/will be identified with a quotient ofH.S Ip/.

However, we first have to recall the definition of the topology on H.S Ip/. Bavard

and Walker define the topology using an “equator” on S , which is a set of proper

geodesic arcs on S that cut it into two infinite-sided polygons. Since these poly-

gons are simply-connected, one may specify rays and loops up to some amount of

ambiguity by the sequence of arcs of the equator that they pass through. One may

also define two rays to be close if they pass through the same arcs of the equator

in the same order for a long time.

See Figure 1 for an example of an equator on the plane minus a Cantor set.

The existence of an equator is guaranteed by the following lemma:

Lemma 2.11 ([5] Lemma 2.3.2). There exists a collection W of mutually disjoint
proper arcs in S such that each end of S meets at most finitely many of the arcs in
W and the complement of W consists of exactly two components, each of which is
simply connected.

We say that two (long or short) rays or loops l and k n-begin like each other if

they cross the same first n arcs of W in the same order (after being endowed with

some orientation beginning at p). Now to introduce the topology on H.S Ip/,
we consider l 2 H and denote by N.l; n/ the set of high-filling rays k 2 H that

n-begin like l . The sets N.l; n/ for l 2 H and n � 0 form a basis of open sets for

a topology on H.

We may equip H with the equivalence relation � where l � k if and only if l

and k lie in the same clique ofR.S Ip/. The quotient space E.S Ip/D H.S Ip/= �
inherits a quotient topology and may be identified with the set of cliques of high-

filling rays in R.S Ip/.
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Figure 1. An equator for the plane minus a Cantor set is given by the countably many arcs

drawn in blue.

2.5.3. The conical cover. We wish to state finally Bavard and Walker’s theorem

that E.S Ip/ is equivariantly homeomorphic to @L.S Ip/. However, there is a

basic subtlety to address: MCG.S Ip/ admits an obvious action on @L.S Ip/ but

no obvious action on E.S Ip/. Namely, if ' 2 MCG.S Ip/ then ' may not be

represented by any quasi-isometry of the chosen metric on S and hence the image

of a high-filling ray under ' may not even by a quasi-geodesic.

To overcome this difficulty, Bavard and Walker consider the conical cover yS of

S which is the cover of S corresponding to the cyclic subgroup of �1.S/ generated

by a simple loop around p. The surface yS has an induced hyperbolic metric which

is conformal to the punctured disk. Let yp denote the puncture of yS and @ yS the

Gromov boundary of yS minus Op, so that @ yS Š S1. Each short ray or loop l on S

has a unique lift to a bi-infinite geodesic in yS asymptotic to Op on one end and to

@ yS on the other end. Bavard and Walker show in [5] that endpoints of lifts of short

rays and loops are dense. Using that any homeomorphism of S fixing p permutes

the set of short rays and loops, they show that any such homeomorphism lifts to

a homeomorphism of yS which extends continuously to a homeomorphism of @ yS .

Moreover, this continuous extension preserves the set of endpoints of high-filling

rays. This gives the desired action of MCG.S Ip/onH.S Ip/by homeomorphisms

and we also obtain a quotient action MCG.S Ip/ Õ E.S Ip/.
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With this action being defined, we have the following theorem of Bavard and

Walker:

Theorem 2.12 ([5], Theorem 6.6.1). There is an equivariant homeomorphism
GW @L.S Ip/ ! E.S Ip/.

We denote G�1 D F WE ! @L. We give a brief description of the homeomor-

phism F . Given a loop c and a ray l , orient c and l beginning from p. With such

orientations in hand, if q 2 c then we may denote by cj.p; q� the unique subarc of

c bounded by p and q whose orientation matches that of c when it is oriented from

p to q. Similarly, l j.p; q� denotes the unique subarc of l from p to q. If c and l in-

tersect at the point q and the arcs cj.p; q� and l j.p; q�meet only at the point q, then

cj.p; q�[ l jŒq; p/ is a loop, which we call a unicorn between c and l . If l happens

to be high-filling then there is an infinite path of such unicorns P.c; l/ � L.S Ip/
beginning at c. Moreover, P.c; l/ converges to a point of @L.S Ip/. Then F.x/

turns out to be equal to ŒP.c; l/� (the point on @L.S Ip/ which P.c; l/ converges

to) where x is the clique containing the high-filling ray l . See [4] and [5] for more

details.

Any loxodromic element ' 2 MCG.S Ip/ fixes exactly two cliques CC.'/ and

C
�.'/ in E, which are attracting and repelling, respectively. Moreover we have

the following result of Bavard and Walker:

Theorem 2.13 ([5] Theorem 7.1.1). The cliques CC.'/ and C
�.'/ are both finite.

For use later on, we also define the notion of cover convergence:

Definition 2.14. Let ln be a sequence of short rays or loops and l a short ray or

loop. Let bln be the unique lift of ln to yS asymptotic to Op and define Ol similarly.

We say that ln cover converges to l if the endpoints of bln on @ yS converge to the

endpoint of Ol on @ yS .

Note that ln cover converges to l if and only if ln converges to l with respect

to the topology induced by the basic open sets N.l; n/ defined above.

2.6. Witnesses. We now consider subsurfaces of S . A simple closed curve

c � S is essential if it doesn’t bound a disk or an annulus. A subsurface V � S

is essential if every boundary component of V is essential in S . If V is finite type

then we denote by �.V / the complexity �.V / D 3G � 3C P C B where G is the

genus of V , P is the number of punctures of V , and B is the number of boundary

components.

Definition 2.15. An essential subsurface V � S is a witness for L.S Ip/ if every

simple loop based at p intersects V .
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Remark 2.16. Witnesses were first defined (in a more general context) by Masur

and Schleimer in [15] where they were called “holes.” Schleimer has suggested

that the term should be changed from “hole” to “witness.”

In other words V is a witness if and only if it contains a neighborhood of p.

Witnesses are interesting from the perspective of the geometry of L.S Ip/.

Proposition 2.17 ([1] Corollary 4.2). Let V � S be a finite type witness for
L.S Ip/ of complexity �.V / � 2. Then the inclusion map L.V Ip/ ! L.S Ip/
is a quasi-isometric embedding.

Remark 2.18. Technically this is a corollary of [1] Corollary 4.2, where we take

P D ¹pº.

Moreover, we will show below that this proposition remains true even if

�.V / < 2. Note that there are only a few possibilities for witnesses V � S with

�.V / < 2:

� there are no witnesses V with �.V / � �1;

� if �.V / D 0 then V is either a torus or a thrice-punctured sphere. The first

case does not occur. In the second case L.V Ip/ consists of a single point;

� if �.V / D 1 then V is either a once-punctured torus or a four-punctured

sphere. The first case does not occur.

Hence the only non-trivial case of the analog of Proposition 2.17 for V a finite

type witness with �.V / < 2 is the case that V is a four-punctured sphere.

Proposition 2.19. Let V � S be a finite type witness for L.S Ip/. Then the
inclusion map L.V Ip/ ! L.S Ip/ is a quasi-isometric embedding.

Proof. Define the subsurface projection�V WL.S Ip/! 2L.V Ip/ as in [1]. Namely,

if c 2 L.S Ip/ is contained in V then we define �V .c/ D ¹cº. Otherwise

there are two subarcs c0; c00 of c contained in V with c0.0/ D c00.0/ D p and

c0.1/; c00.1/ 2 @V . If c0 joins p to the boundary component  � @V then we de-

fine�V .c
0/ to be the boundary of a regular neighborhood of the loop c0[[.c0/�1.

We define �V .c
00/ in the same way. We define

�V .c/ D ¹�V .c
0/; �V .c

00/º:

We claim that

diamL.V Ip/.�V .c// � 2:

As in [1] we see easily that �V .c
0/ and �V .c

00/ intersect zero or two times. In

the first case there is nothing to prove. So we consider two loops a; b 2 L.V Ip/

intersecting twice and show that diamL.V Ip/.a; b/ � 2. Orient a and consider a
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point q 2 a\b. One of the two subarcs aj.p; q� or ajŒq; p/ intersects b nowhere in

its interior. Suppose without loss of generality that aj.p; q� intersects b nowhere in

its interior. Orienting b, we similarly have that bj.p; q� intersects a nowhere in its

interior or bjŒq; p/ intersects a nowhere in its interior. If we suppose for example

that bjŒq; p/ intersects a nowhere in its interior then we see that

d D aj.p; q�[ bjŒq; p/

is disjoint from both a and b up to isotopy. This proves the claim.

By an entirely analogous argument we have that if c1; c2 2 L.S Ip/ are disjoint

then

diamL.V Ip/.�V .c1; c2// � 2:

The proof of Corollary 4.2 of [1] now goes through unmodified to show that

L.V Ip/ ! L.S Ip/ is a quasi-isometric embedding. �

3. Loop graphs of finite type witnesses

Denote by ELW.V Ip/ the space of ending laminations on witnesses W � V for

the loop graph L.V Ip/, with the coarse Hausdorff topology. That is, ELW.V Ip/
consists of minimal laminations � such that � fills an essential subsurfaceW � V

containing a neighborhood of p.

If V � S is a finite type witness then the natural inclusion L.V Ip/ ,!

L.S Ip/ is a quasi-isometric embedding. In this section we prove that @L.V Ip/ �
@L.S Ip/may be naturally identified with ELW.V Ip/.

In order to do this we prove the following lemma, which describes convergence

of certain sequences in the topology of E.S Ip/ in a way which is reminiscent of

coarse Hausdorff convergence of ending laminations. The proof is basically a

restatement of results from [4] and [5].

Lemma 3.1. Let x be a finite clique in E.S Ip/. Denote byQ the set of endpoints
on @ yS of lifts of rays l 2 x to rays in yS beginning at Op. Suppose that ¹xnº

1
nD1 is a

sequence of cliques in E.S Ip/. Then the following are equivalent:

(1) xn ! x in E.S Ip/;

(2) for any subsequence ¹xni
º1
iD1 and choice of high-filling rays lni

2 xni
such

that lni
cover converges to a ray or loop l , we have l 2 x;

(3) for any open neighborhood O � @ yS of Q, there exists N.O/ > 0 such that if
n � N.O/ and ln 2 xn, we have qn 2 O, where qn is the endpoint on @ yS of
Oln, the unique lift of ln to yS beginning at Op.
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Proof. First we show that (2) and (3) are equivalent.

To see that (2) implies (3), suppose that there exists an open neighborhoodO of

Q for which there does not exist an N.O/ > 0 as in the statement of (3). Then we

may choose a subsequence ¹xni
º and lni

2 xni
with the property that the unique

lift Olni
to yS beginning at Op has its other endpoint not in O. Since OC is compact,

we may suppose, up to taking a further subsequence that lni
cover converges to a

ray or loop l with l … x. Hence (2) fails.

To see that (3) implies (2) suppose that there exists a subsequence ¹xni
º and

lni
2 xni

such that lni
cover converges to a ray or loop l such that l … x. Consider

the unique lift Ol to yS beginning at Op and let q be the endpoint of Ol in @ yS . We

may choose disjoint open neighborhoods O of Q and U of q. Then for all large

enough i , we have that the endpoint of Olni
in @ yS lies in U and in particular not

in O, so (3) fails.

Now suppose that (1) holds. We will show that (3) also holds. Given a

neighborhood O of Q, there exists m D m.O/ large enough that if k m-begins

like some l 2 x, then the endpoint of Ok in @ yS lies in O where Ok is the unique

lift to yS beginning at Op (note: this is where we use the fact that x is finite). By

Proposition 6.5.2 of [5], there exists N D N.m/ > 0 such that if n � N and

ln 2 xn then ln m-begins like some l 2 x (since F.xn/ lies in the neighborhood

U.F.x/; R/ specified by Proposition 6.5.2 for all n large enough). This proves (3).

Finally, suppose that (2) holds. We will show that (1) also holds. If (1) did

not hold, there would exist a neighborhood U of x in H.S Ip/ and an infinite

subsequence ¹xni
º such that xni

… U for all i . Choose lni
2 xni

. By compactness

of @ yS , we may take a further subsequence to suppose that the sequence lni
cover

converges to a ray or loop l . By assumption, l 2 x. Fix a loop c 2 L.S Ip/. By

Lemma 5.2.2 of [4] (which holds for general surfaces S with isolated punctures,

see Section 6.4 of [5]), we have that xni
D G.ŒP.c; lni

/�/ ! G.ŒP.c; l/�/ D x.

This contradicts that xni
… U for all i . �

To begin the identification of @L.V Ip/ with ELW.V Ip/, we first identify the

image of @L.V Ip/ inside E.S Ip/.

Lemma 3.2. The imageG.@L.V Ip// consists of the cliques of high-filling rays in
S all of which are contained in V . Equivalently, the image consists of the cliques
of high-filling rays which contain a ray contained in V .

Proof. First we show that every point of G.@L.V Ip// is a clique of high-filling

rays, all of which lie in V . Let ¹cnº
1
nD1 � L.V Ip/ � L.S Ip/ be a quasigeodesic

converging to the point Œ¹cnº� 2 @L.V Ip/ � @L.S Ip/. Pass to a subsequence to

assume that ¹cnº cover converges to a ray or loop l . The proof of Theorem 5.1.1

of [4] (see also Theorem 6.5.3 of [5]) shows that if a sequence of loops converges

to a point on @L.S Ip/ then any cover convergent subsequence converges to a high-

filling ray. Hence l is high-filling. Fix a loop a 2 L.V Ip/. Lemma 4.4.1 of [4]
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(see also Section 6.2 of [5] where the result is stated in full generality) may be

stated as follows. If a quasigeodesic sequence of loops in L.S Ip/ converges to

a point of @L.S Ip/ and if a subsequence cover converges to a long ray, then the

quasigeodesic sequence stays at bounded Hausdorff distance from any unicorn

path defined using that ray. Hence, ¹cnº stays at a bounded distance from P.a; l/

(although it may not be at bounded Hausdorff distance anymore, since we chose

a cover convergent subsequence at the beginning of the proof ). Since ¹cnº and

P.a; l/ define the same point in @L.V Ip/, we have that G.Œ¹cnº�/ D G.ŒP.a; l/�/

is the clique of high-filling rays containing l (see the description of G and its

inverse in Section 2.5).

Realize the components of @V by geodesics. Since no cn crosses one of these

geodesics, neither does l . Thus l is contained in V . The closure of l , minus l itself,

� D Nl n l is a lamination contained in V . We claim that � is minimal. To see this

note first that Nl is itself a geodesic lamination. We claim further that l is an isolated

leaf of Nl . This will prove that � is minimal, since in a geodesic lamination on a

finite type surface, every isolated leaf either spirals onto a minimal sublamination

or is asymptotic to a puncture on each end (see for instance [11] Theorem 4.2.8).

To see that l is isolated in Nl first choose a neighborhoodU of p such that every

simple geodesic that meets U must be asymptotic to p (see [11] Corollary 2.2.4 or

[17] Lemma 2 for the existence of such a neighborhood U ). Since l is not a loop

it is clear that it meets @U exactly once. Now if l is not isolated in Nl then there

exists a numberD > 0 and points x1; x2; : : : on l converging to a point x 2 l such

that length.l jŒxi ; xiC1�/ � D for all i . However, this easily yields a second point

of intersection of l with U . See Figure 2.

Now we claim that the complementary region of � containing p must be a

once-punctured ideal polygon. For otherwise this complementary region would

contain a loop d . Since d is disjoint from Nl n l , l can only intersect d finitely many

times. If d \ l D ; then we have a contradiction to the fact that l is high-filling.

Otherwise, there is a point x 2 d \ l and an arc d jŒx; p/ from x to p such that

d jŒx; p/ intersects l only at the endpoint x. Then e D l j.p; x�[ d jŒx; p/ is a loop

which is disjoint from l up to isotopy, again contradicting that l is high-filling.

Since the complementary region of � containing p is a once-punctured ideal

polygon, there are two possible behaviors for rays and loops m: either (1) m

intersects � transversely and hence also l or (2) m is asymptotic to an end of

the ideal polygon and hence spirals onto �. Every ray in the clique G.Œ¹cnº�/ is of

the form (2) and so spirals onto � and is contained in V .

On the other hand, we now show that every clique of E.S/ which contains a

high-filling ray which is contained in V is in the image G.@L.V Ip//. Consider

such a clique x and let l 2 x be a ray contained in V . Choose also a loop

a 2 L.V Ip/ � L.S Ip/. By Theorem 6.3.1 of [5], ŒP.a; l/� 2 @L.S Ip/ and

G.ŒP.a; l/�/ D x. Moreover, P.a; l/ � L.V Ip/ and since L.V Ip/ is quasi-

isometrically embedded, the point ŒP.a; l/� lies in @L.V Ip/. Hence x is in the

image G.@L.V Ip//. �
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U p

l

x xi

U p

l

x xi

Figure 2. A short or long ray cannot accumulate onto itself.

Now we want to identify G.@L.V Ip// with ELW.V Ip/. We define a map

ˆWELW.V Ip/ ! G.@L.V Ip// as follows. For � 2 ELW.V Ip/, the comple-

mentary region of � containing p is a finite-sided ideal polygon punctured at p.

Moreover, every ray to a vertex of this polygon spirals onto � and therefore inter-

sects every loop and every ray which does not spiral onto �. Hence this set of rays

is a full clique in R.S Ip/ and we define ˆ.�/ to be this clique.

The map ˆ has an inverse ‰ defined as follows. Consider a clique x 2

G.@L.V Ip//. By Lemma 3.2, each ray in x is contained in V . Choose a ray

l 2 x. Then Nl n l is a minimal lamination � contained in V . Moreover, because

l is high-filling, the complementary region of � containing p is a once-punctured

ideal polygon. So the essential subsurface W � V filled by � is a witness. We

define ‰.x/ D �. To see that ‰ is well defined, by the above remarks, if l 0 is

another ray in the clique x, we have that l 0 also spirals onto �. So � is independent

of the choice of ray in x.

Clearly, both ˆ and ‰ are equivariant.

Proposition 3.3. The map ˆ is a homeomorphism.

Proof. First, note that both G.@L.V Ip// and ELW.V Ip/ are metrizable. For

G.@L.V Ip// this simply follows from the fact that Gromov boundaries are metriz-

able and G is a homeomorphism. For ELW.V Ip/ this follows from an argument

completely analogous to the argument of Klarreich in the Appendix of [14] that
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the ending lamination space of a finite type surface is metrizable. We omit this

argument. Hence we may use sequences to test continuity of ˆ and ‰.

First we show that ˆ is continuous. Let ¹�nº
1
nD1 � ELW.V Ip/ such that

�n coarse Hausdorff converges to � 2 ELW.V Ip/. We wish to show that

ˆ.�n/ ! ˆ.�/. If this is not the case then by Lemma 3.1, there exists a

subsequence ¹�ni
º and rays lni

spiraling onto �ni
such that lni

cover converges

to a ray or loop l which does not spiral onto �. In particular, l crosses �. By

compactness of GL.V /, we may pass to a further subsequence to assume that

�ni
Hausdorff converges to a lamination �0. By definition of coarse Hausdorff

convergence, �0 contains �. Let m be a leaf of � crossing l at the point q. For any

� > 0 there exists a number I.�/ > 0 such that for all i � I.�/ there exists a leaf

mi of �ni
such that there is a subsegment of mi which is �-Hausdorff close to a

subsegment of m of radius 1=� centered at q. In particular if � is small enough,

if l 0 is a ray which is �-close to l along the segment from p to q, then l 0 crosses

mi . But by definition of cover-convergence, if i � I.�/, then lni
is such a ray, so

that lni
crosses the leaf mi of �ni

. Since lni
spirals onto �ni

, this gives a point of

intersection of lni
with itself, contradicting that lni

is a simple ray. Thus we must

have that ˆ.�n/ ! ˆ.�/. See Figure 3.

m

mi ni

q

l lni

p

Figure 3. Crossings of rays in the proof of Proposition 3.3. Both blue line segments are

contained in lni
.

Now we show that ‰ is continuous. Let ¹xnº
1
nD1 be a sequence of cliques

of high filling rays in V converging to the clique x 2 G.@L.V Ip//. Consider

the sequence of ending laminations on witnesses ‰.xn/ D �n and the ending

lamination ‰.x/ D �. If �n
CH
6! � then there exists a subsequence ¹�ni

º such that
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�ni
Hausdorff converges to a lamination �0 not containing �. For any witness

W � V , �0 must intersect W essentially. Otherwise, �ni
is contained in W C

for i large enough, contradicting that �ni
intersects every loop and short ray. In

particular, taking W to be the witness filled by �, since � 6� �0, we have that �0

intersects � transversely. Choose rays lni
spiraling to �ni

. Passing to a further

subsequence, we may suppose that the rays lni
cover converge to a ray or loop l .

The cliques xni
converge to x so by Lemma 3.1, l spirals to �. This gives a point

of intersection q of l with a leaf m of �0. As before, for any � > 0 there exists

I.�/ > 0 such that for i � I.�/, there exists a leaf mi of �ni
with a subsegment

which is �-Hausdorff close to a subsegment of m of radius 1=� centered at q. By

the definition of cover convergence, for i � I.�/, this gives an intersection of lni

with the leaf mi of �ni
and hence a point of intersection of lni

with itself. This is

a contradiction. The picture for this argument is the same as that of Figure 3 with

� replaced by �0. �

From this we have the following characterization of loxodromic mapping

classes acting on loop graphs of finite type surfaces:

Lemma 3.4. Let V be a finite type surface with a puncture p. The mapping
class ' 2 MCG.V Ip/ acts loxodromically on L.V Ip/ if and only if there exists
a witness W � V for L.V Ip/ with the property that '.W / D W and 'jW is
pseudo-Anosov.

Proof. Since @L.V Ip/ is equivariantly homeomorphic to ELW.V Ip/, if ' acts

loxodromically then it fixes some � 2 ELW.V Ip/ and by definition, � fills a

witness W � V . Therefore '.W / D W . If 'jW is not pseudo-Anosov then

some power 'n acts as the identity on W . Hence 'n fixes any loop l � L.V Ip/

contained in W . This is a contradiction.

On the other hand, it is proven in [5] that if ' fixes a finite type witnessW and

'jW is pseudo-Anosov then ' acts loxodromically on L.V Ip/. �

4. Pseudo-Anosovs on finite type witnesses

In this section we prove that mapping classes which contain pseudo-Anosovs on

finite type witnesses are WWPD. This is one direction of Theorem 1.1.

Theorem 4.1. Let ' 2 MCG.S Ip/ and suppose that there exists a finite type
witness V � S such that '.V / D V and 'jV is pseudo-Anosov. Then ' is a
WWPD element in the action of MCG.S Ip/ on L.S Ip/.
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The following lemma allows us to reduce the proof of Theorem 4.1 to the fact

that a pseudo-Anosov on a finite-type surface is WPD with respect to the mapping

class group action on the curve graph of that surface.

Lemma 4.2. Let V � S be a finite type witness and �C, �� transverse ending
laminations on V . Suppose that �n 2 MCG.S Ip/ and

�n.ˆ.�
C// �! ˆ.�C/ and �n.ˆ.�

�// �! ˆ.��/

in E.S Ip/ as n ! 1. Then there exists N > 0 such that �n.V / D V for all
n � N .

Proof of Theorem 4.1 using Lemma 4.2. Let V be a finite type witness and 'jV
be pseudo-Anosov. Let �˙ � EL.V / be the fixed laminations of '. Then since '

preserves L.V Ip/, the fixed points of ' in @L.S Ip/ are F.ˆ.�˙//. Suppose that

there are �n 2 MCG.S Ip/ with

�n.F.ˆ.�
C/// �! F.ˆ.�C// and �n.F.ˆ.�

�/// �! F.ˆ.��//

in @L.S Ip/. Since F is an equivariant homeomorphism, this is equivalent to

�n.ˆ.�
C// �! ˆ.�C/ and �n.ˆ.�

�// �! ˆ.��/:

We want to show that

�n.F.ˆ.�
C/// D F.ˆ.�C// and �n.F.ˆ.�

�/// D F.ˆ.��//

or equivalently

�n.ˆ.�
C// D ˆ.�C/ and �n.ˆ.�

�// D ˆ.��/

for all sufficiently large n.

By Lemma 4.2, there exists N such that �n.V / D V for all n � N . Let n � N .

Denote �njV D  n 2 MCG.V Ip/. We have

�n.ˆ.�
˙// D  n.ˆ.�

˙// � G.@L.V Ip//:

We use the homeomorphism ‰WG.@L.V Ip// ! ELW.V Ip/. We have

‰. n.ˆ.�
C/// ! ‰.ˆ.�C// D �C and similarly ‰. n.ˆ.�

�/// ! ��

in the coarse Hausdorff topology on ELW.V Ip/. Furthermore, we have �C 2
EL.V / and therefore

‰. n.ˆ.�
C/// D ‰ˆ. n.�

C// D  n.�
C/ 2 EL.V /

for all n � N and similarly for ��. Hence  n.�
C/ coarse Hausdorff converges

to �C and  n.�
�/ coarse Hausdorff converges to ��. By Corollary 2.7 we must

have  n.�
C/ D �C and  n.�

�/ D �� for all sufficiently large n. Therefore

 n.ˆ.�
C// D ˆ. n.�

C// D ˆ.�C/ and  n.ˆ.�
�// D ˆ.��/ for all n suffi-

ciently large. This proves the theorem. �



842 A. J. Rasmussen

Proof of Lemma 4.2. Suppose that ¹�nº � MCG.S Ip/ is a sequence as described

in the lemma and suppose for contradiction that �n.V / ¤ V for infinitely many n.

Then by passing to a subsequence we may suppose that �n.V / ¤ V for all n.

Hence since V is finite type, �n.@V / must intersect V essentially for all n. By

passing to another subsequence, we find a component  of @V such that �n./

intersects V essentially for all n.

We construct a useful compact subsurface V0 � V such that �n./ \ V0 ¤ ;
for all n (when �n./ is realized as a geodesic). This V0 will have the property that

any simple geodesic meeting V0 intersects either �C or �� transversely. First of

all, for each puncture q of S contained in V , there is an open neighborhood Uq of

q with the property that any simple geodesic which meets Uq must be asymptotic

to q (see [11] Corollary 2.2.4 or [17] Lemma 2). Since V is finite type, we may

take the finitely many neighborhoods Uq to be pairwise disjoint. We remove them

to form the compact subsurface V1 � V . Secondly, for each boundary component

ı of V there is a half open tubular neighborhood Uı of ı in V for which any

simple geodesic meeting Uı but not V n Uı must be equal to ı. We may take the

neighborhoods Uı to be disjoint from each other, from the neighborhoods Uq of

the cusps, and from the laminations �C and ��. We form V0 by removing the

neighborhoods Uı from V1.

We briefly explain why V0 has the property that any simple geodesic meeting

V0 intersects either �C or�� transversely. First of all, any simple geodesic meeting

V besides the components of @V either intersects �C transversely or spirals onto

it. However, a simple geodesic which spirals onto �C intersects �� transversely.

Hence, since any geodesic which meets V0 is not equal to a boundary component

of V , this gives the desired property.

Now from the above description it is clear that �n./ \ V0 ¤ ; for all n. By

compactness of the unit tangent bundle T1.V0/, we may choose tangent vectors

.xn; vn/ along �n./ which converge to a vector .x; v/ 2 T1.V0/. The geodesic L

through .x; v/ is simple and meets V0. Consequently L intersects either �C or ��

transversely.

Suppose for instance that L intersects �C transversely. An identical argument

works if L intersects �� transversely. Choose a ray (based at p) l that spirals

onto �C. We may pass to a further subsequence to obtain that �n.l/ cover-

converges to a ray or loop m. Since �n.l/ cover converges to m, l lies in the clique

ˆ.�C/, and the cliques �n.ˆ.�
C// converge to ˆ.�C/, we have by Lemma 3.1

that m 2 ˆ.�C/ so m must also spiral onto �C. Hence m meets L transversely.

Since we have .xn; vn/ ! .x; v/ and .xn; vn/ is tangent to �n./ for all n, we also

have that �n./meetsm transversely for n large enough. Finally, since �n.l/ cover

converges to m, �n./ meets �n.l/ transversely for all n large enough. However,

this is a contradiction since l and  are disjoint and �n is a homeomorphism. �
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5. Mapping classes

that do not contain pseudo-Anosovs

on finite type witnesses

In this section we prove the other direction of Theorem 1.1. First we give a

criterion for showing that a mapping class contains a pseudo-Anosov on a finite-

type witness.

Lemma 5.1. Let ' 2 MCG.S Ip/ be loxodromic in the action of MCG.S Ip/ on
L.S Ip/. Suppose that every ray in C

˙.'/ is contained in a finite type subsurface
of S . Then there is a finite type witness V � S for which 'jV is pseudo-Anosov.

Proof. Consider l 2 C
C.'/. There is a finite type subsurface U containing it.

The !-limit set of l is a minimal geodesic lamination � contained in U (see the

argument in the proof of Lemma 3.2). Let V � U be the essential subsurface

filled by �. We claim that V contains p. If not, then the component of U n �

containing p is a crowned hyperbolic surface W such that

� either genus.W / > 0

� or W has at least two punctures.

In either case, we see that there is a nontrivial loop c 2 L.S Ip/ contained in W .

Realize c by a geodesic. We have that c \ l is finite (for this again see the proof

of Lemma 3.2). However we also have c \ l ¤ ; since l is high-filling. Orient c.

There is a first point y of c \ l with respect to the orientation on c. The oriented

loop cj.p; y� [ l jŒy; p/ is disjoint from l up to isotopy and is nontrivial since c

and l are in minimal position. This contradicts that l is high-filling. This proves

our claim that V contains p.

This also proves that the component of S n� containing p is a once-punctured

ideal polygon. Hence, any other ray l 0 2 C
C.'/ also spirals onto � (since l 0 and l

are disjoint). Since ' permutes the rays in C
C.'/, we have '.�/ D � and therefore

also '.V / D V . So ' preserves the finite type witness V .

We claim finally that ' preserves a witness V 0 � V for which 'jV 0 is pseudo-

Anosov. For ' preserves L.V Ip/ � L.S Ip/ and moreover L.V Ip/ is quasi-

isometrically embedded. If such a V 0 did not exist then ' would not act loxodromi-

cally on L.V Ip/ by Lemma 3.4. But if we then choose c 2 L.V Ip/ � L.S Ip/,
this implies that the orbit ¹'n.c/ºn2Z is not a quasi-geodesic in L.V Ip/ and hence

it is not a quasi-geodesic in L.S Ip/. This contradicts that ' is loxodromic. �

Hence to finish the proof Theorem 1.1 it suffices to show that the rays in the

fixed cliques of a WWPD mapping class are all contained in finite type subsurfaces

of S . This is what we do in the proof that follows.
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Theorem 5.2. Suppose that ' 2 MCG.S Ip/ is WWPD with respect to the action
of MCG.S Ip/ on L.S Ip/. Then there exists a finite type witness V � S such that
'.V / D V and 'jV is pseudo-Anosov.

Proof. Let ' be WWPD. By Lemma 5.1, it suffices to show that every ray in

C
˙.'/ is contained in a finite type subsurface.

Suppose that C˙.'/ contains a ray l which is not contained in a finite type

subsurface of S . Without loss of generality, suppose that l 2 C
C.'/. We

consider an exhaustion V1 � V2 � : : : of S by finite type subsurfaces Vn
containing p. For each n there is a boundary component n of Vn which l

crosses. The sequence of rays ¹T in
.l/º1

iD0 cover converges to a ray k which

spirals onto n. We see by analyzing the lifts 1T in
.l/ to yS beginning at Op and

their endpoints on @ yS that the elements in the sequence ¹T in
.l/º1

iD0 are distinct.

In particular, there exists in such that T inn
.l/ is not in the (finite) clique C

C.'/.

Denote  n D T
in
n

. The above argument implies that  n.C
C.'// ¤ C

C.'/ for

any n. Hence, n.F.C
C.'/// ¤ F.CC.'// for all n andF.CC.'// is the attracting

fixed point of ' on @L.S Ip/.

However,  n.F.C
C.'/// ! F.CC.'// and  n.F.C

�.'/// ! F.C�.'//.

To see this, consider a quasi-geodesic ray ¹ciº
1
iD1 � L.S Ip/ converging to

F.CC.'//. For any I � 0, there exists N > 0 large enough that ci � VN for

all i � I . Hence

ci D  N .ci / D  NC1.ci / D  NC2.ci / D � � �

for any i � I . In other words, the quasi-geodesic rays ¹ciº and ¹ n.ci /º agree

up to i D I for any n � N . This proves that the endpoints  n.F.C
C.'/// of the

quasigeodesics ¹ n.ci /º converge to the endpoint F.CC.'// of ¹ciº. Similarly,

 n.F.C
�.'/// ! F.C�.'//.

Thus, ' is not WWPD, by definition. �

6. Quasi-morphisms and bounded cohomology

We now turn to an application of Theorem 1.1 to bounded cohomology of sub-

groups of big mapping class groups.

Theorem 6.1 (Handel and Mosher [13], Theorem 2.10). IfG Õ X is a hyperbolic
action possessing an independent pair of loxodromic elements, and if G has a
WWPD element, then H 2

b
.GIR/ is uncountably infinite dimensional.

As a corollary of this theorem we immediately obtain:
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Corollary 1.2. Let H � MCG.S Ip/ be a subgroup such that

� H contains a a pair of independent loxodromic elements in the action on
L.S Ip/,

� there exists ' 2 H which contains a pseudo-Anosov on a finite type witness.

Then H 2
b
.H IR/ is uncountably infinite dimensional.

Understanding the quasi-morphisms and bounded cohomology of big mapping

class groups is an important yet difficult goal, and could yield obstructions for

groups to act by homeomorphisms on finite type surfaces (see e.g. [10]). We

hope that Corollary 1.2 will be useful towards this goal. In the future, it will be

necessary to better understand quasi-morphisms associated to mapping classes

which do not preserve finite type subsurfaces. Bavard has studied such quasi-

morphisms in [2].

As an application of this Corollary 1.2, we have the following result on Torelli

groups. Note that this corollary, and the other remaining results of this paper most

likely could also be obtained using the machinery of “weights” for loxodromic

elements of big mapping class groups developed by Bavard and Walker. However,

we find the proofs using Theorem 1.1 to be particularly quick and straightforward.

We denote by I.S/ the Torelli group, which is the subgroup of MCG.S/ acting

trivially on H1.S IZ/. We denote I.S Ip/ D MCG.S Ip/\ I.S/.

Corollary 6.2. The second bounded cohomology H 2
b
.I.S Ip/IR/ is uncountably

infinite dimensional.

Proof. First we show that I.S Ip/ contains a pseudo-Anosov supported on a finite

type witness. Choose a separating essential simple closed curve c in S . Choose

a finite type witness V � S containing c of complexity � 1. Choose a pseudo-

Anosov  2 MCG.V Ip/ � MCG.S Ip/. For large enough n, c and  n.c/ fill V .

Hence ' D T �1
c ıT n.c/ is a pseudo-Anosov on V by Penner’s criterion (see [19]).

Moreover, ' 2 I.S Ip/ since any Dehn twist on a separating curve lies in I.S Ip/.

Now, to see that I.S Ip/ contains a pair of independent loxodromic elements,

it suffices to consider '1 2 I.S Ip/ a pseudo-Anosov on a finite type witness V1
and '2 2 I.S Ip/ a pseudo-Anosov on a finite type witness V2 with V1 ¤ V2. The

elements '1 and '2 are independent since they have no fixed clique in @L.S Ip/
in common. �

As a further application, we study a construction of nontrivial quasi-morphisms

on big mapping class groups. Let S be a surface of finite positive genus with some

finite, positive number of isolated punctures and at least one non-isolated punc-

ture. Then the space of non-isolated punctures of S is necessarily a Cantor set.

Fix an isolated puncture p. Any mapping class of S permutes the non-isolated
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punctures of S and there is a surjective “(non-isolated puncture)-forgetting” ho-

momorphism f W MCG.S/ ! MCG. xS/ where xS is S with the non-isolated punc-

tures filled in. The puncture p is identified with a puncture of xS which we will

also call p, by abuse of notation.

For any quasimorphism qW MCG. xS Ip/ ! R, q ı f is a quasimorphism of

MCG.S Ip/. Moreover if q is nontrivial then q ı f is nontrivial by the following

lemma.

Remark 6.3. This lemma is well known to experts but we have not been able to

find a proof in the literature. Hence we give a proof for completeness.

Lemma 6.4. Let f WG ! H be a surjective homomorphism of groups and let
qWH ! R be a nontrivial quasimorphism of H . Then q ı f is a nontrivial
quasimorphism of G.

Proof. Suppose that there exists a homomorphism r WG ! R such that we have

jr.g/ � q ı f .g/j � D for all g 2 G. In particular r is bounded on ker.f / so it

must in fact vanish on ker.f /. So r induces a homomorphism Nr WH ! R. That is,

r D Nr ıf . Since f is surjective, for any h 2 H there exists g 2 G with f .g/ D h.

Hence we have

j Nr.h/ � q.h/j D jNr ı f .g/ � q ı f .g/j D jr.g/ � q ı f .g/j � D:

This contradicts that q is nontrivial. �

Since xS is finite type, MCG. xS Ip/ admits an infinite dimensional space of

nontrivial quasimorphisms ([8]). Thus we also immediately obtain from this

fact that dim.eQH.MCG.S Ip/// D 1. We may ask whether every nontrivial

quasimorphism of MCG.S Ip/ arises in this way. In other words, f induces a

linear map f �WeQH.MCG. xS Ip// ! eQH.MCG.S Ip// and we can ask whether

f � is surjective. In fact, this is not the case.

Corollary 6.5. The space H 2
b
.ker.f /IR/ is uncountably infinite dimensional.

Moreover, the induced map f � is not surjective.

Proof. Consider a curve c in S cutting off a punctured disk containing only

non-isolated punctures of S . Consider a finite type witness V containing c of

complexity � 1. Choose  a pseudo-Anosov mapping class supported on V .

Then for large enough n, c and  n.c/ fill V and hence ' D T �1
c ı T n.c/

is pseudo-Anosov by Penner’s criterion. The mapping class ' is WWPD and

' 2 ker.f / since Tc and T n.c/ lie in ker.f /. As in the proof of Corollary 6.2,

we may construct another loxodromic element '0 2 ker.f / such that ' and '0

are independent. Hence by Theorem 1.2, H 2
b
.ker.f /IR/ is uncountably infinite

dimensional.
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For the proof of the second statement of the corollary, we use work of Bestvina,

Bromberg, and Fujiwara [7]. By [7], Corollary 3.2, there is a power 'n of ' and

a quasimorphism qW MCG.S Ip/ ! R such that q is unbounded on powers of 'n

but bounded on the powers of any elliptic element of MCG.S Ip/. In particular, q

is nontrivial. For if there were a homomorphism r with jq.g/ � r.g/j � D for all

g 2 MCG.S Ip/ then r would vanish on all Dehn twists in MCG.S Ip/ but not on

large enough powers of 'n. This is a contradiction because any power of 'n is a

product of Dehn twists.

The nontrivial quasimorphism q is not in the image off �. For if NqW MCG. xS Ip/ !
R is any quasimorphism, then Nq ı f is bounded on the powers of 'n since

f .'n/ D 1. In particular Nq ı f is not finite `1 distance from q since q is un-

bounded on the powers of 'n. �
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