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Abstract. We initiate a study of maximal subgroups and maximal von Neumann subal-
gebras which have the Haagerup property. We determine maximal Haagerup subgroups
inside Z2 Ì SL2.Z/ and obtain several explicit instances where maximal Haagerup sub-
groups yield maximal Haagerup subalgebras. Our techniques are on one hand based on
group-theoretic considerations, and on the other on certain results on intermediate von
Neumann algebras, in particular these allowing us to deduce that all the intermediate al-
gebras for certain inclusions arise from groups or from group actions. Some remarks and
examples concerning maximal non-(T) subgroups and subalgebras are also presented, and
we answer two questions of Ge regarding maximal von Neumann subalgebras.
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Introduction

The study of maximal von Neumann subalgebras with particular properties has a
long and rich history, dating back to the origins of the subject. In particular the
role of maximal abelian subalgebras was realised early on by Dixmier and others
(see for example [32]), came to prominence with the groundbreaking results of
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Feldman and Moore ([33]) and plays a central role in the modern study of structure
and rigidity of von Neumann algebras ([44]). With time it became clear that
similarly one can ask about concrete maximal amenable (in other words injective)
von Neumann subalgebras. Here the breakthrough work is due to Popa, who
showed in [61] that the so-called generator masa in a free group von Neumann
algebra is also maximal amenable.

The context for Popa’s result is the fact that from the early days of the the-
ory of operator algebras countable discrete groups formed a very rich source of
examples; in particular the key theorem of [61] implies a much easier fact that
Z < Fn is a maximal amenable subgroup. In recent years there has been a re-
newed interest in asking when, given a maximal amenable subgroup H < G, the
von Neumann algebra L.H/ is a maximal amenable von Neumann subalgebra
of L.G/. Satisfactory sufficient conditions, leading to several concrete examples
of this phenomenon, were obtained by Boutonnet and Carderi ([7] and [6]). It is
also worth noting that some maximal amenable subgroups do not lead to maximal
amenable subalgebras.

Another approximation property for von Neumann algebras, originating in the
work of Haagerup on free groups ([38]), is the Haagerup property ([24], [22],
and [48]). This again has proved to be very fruitful for the study of operator alge-
bras, partly due to its geometric interpretations, partly as it weakens amenability
and yet offers some tools to study the algebra in question, and finally because it
forms a strong negation of Kazhdan’s Property (T) (see [4] and [17]). In the last
decade the Haagerup property played also an important role in the study of quan-
tum groups ([8] and [26]); this motivated the extension of the concept beyond
finite von Neumann algebras to arbitrary ones (see [14] and references therein).

In this work we initiate a study of maximal Haagerup von Neumann subalge-
bras. The difficulties in approaching this problem are two-fold: first of all rela-
tively little seems to be known on maximal Haagerup subgroups, and secondly the
only well-known obstruction to the von Neumann algebraic Haagerup property is
relative Property (T) (although see [20], where Chifan and Ioana proved that the
situation in general is more subtle). Thus we begin our study by analysing exam-
ples of maximal Haagerup subgroups in concrete groups without the Haagerup
property. In particular we characterise all the maximal Haagerup subgroups in
Z2 Ì SL2.Z/, showing they are of two types:

� Z2 Ì C , where C < SL2.Z/ is a maximal amenable subgroup;

� ¹.c.g/; g/W g 2 Kº, where K < SL2.Z/ is non-amenable and cW K ! Z2 is a
cocycle which cannot be extended to a larger subgroup.

We also record concrete examples of maximal non-(T) subgroups in Property (T)
groups.

As we pass to the von Neumann algebraic context, we should stress that our
operator algebraic techniques are mostly in a spirit opposite to this appearing
in the aforementioned work of Popa; in his context, namely for the inclusion
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L.Z/ � L.Fn/, there is no hope to describe all the intermediate von Neumann
algebras, whereas our methods in most cases require knowing that the intermediate
algebras come from groups, from group actions, or from equivalence relations.
Such a requirement might seem at first glance somewhat limiting, but in fact it is
quite natural: for example given a Cartan inclusion A � M by [33] we know not
only thatM can be realised as the von Neumann algebra of an equivalence relation,
but also that all the intermediate von Neumann algebras are of this form. Further a
version of Galois correspondence (see for example [21]) says that the intermediate
algebras for the inclusion M � MÌ� for an outer action of a discrete group � on a
factor M must all come from subgroups of �. Recent years brought many deeper
results of this type, notably these in [65], [1], [59], [12], and [18]. We will use
these, together with certain extensions established here (see say Theorem 3.7 or
Lemma 3.12) to exhibit concrete examples of maximal Haagerup subalgebras.

Using such strategy, among other things we show that the following group
inclusions have the property that H is a maximal Haagerup subgroup of G, and
similarly the von Neumann algebra L.H/ is a maximal Haagerup von Neumann
subalgebra of L.G/:

� Z2 ÌC < Z2 ÌSL2.Z/, where C < SL2.Z/ is a maximal amenable subgroup
such that Z2 Ì C is also ICC;

� ƒo� K < ƒo�, where ƒ is an amenable ICC group, and K < � is a maximal
Haagerup subgroup;

� ƒ o SL2.Z/ < .ƒ˚SL2.Z/ �Z2/ Ì SL2.Z/, where ƒ is an ICC group with the
Haagerup property;

� SL2.Z/ � SL2.Z/ < Z2 Ì .SL2.Z/ � SL2.Z//, where the action is defined by
first factoring onto the first copy of SL2.Z/, then combing with the standard
matrix multiplication;

� Z o� K < Z o �, where � D Z2 Ì SL2.Z/, K D Z2 Ì C and C < SL2.Z/ is
a maximal amenable subgroup.

The above list is not exhaustive; in particular we obtain also some examples
which are related to a general crossed product construction. Some of the new
results on intermediate von Neumann algebras should be of use also in some other
contexts; it is worth noting that stronger versions of some theorems we prove here
(notably on profinite actions) were independently obtained in [18] and applied in
the context of the classification of von Neumann algebras. Here we show how to
exploit such results to answer certain questions of Ge from [34].

Many questions related to maximal Haagerup subalgebras remain open, and
we list what we believe to be the most important ones in the end of our paper.

The detailed plan of the paper is as follows. In Section 1 we recall the def-
inition of the group-theoretic and von Neumann algebraic Haagerup properties,
recall their key features to be used in the sequel and prove some elementary facts
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on existence of maximal objects. In Section 2 we discuss maximal Haagerup sub-
groups. After analysing general behaviour of this notion in various products and
providing first examples, we ask a question about the existence of Haagerup radi-
cals, understood as largest normal Haagerup subgroups, and identify them inside
SL3.Z/ and Z2 Ì SL2.Z/. Then we prove the first of our main results, charac-
terisation of maximal Haagerup subgroups inside Z2 Ì SL2.Z/ and discuss in
detail the groups which may appear as such. We finish this section by exhibiting
concrete maximal Haagerup subgroups inside SL3.Z/ and Z3 Ì SL3.Z/. In Sec-
tion 3 we focus on the von Neumann algebraic context, and produce examples of
maximal Haagerup subalgebras using respectively the work of Ioana on ergodic
equivalence relations inside SL2.Z/ Õ T2, Galois correspondence of Choda, ex-
tremely rigid actions, free products, pro-finite actions and finally roughly normal
subgroups. Here we also answer in the positive two questions of Ge regarding
maximal von Neumann algebras. Section 4 is devoted to Property (T): we exhibit
explicit maximal non-(T) subgroups in Property (T) groups, discuss some cases
where maximal (T) or non-(T) subalgebras exist and present a concrete example of
a maximal non-(T) von Neumann subalgebra inside a II1-factor with Property (T);
it is worth mentioning that other explicit examples of the last instance were ob-
tained in parallel in the article [19]. Lastly in Section 5 we present a short list of
open problems.

All the groups will be discrete and countable; von Neumann algebras will be
mostly finite (although in Section 1 we will briefly discuss general �-finite von
Neumann subalgebras). Inclusions of von Neumann algebras will be always unital,
and we will sometimes simply write N < M if N is a von Neumann subalgebra
of M; and similarly H < G if H is a subgroup of G. If M is a von Neumann
algebra equipped with a faithful normal state � then a von Neumann subalgebra
N < Mwill be called �-expected if there exists a �-preserving (normal) conditional
expectation from M onto N. We say that H is a nontrivial subgroup of G if
¹eº ¤ H ¤ G; a group is nontrivial if it has more than one element. If H; G

are groups, then H˚G will denote the direct sum of copies of H indexed by G,
so that we have a natural shift action G Õ H˚G and the corresponding wreath
product H o G. Often we will need the case where K is a subgroup of G acting on
H˚G by shifts; then we write the corresponding semidirect product as H oG K.
The term ICC stands for infinite conjugacy classes.

1. Haagerup property – general aspects

In this section we recall the basic definitions and features of the Haagerup property
for groups and von Neumann algebras, which will be used in the rest of the paper.
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Groups. The notion of the Haagerup property of a (locally compact) group has
its roots in the famous article [38].

Definition 1.1. A group G has the Haagerup property if there exists a sequence
of positive-definite functions in c0.G/ which converges to 1 pointwise.

On the other hand, recall one of the equivalent characterisations of Kazhdan’s
(relative) Property (T).

Definition 1.2. A group G has the Kazhdan Property (T) (relative to a sub-
group H ) if every sequence of continuous positive-definite functions on G which
converges to 1 pointwise converges to 1 uniformly (on H ).

For more information on these two properties we refer to the books [17] and [4].
Note that sometimes for brevity we will simply say that G is Haagerup or G is
Kazhdan; or that the inclusion H < G is rigid (meaning that G has Property (T)
relative to H ). These properties are often viewed as strong negations of each other:
if G is both Haagerup and Kazhdan, then it must be finite.

Proposition 1.3. Suppose that H is a subgroup of a group G and that H has
the Haagerup property. Then there exists a maximal Haagerup subgroup of G

containing H .

Proof. This follows by a standard Kuratowski–Zorn argument and the fact that a
union of an increasing sequence of discrete countable groups with the Haagerup
property is Haagerup ([17, Proposition 6.1.1]). �

We record here the analogue of this fact for non-Kazhdan groups (noting also
that for obvious reasons it cannot hold for Kazhdan groups: it suffices to consider
say .Z=2Z/˚1).

Proposition 1.4. Suppose that H is a subgroup of a group G and that H has
does not have Kazhdan’s Property (T). Then there exists a maximal subgroup of
G containing H and not having Property (T).

Proof. To apply the Kuratowski–Zorn argument it suffices to note that Kazhdan
groups must be finitely generated; so if there was an increasing sequence of non-
Kazhdan groups with the union having Property (T), then the sequence would in
fact have to stabilise, which gives a contradiction. �

Finally, we recall the key permanence result and the key obstacle for the
Haagerup property; the first proposition is [17, Proposition 6.1.5], and the second
is an obvious consequence of the relevant definitions. These will be used further
without any comment.
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Proposition 1.5. Suppose that H is a subgroup of a group G. If H has the
Haagerup property and the algebra `1.G=H/ admits a G-invariant state, then
G has the Haagerup property. In particular amenable extensions of Haagerup
groups are Haagerup, and if G admits a finite index Haagerup subgroup, then G

itself is Haagerup.

Proposition 1.6. If a group G has relative Property (T) with respect to an infinite
subgroup, then G is not Haagerup.

Naturally, Proposition 1.5 remains true if one replaces everywhere the Haagerup
property by amenability. Furthermore Proposition 1.6 implies that neither Z2 Ì

SL2.Z/ nor SL3.Z/ are Haagerup (and the latter one is in fact Kazhdan). We
record here a relevant lemma due to Burger ([10]).

Proposition 1.7. Suppose that G < SL2.Z/ is a non-amenable subgroup. Then
the inclusion Z2 < Z2 Ì G is rigid, so in particular Z2 Ì G is not Haagerup.

Von Neumann algebras. The following definition extends the one given in [24]
and then studied for example in [22] and [48] for finite von Neumann algebras.
The formulation below comes from [16]; it is equivalent to the one proposed by
Okayasu and Tomatsu in [57], as shown for example in [14]. For the terminology
“KMS-implementation” we refer to [16]; if M is a finite von Neumann algebra
with a fixed trace it is equivalent to the usual L2-implementation of a given unital
completely positive and trace preserving map on the Hilbert GNS-space.

Definition 1.8. Let M be a �-finite von Neumann algebra. We say that M has the
Haagerup property if for some faithful normal state � onM there exists a sequence
of unital completely positive �-preserving maps whose KMS -implementations
on the Hilbert space L2.M; �/ are compact and converge strongly to identity.

As shown in [15] and [16] in fact the existence of such maps does not depend
on the choice of �. As expected, the terminology is consistent with that discussed
earlier for groups. Choda showed in [22] that a group G has the Haagerup property
if and only if the von Neumann algebra L.G/ has the Haagerup property.

Propositions 1.5 and 1.6 have their von Neumann algebraic counterparts. The
crossed product case of the theorem below is [48, Proposition 3.1] (it remains valid
also for arbitrary, not necessarily finite, von Neumann algebraic crossed products
by amenable groups, as shown in [16, Theorem 6.6] or [57, Theorem 5.13]); the
general statement is [2, Theorem 5.1].

Theorem 1.9. Suppose that M is a finite von Neumann algebra with a von Neu-
mann subalgebra N. If N has the Haagerup property and the inclusion N < M is
amenable in the sense of [62], then M has the Haagerup property. In particular if
N is Haagerup and G is an amenable group, then N Ì G is Haagerup.
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The following result follows directly from the definition of relatively rigid von
Neumann subalgebras ([64, Section 4]). It is worth noting that until recently it was
the only known technique of showing that a von Neumann algebra is not Haagerup,
but in [20] Chifan and Ioana, using earlier results of de Cornulier, exhibited an
example of a non-Haagerup von Neumann algebra with no relatively rigid diffuse
subalgebras.

Proposition 1.10. Suppose that M is a finite von Neumann algebra with a diffuse
von Neumann subalgebra N such that the inclusion N < M is rigid. Then M does
not have the Haagerup property.

The following result in the finite case follows from Theorem 2.3 (ii) in [48].

Lemma 1.11. Suppose M is a von Neumann algebra equipped with a faithful nor-
mal state �. Let .Nn/n2N be an increasing sequence of �-expected von Neumann
subalgebras of M with the Haagerup property. Then the von Neumann algebra
N WD

� S
n2N Nn

�00
is a �-expected Haagerup von Neumann subalgebra of M.

Proof. Takesaki’s theorem on existence of �-preserving conditional expecta-
tions ([66]) implies that the modular automorphism group leaves each Nn globally
invariant; the same is then true for N, so using Takesaki’s theorem again we deduce
that N is �-expected. Denote the respective �-preserving conditional expectations
by EnWM ! Nn, EWM ! N. Then the sequence .En/n2N converges pointwise
strongly to E; moreover we can view the Hilbert spaces L2.Nn; �/ as subspaces of
L2.N; �/ and in this picture the KMS-implementations of En converge strongly to
identity on L2.N; �/ (see for example [49, Section 2]). Denote the approximating
maps on each of the Nn by .ˆ

.n/

k
/1
kD1

; the standard argument using finite subsets
of N and � > 0 allows us to construct an approximating net on N out of the maps
of the form ˆ

.n/

k
ı En. �

Then we have the following corollary (once again arguing via the Kuratowski–
Zorn Lemma).

Corollary 1.12. Let M be a von Neumann algebra, let � be a normal state on
M and assume that N is a �-expected von Neumann subalgebra of M with the
Haagerup property. There exists a maximal �-expected von Neumann subalgebra
of M containing N which has the Haagerup property. In particular if M is a finite
von Neumann algebra with a Haagerup von Neumann subalgebra N then there
exists a maximal Haagerup von Neumann subalgebra of M containing N.

The following is Theorem 3.12 of [57].

Proposition 1.13. Let a von Neumann algebra M be represented on a Hilbert
space H. Then M has the Haagerup property if and only if M0 has the Haagerup
property.
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The idea of the proof of the next proposition was kindly communicated to us
by Yuhei Suzuki; in fact exactly the same proof in the context of injectivity may
be found in [23, Proposition 6.8].

Proposition 1.14. Let N < M be an inclusion of von Neumann algebras, with N
having the Haagerup property. Assume that G is a group of unitaries contained
in the normaliser NM.N/. If G is amenable as a discrete group, then the von
Neumann algebra generated by N and G has the Haagerup property. In particular
if u 2 NM.N/ then .N [ ¹uº/00 has the Haagerup property.

Proof. Consider the natural action ˛ of G onN0. We then have .N[G/0 D Fix˛.N0/.
By the previous proposition N0 is Haagerup. Applying [57, Corollary 5.13] we see
that .N[G/0 is Haagerup and another application of the previous proposition ends
the proof. �

Corollary 1.15. Maximal Haagerup subalgebras are singular (in other words, if
N is a maximal Haagerup von Neumann subalgebra of a von Neumann algebra M
then the normaliser algebra NM.N/00 is equal to N).

2. Maximal Haagerup subgroups

In this section we discuss various abstract and concrete results concerning maxi-
mal Haagerup subgroups.

Maximal Haagerup subgroups in (Cartesian, free, wreath) products. We
begin by discussing the behaviour of maximal Haagerup subgroups with respect
to certain general constructions.

Consider first the case of the Cartesian product. Given a subgroup K �
G1 � G2 define the first (respectively, second) support subgroup of K as K1 D
¹x 2 G1W there exists y 2 G2 such that .x; y/ 2 Kº (respectively, K2 D ¹y 2
G2W there exists x 2 G1 such that .x; y/ 2 Kº). Then obviously K � K1 � K2.

Proposition 2.1. Let G1; G2 be groups. Suppose that Hi are maximal Haagerup
subgroups in Gi for i D 1; 2, with at least one of them nontrivial. Then H1 � H2

is a maximal Haagerup subgroup inside G1 � G2.

Proof. Consider a Haagerup subgroup K � G containing H1 � H2. As H1 �
G1 \ K and the latter group is Haagerup, we have H1 D G1 \ K. Similarly
H2 D G2 \ K. Then Hl is normal in Kl for l D 1; 2. Indeed, take for example
l D 1. For any x 2 K1 we have .x; y/ 2 K for some y 2 K2, and hence for
each h 2 H1, as .h; e/ 2 K, we have .xhx�1; e/ D .x; y/.h; e/.x; y/�1 2 K, so
xhx�1 2 H1.
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Consider then the group K1=H1 and choose representatives of its elements, say
¹si W i 2 Iº, where I is some index set. Fix i 2 I and consider hH1; sii. The latter
group is Haagerup, as we have a short exact sequence 1 ! H1 ! hH1; sii !
hH1; sii=H1 ! 1 and the group hH1; si i=H1 D H1hsi i=H1 Š hsi i=.H1 \ hsi i/ is
amenable. Then since H1 is maximal Haagerup, H1 D hH1; si i, so that si 2 H1.
As i 2 I is arbitrary, H1 D K1. In a completely identical way we show that
H2 D K2, so that K D H1 � H2. �

It is worth noting that for amenability a stronger result holds (it is likely known,
but we record it here).

Proposition 2.2. Suppose that G1; G2 are groups and K � G1�G2 is a subgroup.
Then the following conditions are equivalent:

(i) K is a maximal amenable subgroup of G;

(ii) K D H1 �H2, where Hi is a maximal amenable subgroup of Gi for i D 1; 2.

Proof. It suffices to observe that if K is an amenable subgroup of G1 � G2, then
its support subgroups are amenable. Indeed, once we know it, it follows that if
K is in fact maximal amenable, it must be equal to K1 � K2 and the rest is easy.
But the support subgroups are images of K with respect to the homomorphisms
given by projections on the first/second coordinate, and as quotients of amenable
groups are amenable, the proof is finished. �

We cannot hope that the analogous result would hold for the Haagerup prop-
erty, as the next example shows. Before we formulate it, we recall that, as stated
in [67], there are two known sources of infinite simple groups with Kazhdan’s
Property (T). Such groups appear for example as lattices in certain Kac-Moody
groups, see [13]. Much earlier, it was also shown by Gromov ([37]) that every in-
finite hyperbolic group surjects onto a Tarski monster group G (that is an infinite
group whose every proper subgroup is finite cyclic; in particular a simple group),
and G is Kazhdan if only the original hyperbolic group was a Kazhdan group.

Proposition 2.3. Let G be an infinite simple group with Property (T) and let
�WFn � G be a surjective group homomorphism for some n 2 N, n � 2. Let
ˆWFn ,! Fn � G be defined by ˆ.s/ D .s; �.s//, s 2 Fn. Then ˆ.Fn/ is a
maximal Haagerup subgroup of Fn � G that does not split as a product of two
subgroups of Fn and G.

Proof. Since ˆ is injective, ˆ.Fn/ Š Fn has the Haagerup property.
Suppose that g D .x; y/ 2 Fn � G n ˆ.Fn/. Consider H WD hˆ.Fn/; gi; we

need to show that H cannot be Haagerup. Note that

.e; �.x/�1y/ D .x; �.x//�1.x; y/ 2 H
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and hence

.z; �.z//.e; �.x/�1y/.z; �.z//�1 D .e; �.z/�.x/�1y�.z/�1/ 2 H

for all z 2 Fn. Since y ¤ �.x/ and � is surjective, we deduce that the normal
subgroup in G generated by �.x/�1y, i.e. G (as the latter is assumed to be simple),
is contained in H . Hence H does not have the Haagerup property.

To see that ˆ.Fn/ does not split as a product, just observe that ˆ.Fn/ \ Fn D
Ker.�/ ¤ Fn D �1.ˆ.Fn//, where �1WFn � G � Fn denotes the projection on
the first coordinate. �

In Proposition 2.1 we showed that maximal Haagerup subgroups behave well
under taking Cartesian products. The situation is very different for free products
and wreath products, as the next two results show.

Proposition 2.4. Let G1; G2 be nontrivial groups and suppose that Hi are maxi-
mal Haagerup subgroups in Gi for i D 1; 2, with at least one of them nontrivial.
Then H1 � H2 is not a maximal Haagerup subgroup inside G1 � G2.

Proof. Assume first that both H1 and H2 are nontrivial. Take si 2 Gi n Hi for
i D 1; 2. Then one can check that x WD s1s2 is free from H1 � H2, and hence
H1 � H2 � hxi is a group with the Haagerup property by [17, Proposition 6.2.3];
it obviously strictly contains H1 � H2.

In the general case we may assume G2 D H2 and H1 ¤ G1. Observe that
ŒG1 W H1� D 1; in particular, we may take s; t 2 G1 n H1 such that H1s ¤ H1t .
Let x D sgtg�1, where g is any nontrivial element from G2. Then we can check
that H1 � G2 is free from x, hence hxi � H1 � G2 is a group with the Haagerup
property which strictly contains H1 � G2. �

In [30, Theorem 1.1] de Cornulier, Stalder, and Valette showed that wreath
products G o H with G; H Haagerup are Haagerup.

Lemma 2.5. Let G1; G2 be groups, with G1 non-trivial, and suppose that Hi

are maximal Haagerup subgroups in Gi for i D 1; 2. Then H1 o H2 is maximal
Haagerup in G1 o G2 if and only if G2 D H2.

Proof. (H) Assume that H1 o G2 < K < G1 o G2 and K has the Haagerup
property. Then K D S ÌG2 for some G2-invariant subgroup S of G

˚G2

1 such that
H
˚G2

1 � S . We claim that S D H
˚G2

1 . For any finite subset F of G2, we have
H˚F

1 � G˚F
1 \ S � G˚F

1 and G˚F
1 \ S � S � K has the Haagerup property.

By a generalised version of Proposition 2.2 we know that H˚F
1 is a maximal

Haagerup subgroup in G
L

F

1 . Hence H˚F
1 D S \ G˚F

1 . Since F is an arbitrary
finite set in G2, we deduce that S D H

˚G2

1 , i.e. K D H1 o G2.
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H)) Suppose that H2 is a nontrivial subgroup of G2 and let

K WD .H
L

G2

1 / Ì H2 Š
� M

z2H2nG2

� M

g2z

H1

��
Ì H2

Š
� M

z2H2nG2

H1

�
o H2 © .H1 o H2/;

where the properness of the last inclusion follows from the fact that G1, hence
also H1, is non-trivial. As K has the Haagerup property, we reach a contradiction.

�

We record a simple observation, which can be shown using the same ideas as
these in the proofs above (and which will be of use to us later).

Proposition 2.6. Let G; K be groups, and let H be a subgroup of G. If H and K

have the Haagerup property, then K oG H has the Haagerup property.

Proof. We have

K oG H D
� M

g2G

K
�

Ì H

D
� M

z2HnG

M

g2z

K
�

Ì H ,�!
M

z2HnG

�� M

g2z

K
�

Ì H
�

Š
M

z2HnG
K o H;

so that the result for usual wreath products from [30] ends the proof. �

We finish this general subsection with some examples where the wreath/semi-
direct product constructions yield explicit examples of maximal Haagerup sub-
groups.

Proposition 2.7. Let G be a countably infinite group with the Haagerup property
and let G0 be a quotient of G which does not have the Haagerup property; for
example let G0 be an infinite group with property (T) generated by n elements and
G D Fn. Let A be a nontrivial abelian group. Then G is a maximal Haagerup
subgroup of the generalised wreath product .A˚G0/ Ì G.

Proof. First, by [20, Corollary 3.3], we know .A˚G0/ Ì G is not Haagerup. We
will show that in fact for any x 2 ..A˚G0/ Ì G/ n G the subgroup hG; xi does not
have the Haagerup property.

Without loss of generality we may assume that x 2 A˚G0 . Consider the
subgroup K WD h�g.x/W g 2 Gi � A˚G0 , where � is the action used in defining our
generalized wreath product. Clearly, K is abelian and G-invariant. Then note that
we can view KÌG as a subgroup of .A˚G0/ÌG and then KÌG < hG; xi � KÌG.
Hence hG; xi D K Ì G.
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Then, since the action G Õ K factors through the quotient G0, we can
apply [20, Theorem 3.1(2)] to deduce that KÌG does not have Haagerup property.
Indeed, the stabilizer of x in G0 is contained in supp.x/supp.x/�1, hence is
finite. �

The last statement can be combined with the action of a free group on the free
abelian group, as below.

Proposition 2.8. Suppose that m; n 2 N are such that n � 3 and the free group
G WD Fm admits G0 WD SLn.Z/ as a quotient (implicitly, m � 2). Let A be a
nontrivial abelian group and consider the action G Õ Z2 given by some fixed
embedding of Fm into SL2.Z/, e.g. Fm ,! F1 ,! F2 ,! SL2.Z/ ( followed by
the matrix multiplication). Then G < .Z2 ˚ A˚G0/ Ì G is a maximal Haagerup
subgroup.

Proof. Let H be a subgroup of .Z2 ˚ A˚G0/ Ì G, strictly containing G. We need
to show H does not have the Haagerup property. Clearly, H D K Ì G for some
nontrivial subgroup K < Z2 ˚ A˚G0 which is G-invariant, i.e. G � K D K.

If K \ Z2 ¤ ¹eº, then we have G � .K \ Z2/ D kZ2 for some k 2 Z n ¹0º.
Then by considering the rigid inclusion kZ2 < kZ2 Ì G, we see that kZ2 Ì G is
not Haagerup, so H D K Ì G, which contains kZ2 Ì G, is not Haagerup.

If K \ A˚G0 ¤ ¹eº, then we may argue as in the proof of Proposition 2.7 to
deduce that .K \ A˚G0/ Ì G does not have the Haagerup property; so neither
does H .

It remains to consider the case when K \ Z2 D ¹eº and K \ A˚G0 D ¹eº.
Note that then K D ¹.x; t .x//W x 2 A0º for some bijection t W A0 Š B 0, where A0

is a subgroup of Z2 and B 0 is a subgroup of A˚G0 , and both these subgroups are
G-invariant. The map t is easily seen to be a G-equivariant group homomorphism
and thus K Ì G Š A0 Ì G via the isomorphism � W .x; t .x//g 7! xg.

Since A0 is nontrivial and G-invariant, A0 Š kZ2 for some k 2 Z n ¹0º. Then
since � provides an isomorphism between inclusions .��1.A0/ < K Ì G/ and
.A0 < A0 Ì G/, and the latter inclusion is rigid, we deduce that H D K Ì G does
not have the Haagerup property. �

Maximal normal Haagerup subgroups. Although in this article we are mainly
interested in maximal Haagerup subgroups (and later maximal Haagerup subal-
gebras), in the amenable context it is often important to compute the amenable
radical of a given group G, i.e. the largest amenable normal subgroup of G. This
notion was first introduced and studied in [27], where Day showed in particular
that such a largest subgroup always exists. Recently it has played a big role for
example in the study of the unique trace property for group C�-algebras (see [9]).
It is then natural to consider the concept of the Haagerup radical of a group G,
i.e. the largest normal Haagerup subgroup of G. Contrary to the amenable case,
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it does not seem to be easy to show that every group admits the Haagerup radi-
cal; however in the two cases presented below this is the case and moreover the
Haagerup radical can be computed.

We begin with a very easy case of SL3.Z/.

Proposition 2.9. The group SL3.Z/ does not admit any nontrivial normal sub-
groups with the Haagerup property.

Proof. Suppose that H is a normal subgroup of SL3.Z/ which has the Haagerup
property. By Margulis’s normal subgroup theorem (Chapter IV in [54]), we know
that H is either finite or has finite index. Since H is Haagerup, it must be finite.
But then SL3.Z/ admits no finite normal subgroups (as any finite normal subgroup
of a higher rank lattice is contained in its centre, see [56, Section 17.1]). �

Proposition 2.10. Let G D Z2 Ì SL2.Z/. Then G admits the Haagerup radical,
which is Z2 Ì Z=2Z, where Z=2Z D h�I i.

Proof. Let H be a normal subgroup of G with the Haagerup property and U D
Z Ì Z=2Z. We aim to show that H � U . Clearly, U is amenable and normal
inside G. Thus H U is a normal subgroup of G with the Haagerup property. As
U � H U , we see that H U D Z2 Ì K for some group K with Z=2Z � K �
SL2.Z/. Proposition 1.7 implies that K is amenable. As H U is normal in G, we
know that K is also normal inside SL2.Z/, hence K is contained in the amenable
radical of SL2.Z/.

Now observe that the amenable radical of SL2.Z/ coincides with Z=2Z. This
is well-known, but we include a short proof. Recall that SL2.Z/ is hyperbolic and
K is contained in a maximal amenable subgroup C of SL2.Z/ which is virtually
cyclic and almost malnormal, i.e. for all g 2 SL2.Z/ n C , jgCg�1 \ C j < 1 (see
for example Theorem 7.2 (vi) in [53]). Therefore K is finite, and hence elements
in K must have eigenvalues equal either 1; 1 or �1; �1, and hence K D Z=2Z.
That is H U D U , hence H � U . �

Note that in the two cases considered above the Haagerup radical coincides
with the amenable radical. We end this subsection by observing that the general
question of existence of the Haagerup radical seems to be open even in some
apparently elementary cases.

Question 2.11. Suppose that H; G are groups with the Haagerup property and
let G �G act on G via the left/right shifts. Is it then true that A oG .G �G/ has the
Haagerup property? Note that A oG .G �G/ is generated by two normal Haagerup
subgroups; so its Haagerup radical, if it exists, must be equal to the group itself.
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Maximal Haagerup subgroups in Z2
Ì SL2.Z/. We are ready to present a

central result of this section, i.e. a description of all maximal Haagerup subgroups
of Z2 Ì SL2.Z/. Recall that if we consider a group G acting on an abelian group
H then an H -valued 1-cocycle (or just a cocycle) on G is a map cW G ! H such
that c.g1g2/ D g1c.g2/Cc.g1/, g1; g2 2 H , and c is called a coboundary if there
is � 2 H such that c.g/ D � � g�, g 2 G.

Theorem 2.12. Suppose that H is a maximal Haagerup subgroup in G D Z2 Ì

SL2.Z/. Then exactly one of the following cases holds.

(1) H D Z2 Ì C 0 for some maximal amenable subgroup C 0 < SL2.Z/.

(2) H D ¹.c.g/; g/W g 2 Sº, where S < SL2.Z/ is a non-amenable subgroup,
and cW S ! Z2 is a cocycle that cannot be extended to a strictly larger
subgroup of SL2.Z/. In particular, H Š S , and H is not conjugate to S

inside Z2 Ì SL2.Z/ unless c is a coboundary, in which case S D SL2.Z/.

Conversely, each of the subgroups in (1) and (2) is a maximal Haagerup
subgroup of Z2 Ì SL2.Z/.

Proof. We split the argument into three cases according to the rank of H \ Z2.

Case 1. Assume H \Z2 Š Z2. We claim that H D Z2 Ì C 0 for some maximal
amenable subgroup C 0 < SL2.Z/.

Write C D H \ SL2.Z/ and H \ Z2 D BZ2 for some matrix B 2 M2.Z/

with det.B/ ¤ 0. Note that both H and Z2, hence also BZ2, are globally
invariant under the natural action of C , so we can consider the semidirect product
BZ2 Ì C D .H \ Z2/ Ì C < H . Observe that CBZ2 D BZ2 implies B�1CB <

SL2.Z/, hence BZ2 ÌC Š Z2 ÌB�1CB via the map .Bx; c/ 7! .x; B�1cB/. The
fact that H has the Haagerup property implies via Proposition 1.7 that B�1CB is
amenable and hence C is an amenable subgroup of SL2.Z/. Since SL2.Z/ is word
hyperbolic, C is virtually cyclic (again see for example [53, Theorem 7.2 (vi)]).

Now, observe that

K WD ¹t 2 SL2.Z/W there exists a 2 Z2 such that .a; t / 2 H º

is a subgroup of SL2.Z/ and H < Z2 Ì K; therefore, without loss of generality,
we may assume K is not amenable; otherwise, H D Z2 Ì K, K is automatically
maximal amenable and we are done. Now, since K is non-amenable and SL2.Z/

is linear, then Tits’ alternative theorem for linear groups implies that K contains
F2, in particular, there exists some t 2 K of infinite order. Let then a 2 Z2 be
such that .a; t / 2 H .
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We claim that there is also some element t 0 2 C of infinite order. To see
this, for each n 2 Z write .a; t /n D .an; tn/ for some an 2 Z2. As we have
now the inclusion H � .a; t /�1.BZ2; e/.a; t / D .t�1 � .�a C BZ2/; t�1/.a; t / D
.t�1 � .BZ2/; e/, we conclude that t�1 � .BZ2/ � H \ Z2 D BZ2. Similarly
by considering H � .a; t /.BZ2; e/.a; t /�1 we deduce that t � .BZ2/ � BZ2.
Thus t � .BZ2/ D BZ2. Now, as ŒZ2 W BZ2� < 1, we can find n; m 2 Z,
n ¤ m such that an � am .mod BZ2/, then using H 3 .an; tn/�1.am; tm/ D
.t�n � .�an C am/; t�nCm/ and t�n � .�an C am/ 2 t�n.BZ2/ D BZ2 � H , we
deduce that t�nCm 2 C . Define t 0 D t�nCm.

Now, we claim that H < Z2 Ì C 0, where C 0 is a maximal amenable subgroup
containing C .

Suppose this is not the case. Then there exists some .a0; s/ 2 H such that
s 62 C 0. For any c 2 C we have .a0; s/c.a0; s/�1 D .a0 � .scs�1/ � a0; scs�1/ 2 H ,
and ŒZ2 W BZ2� < 1. Considering c of infinite order, whose existence we
deduced in the above paragraph, we can find some n; m 2 Z, n ¤ m, such
that a0 � .scns�1/ � a0 � a0 � .scms�1/ � a0 .mod BZ2/. This in turn implies
that scn�ms�1 2 H \ SL2.Z/ D C , so that jsC s�1 \ C j D 1 and hence
jsC 0s�1 \ C 0j D 1.

The last statement cannot hold. Indeed by [25] we know that any hyperbolic
embedded subgroup in a group is almost malnormal. So it suffices to show that
C 0 is hyperbolic embedded in the hyperbolic group SL2.Z/, which is clear by [25,
Corollary 6.6+Theorem 6.8].

Therefore, H < Z2 Ì C 0. Since H is a maximal Haagerup subgroup, we
deduce that H D Z2 Ì C 0.

Case 2. Assume H \ Z2 Š Z. We will deduce a contradiction.
Let x 2 H be then such that hxi D H \Z2. Take any .a; g/ 2 H , where a 2 Z2

and g 2 SL2.Z/. Since x.a; g/x�1.a; g/�1 D .x � g � x; e/ 2 H \ Z2 D hxi, we
deduce that g � x 2 hxi. Similarly, from x.a; g/�1x�1.a; g/ 2 hxi, we deduce that
g�1 � x 2 hxi. Thus g � x 2 ¹˙xº. This in turn means that H � Z2 Ì C , where
C D ¹g 2 SL2.Z/W g �x 2 ¹˙xºº. Let C 0 WD ¹g 2 C W g �x D xº. Then ŒC W C 0� � 2

and we observe that C 0 is cyclic. Indeed, write x D .m; n/t with m; n 2 Z and
gcd.m; n/ D d ¤ 0. There exists some h 2 SL2.Z/ such that h � x D .d; 0/t . It
follows that hC 0h�1 D ¹g 2 SL2.Z/W g � .d; 0/t D .d; 0/tº D Id CZe1;2, which is
cyclic. Therefore C is amenable. Finally as H is maximal Haagerup we deduce
that H D Z2 Ì C , but then H \ Z2 D Z2, which is a desired contradiction.

Case 3. Assume H \Z2 is trivial. We claim that H is of the form in the second
choice in the conclusion.

Clearly, if .a; g/ 2 H , then a is uniquely determined by g, so that we can write
a D c.g/ for some map cW �.H/ ! Z2, where

�.H/ D ¹g 2 SL2.Z/W there exists b 2 Z2 such that .b; g/ 2 H º
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is a subgroup of SL2.Z/. Then H D ¹.c.g/; g/W g 2 �.H/º. As H ¨ Z2 Ì �.H/

is a maximal Haagerup subgroup, �.H/ is non-amenable. Note that c is a cocycle
and H Š �.H/ via the map .c.g/; g/ 7! g.

Now for any nonamenable subgroup �.H/ < SL2.Z/, the following are equiv-
alent:

(i) H WD ¹.c.g/; g/W g 2 �.H/º is maximal Haagerup;

(ii) the cocycle c can not be extended to a strictly larger subgroup of SL2.Z/.

Indeed, (i) H) (ii) is trivial; to see (ii) H) (i) holds, assume H ¨ K and K

is a maximal Haagerup subgroup of G. Then since K \ Z2 6Š Z by Case 2,
we deduce K \ Z2 Š Z2 or K \ Z2 D ¹eº. If the first choice holds, then
K D Z2 Ì C 0 for some maximal amenable subgroup C 0 of SL2.Z/ by Case 1.
But then �.H/ < �.K/ D C 0 is amenable, which is a contradiction. Hence
K \ Z2 D ¹eº and further K D ¹.c0.g/; g/W g 2 �.K/º for some cocycle
c0W �.K/ ! Z2. Clearly, c0j�.H/ D c and �.H/ ¨ �.K/, so that (ii) cannot
hold.

The rest of the theorem follows now by standard arguments (and by Proposi-
tion 1.7). �

In view of the above theorem it is natural to ask whether one can understand
better the subgroups appearing in its conclusion. We begin by analysing maximal
amenable subgroups of SL2.Z/.

Proposition 2.13. Let H < SL2.Z/ be an infinite maximal amenable subgroup.
Then there exists g 2 SL2.Z/ which has infinite order and nonnegative trace such
that hg; �I2i � H . Moreover

(1) if g is not similar to
�

1 1
0 1

�
in SL2.R/ ( for example if Tr.g/ > 2), then Z2 ÌH

is ICC;

(2) if g �
�

1 1
0 1

�
, then Z2 Ì H is not ICC.

Proof. As noted before, since SL2.Z/ is hyperbolic, H is virtually cyclic. Then
note that Z.SL2.Z// D ¹˙I2º 2 H . Next take g to be a generator of Z < H . We
may assume Tr.g/ � 0; otherwise, we can replace g by �g. Now consider the two
cases separately.

Case 1. Assume that g 6�
�

1 1
0 1

�
. We will show that all points .x; y/t 2

Z2 n .0; 0/t have infinite orbits under the action of hgi. Indeed, suppose this
is not the case. Then there is n > 0 such that gn.x; y/t D .x; y/t for some
.0; 0/ ¤ .x; y/ 2 Z2, and the two eigenvalues of gn are equal to 1. Hence
either gn � I2 or gn �

�
1 1
0 1

�
. The first case cannot hold, as gn D I2 would

contradict the fact that g has infinite order. Now we just need to show that the
second case implies g �

�
1 1
0 1

�
. To see this, note first that we know that the two
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eigenvalues of g are !k and !n�k D !k, where ! is the nth primitive root of 1
and k 2 Z. We may write !k D a C ib. Then since Tr.g/ 2 Z�0, we know
a D m=2 for some m 2 Z�0. Further jaj � j!k j D 1 implies m D 0; 1 or 2.
If m D 0, the eigenvalues of g are ˙i , so that g �

�
i 0
0 �i

�
so gn 6�

�
1 1
0 1

�
. If

m D 1, the eigenvalues of g are .1 ˙
p

3i/=2. Hence g �
�

.1C
p

3i/=2 0

0 .1�
p

3i/=2

�
,

so gn 6�
�

1 1
0 1

�
. So m D 2, and the two eigenvalues of g are equal to 1. Then

g �
�

1 1
0 1

�
. This is however a contradiction with the assumption in (1). We are

ready to check that Z2 Ì H is ICC. Let then .a; h/ 2 Z2 Ì H be any nontrivial
element. If a ¤ .0; 0/, then ¹.gna; gnhg�n/ D .0; gn/.a; h/.0; g�n/W n 2 Zº
is infinite by what we discussed above. Hence we may assume a D .0; 0/ and
h ¤ eH D I2. To show that the conjugacy class of .0; h/ is infinite, it suffices
to find a sequence of elements an 2 Z2 such that ¹an C h.�an/ºn2N are pairwise
distinct. As anCh.�an/ D .I2�h/an and I2�h ¤ 0, we can just take an D .n; 0/t

or .0; n/t depending on which column of I2 � h has nonzero entries.

Case 2. Take any h 2 H with infinite order, without loss of generality, we
may assume that Tr.h/ � 0. Since H is infinite and virtually cyclic, there exist
k; n 2 Zn¹0º such that hn D gk D P

�
1 k
0 1

�
P�1, where g D P

�
1 1
0 1

�
P�1 for some

invertible matrix P 2 M2.Q/.
We claim that h D P

�
1 k=n
0 1

�
P�1. To see this, observe that exactly as above we

can show that the two eigenvalues of h are of the form aC ib; a� ib with a D m=2

for m D 0; 1 or 2. If m D 0, the eigenvalues of h are ˙i , hence h �
�

i 0
0 �i

�
so

hn 6�
�

1 1
0 1

�
�

�
1 k
0 1

�
. If m D 1, the eigenvalues of h are .1 ˙

p
3i/=2. Hence

h �
�

.1C
p

3i/=2 0

0 .1�
p

3i/=2

�
, so hn 6�

�
1 1
0 1

�
�

�
1 k
0 1

�
. Thus m D 2, and the two

eigenvalues of h are equal to 1. Then h �
�

1 1
0 1

�
and we may write h D Q

�
1 1
0 1

�
Q�1

for some invertible matrix Q.
Writing P�1Q D

�
a b
c d

�
, and plugging in the identity hn D P

�
1 k
0 1

�
P�1,

we deduce that c D 0 and an D kd . Then another calculation shows that
h D P

�
1 k=n
0 1

�
P�1.

Finally, we can show that Z2 Ì H has a finite conjugacy class. Indeed, there is
a non-zero vector v 2 Z2 which is fixed by g, just take v to be a suitable multiple
of P.1; 0/t . Then the above calculation shows that for every h 2 H with infinite
order, hv D ˙v, which implies that .v; e/ 2 Z2 Ì H has a finite conjugacy class
as H contains only finitely many torsion elements. �

We devote the remaining part of this subsection to understanding better the
groups appearing in Case 2 of Theorem 2.12. We begin with a simple lemma.

Lemma 2.14. Every cocycle cW SL2.Z/ ! Z2 is a coboundary.
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Proof. Fix first a cocycle c. It is uniquely determined by the values of c.s/ and
c.t/ where s D

�
0 1
�1 0

�
and t D

�
0 �1
1 1

�
, so that hsi D Z=4Z, hti D Z=6Z,

and the pair ¹s; tº generates the whole group. We have c.s2/ D c.t3/, i.e.�
1 1
�1 1

�
c.s/ D

�
0 �2
2 2

�
c.t/. So if we set c.t/ D .x; y/ 2 Z2, we deduce that

c.s/ D .�x � 2y; x/. Then a simple calculation shows that c is a coboundary
with c.g/ D � � g�; g 2 SL2.Z/, where � D .�y; x C y/t . Note that it suffices to
verify the formula on the generators s; t . �

We now stop to record a simple group-theoretic corollary of the results of this
section; the conclusion itself is likely well-known, but we give a simple proof.

Corollary 2.15. Let � 2 Aut.Z2 Ì SL2.Z//. Then there are L 2 Aut.Z2/ D
GL2.Z/ and � 2 Z2such that �.a; s/ D .L.a/ C � � .LsL�1/�; LsL�1/ for all
.a; s/ 2 Z2 Ì SL2.Z/.

Proof. By Proposition 2.10, Z2 Ì Z=2Z is a characteristic subgroup, so that
we have �.Z2 Ì Z=2Z/ D Z2 Ì Z=2Z. This implies that �.Z2/ D Z2 as
Z2 is the largest nontrivial normal subgroup of Z2 Ì Z=2Z. Below, we write
L D �jZ2 . Then, for any s 2 SL2.Z/, we write �..0; s// D .c.s/; T .s// for some
maps cW SL2.Z/ ! Z2 and T W SL2.Z/ ! SL2.Z/. It is routine to check that
T 2 Aut.SL2.Z// and c ı T �1 is a cocycle. As c ı T �1 is always a coboundary by
Lemma 2.14, we know c.s/ D � �T .s/� for some � 2 Z2. Now the homomorphic
property of � is equivalent to the fact that T .s/L.b/ D L.sb/ for all s 2 SL2.Z/,
b 2 Z2. �

We will now present some examples of congruence subgroups of SL2.Z/ (and
explicit cocycles) which satisfy the assumptions of statement (2) in Theorem 2.12.

Proposition 2.16. Let N 2 N, N � 2, let

�1.N / D ¹g 2 SL2.Z/W g21 � 0 .mod N /; g11 � g22 � 1 .mod N /º
and let � D .1=N; 0/t . Then the formula c.g/ D � �g� for all g 2 �1.N / defines a
cocycle cW �1.N / ! Z2, which cannot be extended to any strictly larger subgroup
H < SL2.Z/. Therefore ¹.c.g/; g/W g 2 �1.N /º is a maximal Haagerup subgroup
in Z2 Ì SL2.Z/.

Proof. First, recall the definition of some more subgroups in SL2.Z/:

�0.N / D ¹g 2 SL2.Z/W g21 � 0 .mod N /º;
�.N / D ¹g 2 �1.N /W g12 � 0 .mod N /º:

Clearly, we have �.N / � �1.N / � �0.N / � SL2.Z/. Further it is easy to see
that the prescription above indeed defines a cocycle on �1.N /, as

c

��
g11 g12

g21 g22

��
D ..1 � g11/=N; �g21=N /t :
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Suppose that c can be extended to a larger subgroup H inside SL2.Z/. Since �.N /

is normal in SL2.Z/, we have c.sgs�1/ D � � .sgs�1/� for every s 2 SL2.Z/ and
every g 2 �.N /. If now s 2 H , we can expand c.sgs�1/ using cocycle identity
to deduce that .1 � sgs�1/c.s/ D .1 � sgs�1/.� � s�/. Taking any g 2 �.N / such
that 1 is not an eigenvalue of g, so that .1 � sgs�1/ is invertible, we conclude that
c.s/ D � � s� for every s 2 H .

Therefore, to get a contradiction, we need to show that for any s 2 SL2.Z/,
� � s� 2 Z2 implies s 2 �1.N /. This is a simple calculation based on the formula
displayed above.

The last statement follows from Theorem 2.12: as �1.N / is of finite index in
SL2.Z/, it is clearly non-amenable. �

One can produce other examples as above, using say the free subgroup gener-
ated inside SL2.Z/ by

�
1 2
0 1

�
and

�
1 0
2 1

�
or the subgroup generated by

�
1 2
0 1

�
and�

0 1
�1 0

�
. Examples of this type are similar in that they all have finite index in

SL2.Z/. In fact this turns out to be the case very often, as we have the follow-
ing proposition.

Proposition 2.17. Suppose that S is a non-amenable subgroup of SL2.Z/ admit-
ting a cocycle cW S ! Z2 which cannot be extended to a strictly larger subgroup.
If either �I 2 S or S is finitely generated, then S is of finite index in SL2.Z/.

Proof. Assume first that �I 2 S . Suppose that cW S ! Z=2Z is a cocycle not
admitting a proper extension. Then for each g 2 S we have c.g/ C gc.�I / D
c.g.�I // D c..�I /g/ D c.�I / C .�I /c.g/, which implies that c.g/ D
.I�g/c.�I/

2
2 Z2; in particular the value of c at �I determines it uniquely. Write

then c.�I / D .m; n/ 2 Z2. We will consider then several cases, depending on
parity of m and n.

Case 1. Both m and n are even: then c.�I /=2 2 Z2, so that cW S ! Z2 is a
coboundary and S D SL2.Z/.

Case 2. m is odd and n is even: in this case, the fact that c.g/ D .I�g/c.�I/
2

2 Z2

for all g 2 S means that for every g D
�

g11 g12
g21 g22

�
2 S the coefficient g11 is odd and

g21 is even. This implies that �.S/ � �.H/, where � W SL2.Z/ ! SL2.Z=2Z/ is
the natural homomorphism and H D

�
1 �
0 1

�
� SL2.Z/. Hence, S � Ker.�/H . As

the above formula for c defines also a Z2-valued cocycle on Ker.�/H , we know
that S D Ker.�/H , hence is of finite index as Ker.�/ has finite index in SL2.Z/.

Case 3. m is even and n is odd: analogous to Case 2.
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Case 4. Both m and n are odd: one can check that in this case, for every g 2 S ,
we have g11 C g12 � 1 .mod 2/ and g21 C g22 � 1 .mod 2/. Thus, it is clear
that the conjugation of S by the matrix

�
1 0
1 1

�
is contained in Ker.�/H , where �

and H are defined in Case 2. Therefore, we know that S must be conjugate to the
finite index subgroup Ker.�/H , hence is of finite index itself.

Assume then that �I … S , but S is finitely generated. Consider the quotient
map � W SL2.Z/ � SL2.Z/=¹˙I º D PSL2.Z/ Š Z=2Z � Z=3Z. Clearly,
S Š �.S/ � Z=2Z � Z=3Z. Assume ŒSL2.Z/ W S� D 1, then ŒZ=2Z � Z=3Z W
�.S/� D 1. Recall that a group G has the M. Hall property if every finitely
generated subgroup of G is a free factor of some subgroup of G of finite index.
In [40], M. Hall proved the non-abelian free groups satisfy this property, and
in [11] R. G. Burns showed that this property is stable under free products. Thus
we know that Z=2Z�Z=3Z also has the M. Hall property. Thus, as �.S/ is finitely
generated and of infinite index, there is an element in PSL2.Z/ which is free from
�.S/. If we now consider any lift of this element to SL2.Z/, say g, we see that
it is free from S , so that the cocycle c can be extended to hS; gi. This yields a
contradiction. �

We finish this section by discussing an example of an infinite index subgroup
S � SL2.Z/ satisfying the assumptions of Theorem 2.12, Case 2.

Proposition 2.18. There exists an infinite index non-amenable subgroup S <

SL2.Z/ and a cocycle cW S ! Z2 such that c does not admit an extension to a
larger subgroup.

Proof. Denote a D
�

1 2
0 1

�
and b D

�
1 0
2 1

�
. It is known that ha; bi Š F2 and it has

finite index in SL2.Z/. Consider then the free group decomposition

F2 Š F1 Ì� Z;

where Z D hbi, F1 D hbkab�k W k 2 Zi and �b.bkab�k/ D bkC1ab�k�1, k 2 Z.
We then view F1 as an infinite index subgroup of SL2.Z/ and denote it by S 0.

Any cocycle c0W S 0 ! Z2 is uniquely determined by the values c0.bkab�k/ D
.xk ; yk/ 2 Z2, k 2 Z; conversely by freeness any choice of .xk ; yk/k2Z deter-
mines a cocycle by the above formula. Suppose that such a cocycle can be ex-
tended to the subgroup hF1; bni inside F1 Ì� Z for some n 2 Z n ¹0º. Then
c0.bnab�n/ D c0.bn/ C bnc0.a/ � bnab�nc0.bn/; in other words,

.xn; yn/t D .x0; 2nx0 C y0/t C
�

4n �2

8n2 �4n

�
c0.bn/

In particular, both xn � x0 and yn � 2nx0 � y0 are even. Thus if we define
x0 D y0 D 0, xk D yk D 1 for k 2 Z; k ¤ 0, we obtain a cocycle c0W S 0 ! Z2

which cannot be extended to a larger subgroup of F1 Ì� Z.
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Consider then S 0 again as a subgroup of SL2.Z/. A standard Kuratowski–Zorn
argument (applied to pairs .d; K/, where K is a subgroup of SL2.Z/ containing
S 0 and d W K ! Z2 is a cocycle extending c0) shows that there is a subgroup S

and a cocycle cW S ! Z2 such that S 0 � S , cjS 0 D c0, and c does not extend
to a strictly larger subgroup. Then S is obviously non-amenable, and moreover
it has infinite index. To see the latter, it suffices to note that if it had finite index
in SL2.Z/, then S \ F2 would be of finite index in F2, so in particular would
strictly contain F1. That would contradict the fact that the cocycle c0 could not
be extended inside F2. �

Naturally, S constructed in the above proof cannot contain �I and cannot be
finitely generated. We suspect that in fact S D S 0.

Maximal Haagerup subgroups inside Property (T) groups. In this subsection
we present other explicit examples of maximal Haagerup subgroups, this time
inside Property (T) groups, SL3.Z/ and Z3 Ì SL3.Z/. Recall that the latter has
Property (T), as noted for example in [4, Exercise 1.8.7].

Proposition 2.19. Denote by H.Z/ the subgroup of SL3.Z/ consisting of all
upper-triangular matrices. Then H.Z/ is a maximal Haagerup subgroup of
SL3.Z/.

Proof. Denote by H.Q/ the subgroup of SL3.Q/ consisting of all upper triangular
matrices (with rational coefficients).

The proof uses the Bruhat decomposition of SL3.Q/ (see [52, p. 398] or [55]),
i.e. the fact that we have SL3.Q/ D

S
�2Sym.3/ H.Q/p� H.Q/, with certain

p� 2 SL3.Z/. We begin by listing explicitly all the elements p� .

� id (12) (13) (23) (123) (132)

p� id
�

0 1 0
1 0 0
0 0 �1

� �
0 0 �1
0 1 0
1 0 0

� �
1 0 0
0 0 �1
0 1 0

� �
0 0 1
1 0 0
0 1 0

� �
0 1 0
0 0 1
1 0 0

�

Let

K.Z/1 D
²�

A �
0 �

�
W A 2 M2.Z/

³
\ SL3.Z/

and

K.Z/2 D
²�

� �
0 A

�
W A 2 M2.Z/

³
\ SL3.Z/:

Similarly, we define K.Q/i using Q-coefficients as above for i D 1; 2. Recall that
both K.Z/1 and K.Z/2 have infinite relative (T) subgroups, so do not have the
Haagerup property.

Observe the following facts – the first two are immediate.
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Fact 1. hH.Z/; p.12/i D K.Z/1.

Fact 2. hH.Z/; p.23/i D K.Z/2.

(The above facts hold also if we replace integer coefficients by rational coeffi-
cients.)

Fact 3. For any element g 2 H.Q/, p.13/gp.13/ 2 H.Q/p.123/H.Q/ if and only
if g12g23 ¤ 0 and g13 D 0.

This is a straightforward, but lengthy calculation. We include a key element of
it below.

To see that H) holds, write g D
�

x y 0
0 a b
0 0 c

�
. If by ¤ 0, then

p.13/gp.13/ D

0
@

�c 0 0

b a 0

0 y �x

1
A D

0
@

�by=ac �y=a 1

0 1 0

0 0 1

1
A
�1

p.123/

0
@

b a 0

0 y �x

0 0 �x

1
A :

The other implication is easy to see.

Fact 4. For any element g 2 H.Q/, p.132/gp.132/ 2 H.Q/p.123/H.Q/ if and
only if g13 D 0. Similarly p.132/gp.132/ 2 H.Q/p.13/H.Q/ if and only if g13 ¤ 0.

This is again a lengthy calculation. We have for example, keeping g as above
except that we replace g13, i.e. 0 there by z. First, assuming that z D 0,

p.132/gp.132/ D

0
@

b 0 a

c 0 0

z x y

1
A D

0
@

1 �b=c 0

0 1 0

0 0 1

1
A
�1

p.123/

0
@

c 0 0

0 x y

0 0 a

1
A :

Then assuming that z ¤ 0 we have

p.132/gp.132/ D

0
@

1 �b=c 0

0 1 �c=z

0 0 1

1
A
�1

p.13/

0
@

z x y

0 �cx=z �cy=z

0 0 �a

1
A :

Now we are ready to prove that H.Z/ is maximal Haagerup inside SL3.Z/.
Let g 2 SL3.Z/ n H.Z/. Then g 2 H.Q/p�H.Q/ \ SL3.Z/ for some � ¤ id .
We will consider all five possibilities.

Case 1: � D .12/. Then hH.Z/; gi � hH.Q/; gi D hH.Q/; p.12/i D K.Q/1

(by Fact 1).
Hence, H.Z/ ¨ hH.Z/; gi � K.Q/1 \ SL3.Z/ D K.Z/1.
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LetBK.Z/1 denote ¹g 2 K.Z/1W g33 D 1º. It is a subgroup of K.Z/1 of index 2,
isomorphic to Z2 Ì SL2.Z/. Write

AH.Z/ WD H.Z/ \BK.Z/1;

DhH.Z/; gi WD hH.Z/; gi \BK.Z/1:

We can use properties ofZ2ÌSL2.Z/ to observe that AH.Z/ is a maximal Haagerup
subgroup of BK.Z/1 (as upper triangular matrices are a maximal amenable sub-

group of SL2.Z/). Thus it remains to note that we cannot have AH.Z/ D DhH.Z/; gi
by simple index considerations.

Case 2: � D .23/. This can be handled similarly as the first case.

Case 3: � D .123/. This case can be handled by an argument appearing in [55].
Indeed, consider an element g 2 H.Q/p.123/H.Q/. A direct calculation shows
that

g D

0
@

x y z

0 a b

0 0 1
ax

1
A p.123/

0
@

x0 y0 z0

0 a0 b0

0 0 1
a0x0

1
A

D

0
B@

yx0 yy0 C za0 yz0 C zb0 C x
a0x0

ax0 ay0 C ba0 z0a C bb0

0 a0

ax
b0

ax

1
CA

D

0
B@

x
a0x0 yx0 yy0 C za0

0 ax0 ay0 C ba0

0 0 a0

ax

1
CA p.123/

0
B@

1 0 z0

x0 � b0y0

a0x0

0 1 b0

a0

0 0 1

1
CA ;

where a; a0; b; b0; x; x0; y; y0; z; z0z 2 Q are such that ax0 ¤ 0 and a0

ax
¤ 0. Thus

in fact g 2 H.Q/p.123/U� .Q/, where U� .Q/ D ¹g 2 H.Q/W g12 D 0º. Now in [55,
last line in p. 422], it was shown that for such g in fact ŒSL3.Z/ W hg; e1;3.1/i� < 1,
where e1;3.1/ denotes the matrix with 1 on the diagonal and 1 on the (1, 3)-entry.
As e1;3.1/ 2 H.Z/, we see that ŒSL3.Z/ W hH.Z/; gi� < 1.

Case 4: � D .13/. A calculation shows that if g 2 H.Q/p.13/H.Q/, then

g�1 2 H.Q/p.13/H.Q/. Indeed, this is because p�1
.13/

D p.13/

� �1 0 0
0 1 0
0 0 �1

�
.

Write g D Ap.13/B , where A 2 H.Q/ and write B D
�

1 b c
0 1 e
0 0 1

�
2 H.Q/. Note

that here we are using a (finer) Bruhat decomposition as applied in [55]. From

above, we know that g�1 D B�1p.13/

��1 0 0
0 1 0
0 0 �1

�
A�1 2 B�1p.13/H.Q/.
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Now it suffices to show that there exists some X 2 H.Z/ such that

.BXB�1/12 ¤ 0; .BXB�1/23 ¤ 0 and .BXB�1/13 D 0;

as then we can argue that gXg�1 2 H.Q/p.123/H.Q/ by Fact 3 and hence we
can deduce that hH.Z/; gi � hH.Z/; gXg�1i, which does not have the Haagerup
property by Case 3.

If we write X 0 WD BXB�1 we aim to find X 2 H.Z/ such that X 012X 023 ¤ 0

and X 013 D 0. Calculation shows we can just take X D
�

1 n m�m0

0 1 n0

0 0 1

�
, where we

write e D m
n

; b D m0

n0 for m; n; m0; n0 2 Z with nn0 ¤ 0.

Case 5: � D .132/. We can use Fact 4 to reduce this case to one of the previous
two cases. Indeed, for any g 2 H.Q/p.132/H.Q/ \ SL3.Z/, by Fact 4, we know
that g2 2 H.Q/p� 0H.Q/, where � 0 D .13/ or .123/.

Hence hH.Z/; gi � hH.Z/; g2i does not have the Haagerup property. �

The above proposition yields immediately the fact that Z3 Ì H.Z/ is a max-
imal Haagerup subgroup of Z3 Ì SL3.Z/; we state it below and give a second,
completely different proof.

Proposition 2.20. Denote by H.Z/ the subgroup of SL3.Z/ consisting of all
upper-triangular matrices. Then Z3 Ì H.Z/ is a maximal Haagerup subgroup
of Z3 Ì SL3.Z/.

Proof. First note once again that this result is an easy corollary of Proposi-
tion 2.19; below we present an alternative proof.

We begin by introducing some more notations: write � D SL3.Z/, G D
SL3.R/, let P < G be the subgroup of all upper-triangular matrices in G, and
let Q WD ¹g 2 GW g21 D g31 D 0º, Q0 WD ¹g 2 GW g31 D g32 D 0º. Then
ƒ D � \ P and P ¨ Q. Let then H be a subgroup such that ƒ ¨ H � �; we
aim to show that Z3 Ì H is not Haagerup. We will consider two separate cases.

Case 1: there exists a finite index subgroup H0 < H such that H0 < Q\� or

H0 < Q0
\ � . It suffices to consider the case H0 < Q \ �, the other one can be

argued analogously. As Q\� has an index 2 subgroup isomorphic toZ2ÌSL2.Z/,
after passing to this subgroup (so changing H0 to another finite index subgroup
of H ), we see that Z2 Ì ƒ2 < H0 < Z2 Ì SL2.Z/, where ƒ2 < SL2.Z/ is
the maximal amenable subgroup consisting of all upper triangular matrices. If
H0 ¤ Z2 Ì ƒ2, then Proposition 1.7 implies that H0 (so also H ) has relative
property (T) with respect to an infinite subgroup, and H cannot be Haagerup. It
remains to note that if H is strictly larger than ƒ, then ƒ cannot be of finite index
in H . This however follows from [6, Corollary B], where it is shown that ƒ is a
maximal amenable subgroup of SL3.Z/.
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Case 2: no finite index subgroups of H are contained in Q \ � or Q0
\ � .

By [10, Proposition 7], we know that Z3 < Z3 Ì H has relative Property (T) if
and only if there is no H -invariant probability measure on the projective space
X WD P.R3/ WD R3 � ¹0º= �, where .a; b; c/t � .a0; b0; c0/t if the two vectors are
parallel to each other. Denote by � W SL3.R/ � PSL3.R/ D SL3.R/=.R¤0 � I /

the natural quotient map and note that PSL3.R/ acts naturally on X .
As hinted in [10, p. 62], by [70, Corollary 3.2.2] it suffices to check that no

finite index subgroup of �.H/ could fix ŒV �, where V is a subspace of R3 with
dimension 1 or 2 and ŒV � denotes the image of V in X . Suppose then that we
have such a finite index subgroup and a subspace V . Note that ŒV � is invariant
under �.ƒ/. Then either dim V D 1, so that V D .R; 0; 0/t or dimV D 2, so that
V D .R;R; 0/t . In the first situation the stabilizer subgroup of ŒV � in PSL3.R/

is equal to �.Q/. Therefore, H has a finite index subgroup contained in Q \ �,
which contradicts our assumption in Case 2. Similarly in the second situation the
stabilizer subgroup of ŒV � in PSL3.R/ is equal to �.Q0/. Therefore, H has a finite
index subgroup contained in Q0 \ � and we again reach a contradiction. �

3. Maximal Haagerup von Neumann subalgebras

In this section we will present several examples of maximal Haagerup von Neu-
mann subalgebras; in most cases (but not all) the proofs will be based on the
knowledge of the form of all intermediate von Neumann subalgebras. Some re-
sults will be first phrased in a rather general language, but we will always strive to
present concrete examples of the form L.H/ < L.G/, where H is a (neccessarily
maximal Haagerup) subgroup of a non-Haagerup group G.

Maximal Haagerup subalgebras inside L.Z2
Ì SL2.Z//. We begin by the

example where we do not know all the intermediate algebras explicitly.

Theorem 3.1. Suppose that H is an infinite maximal amenable subgroup of
SL2.Z/ such that L.Z2ÌH/ is a factor; for example let H be a maximal amenable
subgroup of SL2.Z/ containing

�
1 1
1 2

�
. Then L.Z2 Ì H/ < L.Z2 Ì SL2.Z// is a

maximal Haagerup subalgebra.

Proof. Consider a von Neumann algebra P such that N < P < M, where N D
L.Z2 Ì H/, M D L.Z2 Ì SL2.Z//. Begin by noting that since SL2.Z/ is
hyperbolic [7, Theorem D] or [6, Theorem A and Corollary B (1)] show that N
is a maximal amenable subalgebra of M. This means in particular that N0\M � N.
Thus, as N is a factor, so is P (as P0 \ P � N

0 \ M D N
0 \ N D C1).

It now remains to use the main theorem of [42], where Ioana showed that when
P is a subfactor of M which contains L.Z2/, then P is either amenable (in which
case it equals N, as discussed above), or the inclusion L.Z2/ < P is rigid, in which
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case P cannot be Haagerup. This ends the proof of the main part of the theorem;
the fact that any maximal amenable subgroup of SL2.Z/ containing

�
1 1
1 2

�
satisfies

the above assumptions follows from Proposition 2.13. �

Examples related to Galois correspondence. The next example is an almost
immediate consequence of the results of [21].

Theorem 3.2. Suppose that G is a group and ƒ is an amenable ICC group. Then
the following conditions are equivalent for a von Neumann algebra P such that
L.ƒ˚G/ < P < L.ƒ o G/:

� P is a maximal Haagerup subalgebra of L.ƒ o G/;

� P D L.ƒ oG H/ for some maximal Haagerup subgroup H < G.

Proof. Consider the Bernoulli action of G on the algebra xN
GR, where R is the

hyperfinite II1-factor, so that R ' L.ƒ/. As the action is strictly outer (see for
example [5, Proposition 4.9]), we can apply [21, Corollary 4] (generalized in [5,
Theorem 5.3]) to deduce that any intermediate von Neumann algebra betweenN

G R and
� xN

GR
�
ÌG is of the form PK WD

� xN
GR

�
ÌK, where K is a subgroup

of G. Now as L.K/ < PK , if PK is Haagerup, then K must be Haagerup. It remains
to note that if K is Haagerup, so is ƒoG K, which is the content of Proposition 2.6.
This ends the proof. �

Concrete instances of the above theorem can be produced for example using
Theorem 2.12.

Extremely rigid actions. The next class of examples comes from actions which
do not admit non-rigid nontrivial quotients. Recall that an action G Õ .X; �/

is called rigid ([64]) if the inclusion of von Neumann algebras L1.X; �/ <

L1.X; �/ Ì G is rigid; as we recalled in Proposition 1.10 unless .X; �/ is not
diffuse, this gives an obstruction to the Haagerup property of L1.X; �/ Ì G.

Definition 3.3. A p.m.p. ergodic action G Õ .X; �/ is said extremely rigid if the
following two conditions are satisfied:

(1) there are no atomic quotient actions of G Õ .X; �/ other than the trivial
action;

(2) all the quotient actions of G Õ .X; �/ are rigid.

We first formulate and prove a general result regarding extremely rigid actions.
Note that very similar methods are used to show maximal injectivity of certain
subalgebras in [18, Corollary 3.6].
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Theorem 3.4. Let ƒ be an ICC group with the Haagerup property and let G Õ

.X; �/ be a p.m.p. ergodic extremely rigid action. Moreover, assume that G has
the Haagerup property. Let N D N̋ GL.ƒ/ and consider the Bernoulli action of G

on N. Then N Ì G < .N N̋ L1.X; �// Ì G is a maximal Haagerup subalgebra.

Proof. First note that NÌ G has the Haagerup property, as NÌ G D L.ƒ o G/ and
ƒ o G has the Haagerup property.

Then, let P be any intermediate von Neumann algebra such that NÌG ¨ P < M,
where M D .N N̋ L1.X; �//ÌG. Then we claim that P does not have the Haagerup
property.

Observe that N < N N̋ L1.X/ is centrally G-free in the sense of [65, Theo-
rem 4.3]. Indeed, by [65, Remark 4.4 (3)] (and using the notation of that paper)
N

! \ .N N̋ L1.X//! D N
! \ .N N̋ L1.X//0 D N

! \ N
0 and hence we just need

to check N � N is centrally G-free, which holds by [65, Example 4.13]. There-
fore, we may apply [65, Theorem 4.6] to conclude that P D A Ì G, where A is
a G-invariant intermediate subalgebra such that N ¨ A < N N̋ L1.X/. Since N
is a finite factor, we deduce that A Š N N̋ B for some G-invariant von Neumann
subalgebra B of L1.X/ by Ge-Kadison’s splitting theorem [35].

Then P D .N N̋ B/ÌG. As the action is assumed to be extremely rigid, P cannot
have the Haagerup property as it contains B Ì G, B is diffuse and the inclusion
B < B Ì G is rigid. �

Let us then discuss an example of an extremely rigid action.

Lemma 3.5. Let G D SL2.Z/. The standard (algebraic) action G Õ cZ2 Š T2

is extremely rigid.

Proof. By [69, Example 5.9] (which is essentially a minor correction of [60,
Theorem 2.3]) we know that every nontrivial quotient of the considered action

is either G Õ bkZ2 or G Õ bkZ2=�, where .x; y/ � .�x; �y/, for some
k � 1. Indeed, although in [69, Example 5.9], it is not stated clearly what is
the subgroup ƒ0 appearing there, as a G-invariant closed discrete subgroup of R2

which contains Z2, ƒ0 D Z2=k for some k � 1. So G Õ ƒ0 nR2 just corresponds

to the algebraic action G Õ bkZ2. Then as explained in [69, Example 5.9], we

can identify G Õ bkZ2=� with G Õ bkZ2=.Z=2Z/, where Z=2Z Õ bkZ2 as
.x; y/ 7! .�x; �y/.

As the inclusion .kZ2 < kZ2 ÌG/ Š .Z2 < Z2 �G/ has relative Property (T),

we know that G Õ bkZ2 is rigid. To see that G Õ bkZ2=� is also rigid, we argue

as follows. Set B D L1.bkZ2=�/, N0 D B Ì G and N D L1.bkZ2/ Ì G. Then, as

B < L1.bkZ2/ < N and the inclusion L1.bkZ2/ < N is rigid as the above shows,
we deduce that the inclusion B < N is also rigid. Moreover, by considering the
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action G � Z=2Z Õ bkZ2 as above, we see that N0 D .L1.bkZ2//Z=2Z Ì G D
N
Z=2Z, hence ŒN W N0� D ŒN W NZ=2Z� < 1. Moreover the inclusion N0 � N is

1
2
-Markov in the sense described in [63]. This can be seen by first identifying T2

with the set
�

� 1
2
; 1

2

�
�

�
� 1

2
; 1

2

�
and then choosing an explicit orthonormal basis

¹1; f º for our inclusion, where f is the function on T2 defined by the formula

f .x; y/ D
´

1 for x C y � 0;

�1 for x C y � 0;
.x; y/ 2 T2:

Thus, we can apply [64, Proposition 4.6.2] to conclude that the inclusion B < N0

is rigid, i.e. the action G Õ bkZ2=� is rigid. �

Corollary 3.6. Let G D SL2.Z/ and let ƒ be an ICC group with the Haagerup
property. Then L.ƒ oG/ < L.ƒ˚G �Z2/ÌG is a maximal Haagerup subalgebra.

Proof. An immediate consequence of Theorem 3.4 and Lemma 3.5. �

Free products and pro-finite actions. The next result is connected to a recent
work of Amrutam ([1], with the appendix by Amrutam and the first-named author)
on intermediate algebras in the C�-context. The proof is motivated by the proof
of [59, Theorem 1.7]. Note that the results of Packer were later generalized (in
particular dropping the assumptions of ergodicity and the existence of a normal
conditional expectation) in [65], using a different method.

Theorem 3.7. Let G Õ .X; �/ be a p.m.p. ergodic action and H < G be a strong
relative ICC group, i.e. #¹hgh�1W h 2 H º D 1 for all g ¤ e in G. Assume that H

acts on X trivially. Then every intermediate von Neumann subalgebra P between
L.G/ and L1.X/ Ì G is of the form P D L1.Y / Ì G for some G-factor Y of X .

Proof. The strong relative ICC assumption implies that G is ICC itself, so that
by ergodicity of the action L1.X/ Ì G is a II1 factor. In particular we have the
trace-preserving normal conditional expectation EW L1.X/ Ì G � P.

As in [59], we just need to check that E.L1.X// � L1.X/. Indeed,
if this holds, then E.L1.X// is a G-invariant von Neumann subalgebra and
E.L1.X// Ì G < P; Moreover, P < E.L1.X// Ì G by applying E to the
Fourier expansion of an element in P. Therefore, P D E.L1.X// Ì G and
E.L1.X// D L1.Y / for some G-factor Y .

To prove E.L1.X// � L1.X/, first observe that for every a 2 L1.X/, and
h 2 H , we have uhE.a/u�1

h
D E.h:a/ D E.a/ as H acts on X trivially. Thus

E.L1.X// � L.H/0 \ .L1.X/ Ì G/. Thus it suffices to show that the strong
relative ICC assumption implies that L.H/0\ .L1.X/ÌG/ D L1.X/. Consider
a 2 L.H/0 \ .L1.X/ Ì G/ and its Fourier expansion a D

P
g2G fgug . Then for

all h 2 H we have uha D auh, which means that fhgh�1 D �h.fg/ D fg for all
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g 2 G. Finally as
P

g2G kfgk2
2 < 1, the relative ICC assumption allows us to

conclude that fg D 0 for all g ¤ e. This implies that E.L1.X// � L1.X/ and
ends the proof. �

Remark 3.8. The above theorem generalizes the one in [1]. Indeed, one just
observes that if H < G is plump in the sense of [1], then it satisfies the
strong relative ICC assumption. Indeed, suppose this is not the case, so that
there exists some g 2 G n ¹eº such that #¹hgh�1W h 2 H º < 1. Enumer-
ate ¹hgh�1W h 2 H º as ¹g1; : : : ; gN º and define a function �W XN ! R�0,
where XN D

®
.t1; : : : ; tN /W t1; : : : ; tN � 0;

PN
iD1 ti D 1

¯
by �.t1; : : : ; tN / D PN

iD1 tiugi

. Clearly, � is continuous. Moreover the fact that H is plump
in G, means that 0 D inft2XN

�.t/. Then, as � is continuous, there is some
t D .t1; : : : ; tN / 2 XN such that �.t/ D 0, i.e.

Pn
iD1 tiugi

D 0. This implies
that ti D 0 for all i D 1; : : : ; N as ug1

; : : : ; ugN
are linearly independent, and

contradicts the fact that t 2 XN .

Corollary 3.9. Consider the action SL2.Z/ � SL2.Z/ Õ Z2 defined by first
factoring onto the first copy of the free product

SL2.Z/ � SL2.Z/
p1�� SL2.Z/ Õ Z2:

Then L.SL2.Z/�SL2.Z// < L.Z2 Ì .SL2.Z/�SL2.Z/// is a maximal Haagerup
subalgebra.

Proof. Note first that the action of SL2.Z/ (so also of SL2.Z/ � SL2.Z/) on T2 is
p.m.p. and ergodic. Let H D Ker.p1/, i.e. the normal subgroup generated by the
second copy of SL2.Z/, so H acts trivially on Z2. Clearly H � SL2.Z/ � SL2.Z/

is a strong relative ICC group. Hence by Theorem 3.7 any von Neumann algebra P
such that L.SL2.Z/ � SL2.Z// < P < L.Z2/ Ì .SL2.Z/ � SL2.Z/// is of the form
E.P/Ì.SL2.Z/�SL2.Z//, where E is the trace preserving conditional expectation
onto L.Z2/. If the subalgebra E.P/ is nontrivial, then, as it is SL2.Z/ invariant,
by Lemma 3.5 the algebra E.P/ Ì SL2.Z/ is not Haagerup, and the inclusion
P � E.P/ Ì SL2.Z/ ends the proof. �

We continue this part by explaining how Theorem 3.7 and its proof can be
used to determine intermediate von Neumann algebras for pro-finite actions of
ICC groups. Begin by noting that the proof of Theorem 3.7 can be adopted to
“localise” the necessary assumptions.

Theorem 3.10. Let ˛W G Õ .X; �/ be a p.m.p. ergodic action. Let A � L1.X/

be a subset such that L1.X/ � span A
k�k2 . Assume further that for each a 2 A

there exists a subgroup Ha � G such that
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(i) ˛ha
.a/ D a for all ha 2 Ha;

(ii) #¹hgh�1W h 2 Haº D 1 for all g ¤ e in G.

Then every intermediate von Neumann subalgebra P between L.G/ and L1.X/Ì

G is of the form P D L1.Y / Ì G, where Y is a G-factor of X .

Proof. The proof follows similarly to the proof of Theorem 3.7. Indeed, observe
that as the conditional expectation E is normal, to show E.L1.X// � L1.X/ it
suffices to prove that E.A/ � L1.X/. Take then any a 2 A. By assumption (i) we
know that E.a/ 2 L.Ha/0 \ .L1.X/ Ì G/. Then assumption (ii) on Ha implies,
as before, that L.Ha/0 \ .L1.X/ Ì G/ � L1.X/. �

Corollary 3.11. Let G be a residually finite ICC group G, and let ¹Gnºn2N be a
decreasing sequence of normal subgroups of G with trivial intersection. Suppose
that

G Õ X WD lim
 �

.G=Gn; �n/

is a profinite action. Then every von Neumann algebra P such that L.G/ < P <

L1.X/ Ì G is of the form P D L1.Y / Ì G where Y is a G-factor of X .

Proof. Take A D ¹1gGn
W n � 1; g 2 Gº. The fact that the span of A is k � k2 dense

in L1.X/ follows from the definition of a profinite action. For any n � 1; g 2 G

and a D 1gGn
, let Ha D Gn. Then for any n 2 N and g ¤ e in G we have,

denoting by CH .g/ the centralizer of g inside H , #¹hgh�1W h 2 Gnº D ŒGn W
CGn

.g/� D ŒG W CGn
.g/�=ŒG W Gn� � ŒG W CG.g/�=ŒG W Gn� D 1, as G is

assumed to be ICC. This means that we can apply Theorem 3.10. �

The above result can be generalised from profinite actions to arbitrary compact
actions, as we were kindly informed by Rémi Boutonnet. After this work was
completed, we learned that Chifan and Das proved a more general version of the
above corollary, see [18, Theorem 3.10], and used it, together with other results,
to characterise intermediate finite index subfactors for the inclusion L.�/ <

L1.X/ Ì � for a free ergodic p.m.p. action, and to provide an alternative proof of
a version of Ioana’s orbit equivalence superrigidity result [43, Theorem A].

Examples coming from roughly normal subgroups. The next class of exam-
ples is related to what we call roughly normal subgroups and uses a variation on
the work on intermediate operator algebras due to Cameron and Smith ([12]). It
is worth mentioning that in the von Neumann algebraic context ideas similar to
these below occur already in [39].

If H < G is an infinite subgroup then we call H roughly normal if for every
g 2 G the set H \ g�1Hg is infinite. A word of warning is in place: some
authors call such subgroups almost normal, but it seems that in the group theoretic
terminology the latter usually means a subgroup with finitely many conjugate
subgroups – and the two notions are not related.
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Lemma 3.12. Let H � G be a roughly normal subgroup and let G
�
Õ .X; �/ be

a free mixing p.m.p. action. Suppose that P is a von Neumann algebra such that
L1.X/ Ì H < P < L1.X/ Ì G. Then P D L1.X/ Ì K for some group K with
H < K < G.

Proof. This is essentially a corollary of [12, Theorem 3.3]. For completeness, we
sketch the proof in our setting.

Let EW L1.X/ Ì G � P be a faithful normal conditional expectation. Notice
that for every g 2 G we have u�gE.ug / 2 L1.X/0\.L1.X/ÌG/ D L1.X/ as the
action is free. We may thus write E.ug / D zgug for some zg 2 L1.X/. Clearly,
zh D 1 for all h 2 H . Therefore (see [12]) P D spanw�¹L1.X/zgug W g 2 Gº.

Now we show that zg are projections and moreover zg�g.zh/ D zgzgh,
zg�1 D �g�1.z�g/ and ze D 1 for all g; h 2 G. Indeed, since zg�1ug�1 D
E.ug�1 / D E.ug /� D .zgug/� D �g�1.z�g/ug�1 , we get �g�1.z�g/ D zg�1 .
Further note that zgzghugh D E.zgugh/ D E.E.ug /uh/ D E.ug /E.uh/ D
zgugzhuh D zg�g.zh/ugh, hence zgzgh D zg�g.zh/. Taking h D e, we deduce
that z2

g D zg 2 L1.X/, hence zg is an orthogonal projection.
Define K D ¹g 2 GW zg D 1º. Clearly, K is a subgroup of G containing H .

Take then any g 2 G n K. As H is roughly normal in G, there exist infinitely
many distinct hn 2 H such that h0n WD ghng�1 2 H . Since zhn

D 1, we get
�hn

.zg�1/ D zhng�1 D zg�1h0

n
� zg�1 , where the last inequality holds since

zg�1zg�1h0

n
D zg�1�g�1.zh0

n
/ D zg�1 : As G Õ X is mixing and zg�1 ¤ 1, we

deduce that zg�1 D 0. This means that P D spanw�¹L1.X/ug W g 2 Kº, which
ends the proof. �

An extension of the above argument yields the next theorem.

Theorem 3.13. Let G D Z2 Ì SL2.Z/ and H D Z2 Ì C , where C < SL2.Z/ is
a maximal amenable subgroup. Let � W G Õ .X; �/ be a free p.m.p. action such
that � jZ2 is ergodic. Then L1.X/ Ì H < L1.X/ Ì G is a maximal Haagerup
subalgebra.

Proof. Notice first that H is a roughly normal subgroup of G. Since the action
is not assumed to be mixing, we cannot apply Lemma 3.12 directly. If we
however follow its proof, and use the properties of our groups, we see that for
any g 2 G n K � G n H (with K defined as in that proof ) and any h 2 Z2 we
have h0 D ghg�1 2 H and deduce that �h.zg�1/ � zg�1 . This means that actually
�h.zg�1/ D zg�1 for all h 2 Z2. Since � jZ2 is ergodic and zg�1 ¤ 1, we deduce
again that zg�1 D 0. Hence every intermediate von Neumann subalgebra must be
of the form L1.X/ Ì K for a subgroup K of Z2 Ì SL2.Z/ containing H . Now
Theorem 2.12 ends the proof. �

We can now present concrete examples of the above situation.
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Corollary 3.14. Let G D Z2 ÌSL2.Z/ and H D Z2 ÌC , where C < SL2.Z/ is a
maximal amenable subgroup. Let � be the classical Bernoulli shift G Õ TG or a
generalized Bernoulli shift G Õ TZ

2

induced by the affine action G Õ Z2. Then
� is free and � jZ2 is ergodic; hence L1.X/ Ì H < L1.X/ Ì G is a maximal
Haagerup subalgebra. In particular for example L.Z oG H/ < L.Z o G/ is a
maximal Haagerup subalgebra.

Note that the generalized Bernoulli shift action is not mixing as .1; 0/ 2 Z2

has infinite stabilizer subgroup in G.

Questions of Ge. The following natural definition of a maximal von Neumann
subalgebra was introduced by Ge [34].

Definition 3.15. Let M be a von Neumann algebra and N be a von Neumann
subalgebra. We say N is a maximal von Neumann subalgebra of M if for any von
Neumann subalgebra P of M with N � P, either N D P or P D M.

In [34, Section 3, Question 2] Ge asked the following questions.

Question 3.16. Can a non-hyperfinite factor of type II1 have a hyperfinite factor
as a maximal von Neumann subalgebra? Can a maximal von Neumann subalgebra
of the hyperfinite factor of type II1 be a subfactor of an infinite Jones index?

We will now show how the knowledge of intermediate von Neumann algebras
quoted and developed in this section gives positive answers to both of the above.
We begin with a lemma regarding properties of upper-triangular matrices inside
SL2.Q/. Recall that the notion of a roughly normal subgroup was introduced
before Lemma 3.12.

Lemma 3.17. Let G D SL2.Q/ and let H denote the upper-triangular matrices
in SL2.Q/. Then H is a maximal subgroup in G; moreover H is amenable and
roughly normal in G.

Proof. Put s D
�

0 �1
1 0

�
. Suppose that g 2 G n H and write g D

�
a b
c d

�
, where

a; b; c; d 2 Q, c ¤ 0. Then

g D
�

1 a=c

0 1

��
0 �1

1 0

��
c d

0 1=c

�
:

This means that G D H t HsH , so that H is a maximal subgroup. As H is
solvable, it is amenable. Finally the set

²�
x 0

0 1=x

�
W x 2 Q; x ¤ 0

³

is infinite and contained in sHs�1 \ H , so that H is roughly normal in G. �



Maximal subgroups and von Neumann subalgebras with the Haagerup property 881

Proposition 3.18. Let G D SL2.Q/, let H denote the upper-triangular matrices
in SL2.Q/ and let ƒ be an amenable ICC group. The following factor inclusions
have the property that the smaller factor is an amenable maximal subalgebra of
the larger one:

(1) L.ƒ oG H/ < L.ƒ o G/;

(2) L.Z oG H/ < L.Z o G/.

Proof. All the groups in sight are ICC. By Lemma 3.17, the smaller ones are
amenable. The larger ones are non-amenable as G is not amenable. To see that all
the intermediate von Neumann algebras must come from intermediate subgroups
between H and G in the first case we can apply [21, Corollary 4] exactly as was
done in the proof of Theorem 3.2, and in the second case appeal to Lemma 3.12.
Another application of Lemma 3.17 ends the proof. �

For the second part of Question 3.16 the positive answer was given already
by Suzuki in [65, Example 4.14]; we recall again Suzuki’s example and present
another one, using only group von Neumann algebras.

Recall that a p.m.p. action Z Õ X is called prime if it has no nontrivial
proper factors. For existence of such actions (e.g. a Chac̀on system), see [36,
Theorem 16.6]. The result below follows as in the proof of Theorem 3.2.

Proposition 3.19 ([65]). Let ƒ be an ICC amenable group. If Z Õ X is a prime
action, then the following infinite index inclusion of amenable factors is such that
the smaller factor is a maximal von Neumann subalgebra of the larger one:

L.ƒ o Z/ < .L.ƒ˚Z/ ˝ L1.X// Ì Z:

To present the second example, we need some preparations. The so-called
Houghton groups were introduced in [41]. Let us recall their definition, follow-
ing [28, Example 3.6].

Fix an integer n 2 N and set �n D N � ¹1; : : : ; nº. We may think of �n

as the disjoint union of n copies N1; : : : ;Nn of N. The Houghton group Gn is
the group of all permutations � of �n such that, for each i 2 ¹1; : : : ; nº the set
�.Ni /�Ni is finite, and � is eventually a translation on Ni , i.e. there exist an n-
tuple .m1; : : : ; mn/ 2 Zn and a finite set K� � �n such that �.k; i/ D .k C mi ; i /

for all .k; i/ 2 �n n K� . It is easy to see that the action of Gn on �n is transitive.
Note that G1 D S1.

Proposition 3.20. Let n 2 N, and let Gn denote the corresponding Houghton
group acting on �n as above, let Hn denote the stabilizer group of a point in
�n and let ƒ be an ICC amenable group. The following infinite index inclusion
of amenable factors is such that the smaller factor is a maximal von Neumann
subalgebra of the larger one:

L.ƒ oGn
Hn/ < L.ƒ o Gn/:
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Proof. Let n 2 N. As explained in [28, Example 3.6], Gn is elementary amenable.
Moreover, the action of Gn on �n is k-transitive for all k 2 N. Taking k D 2

we see that the diagonal action Gn Õ �n � �n has two orbits; equivalently,
jHn=GnnHnj D 2. Hence Hn is a maximal subgroup of Gn. It has infinite index,
as Gn Õ �n is transitive and �n is an infinite set. The conclusion follows once
again by [21, Corollary 4], as in the proof of Theorem 3.2. �

4. Maximal (T) and non-(T) subgroups and subalgebras

In this short section we discuss some facts concerning maximal non-(T) – and
also (T) – subgroups and subalgebras.

Explicit maximal non-(T) subgroups in groups with Property (T). Variations
of the example to be described below were studied for example in [46, 31].

Proposition 4.1. Consider the group

G D

8
<
:

0
@

1 b c

0 A d

0 0 1

1
A W A 2 SL3.Z/; b 2 Z1�3; c 2 Z; d 2 Z3�1

9
=
; :

and its subgroup

H D

8
<
:

0
@

1 0 c

0 A d

0 0 1

1
A W A 2 SL3.Z/; c 2 Z; d 2 Z3�1

9
=
; :

Then H is a maximal non-(T) subgroup inside G.

Proof. Note first that the fact that G is a Kazhdan group is observed in [29]. If we
consider

K WD

8
<
:

0
@

1 0 0

0 A d

0 0 1

1
A W A 2 SL3.Z/; d 2 Z3�1

9
=
; ;

then a direct computation shows that K is a normal subgroup of H and H=K Š Z.
Hence H is non-(T), as it admits a non-(T) quotient.

We will now show that for any g 2 G n H the subgroup hH; gi has finite index
in G (and hence has Property (T); and so does any subgroup of G containing
hH; gi).

Consider the normal subgroup N of G given by

N D

8
<
:

0
@

1 0 c

0 I d

0 0 1

1
A W c 2 Z; d 2 Z3�1

9
=
; :
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We have naturally N � H , so that it suffices to show that hH; gi=N has finite
index in G=N . This however allows us to reduce the dimension. Put

zH D
²�

1 0

0 A

�
W A 2 SL3.Z/

³
;

Qg D
�

1 b

0 I

�
;

where 0 ¤ b D n.b1; b2; b3/ with b1; b2; b3; n 2 Z, n ¤ 0, gcd.b1; b2; b3/ D 1. It

suffices to show that the subgroup h zH; Qgi is of finite index in zG D
�

1 Z
1�3

0 SL3.Z/

�
:

But zG Š Z3ÌSL3.Z/ and zH is identified as the copy of SL3.Z/ inZ3ÌSL3.Z/,
thus, for any Qg 2 zG n zH , we must have h zH; Qgi Š nZ3 Ì SL3.Z/ for some n ¤ 0,
so that h zH; Qgi has finite index in Z3 Ì SL3.Z/. �

In fact, another example of similar nature may be deduced from the results
in [55] and [68], as kindly communicated to us by Chen Meiri.

Proposition 4.2. Let n � 3 and define

zH WD
²�

A B

0 C

�
W A 2 GL2.Z/; B 2 M2�.n�2/.Z/; C 2 GLn�2.Z/

³

and

H WD zH \ SLn.Z/:

Then H (resp. zH ) is a maximal non-(T) subgroup in SLn.Z/ (resp. GLn.Z/).

Proof. Assume we have proved H is a maximal non-(T) subgroup in SLn.Z/;
then zH is also a maximal non-(T) subgroup in GLn.Z/. Indeed, zH is non-(T)
as Œ zH W H� D 2. Moreover, if zH Œ zK < GLn.Z/, then one must have
H Œ zK \ SLn.Z/ by index considerations. Hence zK \ SLn.Z/ has (T), which
implies zK has property (T) as Œ zK W zK \ SLn.Z/� D 2. So we only deal with H

below.
Note first that H does not have Property (T) since it has a quotient isomorphic

to GL2.Z/, which does not have Property (T).
We will first give a proof in a special case of n D 3, where it is fully elementary.

Let then g 2 SL3.Z/; g 62 H . Multiplying g by elements of H and using basic
number-theoretic properties one can first reduce the situation to the case where
g31 D 0 (so that g32 ¤ 0) and then in addition to the case where also g21 ¤ 0.

Thus g D
� � � �

a1 � �
0 a2 �

�
with a1a2 ¤ 0. Now the proof of [55, Theorem 2] shows

that ŒSL3.Z/ W hg; Id Ce1;3i� < 1, where e1;3 denotes the matrix unit with 1 at
the .1; 3/-entry. Hence ŒSL3.Z/ W hH; gi� < 1 as Id Ce1;3 2 H , and hH; gi (as
well as any subgroup containing it) must have Property (T).
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Consider then the general case. The group H consists of the integral points of
a maximal parabolic subgroup of SLn.Q/ (see for example the discussion in [54,
pp. 86–87]). Thus, if g 2 SLn.Z/ n H , then hH; gi is Zariski-dense in SLn.Z/. It
is easy to see that H admits two unipotent elements which generate a copy of Z2.
It then follows from Venkataramana’s result [68, Theorem 3.7] that hH; gi is of
finite index in SL3.Z/ and thus has property (T). �

Maximal (T) and non-(T)-subalgebras. As we saw in Proposition 1.4, it is very
easy to show that maximal non-(T) groups exist. We do not know how to extend
this result to general von Neumann algebras, but below we record one special
case. For the notions related to the von Neumann algebraic Property (T) and to
the relative Property (T) we refer again to [64].

Proposition 4.3. Let M be a II1 factor and N < M be a non-(T) von Neumann
subalgebra, which is irreducible, i.e. N0\M D C. If M has property (T), then there
is a maximal non-(T) von Neumann subalgebra P such that N < P < M.

Proof. Consider the class of non-(T) von Neumann subalgebras of M which con-
tain N, as usual partially ordered by inclusion. To conclude the proof via the
Kuratowski–Zorn lemma it suffices to show that for any ascending chain .Ni /i2I in
the class, the von Neumann algebra N1 WD

� S
i2I Ni

�00
is in the class. As we are

working inside a II1-factor we may assume that the index set is countable. Note
that N1 is a factor and N0i \ M D C for each i 2 I, since N is assumed to be irre-
ducible. Suppose that N1 has Property (T). Then [62, Theorem 4.4.1] implies that
N1 D Ni for some i 2 I, which yields a contradiction. This ends the proof. �

As noted before Proposition 1.4 one cannot expect a general result of this type
for Property (T). Having said that, using free products and one can exhibit explicit
examples of maximal Property (T) subgroups/subalgebras.

Proposition 4.4. Let M;N be type II1 factors. If M has Property (T), then M <

M � N is a maximal rigid embedding, i.e. if P is any von Neumann algebra with
M < P < M � N and P < M � N is a rigid embedding, then P D M. In particular M
is a maximal (T) von Neumann subalgebra in M � N.

Proof. It suffices to prove the first part since if a von Neumann subalgebra P <

M ? N has Property (T), then P < M � N is a rigid embedding.
If M < P and P < M � N is a rigid embedding, then P is diffuse since M

is diffuse. By [45, Theorem 5.1] (taking B D C D M0 there), there exists
a unique pair of projections q1; q2 2 P

0 \ .M � N/ such that q1 C q2 D 1,
u1.Pq1/u�1 � M and u2.Pq2/u�2 � N for some unitary elements u1; u2 2 M � N.
Since P0 \ .M � N/ < M

0 \ .M � N/ D M
0 \ M D C, either .q1; q2/ D .0; 1/ or

.q1; q2/ D .1; 0/. If .q1; q2/ D .0; 1/, then u2Pu�2 < N and hence u2Mu�2 < N.
Then by [45, Theorem 1.1] it follows that u D 0, which is a contradiction. Thus
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.q1; q2/ D .1; 0/ and u1Mu�1 < u1Pu�1 < M. Again, by [45, Theorem 1.1] it follows
that u�1 2 L2.M/, hence u�1 2 M. Now, M < P < u�1Mu1 D M, i.e. M D P. �

Corollary 4.5. Suppose that G; H are ICC groups and G has Property (T). Then
G is a maximal Property (T) subgroup of G � H .

Proof. Immediate from the last proposition. �

We finish the section by exhibiting a concrete example of a maximal non-(T)
von Neumann subalgebra inside the II1 factor with Property (T), based on recent
results of Kaluba, Nowak, and Ozawa [51] and Kaluba, Kielak, and Nowak [50],
together with Proposition 4.2. In the first version of our paper we asked for such
explicit examples: and Chifan, Das and Khan showed later in [19], independently
of our construction below, that they can be obtained with the help of the group-
theoretic Rips construction.

Once again we begin by some group-theoretic observations.

Lemma 4.6. Let n 2 N, n � 2. Then Inn.Fn/ is relative ICC in Aut.Fn/, i.e.
#¹s�s�1W s 2 Inn.Fn/º D 1 for all id ¤ � 2 Aut.Fn/.

Proof. Take any nontrivial � 2 Aut.Fn/. Write Fix.�/ D ¹g 2 FnW �.g/ D gº.
We claim first that ŒFn W Fix.�/� D 1. Indeed, suppose this is not the case

and say ŒFn W Fix.�/� D k 2 N. Then for any nontrivial element g 2 Fn,
�.g/k D gk . Fix such an element and note that the subgroup h�.g/; gi is
a free group, isomorphic either to Z or to F2 (since the minimal number of
generators for the free group Fm is m). Clearly, h�.g/; gi 6Š F2; otherwise,
�.g/ and g would have to be free, which contradicts the above relation. Therefore
h�.g/; gi Š Z D hsi, so that �.g/ D sa; g D sb for some nonzero a; b 2 Z. Then
sak�bk D e, so a D b, i.e. �.g/ D g. As g was arbitrary, � must be trivial and we
have reached a contradiction.

We can thus find an infinite sequence of elements gi 2 Fn such that gi Fix.�/\
gj Fix.�/ D ; for all i; j 2 N; i ¤ j . To finish the proof it suffices to check that
Ad.gi / ı � ı Ad.g�1

i / ¤ Ad.gj / ı � ı Ad.g�1
j / for all i; j 2 N; i ¤ j .

One can check that if x 2 G then Ad.gi / ı � ı Ad.g�1
i /.x/ D .Ad.gj / ı � ı

Ad.g�1
j /.x/ if and only if �.gj /g�1

j gi�.g�1
i / commutes with �.x/. Hence, as �

is an automorphism, if Ad.gi / ı � ı Ad.g�1
i / D Ad.gj / ı � ı Ad.g�1

j /, then

�.gj /g�1
j gi�.g�1

i / D e;

i.e. g�1
j gi 2 Fix.�/, This contradicts the conditions imposed earlier on the

elements gi . �

Let n 2 N. The group Out.Fn/ acts naturally on Fn=ŒFn;Fn� Š Zn, which
induces a group homomorphism

�W Out.Fn/ �! GLn.Z/ WD G:
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Moreover, we have a short exact sequence

0 �! Inn.Fn/ Š Fn �! Aut.Fn/
��! Out.Fn/ ! 0:

Lemma 4.7. Let n 2 N; n � 5, and let H0 WD ��1. zH/ < Out.Fn/, where

zH WD
²�

A B

0 C

�
W A 2 GL2.Z/; C 2 GLn�2.Z/; B 2 M2;n�2.Z/

³
:

Then H0 is a maximal non-(T) subgroup in Out.Fn/ with the extra property that
ŒOut.Fn/ W hH0; gi� < 1 for all g 2 Out.Fn/nH0. Further ��1.H0/ is a maximal
non-(T) subgroup of Aut.Fn/.

Proof. It follows from Proposition 4.2 and its proof that H WD zH \ SLn.Z/ is
a maximal non-(T) subgroup of SLn.Z/ with the extra property that ŒSLn.Z/ W
hH; gi� < 1 for all g 2 SLn.Z/ n H . Clearly, this also implies ŒGLn.Z/ W
h zH; gi� < 1 for all g 2 GLn.Z/ n zH .

As Property (T) passes to quotients, we deduce that H0 is non-(T).
Let then H0 Œ K Œ Out.Fn/ be any group. Then it is easy to check that

zH Œ �.K/ Œ G as Ker.�/ � H0. We know that ŒG W �.K/� < 1; therefore,
ŒOut.Fn/ W K� � Œ�.Out.Fn// W �.K/� � ŒG W �.K/� < 1 (as Ker.�/ � K im-
plies that ��1.�.K// D K). Thus K has Property (T) as Out.Fn/ has Property (T)
for all n � 5 by [50] and [51].

The second statement follows in a very similar way. �

Proposition 4.8. Let n 2 N; n � 5 and let  W Aut.Fn/ ! GLn.Z/ be the
homomorphism obtained by the composition of � W Aut.Fn/ ! Out.Fn/ and
�W Out.Fn/ ! GLn.Z/ (see the discussion before Lemma 4.7). Further let
zH < GLn.Z/ be the subgroup defined in Lemma 4.7. Then L.�1. zH// is a

maximal non-(T) von Neumann subalgebra inside L.Aut.Fn// (where the latter is
a II1 factor with Property (T)).

Proof. By Lemma 4.6 we know that Inn.Fn/ is relative ICC in � D Aut.Fn/,
so that L.Inn.Fn//0 \ L.Aut.Fn// D C1 and every intermediate von Neumann
subalgebra between L.Inn.Fn// and L.Aut.Fn// is a subfactor. As Inn.Fn/ is
also normal in Aut.Fn/, [18, Corollary 3.8 (2)] implies that every intermediate
subfactor between L.Inn.Fn// and L.Aut.Fn// is of the form L.K/ for some
intermediate subgroup Inn.Fn/ � K � Aut.Fn/. Lemma 4.7 ends the proof. �

5. Open problems

We finish the article by listing certain open problems regarding the maximal
Haagerup subgroups and subalgebras, accompanied by brief comments on what
we know about them so far.
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Problem 5.1. Find an example of a maximal Haagerup subgroup H < G such
that L.H/ is not a maximal Haagerup subalgebra inside L.G/.

For amenability the relevant examples were produced for example in [6]. We
believe that a suitable candidate is given by the pair of groups considered in
Proposition 2.8, although it is not clear whether one can find a Bernoulli factor of
the corresponding algebraic action.

In the first version of this paper we asked whether one can find a non-Haagerup
group G such that Zn .n � 1/ is a maximal Haagerup subgroup of G or show that
no such example exists. Note that our results include examples of amenable and
maximal Haagerup subgroups inside non-Haagerup groups. On the other hand,
observe that if Z can be realised as a maximal Haagerup subgroup inside a non-
Haagerup group G, then G does not have property Pnaï as introduced in [3] and
it admits an infinite cyclic or trivial Haagerup (hence also amenable) radical. As
was pointed to us by Dan Ursu, the examples where Z is a maximal Haagerup
group in a Property (T) group are provided by “torsion-free Tarski monsters,” as
constructed in [58]. Indeed, Corollary 1 of that paper shows that any non-cyclic
torsion free hyperbolic group (of which there are Property (T) examples) admits
a non-abelian torsion free quotient whose all non-trivial subgroups are cyclic.

Problem 5.2. Prove that L.SL2.Z// is a maximal Haagerup subalgebra of L.Z2 Ì

SL2.Z// and more generally L. yAG ÌG/ is a maximal Haagerup subalgebra inside
L.. yAG ˚ Z2/ Ì G/, where G D SL2.Z/ and A is any finite abelian group.

To attack the second problem mentioned above, following the proof of Theo-
rem 3.4, one may need to describe all intermediate factors G Õ X such that there

exist G-equivariant p.m.p. maps ˛, ˇWT2 � AG ˛! X
ˇ! AG with ˇ ı ˛ D projAG .

Problem 5.3. Determine all maximal Haagerup subgroups inside SL3.Z/.

This is naturally related to Proposition 2.19, Proposition 4.2, and Proposi-
tion 4.8.

Problem 5.4. Find an explicit example of a maximal non-(T) subalgebra in
L.SLn�3.Z//.

Here of course one could also ask specifically about the subgroups from
Propositions 4.1 and 4.2.

Problem 5.5. Find explicit and natural examples of maximal Haagerup von Neu-
mann subalgebras of type III.

Here the situation seems to be completely open, in a sense that no natural
obstructions to the Haagerup property seem to be known beyond the context of
finite von Neumann algebras.
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