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Convexity of balls in outer space
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Abstract. In this paper we study the convexity properties of geodesics and balls in Outer

space equipped with the Lipschitz metric. We introduce a class of geodesics called balanced

folding paths and show that, for every loop ˛, the length of ˛ along a balanced folding path

is not larger than the maximum of its lengths at the endpoints. This implies that out-going

balls are weakly convex. We then show that these results are sharp by providing several

counterexamples.
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1. Introduction

Let Out.Fn/ be the group of outer automorphisms of a free group of rank n, and

let Outer space CVn be the space of marked metric graphs of rank n. The Outer

space, which is a simplicial complex with an Out.Fn/ action, was introduced by

Culler and Vogtmann [6] to study Out.Fn/ as an analogue of the action of mapping

class group on Teichmüller space or the action of a lattice on a symmetric space.

The Outer space can be equipped with a natural asymmetric metric, namely the

https://creativecommons.org/licenses/by/4.0/
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Lipschitz metric. For points x; y 2 CVn,

d.x; y/ D inf
�

log.L�/

where �W x ! y is a difference of markings map from x to y and and L� is

the Lipschitz constant of the map �. The geometry of CVn equipped with the

Lipschitz metric is closely related to the large scale geometry of Out.Fn/ and has

been the subject of extensive study (see for example, [16, 1, 3]).

In this paper, we examine the convexity properties of geodesics and balls in

CVn. However, we need to be careful with our definitions since the metric d is

asymmetric (the ratio of d.x; y/ and d.y; x/ can be arbitrarily large [2]) and there

may be many geodesics connecting two points in CVn. We introduce the notion

of a balanced folding path along which we have more control over the lengths

of loops. Recall that, a geodesic in CVn (not necessarily parametrized with unit

speed) is an injective continuous map 
 W Œa; b� ! CVn. For a � t � b, let

x D 
.a/ and y D 
.b/, we have

d.x; 
.t//C d.
.t/; y/ D d.x; y/:

We often denote the image of 
 by Œx; y�. The length of a loop ˛ in a graph x is

denoted by j˛jx and we use j˛jt to denote the length of ˛ at 
.t/. The balanced

folding paths from x to y is denoted by Œx; y�bf . We show that, lengths of loops

along a balanced folding path satisfy a weak notion of convexity.

Theorem 1.1. Given points x; y 2 CVn, there exists a geodesic Œx; y�bf from x to

y so that, for every loop ˛, and every time t ,

j˛jt � max.j˛jx; j˛jy/:

The proof of this theorem is by construction. We then apply Theorem 1.1 to

the convexity of balls. There are two different notions of a round ball in CVn. For

x 2 CVn and R > 0, we define the out-going ball of radius R centered at x to be

Bout.x; R/ D ¹y 2 CVn j d.x; y/ � Rº:

As an immediate corollary of Theorem 1.1 we have

Theorem 1.2. Given a point x 2 CVn, a radius R > 0 and points y; z 2
Bout.x; R/,

Œy; z�bf � Bout.x; R/:

That is, the ball Bout.x; R/ is weakly convex.

Corollary 1.3. The intersection of any number of out-going balls is connected.

Proof. The same balanced folding path is contained in all balls. �
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We will also show that these theorems are sharp in various ways by providing

examples of how possible stronger statements fail. There are other ways to

choose a geodesic connecting y to z, for example, a standard geodesic which is a

concatenation of a rescaling of the edges and a greedy folding path (see Section 2

for definitions). In fact, when there is a greedy folding path connecting y to z,

Dowdall and Taylor [7, Corollary 3.3] following Bestvina and Feighn [4, Lemma

4.4] have shown that the lengths of loops are quasi-convex. However, we will show

that these paths do not satisfy the conclusion of Theorem 1.1 and a standard path

or a greedy folding path with endpoints in Bout.x; R/ may leave the ball. Here is

a summary of our counter-examples.

Theorem 1.4. Theorems 1.1 and 1.2 are sharp.

(1) Lengths cannot be made convex. There are points x; y 2 CVn and a loop ˛

so that along any geodesic connecting x to y, the length of ˛ is not a convex

function of distance in CVn.

(2) The ball Bout is not quasi-convex. This is true even when one restricts

attention to (non-greedy)-folding paths. Namely, for any R > 0, there are

points x; y; z 2 CVn and there is a folding path Œy; z�ng connecting y to z so

that

y; z 2 Bout.x; 2/ and Œy; z�ng 6� Bout.x; R/:

That is, a folding path with endpoints in Bout.x; 2/ can travel arbitrarily far

away from x.

(3) Standard geodesics could behave very badly. There exists a constant c > 0

such that, for every R > 0, there are points x; y; z 2 CVn and a standard

geodesic Œy; z�std connecting y to z such that

y; z 2 Bout.x; R/ and Œy; z�std 6� Bout.x; 2R � c/:

That is, the standard geodesic path can travel nearly twice as far from x as

y and z are from x.

(4) Greedy folding paths may not stay in the ball. For every R > 0, there

are points x; y; z 2 CVn, n � 6, where y and z are connected by a greedy

folding path Œy; z�gf such that

y; z 2 Bout.x; R/ but Œy; z�gf 6� Bout.x; R/:

Construction of a balanced folding path. Given an optimal difference of mark-

ings map �W x ! y where the tension graph is the whole x, there are many folding

paths connecting x to y. We need a controlled and flexible way to construct a fold-

ing path between x to y. To this end, we introduce a notion of a speed assignment

(see Section 2.4) which describes how fast every illegal turn in x folds. Given

a speed assignment, one can write a concrete formula for the rate of change of



896 Y. Qing and K. Rafi

the length of a loop ˛ (Lemma 3.2). To prove Theorem 1.1, we need to find a

speed assignment so that, whenever j˛jy < j˛jx , the derivative of the length of ˛

is negative and if j˛jy > j˛jx the length ˛ does not grow too fast.

A difference of markings map �W x ! y (again assuming the tension graph

is the whole x) can be decomposed to a quotient map N�W x ! Ny which is a local

isometry and a scaling map Ny ! y. Our approach is to determine the contribution

`� of every sub-gate � in x to the length loss from x to Ny. For an easy example,

consider F3 D ha; b; ci, let x be a rose with 3 pedals where the edges are labeled

ac2, bc and c and the edge lengths are 1
2
, 1
3

and 1
6

and let Ny be the rose with labels

a, b and c and edges lengths all 1
6
. Then Ny is obtained from x by wrapping ac2

around c twice and bc around c once. The length loss going from x to Ny is

jxj � j Nyj D 1�
1

2
D
1

2
:

Here, the sub-gate hbc; ci is contributing 1
6

to the length loss and the sub-gate

hac2; ci is contributing 2� 1
6

to the length loss. Of course, in general, the definition

of length loss contribution needs to be much more subtle.

These length loss contributions are then used to determine the appropriate

speed assignment. That is, we fold each sub-gates proportional to the length loss

they eventually induce (see Section 3). For instance, in the above example, the

sub-gate hac2; ci should be folded with twice the speed of the sub-gate hbc; ci.

Decorated difference of markings map. If the tension graph of �W x ! y is a

proper subset of x, there is no folding path between x to y. As we see in part (3) of

Theorem 1.4, standard paths are not suitable for our purposes. Instead, we emulate

a folding path even in this case. Namely, we introduce a decorated difference of

markings map. That is, by adding decoration to x and y (marked points are added

to x and some hair are added to y), we can ensure that the difference of markings

map is tight. Then, we show, a folding path can be defined as before and the

discussion above carries through (see Section 4).

A criterion for the uniqueness of geodesics. To prove part one of Theorem 1.4

and Theorem 1.6 below, we need to know what all the geodesics connecting x to

y are accounted for. In general this is hard to characterize. Instead, we focus on a

case where there is a unique geodesic connecting x to y. It is not hard to prove the

uniqueness of geodesic in special cases, however, we prove a general statement

giving a criterion for uniqueness. A yo-yo is an illegal turn formed by a one-edge

loop and a second edge, with no other edges incident to the vertex of this illegal

turn. We say a folding path from x to y is rigid if at every point along the path

there is exactly one illegal turn and it is not a yo-yo.
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Theorem 1.5. For points x; y 2 CVn, the geodesic from x and y is unique (up

to reparametrization) if and only if there exists a rigid folding path connecting x

to y.

The in-coming balls. In the last section we examine the convexity of in-coming

balls. For x 2 CVn and R > 0, we define the in-coming ball of radius R centered

at x to be

Bin.x; R/ D ¹y 2 CVn j d.y; x/ � Rº:

We show that a ball Bin.x; R/, in general, is not even weakly quasi-convex.

Theorem 1.6. For any constant R > 0, there are points x; y; z 2 CVn such that,

y; z 2 Bin.x; 2/ but, for any geodesic Œy; z� connecting y to z,

Œy; z� 6� Bin.x; R/:

Once again we use Theorem 1.5; we construct an example where there is a

unique geodesic between y and z and show that it can go arbitrarily far out.

Analogies with Teichmüller space. The problem addressed in this paper has a

long history in the setting of Teichmüller space. Let .T.†/; dT/ be the Teichmü-

ller space of a surface† equipped with the Teichmüller metric. It was claimed by

Kravetz [13] that round balls in Teichmüller space are convex and he used it to give

a positive answer to the Nielsen-realization problem. However, his proof turned

out to be incorrect. Even-though the Nielsen-realization problem was solved by

Kerckhoff [11], it was open for many years whether or not the rounds balls are

convex and was only resolved recently; It was shown in [14] that round balls in

.T.†/; dT/ are quasi-convex and it was shown in [8] that there are non-convex

balls in the Teichmüller space. The problem is still open for the Teichmüller

space equipped with the Thurston metric [15], which is an asymmetric metric

and is more directly analogous to the Lipschitz metric in CVn. Hence, the weak

convexity in the case of Outer space is somewhat surprising.

Acknowledgements. We would like to thank Yael Algom-Kfir and Mladen

Bestvina for helpful comments on an earlier version of this paper.

2. Preliminaries

2.1. Outer space. Let Fn be a free group of rank n and let Out.Fn/ be the outer

automorphism group of Fn. Let cvn be the space of free, minimal actions of

Fn by isometries on metric simplicial trees [6]. Two such actions are considered

isomorphic if there is an equivariant isometry between the corresponding trees.

Equivalently we think of a point in cvn as the quotient metric graph of the tree by
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the corresponding action. The quotient graph is marked, that is, its fundamental

group is identified (up to conjugation) with Fn.

The Culler–Vogtmann Outer space, CVn, (or simply the Outer space) is the

subspace of cvn consisting of all marked metric graphs of total length 1. Let x be

a metric graph of total length 1, in which every vertex has degree at least 3. LetRn
be the graph of n edges that are all incident to one vertex. A marking is a homotopy

equivalence f WRn ! x. Two marked graphs f WRn ! x and f 0WRn ! x0 are

equivalent if there is an isometry �W x ! x0 such that � ı f ' f 0(homotopic).

When the context is clear, we often drop the marking out of the notation and simply

write x 2 CVn. In this paper, we refer to metric graphs as x; y, etc. and the

corresponding trees as Tx; Ty, etc. We also use e�WTx ! Ty for the lift of �.

The set of marked metric graphs that are isomorphic as marked graphs to

a given point x 2 CVn makes up an open simplex in CVn which we denote

�x . Outer space CVn consists of simplices with missing faces. The group

Out.Fn/ acts on CVn by precomposing the marking: for an element g 2 Out.Fn/,

.x; f /g D .x; f ı g/. This is a simplicial action.

2.2. Lipschitz metric. A map �W x ! y is a difference of markings map if

� ı fx ' fy . We will only consider Lipschitz maps and we denote by L� the

Lipschitz constant of �. The Lipschitz metric on CVn is defined to be:

d.x; y/ WD inf
�

logL�

where the infimum is taken over all difference of markings maps. There exists a

non-unique difference of markings map that realizes the infimum [9]. Since such

a difference of markings map is homotopic rel vertices to a map that is linear on

edges, we also use � to denote the representative that realizes the infimum and is

linear on edges and refer to such a map as an optimal map from x to y. Given

an optimal map �W x ! y, the slope of an edge e 2 x associated to � is the ratio

of lengths j�.e/j to jej. For the remainder of the paper, we always assume the

difference of markings maps are optimal.

By a loop or an immersed loop in x, we mean a free homotopy class of a map

from the circle into x, or equivalently, a conjugacy class in Fn. Meanwhile, we

use a simple loop to mean a union of edges in a graph that forms a circle with no

repeated vertices. Both kinds of loops can be identified with a conjugacy class in

the free group, call it ˛. We use j˛jx to denote the metric length of the shortest

representative of ˛ in x, where x can be a point in CVn or cvn, depending on

the context. It is shown [9] that if x; y 2 CVn then the distance d.x; y/ can be

computed as:

d.x; y/ D sup
˛

log
j˛jy

j˛jx
; (1)

where the sup is over all conjugacy classes. In fact, it is shown in [9] that:



Convexity of balls in outer space 899

Theorem 2.1. Given two points in Outer space x and y, the immersed loop that

represents ˛ which realizes the supremum can be taken from a finite set of sub-

graphs of x of the following forms

� simple loops;

� figure-eight: an immersed loop where there is exactly one vertex with two

pre-images in the circle;

� dumbbell: an immersed loop that crosses edges in two disjoint loops once

and edges in the connecting arc twice.

This result implies we can compute distances between two points by calculat-

ing the ratio
j˛jy
j˛jx

for a finite set of immersed loops.

2.3. Train track structure. It is often convenient to use a difference of markings

map that has some additional structure. We define

�.˛/ D
j˛jy
j˛jx

to be the stretch factor of a shortest immersed loop that represents ˛. For an

optimal map �W x ! y, since it is linear on edges, one can define

�.e/ D
j�.e/jy

jejx

to be the stretch factor of an edge e and define the tension sub-graph, x� , to be the

sub-graph of x consisting of maximally stretched edges.

Let �W x ! y be an optimal map. A direction at a vertex v 2 x� is a germ of

geodesic path Œ0; �� ! x� sending 0 to v. LetD.v/ be the set of all directions at v.

Now � induces a map

��WD.v/ �! D.�.v//:

Since it sends a geodesic 
 W Œ0; �� ! x� to a geodesic � ı 
 W Œ0; �� ! y. Thus we

have an equivalence relation on D.v/:

d � d 0 () ��.d/ D ��.d
0/:

A gate at v is an equivalence class. The size of a gate � is denoted j� j and is

defined to be the number of directions in the equivalence class. An unordered pair

¹d; d 0º of distinct directions at a vertex v of x� is called a turn. The turn ¹d; d 0º
is �-illegal if d and d 0 belong to a same gate and is legal otherwise. The set of

gates at x� is also called the illegal turn structure on x� induced by �. We can

also use a pair of edges incident to a given vertex to indicate a turn. That is, if Ee1
is an oriented edge ending on v and Ee2 is an oriented edge starting from v then

we use hEe1; Ee2i to denote the turn that traverses Ee1 first and Ee2 second. If e1 and e2
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share only one vertex then we do not even need to specify the orientation and we

use the notation he1; e2i. But if one or both of e1 and e2 start and end at the same

vertex v we need to be more careful with orientation.

Definition 2.2. A sub-gate is a subset of directions in a gate (including the gate

itself ). The set of all sub-gates of x 2 CVn under the difference of markings map

� is denoted T� , or simply T if the associated map is clear from the context. With

this terminology, we can view an illegal turn as a sub-gate of size 2. A speed

assignment is an assignment of non-negative real numbers s� to all elements of

T� of size 2 and denote the assignment

S D ¹s� W � 2 T; j� j D 2º:

For a gate � D d1; d2; d3, we might have s¹d1;d2º and s¹d2;d3º are larger than

s¹d1;d3º. But if we identify the edges associated to d1 and d2 as well as d2 and

d3 along some segment of size �, then the edges associated to d1 and d3 are also

identified. To address this issue, we modify the assignments of S.

For s > 0, we say directions d and d 0 at a point v are s-equivalent if there is a

sequence of direction d D d1; : : : ; dk and gate �1; : : : ; �k�1 so that ¹di ; diC1º D �i
and s�i � s. We say a speed assignment is coherent if for every gate � D d1; : : : ; d`
and every s > 0

ddi , and dj are s-equivalent H) s¹di ;dj º � s for all 1 � i; j � k:

For every speed assignment S there is a coherent speed assignment Sc where the

s equivalent classes are identical. In fact, we can define

sc� D sup¹s > 0 j every d; d 0 2 � are s-equivalentº:

Note that replacing s� with sc� does not change the s-equivalent classes since we

are increasing the speed only for directions that are already s-equivalent. We call

S
c the associated coherent speed assignment to S.

Remark 2.3. The process of making a speed assignment coherent resembles

Gromov’s process of approximation of a hyperbolic space by trees. The condition

of coherence of a speed assignment is really a 0-hyperbolicity condition (see

Section 6, [10]).

For an immersed loop ˛x 2 x, the set of illegal turns of ˛ is denoted T˛.�/, or

T˛ when the associated map is clear from the context. Since ˛ is immersed, T˛ is

a priori a multi-set because an illegal turn � D ¹d; d 0º can appear in T˛ more than

once.

An illegal turn structure is moreover a train track structure if there are at least

two gates at each vertex. For any two points x; y 2 CVn, there exists an optimal

map � W x ! y such that x� has a train track structure [9].
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2.4. Folding paths. In this section we construct a family of paths called folding

paths. The general definition can be found in [4], but we introduce it here in the

language that is adapted to this paper. Assume there is an optimal difference of

markings map �W x ! y with x� D x that induces a train track structure on x

[4, Proposition 2.1]. An immersed path in x� D x is legal if whenever it passes

through a vertex, the entering and the exiting gates are distinct. A legal loop in

a graph is a legal immersed path whose last vertex coincides with the first vertex

on the path. A legal segment is a legal immersed path whose last vertex does not

coincide with its first vertex.

Given this train track structure and an associated speed assignment S D
¹s� ºj� jD2, we define a folding segment, ¹xt º, for small t � 0. The optimal

difference of markings map �t W x ! xt is a composition of a quotient map
N�t W x ! Nxt and a scaling map Nx t ! xt . For t small enough, the quotient graph Nx t
of x is obtained from x as follows. For every sub-gate � at vertex v with j� j D 2

and two points u;w on the two edges eu; ew of the sub-gate � , we identify u and

w if jv; ujx D jv; wjx � t s� (here j�; �j measures the length of the segment in the

graph x). The graph Nx t inherits a natural metric so that this quotient map is a local

isometry on each edge of x. Since Nx t 2 cvn, let xt be the projective class of Nx t in

CVn, and let �t W x ! xt be the composition N�t and the appropriate scaling.

Notice that in xt it is possible for edges in a sub-gate � to be identified along a

segment that is longer than t s� , depending on the identification of other edges in

the gate containing � . However we still say xt constructed this way is the folding

path associated with S D ¹s�ºj� jD2. That is, different speed assignments may result

in the same folding path.

We assume t1 is small enough so that the combinatorial type of xt does not

change on the interval .0; t1/. Also, for t small enough, any u and w as above are

also identified under � because eu and ew are in the same gate. Hence, � ı ��1
t

is a well-defined map. We always assume that t is small enough, so that � ı ��1
t

is well-defined. Given that, we now define the left-over map  t at time t to be

defined by

 t W xt �! y;  t D � ı ��1
t

Note that the norm of the derivatives of the map �W x ! y is constant along x

because it is an optimal map and x� D x hence � stretches x by the same amount

everywhere. The same is true for �t . Therefore, the norm of the derivative of

 t W xt ! y is also constant along xt and in fact it is the ratio of the norm of the

derivative of � over that of �t . That is,

d.xt ; y/ D d.x; y/ � d.x; xt /:

We call such a path ¹xtº a geodesic starting from x towards y since it does not

necessarily reach y. To summarize, we have shown:
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Proposition 2.4. Assume a difference of markings map �W x ! y gives a train

track structure on x. For any speed assignment S D ¹s�ºj� jD2, there is t1 > 0 and

a geodesic 
SW Œ0; t1� ! CVn starting from x towards y where the graph xt D 
.t/

is obtained by folding every gate � at speed s� .

Note that when we say the combinatorial type of xt does not change, it does

not mean it is the same as x or even xt1 . Typically, the geodesic segment 
G
starts from x which lies on the boundary of simplex in CVn (not necessarily of

maximal dimension) travels in the interior of this simplex and stops when it hits

the boundary of the simplex. At this point, if there is a new speed assignment, the

folding could continue.

Globally, a folding path is a concatenation of such folding segments. Note

that at the end point of a folding segment, we have a difference of markings map

�t1 W xt1 ! y and still x�t1
D xt1 . Then �t1 defines a train-track structure on xt1

and, choosing speed assignments, we can continue the folding path further. It may

be the case that a folding path is divided into infinitely many folding segments.

See Section 5 for more details on how a global folding path can be constructed

from folding segments.

In general, a folding path from x to y is denoted Œx; y�f . If all values of the

speed assignment are equal at every time then the path is called a greedy folding

path and denoted Œx; y�gf . In Section 3 we construct a specific type of folding path

whose speed assignment reflects the contribution of each sub-gate to the total

length loss along the path. However, one has to be careful to extend the local

construction described here to a geodesic connecting x to y. In Section 5 we

extend the local construction to a global construction.

2.5. Standard geodesic. Another important class of geodesic paths to consider

is the class of standard geodesic paths. For two points x; y 2 CVn, there may not

exist a folding path connecting them. There is, however, a non-unique standard

geodesic, denoted Œx; y�std, from x to y [4]. In [4, Proposition 2.5], Bestvina

and Feighn give a detailed construction of such a standard geodesic, which we

summarize briefly here. First, take an optimal map �W x ! y and consider the

tension sub-graph x� . Let �x � CVn denote the smallest simplex containing x.

By shortening some of the edges outside of x� (and rescaling to maintain total

length 1), one may then find a point x0 2 �x in the closed simplex �x (and

a scaling map �scaleW x ! x0) together with an optimal difference of markings

�0W x0 ! y whose tension graph x0
�0 is all of x0 and such that

d.x; y/ D d.x; x0/C d.x0; y/:

If 
1 denotes the linear path in�x from x to x0 (which when parameterized by arc

length is a directed geodesic) and 
2 D 
�
0

denotes the folding path from x0 to y

induced by �0, it follows from the equation above that the concatenation 
1
2 is
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a directed geodesic from x to y which is called a standard geodesic from x to y,

which we denote Œx; y�std.

2.6. Unique geodesics. We would like to show that, in certain situations, all

geodesics connecting a pair of points have some property. Here, we give a criterion

for when the geodesic between two points is unique. For a difference of markings

map �W x ! y, we define a yo-yo to be an illegal turn he; Nei, e ¤ Ne, at a vertex v

induced by � satisfying the following (see Figure 1):

� the edge Ne forms a loop at v;

� there are no other edges attached to v.

v e

Ne

Figure 1. A yo-yo illegal turn.

We say a folding path 
rW Œa; b� ! CVn is rigid if, for every t 2 Œa; b�, there

is a difference of markings map �t W 
r.t / ! y that induces a train-track structure

which has exactly one illegal turn, and that illegal turn is not a yo-yo. We show

that unique geodesics are exactly rigid folding paths.

Theorem 2.5. For points x; y 2 CVn, where n � 3, the geodesic from x to y is

unique if and only if there exists a rigid folding path 
r connecting x to y.

Proof. Let 
rW Œ0; a� ! CVn be a rigid folding path connecting x to y. This

implies, in particular, that there is a difference of markings map �rW x ! y where

tension sub-graph of �r is all of x and where the train-track structure associated to

�r has one, non-yo-yo illegal turn. We need the following combinatorial statement.

Claim. Every edge, and every legal segment P D ¹e1; e2º in x is a subpath of an

immersed �r-legal loop ˛ in x.

Proof of Claim. Let � D he; Nei at v denote the only illegal turn in x. We first

address the case when e and Ne are the same edge. Since every vertex of the graph x

has degree two or higher, every edge or length-2 legal edge path is in an immersed

loop. For this immersed loop to be legal, we need to check that this loop does

not go around e twice or more consecutively. If the loop does go around e twice

in a row, we modify the loop to go around e only once. The modified loop still

contains the edge or the length-2 legal edge path we began with. Furthermore, it

is now legal since it does not traverse the only illegal turn in the graph. Thus we

have established the claim in the case e D Ne.
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Now assume e ¤ Ne. The graph x n e either has a vertex of degree one, or

every vertex of x n e has degree at least two. In the first case, e; Ne forms a yo-yo,

which contradicts the assumption. In the second case, since every turn in x n e
is �r-legal and every vertex has two or more gates, every edge and every length-2

legal segment is part of an immersed legal loop. Similarly, in x n Ne, every edge

and every length-2 legal segment is part of an immersed legal loop. Since every

edge is contained either in x n e or in x n Ne, it is part of an immersed �r-legal loop

in x.

Given a legal segment P D ¹e1; e2º of length 2, one of the following holds:

� P � x n e;

� P � x n Ne;

� ¹e1; e2º D ¹e; Neº, and the segment P starts and ends at vertex v;

� ¹e1; e2º D ¹e; Neº, and the segment P starts at v, and ends at a different

vertex w.

For the first two cases, we have already established that P is a subpath of an

immersed �r-legal loop ˛ in x. In the third case, without loss of generality, suppose

hEe1; Ee2i is legal, and hEe2; Ee1i is the only illegal turn in x, occurring at the vertex v.

Consider the graph that is left after deleting e1 and e2 (but keeping the end

vertices). If this graph is disconnected, consider the component that contains v.

Since n � 3, the graph x n ¹e1; e2º is non-trivial and our chosen component has

to have a nontrivial loop ˇ which is legal. Let ! be a path connecting v to ˇ not

containing e1 or e2. The the loop ˛ D Ee1Ee2!ˇ!
�1 is a legal loop containing P .

For the fourth case, we can assume e1 starts and ends at v and e2 starts at v

and ends in w. Then there has to be another edge e3 connecting v to a vertex

u otherwise, ¹e; Neº forms a yo-yo. If u can be connected to w, then this path

and P form a legal loop. Otherwise, we find an immersed loop passing through

w and an immersed loop passing through u. Then a concatenation of these two

loops, two copies of e2 and e3 each and the loop e1 forms an immersed legal loop

containing P . This finishes the proof. 4

Let z be a point that lies on a possibly different geodesic connecting x to y,

that is

d.x; z/C d.z; y/ D d.x; y/: (2)

Let �W x ! z be a difference of markings map that gives rise to a standard path 
std.

We decomposed � D �1 ı�2, where �1W x ! w represents the scaling segment of

the standard path. Assume that the tension graph of � is not all of x and consider

an edge e … x� .

By the claim, there exists a �r-legal immersed loop ˛ containing e. Then

j˛jxe
d.x;y/ D .j˛jxe

d.x;z//ed.z;y/ < j˛jze
d.z;y/ � j˛jy : (3)
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x y

z
w


1

2


r

Figure 2

But ˛ is �r-legal, hence

j˛jxe
d.x;y/ D j˛jy :

This is a contradiction. Thus x� D x, which implies �1 is degenerate, w D x and

� D �2. That is, there is a folding path 
 connecting x to z.

Let u D 
.s/ be the last point along 
 where 
r and 
 agree, let  r;sWu ! y

be the leftover difference of markings map associated to 
r and  sWu ! z be the

left over difference of markings map associated to 
 . That is, the path 

ˇ̌
Œ0;s�

is a

(possibly degenerate) sub-path of 
r, but at u, there is a  s-illegal turn � that is

 r;s-legal. Consider the segment P consists of the pair of edges that form � . This

segment is legal in  r;s, and hence by the claim, there exists a  r;s-legal immersed

loop ˛ containing P .

That is, ˛ is not stretching maximally from  s.s/ to  s.sC �/ and an identical

to the argument above gives a contradiction. Thus, the path  s is subpath of 
r

and z lies on 
r.

We now show the other direction, that is, we establish that the uniqueness of

a geodesic implies that it is a rigid folding path. Consider a standard geodesic

Œx; y�std from x to y. Again, the path Œx; y�std is by definition a concatenation of a

rescaling path 
1 and a folding path 
2.

Suppose that, on 
2 there are two illegal turns at some point. Then [9] shows

that folding the two illegal turns at different speeds renders different geodesic

paths, hence obstructing uniqueness. Otherwise, suppose 
2 contains a yo-yo at

some time s0. Then a segment 
2jŒs0;s1� can be replaced with a different geodesic

O
2. Referring to Figure 3, the geodesic 
2jŒs0;s1� is obtained from folding the yo-

yo, labeled � from 
2.s0/ to 
2.s1/. However, one can also fold the edge e first at

�1 to the point O
2.s/, s 2 .s0; s1/, and then fold �2 to reach 
2.s2/ D O
2.s2/. Thus,

the geodesic 
2jŒs0;s1� is not a unique geodesic connecting its end points.

Consider now the segment 
1. Suppose there is more than one edge that is not

in x� . Then we can choose how fast to rescale the lengths of these edges rendering

multiple geodesics with same endpoints as 
1. Otherwise, suppose e is the only

edge that is not in x� . Similar to the paths illustrated in Figure 3, e can be folded

onto one of its neighboring edges in a zigzag manner such that the end graph is

isomorphic to the endpoint of 
1. Thus 
1 is never a unique geodesic connecting

its endpoints, unless it is degenerate, that is 
 D 
2.
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�1�

e

�2

e

e


2.s0/ 
2.s1/

O
2.s/

Figure 3. A yo-yo illegal turn gives rise to two geodesic paths.

To sum up, for a standard geodesic to be unique, 
1 is necessarily degenerate

and 
2 contains only one non-yo-yo illegal turn at any point. That is to say, it is a

rigid folding path. �

Remark 2.6. Note that the first part of the proof still works for rank n D 2. That

is, if points x and y are connected via a rigid folding path, that path is the unique

geodesic from x to y. However, in CV2, even when there is a yo-yo, the geodesic

is unique. In fact, the paths 
2 and O
2 described in Figure 3 are identical in CV2.

3. Weak convexity

The purpose of this section is to prove the following:

Theorem 3.1. Given a difference of markings map �W x ! y, x; y 2 CVn, where

x� D x, there exists a speed assignment S defining a folding path 
 W Œ0; t1� ! CVn
starting at x towards y so that, for every loop ˛ and every time t 2 Œ0; t1�,

j˛jt � max.j˛jx; j˛jy/:

Recall that a speed assignment is a set S D ¹s�ºj� jD2 of speeds assigned to all

sub-gates of size 2. For t small enough, there is a quotient map N� t W x ! Nxt (that

is, N� t is an isometry along the edges of x) where the edges in gate � are identified

along a subsegment of length t s� . Let jSj be the speed at which Nxt is losing length,

that is,

jSj D
1 � total length of Nxt

t
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Note that this is a constant for small values of t . Also, if S
c is the associated

coherent speed assignment, then jSj D jSc j because the define the same quotient

graph Nxt .

Lemma 3.2. Let Œx; y�f be a folding path associated to a difference of markings

map �W x ! y and a coherent speed assignment S D ¹s�ºj� jD2. Then, for every

loop ˛, the derivative of the length of ˛ along this path equals

Pj˛jt D j˛jt � 2
X

�2T�.˛/

s�

jSj
(4)

where the derivative is taken with respect to distance in CVn.

Proof. For every � 2 T˛, there are two sub-edges of ˛ of length t s� that are

identified under the quotient map N� t W x ! Nxt . And xt is obtained from Nxt by a

scaling of factor 1
1�t jSj

. Since S is coherent, the length loss of the loop ˛ associated

for to every � 2 T˛ is exactly 2ts� . Hence

j˛jt D
j˛jx � 2t

P
�2T˛

s�

1 � t jSj
(5)

and, for s > t ,

j˛js � j˛jt D
.s � t / jSjj˛jx � 2.s � t /

P
�2T˛

s�

.1� s jSj/.1 � t jSj/
:

Also d.xt ; xs/ D log .1�sjSj/
.1�t jSj/

. That is, when .s � t / is small,

d.xt ; xs/ D log
�1 � t jSj

1 � sjSj

�
D log

�
1C

.s � t /jSj

1� sjSj

�
�
.s � t /jSj

1� sjSj
:

Therefore,

Pj˛jt D lim
s!t

j˛sj � j˛jt

d.xt ; xs/
D

j˛jx � 2
P
�2T˛

s�
jSj

1� t jSj
: (6)

On the other hand, replacing, j˛jt in the right-hand side of (4) with the expression

in equation (5), we get

j˛jt � 2
X

�2T�.˛/

s�

jSj
D

j˛jx � 2t
P
�2T˛

s�

1 � t jSj
� 2

X

�2T�.˛/

s�

jSj
D

j˛jx � 2
P
�2T˛

s�
jSj

1 � t jSj
: (7)

The right hand sides of equation (6) and equation (7) are the same, hence the left

hand sides are equal. But this is what was claimed. �

For given x and y, our goal is to find an appropriate speed assignment so that,

for every loop ˛, if j˛jy � j˛jx then Pj˛jtD0 � 0. To this end, we will define values

`� that quantifies the contribution of sub-gate � to the total length loss from x to

y and then use these to define a speed assignment.
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Notation 3.3. For the remainder of this section, let Ny 2 cvn be the representative

in the projective class of y so that the associated change of markings map N�W x ! Ny
restricted to every edge is a length preserving immersion. Also, let ˆWTx ! T Ny

be a lift of N�.

Consider a point p 2 T Ny and let Pre.p/ � Tx denote the set of pre-images

of p under the map ˆ and let CH.p/ denote the convex hull of Pre.p/ in Tx.

Assume p is generic, and thus, Pre.p/ does not contain any vertex in Tx. We give

CH.p/ a tree structure where there are no degree 2 vertices; some edges of CH.p/

may consist of several edges in Tx. The tree CH.p/ also inherits its illegal turn

structure from Tx, however, an edge of CH.p/ may contain one or more illegal

turns. Also, note that since all endpoints of CH.p/ map to p, CH.p/ does not

contain any legal path connecting its end vertices.

We denote the set of all sub-gates of CH.p/ by‚. For each sub-gate � 2 ‚, we

assign a weight c.�; p/ to � which measures how much of the branching of CH.p/

is due to � .

Proposition 3.4. For x, Ny, p and ‚ as above, and for any � 2 ‚, there exists a

weight assignment c.�; p/ > 0 such that
X

�2‚

c.�; p/ D j Pre.p/j � 1 (8)

Furthermore, let ˛ be a path in CH.p/ with end points in Pre.p/ and let ‚˛ � ‚

be the set of gates associated to the illegal turns appearing along ˛. Then

X

�2‚˛

X

O���

c. O�; p/

j O� j � 1
� 1: (9)

Proof. Note that all vertices of degree 1 in CH.p/ are in Pre.p/. But some points

in Pre.p/ may lie on the interior of an edge of CH.p/. First, we cut CH.p/ along

these points to decompose CH.p/ D tmiD1Ti . The vertices of degree 1 in Ti are

exactly Pre.p/ \ Ti and Ti is the convex hull of Pre.p/ \ Ti . This decomposes

‚ D tmiD1‚i .
For a tree Ti , i D 1; : : : ; m, a vertex is an outer vertex if it has degree 1 and an

edge is an outer edge if one of its vertices has degree one. All other vertices and

edges are called inner vertices and inner edges. It follows that each tree Ti has the

property that no legal path joins outer vertices.

Note that if equation (9) holds for each Ti it also holds for CH.p/. Indeed, if ˛

is a path in CH.p/ with endpoints in Pre.p/ then the restriction of ˛ to some Ti is

non-empty. Then, the sum of the weights along the whole path is larger than the

sum of the weights along the subpath that is contained in Ti .

Similarly, if we show
X

�2‚i

c.�; p/ D j Pre.p/\ Ti j � 1: (10)
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we can conclude equation (8). In fact,

mX

iD1

j Pre.p/ \ Ti j D j Pre.p/j C .m � 1/ (11)

This is because the number of points in the interior of CH.p/ is .m� 1/ and these

points are counted twice on the left hand side of the above equation. We now have

X

�2‚

c.�; p/ D
mX

iD1

X

�2‚i

c.�; p/

D
mX

iD1

.j Pre.p/ \ Ti j � 1/ (equation (10))

D
mX

iD1

.j Pre.p/ \ Ti j/ �m

D j Pre.p/j C .m � 1/ �m D j Pre.p/j � 1: (equation (11))

Therefore it is sufficient to show that there is a weight assignment for each‚i .

We do this inductively. Namely, we will show:

Claim 1. Let T be a finite tree with a given illegal turn structure with the property

that there are no legal paths joining two different outer vertices of T . Let‚ be the

set of gates in T . Then there is a weight assignment such that equation (9) and

equation (10) hold.

The base case is when T has one inner vertex v which is a one-gate vertex

(denote the gate by �) and all the outer edges contain no illegal turns. In this case,

we define c.�; p/ D j� j�1 and c.�; p/ D 0 for all sub-gates � of � . In general, for

any sub-gate where we do not specifically assign a weight, the weight assignment

is assumed to be zero. In this case, equation (9) and equation (10) clearly hold.

Note that if there is only one inner vertex, it is necessarily a one-gate vertex

otherwise there is a legal path joining outer vertices of T . Hence, if we are not in

the base case, we either have more than one inner vertex or some outer edge has

an illegal turn.

Case 1. Assume there is an edge e of T that contains illegal turns �1; : : : ; �k.

Then we define c.�i ; p/ D 1
k

and we remove this edge from T . We also remove

any vertices that have degree two to obtain a tree T 0. In T 0 each edge is again

a topological edge, consistent with our initial condition. Also, T 0 still has the

property that it does not contain any legal paths connecting its end vertices. To

see this, notice that since we removed exactly one topological edge, the degree

of the vertex at which we removed this edge is still two or higher. This implies
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we did not create a new leaf by removing one edge, which means a legal path

the would have appeared after this step already exists before the step. But that

contradicts our assumption. By induction, there is a weight assignment for gates

in T 0 satisfying equation (10) and equation (9). Equation (10) still holds for T

because total weights assigned was 1 and the number of end vertices of T is

reduced exactly by one. To see equation (9), let ˛ be a path joint end vertices

of T . If ˛ traverses e then equation (9) holds since the weight along e already add

up to 1. Otherwise, ˛ is a path in T 0 and equation (9) holds by induction.

��

�

Figure 4. two sub-cases of Case 2.

Case 2. Assume that no outer edge of T contains any illegal turn. We claim that

there is a vertex v of T and a sub-gate � at v so that � contain all but one edge

incident to v and all edges of � are outer edges (the remaining edge can be either

inner or outer). To see this, consider the longest embedded path v0; v1; : : : ; vm
in T . Then, all but one of the edges incident to v1 are outer edges. Otherwise,

the path can be made longer. In fact, all these outer-edges have to be in some sub-

gate � . Otherwise, there is a legal path connecting two outer vertices. This proves

the claim.

There are two sub-cases. If all edges incident to v are in the same gate � (which

contains � and the remaining edge) then we define c.�; p/ D j� j�1 and we remove

v and all edges incident to v to obtain T 0 (this is consistent with what we did in the

base case in which case T 0 would be empty). The tree T 0 still has the property it

does not contain any legal path joining its end vertices because any such path could

be extended to a legal path in T hence the assumption of induction applies. The

number of ends of T goes down by j� j D j� j � 1. Therefore, since equation (10)

holds for T 0 by induction, it also holds for T . Also, for any path ˛ that passes

through v, the sum in equation (9) is at least 1 and any other path is contained

in T 0. Hence, equation (9) also holds for T .

Otherwise, there are two gates at v, namely � and a gate with one edge. In this

case, we define c.�; p/ D j� j � 1 and delete all the edges associated to � from

T to obtain T 0. The vertex v survives in T 0 and the number of ends of the tree is

reduced by j� j � 1. Again, since equation (10) holds for T 0 by induction, it also

holds for T and the tree T 0 still has the property it does not contain any legal path

joining its end vertices because any such path could be extended to a legal path

in T . Let ˛ be a path in T joining its end points. If ˛ is a two edge path consisting
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of twi edges in � , the equation (9) holds. If ˛ does not traverse v then ˛ is in T 0

and equation (9) holds by induction. If ˛ passes through v but contains one edge

in � , then let ˛0 be ˛ minus this edge. Them ˛0 is a path in T 0 joing its end points

and, by induction, the sum in equation (9) associated to ˛0 is at least 1. But this

is the lower bound for the sum associated to ˛ since ˛0 is a sub-path of ˛. This

finishes the proof. �

Remark 3.5. The result of the algorithm is not unique. Different gates may be

assigned different values depending on the order in which we remove the outer

edges that contain any illegal turn. However, we make these choices for every p

once and for all so that the following holds.

(1) Since p is assumed to be generic, there is an open interval containing p so

that CH.q/ has the same combinatorics as CH.p/ for all q near p. We apply

the algorithm for all points in this interval simultaneously to ensure c.�; p/

is a locally constant function almost everywhere.

(2) We make choices so that c.�; p/ is equivariant. If p0 is in the orbit of p,

CH.p/ and CH.p0/ have the same combinatorics. We make sure the algo-

rithm is applied the same way for an equal length interval around p and every

point in the orbit of p.

As a result, c.�; p/ is well defined for almost every point p, and it is equivariant

and locally constant almost everywhere. In particular, for every � , c.�; p/ is an

integrable function.

2 1

3

5

4

6 7

2 1

3

5

4

6

2 1

3 4

2 1

3

1

Figure 5. c.�; p/ is computed iteratively by applying Step 1 as many times as possible and

then apply Step 2, and then repeat.

Example 3.6. The example in Figure 5 illustrate the definition of c.�; p/. Suppose

CH.p/ is as shown in the leftmost graph, with seven outer edges and seven gates,

marked ¹�1; �2; : : : ; �7º. First apply Step 1. There are two possible candidates for

Step 1. The illegal turns that occur as part of a topological edge are �6 and �7,

which belong to different topological edges. It does not matter which one of them

is assigned first. After applying Step 1 twice, we get

c.�6; p/ D 1 and c.�7; p/ D 1:



912 Y. Qing and K. Rafi

After deleting these two topological edges, �5 no longer exists, therefore

c.�5; p/ D 0:

Next, Step 2 picks out either �1 or �4. Suppose we start with �4, which contains

3 outer edges, thus

c.�4; p/ D 3 � 1 D 2:

After deleting these three outer edges of �4, we apply Step 1 again and observe

that there is a new topological edge with two illegal turns �2 and �3. Thus

c.�2; p/ D c.�3; p/ D
1

2
:

And the topological edge is deleted at the end of the step. Lastly we have only one

gate with two outer edge, thus

c.�1; p/ D 1:

It can be verified that

X

�2‚

c.�; p/ D 1C 1C 0C 2C
1

2
C
1

2
C 1 D 6 D j Pre.p/j � 1:

We now use the c.�; p/ functions to define the length loss functions:

`� D

Z

T Ny

c.�; p/ dp

where the integral is taken with respect to the length in T Ny (the universal cover

of Ny, see Notation 3.3). Note that c.�; p/ is defined only for a generic p but

the integral is still defined. Even though this is an integral over the whole tree

which has infinite measure, for every � , the set of points p where c.�; p/ is non-

zero is contained in a compact set and hence has finite measure. Also, since our

construction is equivariant, for any sub-gate � 2 T (Recall T is the set of all sub-

gates in x under the map �.) we can define `� D `� where � is any lift of �

to Tx.

The number `� represents how much of the length loss from x to Ny we are

attributing to the sub-gate � . In particular, we have

Lemma 3.7. For N�W x ! Ny and `� defined as above,

X

�2T

`� D jxj � j Nyj:
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Proof. We denote points in Ny by q and Pre.q/ represents the pre-image of q

under N�. Since the map N� is locally a length preserving immersion, we have

1 D jxj D

Z

Ny

j Pre.q/j dq:

Let T0 � T Ny be a tree that is a fundamental domain of action Fn on T Ny and let‚0
be a finite subset of ‚ that contains exactly one lift for every � 2 T. Now,

X

�2T

`� D
X

�2‚0

`� D
X

�2‚0

Z

T Ny

c.�; p/ dp

D
X

g2Fn

X

�2‚0

Z

T0

c.�; g.p// dp (T Ny D [g g.T0/)

D
X

g2Fn

X

�2‚0

Z

T0

c.g�1.�/; p/ dp (c.˘; ˘/ is equivariant)

D

Z

T0

X

�2‚

c.�; p/ dp (‚ D [g g.‚0/)

D

Z

T0

.j Pre.p/j � 1/dp (equation (11))

D

Z

Ny

.j Pre.q/j � 1/dq D jxj � j Nyj:

which is what was claimed in the lemma. �

Next, we use length loss contributions `� to define a coherent speed assign-

ment. For a sub-gate � with j� j D 2, define

s� D
X

O���

` O�

j O� j � 1
(12)

where the sum is over all sub-gates O� containing � . We are dividing ` O� by .j O� j�1/
because if you fold edges of O� along a segment of length t , the length loss is larger

by factor .j O� j � 1/. Let Sc be the coherent speed assignment induced by ¹s�ºj� jD2.

Then Sc is our desired speed assignment. Since we only work with coherent speed

assignments, we omit the superscript in the rest of the paper and simply use S

emphasizing each time that S is coherent.
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Example 3.8. We illustrate the computation of s� with the example mentioned

in the introduction. Consider F3 D ha; b; ci. Let x be a rose with three petals.

The three edges we refer to as e1; e2; e3. The edge e1 is labeled ac2, the edge e2
is labeled bc, the edge e3 is labeled c. The edge lengths are 1

2
; 1
3
; 1
6
, respectively.

The graph Ny is a rose of three petals with labels ¹a; b; cº and lengths
®
1
6
; 1
6
; 1
6

¯
.

The construction is such that �W x ! y satisfies x� D x. Ny is obtained from x by

wrapping ac2 around c twice and bc around c once.

T Ny contains three types of edges. If the point p is on an edge labeled a or b,

then the pre-image contains only one copy of p, and c.�; p/ D 0 for all � . If p is

on the c-edge, then CH.p/ is as shown in Figure 6, where the four pre-images of

p are marked with a circle.

c

c

a

c

c

a

c c

c
b

e1e3 e1e2e3

Figure 6. The CH.p/ of Example 3.8 where p is a point on the edge labeled c in y

CH.p/ has two gates. One contains a black and green edge, which we denote

�e1e3
. The other gate contains three edges, black, green and blue, and we denote

the gate �e1e2e3
. At Step 1,

c.�e1e3
; p/ D 1I

at Step 2,

�e1e2e3
D 2:

Next, we compute the length loss function by integrating c.˘; ˘/ over T Ny . In

this case, the only non-zero component of the integral is when integrating over

edge labeled c, which has length 1
6
, therefore:

`e1e3
D 1 �

1

6
D
1

6
;

`e1e2e3
D 2 �

1

6
D
1

3
:

Indeed, it is the case that

1

3
C
1

6
D

X

�

`� D x � Ny D 1 �
1

2
D
1

2
:
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Based on the length loss functions we compute the folding speed of all sub-gates

in x. Again we can denote a sub-gate in x by the edges in the gate, so we have

se1e3
D le1e3

C
1

2
`e1e2e3

D
1

6
C
1

2
�
1

3
D
1

3
;

se1e2
D se2e3

D
1

2
`e1e2e3

D
1

2
�
1

3
D
1

6
:

That is to say, since ac2 wraps over c twice while bc wraps over c once,

infinitesimally, the folding associated with the former is twice as fast.

Lemma 3.9. For the coherent speed assignment S above, we have

jSj �
X

�2T

`� :

Proof. We organize the argument by considering one maximal gate � and its sub-

gates only. The length losses at different gates add up, hence, it is sufficient to

prove the lemma one gate at the time. For the rest of the argument, let � be a fixed

gate in T.

By an �-neighbourhood of a gate � we mean the intersection of an �-ball around

the vertex associated to � with the edges associated to � . For � small enough, the

�-neighbourhood of � is a tree with one vertex v and j� j edges e1; : : : ; ej� j of size �.

Choose t > 0 small enough so that, for every 1 � i; j � j� j, t si;j < �.
The image of this �-neighbourhood in x t is a quotient of the �-neighbourhood

of � after identifying ei and ej along a segment of length t s¹ei ;ej º starting from

the vertex v. In fact, it is enough to do j� j � 1 identifications. Namely, we choose

the pair of edges e1; e
0
1 that are identified along the longest segments (that is, for

�1 D ¹e1; e
0
1º, s�1 is maximal among all sub-gates of � of size 2). We put e1 and

e0
1 in the same group and all other edges in separate individual groups. Continue

in this way for i D 2; : : : ; .j� j � 1/, we choose a pair of edges ei ; e
0
i from different

groups so that for �i D ¹ei ; e
0
iº, s�i is maximal among all such pairs and combine

the groups associated to ei and e0
i into one group. The maximality implies that

the amount of identification along �i is not caused by identifications along other

gates. That is, we have not changed the speed s�i to make S coherent and we still

have

s�i D
X

O���i

` O�

j O� j � 1
:

After j� j � 1 steps, we have only one group (See Figure 7).

The image of the �-neighborhood of � in x to Nxt can be obtained from the

�-neighborhood of � in x by identifying ei and e0
i along a segment of length

t s�i because any other identification between the two groups is along a smaller



916 Y. Qing and K. Rafi

v

e1

e2

e3

e4

e5

�!
v

e1

e2

e3

e4

e5

�!
v

e1

e2

e3

e4

e5

�!
v

e1

e2

e3

e4

e5

�!
v

e1

e2

e3

e4

e5

�1 D ¹e2; e3º; �2 D ¹e4; e5º; �3 D ¹e1; e3º; �4 D ¹e2; e5º

Figure 7. We identify the edges of �i along a segment of length ts�i
to obtain the image of

the �-neighborhood of � in x to Nxt .

segment. That is, setting

jS� j D

j� j�1X

iD1

s�i

we have t jS� j is the length loss in the �-neighborhood of � .

The way �i are chosen, every sub-gate � 0 � � contains at most .j� 0j � 1/ of

these �i . This is because, after .j� 0j � 1/ sub-gates of � 0 are chosen in the above

process, every edge in � 0 is already in the same group. Therefore, letting T� to be

the set of sub-gates of � , we have

j� j�1X

iD1

s�i D

j� j�1X

iD1

X

� 0��i

`� 0

j� 0j � 1
D

X

� 02T�

j¹i j �i � � 0ºj �
`� 0

j� 0j � 1
�

X

� 02T�

`� 0 :

Combining the last two equations, we have

jS� j �
X

� 0��

`� 0 :

But jSj D
P
� maximal jS� j where the sum is over maximal gates. This finishes the

proof. �

A vanishing path forˆWTx ! Ty is an immersion vW Œ0; 1� ! Tx such thatˆıv
is homotopic to a point relative to the endpoints. Abusing notation, we sometimes

refer to the image of v as a vanishing path and write v � Tx.

Lemma 3.10. Let v � Tx be a vanishing path and let ‚v be the set of sub-gates

in Tx that appear along v.

jvjx � 2
X

�2‚v

s� :

Proof. Let p 2 ˆ.v/ � T Ny be a generic point. Define

m.p/ D #¹ˆ�1.p/\ vº:
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Recall that, to compute the weights c.�; p/, we first write CH.p/ D tTi (Step 0)

so that only the end points of each Ti are mapped to p. Then v \ CH.p/ consists

of m.p/ � 1 separate segments ˛1; ˛2:::˛m.p/�1 where each ˛i is the intersection

of v with Ti . If ‚i are the gates appearing along ˛i , we claim that for each i ,

1 �
X

�2‚i

X

O���

c. O�; p/

j O� j � 1
:

This is because, if ˛i passes through an edge e of Ti with an illegal turn, then the

sum

1 D
X

�2‚e

c.�; p/ �
X

�2‚i

c.�; p/

and the claim follows. Otherwise, a sub-gate � 2 ‚i is contained in a sub-gate

N� that appears in CH.p/, where all the associated edges are legal, and hence,

following the algorithm, c. O�; p/ D jO� j � 1. Again the claim follows. This gives

m.p/ � 1 �
X

�2‚v

X

O���

c. O�; p/

j O� j � 1
:

On the other hand, we know that jvjx D
R
ˆ.v/m.p/ dp and, since p is a generic

point, we have

m.p/ � 2 and m.p/ � 2.m.p/ � 1/:

We now have

jvjx D

Z

ˆ.v/

m.p/ dp

�

Z

ˆ.v/

2.m.p/ � 1/ dp

� 2

Z

ˆ.v/

X

�2‚v

X

O���

c. O�; p/

j O� j � 1
dp (using the claim)

� 2
X

�2‚v

X

O���

Z

T Ny

c. O�; p/

j O� j � 1
dp (enlarging the domain of integration)

D 2
X

�2‚v

X

O���

`�

j O� j � 1
D 2

X

�2‚v

s� :

And we are done. �
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We are now ready to prove Theorem 3.1. Intuitively, the proof is as follows. If

˛ passes through an illegal turn � , folding along � contributes to length loss along

˛ but it also contributes to length loss in other parts of the graph x which could

be larger. Since the folding speed at each illegal turn � is proportional to the total

length loss contribution associated to this gate, the sum of folding speeds at illegal

gates along ˛ is larger than total length loss along ˛. This is essentially the content

of equation (13) below. Of course, the length of ˛ increases along the portion of

its length that does not pass through any illegal turns but, along a balanced folding

path, the speed of length of ˛ is less than the slope of length ˛ as measured from x

to y. The rest of the proof is essentially just re-parametrizing the balanced folding

path with arc length to obtain the correct estimates.

Proof of Theorem 3.1. Let S be the coherent speed assignment defined after equa-

tion (12), let t1 > 0 be a time for which the folding with the speed S is defined

(see Proposition 2.4) and let ˛ be any loop. Denote the geodesic representative of

˛ in x with ˛x and in Ny with ˛ Ny . Also for small enough t1, ˛x can be sub-divided

to segments u1 [ w1 [ ::: [ um [wm so that, for i D 1; : : : ; m,

� The segments ui are vanishing paths in x.

� The segments ˆ.wi / are immersed and ˛ Ny D [iˆ.wi /.

In particular,

j˛jx D j˛j Ny C
X

i

jui jx:

Let vi be a lift of ui to Tx. We can assume vi are completely disjoint from each

other. Since wi are all legal, there is a one-to-one correspondence between sub-

gates in T˛ and in [i‚vi
. Thus, Lemma 3.10 implies

X

i

jui jx D
X

i

jvi jx � 2
X

i

X

�2‚vi

s� D 2
X

�2T˛

s� : (13)

We have

j˛jx �
P
i jui jx

j Nyj
D j˛jy D j˛jx C .j˛jy � j˛jx/;

j˛jx �
X

i

jui jx D j˛jxj Nyj C .j˛jy � j˛jx/j Nyj:

By equation (13), we can replace
P
i jui jx with 2

P
�2T˛

s� to get

j˛jx.1� j Nyj/ � 2
X

�2T˛

s� � .j˛jy � j˛jx/j Nyj:
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But .1� j Nyj/ D
P
�2T `� � jSj, therefore

j˛jx � 2
X

�2T˛

s�

jSj
� .j˛jy � j˛jx/

j Nyj

1� j Nyj
:

Note that

d.x; y/ D log
1

j Nyj
H) j Nyj D e�d.x;y/ H)

j Nyj

1� j Nyj
D

1

ed.x;y/ � 1
:

Hence, letting V˛ D 2
P
�2T�.˛/

s�
jSj

, we have

j˛jx � V˛ �
j˛jy � j˛jx

ed.x;y/ � 1
: (14)

Now re-parametrize the folding path with arc-length and denote the new pa-

rameter with s. Solving the differential equation given in Lemma 3.2, we have

Pj˛js D j˛js � V˛ H) j˛js D .j˛jx � V˛/e
s C V˛: (15)

Note that if j˛jy � j˛jx , then by equation (14) the rate of change of the length is

negative and j˛jt � j˛jx . If j˛jy � j˛jx then,

j˛js D .j˛jx � V˛/e
s C V˛

D .j˛jx � V˛/.e
s � 1/C j˛jx

� .j˛jy � j˛jx/
es � 1

ed.x;y/ � 1
C j˛jx (equation (14))

� j˛jy : (s � d.x; y/)

That is, in either case, j˛jt � max.j˛jx ; j˛jy/. This finishes the proof. �

4. Decorated difference of markings map

In Section 3, we constructed a balanced folding path starting from x towards y

assuming that there is an optimal difference of markings map �W x ! y such

that x� D x. In general, such a difference of markings map does not exist. In

this section, we decorate the graph y and modify the map � in a way that the

tension graph becomes all of x. This modified difference of markings map is

called a decorated difference of markings map. Recall that, given �W x ! y, one

can construct a standard geodesic path Œx; y�std 2 CVn where first every edge e

outside of x� is shortened. For a decorated difference of markings map, we instead

create an illegal turn in the interior of every such edge. The folding of that illegal

turn effectively shortens the length of e. But this can be done simultaneously with

folding of other illegal turns hence ensuring that a version of Theorem 3.1 still

holds.
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4.1. Decorating the graphs. Consider a pair of points x; y 2 CVn. Consider

an optimal map �W x ! y. Recall, from Section 2.5, that � D �0 ı �scale where

�scaleW x ! x0 is a scaling map between x and some x0 2 �x and x0
�0 is the whole

graph x0. First, we equip x with the train track structure coming from �0. We then

add further illegal turns as follows (See Figure 8).

Let e be an edge outside of x� , say connecting v0 to v3. Add two subdividing

vertices v1 and v2 to e such that the following holds: Let ei;j denote the edge with

end vertices vi and vj . Then, we require that

je0;1jx D je1;2jx; and � je2;3jx D j�.e/jy :

Where � D L� is such that log� D d.x; y/. This is always possible since

�jejx > j�.e/jy . We call v1 and v2 pseudo-vertices and refer to the graph x with

all the pseudo-vertices added as xd .

v1v0 v2 v3

�d .v1/

�d .v0/ D �d .v2/ �d .v3/

Figure 8. Decoration of edges in x and y.

Next we decorate y. For every e 2 x and vertex v0 2 x as above, we attach

a new edge of length �je0;1jx to y at the point �.v0/ 2 y. The other end of this

new edge is incident to an added degree-one vertex. Thus we have added a hair

at �.v0/. We denote the resulting decorated graph by yd . By core of yd we mean

the graph obtained from yd after removing all the hair. Note that the core of yd

still has volume 1.

We now modify the optimal map �W x ! y to a map �d W xd ! yd . For

every edge e outside of x� and vertices v0, v1, v2 and v3 as above, we label the

associated hair, oriented away from �.v0/ 2 y, by �e , and the same edge with

opposite orientation by ��1
e . We map e0;1; e1;2; e2;3 to �e; �

�1
e ; �.e/, respectively.

Note that the vertex v1 is a one-gate vertex. By construction

L.�d / D �:

and the tension subgraph xd
�d D xd . Let T be the set of sub-gates of �d , let

TH � T be set of sub-gates that fold to obtain all the hairs and let TC D T � TH .

Lastly let Ny d denote the graph obtain by scaling yd by factor � so that the core of

Ny d has volume 1=�. Then the map

N�
d

W xd �! Ny d

which is a compostion of �d and the scaling map, is a 1-Lipschitz map.
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Remark 4.1. We have placed the hair at the beginning of the edge e near v0.

However, this is not essential and the hair could be placed at the end or anywhere

in the middle. The placement of the hair may result on a different folding path but

they all satisfy the properties we shall claim below.

4.2. Folding paths under the decorated difference of markings maps. We can

use the decorated graphs to construct a folding path from x to y.

As done previously, for small enough t , we can fold xd according to a given

speed assignments S D ¹s�ºj� jD2 by identifying edges associated to � along a

sub-segment of length t s� for t small enough, to obtain a quotient map

N�
d

t W xd �! Nx dt :

A hair in Nxdt is any segment associated to folding for gates in TH .

We also define a map Cor that removes hair of a graph. Specifically, let Nx t be

the graph obtained from Nx dt after removing the hair and let

CorW Nx dt �! Nx t

be the map that sends each hair in Nxdt to the attaching vertex. Note that the map

Cor can be used to mark the graph Nx t and we can consider Nx t as a point in cvn.

Let xt be the associated point in CVn which has volume one. Composition of

Cor ı N�
d

t with the normalization map defines the map

�t W x �! xt :

Similarly, define Ny D Cor. Ny d / which we consider as a point in cvn, and define

N�W x �! Ny by N� D Cor ı N�
d
:

The maps N 
d

t and  t are the leftover difference of markings maps defined as

N 
d

t D N�
d

ı . N�
d

t /
�1 and  t D � ı ��1

t :

We refer to the discussion in Section 2.4 and note that while .�dt /
�1; ��1

t are only

homotopy equivalences, the maps N 
d

t and  t are well defined.

LetL.�t / denote the Lipschitz constant of �t . By the definition of the distance

in Outer space,

logL
�
�t

�
� d.x; xt /:

But also, L.�t / is the scaling factor form Nx t to xt and the length of any loop that

is legal in xd increases by this factor from x to xt . Thus,

logL
�
�t

�
D d.x; xt /:



922 Y. Qing and K. Rafi

Also, since the Lipschitz constant of  t is constant everywhere along xt , we have

L. t / D
L.�/

L.�t /
H) d.xt ; y/ � logL. t / D d.x; y/ � d.x; xt /:

But d.x; xt /C d.xt ; y/ � d.x; y/ by the triangle inequality. Therefore,

d.x; xt /C d.xt ; y/ D d.x; y/

and hence the path ¹xt º is a geodesic starting from x towards y. To summarize,

similar to Proposition 2.4 we have:

Proposition 4.2. Given any two points x, y in CVn there exists a decorated

difference of markings map �d W xd ! yd such that xd
�d D xd . Furthermore, any

speed assignment S defines a geodesic 
 W Œ0; t1� ! CVn starting from x towards y,

for some t1 > 0.

We now prove an analogue of Theorem 3.1 for decorated folding paths fol-

lowing closely the constructions and arguments of Section 3. We always assume

t 2 Œ0; t1� (Proposition 4.2), in particular, xt is in the same simplex at x.

Similar to Section 3, for any coherent speed assignment S, we define

jSj D
1 � j Nx t j

t
: (16)

Then Lemma 3.2 still holds. Consider the lift of the map N�
d
,

ˆWTx �! T Nyd

where T Nyd is the universal cover of Ny d . As before, for any p 2 T Nyd let CH.p/ be

the convex hull of Pre.p/ and ‚ denote the set of sub-gate of CH.p/. We define

the branching contributions c.�; p/ as follows. If � is associated to a hair and p

is a point on this hair, then we set c.�; p/ D 1 and if p is any other point then we

set c.�; p/ D 0. Note that if p is on a hair associated to � , then CH.p/ contains

only one illegal turn and ‚ D ¹�º. For any � not associated to a hair and a point

p that is not on a hair, we ignore all illegal turns in CH.p/ associated to hairs and

apply the construction of Proposition 3.4 to obtain a value for c.�; p/ for every �

that is not associated to a hair.

To summarize, the length loss associated to hairs are assigned to illegal turns

in TH and the rest of the length loss is assigned to illegal turns in TC according to

Proposition 3.4. Equations (8) and (9) still hold.

We now define the length loss function `� by

`� D

Z

T
Ny d

c.�; p/ dp
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and `� D `� where � is any lift of � . We have, for � 2 TH , `� is the length of

the hair associated to � since c.�; p/ D 1 exactly when p is on the hair and zero

otherwise. The proof of Lemma 3.7, show that

X

�2T

`� D jxj � j Nyd j:

But, Ny is obtained from Nyd by removing the hair, hence,

j Nyd j � j Nyj D
X

�2TH

`� :

Therefore,

Lemma 4.3. For `� defined as above, we have

X

�2TC

`� C 2
X

�2TH

`� D jxj � j Nyj:

Exactly as in equation (12) we define

s� D
X

O���

` O�

j O� j � 1
(17)

The proof of Lemma 3.9 still works to show

jSj �
X

�2TC

`� C 2
X

�2TH

`� ; (18)

since the proof works one gate at the time and for an illegal turn � associated to a

hair, the length loss associated to � is 2`� .

Now we are ready to prove the main theorem of this section:

Theorem 4.4. Given a difference of markings map �d W xd ! yd , x; y 2 CVn,

where xd� D xd , there exists a speed assignment S defining a folding path


 W Œ0; t1� ! CVn starting at x towards y so that, for every loop ˛ and every time

t 2 Œ0; t1�,
j˛jt � max.j˛jx; j˛jy/:

Proof. We follow the proof of Theorem 3.1. Let S be the speed assignment

describe above and 
 be the associated geodesic starting from x towards y coming

from Proposition 4.2. Recall that a decorated difference of markings map fold x

into a graph with hairs Nxdt and where the core graph of Nxdt is Nx t . By Lemma 3.2,

for a given loop ˛,

Pj˛jtD0 D j˛jx � 2
X

�2T�.˛/

s�

jSj
:
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By Lemma 4.3, X

�2TC

`� C 2
X

� 02TH

`� 0 D jxj � j Nyj:

Therefore, for every loop ˛ such that j˛jy � j˛jx,

j˛jy D
j˛jx �

P
i jui jx

j Nyj
� j˛jx

j˛jx �
X

i

jui jx � j˛jxj Nyj D j˛jx
�
1 �

X

�2TC

`� � 2
X

� 02TH

`� 0

�

j˛x j
� X

�2TC

`� C 2
X

� 02TH

`� 0

�
�

X

i

jui jx � 2
X

�2T˛

s� :

Recall, from equation (18), that

jSj �
X

�2TC

`� C 2
X

� 02TH

`� 0 :

Therefore

j˛jx � 2
X

�2T˛

s�

jSj
:

It follows that j˛jx < 2
P
�2T˛

s�
jSj

and Pj˛jtD0 � 0. Therefore the length j˛j

decreases and is smaller than j˛jx , satisfying the claim of the theorem. On the

other hand, if j˛jy > j˛jx, whatever the derivative may be, the claim of the

theorem is satisfied until we have a time t where j˛jt � j˛jy , which falls into

the case we address in the proof. �

5. Construction of the balanced folding paths

In this section we prove Theorem 1.1 restated below:

Theorem 5.1. Given points x; y 2 CVn, there exists a geodesic Œx; y�bf from x to

y so that, for every loop ˛, and every time t ,

j˛jt � max.j˛jx; j˛jy/:

Proof. Given x and y, we consider the decorated graphs xd and yd and the

decorated difference of markings map �d W xd ! yd . Applying Theorem 4.4, we

obtain a geodesic 
 W Œ0; t1� ! CVn starting from x towards y. Now we consider

the pair of points xt1 and y and apply Theorem 4.4 again to continue the geodesic

to an interval Œt1; t2�. Continuing in this way, we either reach y after finitely many
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steps or limit to a point x0 2 CVn. Note that every point xt along this path has the

property that

d.x; xt /C d.xt ; y/ D d.x; y/ (19)

and the set of such points is a compact subset of CVn. Hence, the same holds

for x0. In particular x0 is a point in CVn and the geodesic does not exit CVn.

Now, we can apply Theorem 4.4 to the pair x0 and y and continue the geodesic

even further, getting closer to y. This results in a geodesic connecting x to y

because if the process stops at some points x00 before y, then x00 is still in the

compact set defined by equation (19) and we could apply Theorem 4.4 again to

go further.

We re-parametrize this geodesic by arc-length to obtain 
 W Œ0; d � ! CVn,

d D d.x; y/ (and use the parameter s to emphasize this fact). Let † � Œ0; d �

be the closure of set of times, each of which is an endpoint of an interval coming

from an application of Theorem 4.4. Note that if s 2 †, then an interval to the

right of s is not in †. Hence, † is a well-ordered set. That is, Œ0; d � is a union

of the interiors of countably many intervals coming from Theorem 4.4 and the

countable, well ordered set † which includes 0 and d .

For any loop ˛, we prove the theorem using transfinite induction on †. That

is, for every time s 2 †, we show

j˛js � max.j˛jx ; j˛jy/: (20)

The theorem for other times then follows from Theorem 4.4.

Equation (20) is clearly true for s D 0. For any s 2 †, assume equation (20)

holds for every s0 2 † with s0 < s. We need to show that it also holds for s. There

are two cases. If s is an endpoint of an interval Œs0; s� coming from Theorem 4.4,

then, by Theorem 4.4

j˛js � max.j˛js0 ; j˛jy/

and by the assumption of induction

j˛js0 � max.j˛jx; j˛jy/

and the conclusion follows.

Otherwise, there is a sequence si 2 †, with si < s, so that si ! s. By the

assumption of induction, we have

j˛jsi � max.j˛jx ; j˛jy/:

But the length of ˛ is a continuous function over CVn. Taking a limit, we obtain

the theorem. �
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6. Non-convexity

In this section we present examples that combine to prove Theorem 1.4. Some

of the examples are done in low-rank free groups, however, they can easily be

generalized to a higher rank. First, we show that there are points in Outer space

such that no geodesic between them gives rise to convex length functions for all

curves.

Proposition 6.1. There are points x; y 2 CVn and a loop ˛ so that along any

geodesic connecting x to y, the length of ˛ is not a convex function of distance

in CVn.

Proof. We construct a simple example in CV2. Let a and b be generators for

F2. Let x 2 CV2 be a graph that consists of two simple loops labeled a and b,

wedged at a vertex v where each loop has length 1
2

(a rose with two pedals). Let

Ny be a quotient of x obtained by identifying two subsegments of length 1
8

in the

loop labeled a. Then Ny is a rank 2 graph in the shape of a dumbbell with total

length 7
8
, where the b-loop has length 1

2
and the a-loop has a length 1

4
. Let y be

Ny rescaled to have length 1 (by a factor 8
7
). There is a rigid folding path from x to

y because Ny was obtained from x by identifying two sub-edges. Hence, this path

Œx; y�f is the unique geodesic connecting x to y (see Remark 2.6). Let ˛ be the

loop representing element a 2 F2. Then

j˛jx D
1

2
and j˛jy D

8

7
�
1

4
D
2

7
:

Consider the length of j˛jt of ˛ along this folding path. By Lemma 3.2, the

derivative of the length of ˛ at x is:

Pj˛jt jtD0 D j˛jx � 2 D
1

2
� 2 < 0:

And since the length of ˛ is decreasing the derivative stays negative. In fact, for

s > 0
Pj˛jt jtDs D j˛js � 2

is a decreasing function as well. Therefore j˛jt is concave along this folding path.

That is, there is no geodesic between x and y on which the length of ˛ is a convex

function of distance. �

We now examine if Theorem 1.1 holds for other geodesics connecting two

points in CVn. We start by looking at a general folding path and we show that a

folding path with endpoints in a small ball can still go arbitrarily far away from

the center of the ball.
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Proposition 6.2. For any R > 0, there are points x; y; z 2 CV3 and there is a

folding path Œy; z�ng connecting y to z so that

y; z 2 Bout.x; 2/ and Œy; z�ng 6� Bout.x; R/:

Proof. The example presented below is in CV3. For higher rank Outer spaces,

one can modify the example to roses with more loops such that the optimal map

outside of the simple loops labeled a; b; c is identity.

Consider constants � > 0, ı > 0 and an integer m > 0 so that

� � ı � 1 and mı D 1 � 3ı:

Assume F3 is generated by elements a, b and c and let x; y; z and w be points

in CV3 which are wedges of simple loops with lengths and labels summed up in

Table 1.

Table 1

x y w z
label length label length label length label length

Edge 1 a �
2

ab ı C ı2 ab 1Cı

3
a ı

2

Edge 2 b 1
2

b ı b 1
3

b 1
2

Edge 3 c 1��
2

cbm 1� 2ı � ı2 c 1�ı
3

c 1�ı
2

Note that if, in y, we fold the edge labeled cbm m-times around b (without

rescaling), we obtain a graph w with labels ab, b and c and lengths .ıC ı2/, ı and

.1� 2ı � ı2/ �mı D .1 � 2ı � ı2/ � .1 � 3ı/ D ı � ı2

which is a graph that is projectively equivalent to w (by a factor of 1
3ı

). Similarly,

if in w, we fold the edge labeled ab once around b (without rescaling), we obtain

a graph z with labels a, b and c and lengths ı
3
, 1
3

and 1�ı
3

which a graph that is

projectively equivalent to z by a factor 3
2
. Therefore, there is a folding path from

y to z that passes through w. But this is not a greedy folding path since the edge

labeled ab is not folded around b in the segment Œy; w�.

Let ˛ be the loop representing the element a 2 F3. Then

d.x; y/ D log
j˛jy
j˛jx

D log
2.2ı C ı2/

�
;

d.x; z/ D log
j˛jz
j˛jx

D log
ı

�
;
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d.x; w/ D log
j˛jw
j˛jx

D log
2
3
.2C ı/

�
� log

4

3�
:

If, for example, we let � D ı then y; z 2 Bout.x; 2/, but w can be made arbitrarily

far away by making ı small. �

Next, we consider standard geodesic paths connecting two points which are

the type of geodesics most often considered to connect two arbitrary points in

CVn (not every pair of points can be connected via a folding path). The situation

is improved somewhat but, by taking the ball large enough, one can construct

examples where a standard geodesic with its endpoints in a ball goes arbitrarily

far from the ball.

Proposition 6.3. There exists a constant c > 0 such that, for every R > 0, there

are points x; y; z 2 CVn and a standard geodesic Œy; z�std connecting y to z such

that

y; z 2 Bout.x; R/ and Œy; z�std 6� Bout.x; 2R � c/:

That is, the standard geodesic path can travel nearly twice as far from x as y and

z are from x.

Proof. As before, we construct the example in CV3. Let  2 Out.F3/ be defined

as follows:

 .a/D ab;  �1.a/D b;

 .b/D a;  �1.b/D b�1a;

 .c/D c;  �1.c/D c:

It is known (and easy to see) that, for any integerm > 0, the word length of m.a/

is FmC3 and the word length of  m.b/ is FmC2, where Fi is the i-th Fibonacci

number. Similarly, the word length of  �m.a/ is FmC2 and the word length of

 �m.b/ is FmC3. For a large integer m > 0, let

ı D
1

FmC2 C FmC3 C 1

and consider points x; y; z; w 2 CV3 which are wedges of simple loops and where

the lengths and edge labels are summed up in Table 2.

If we let z be the rose with labels a, b and c and all edge lengths ı, then

there is a quotient map N�Ww ! z that maps the edge of w labeled  m.a/ to an

edge path containing FmC3 edges and maps the edge of w labeled  m.b/ to an

edge path containing FmC2 edges. The graph z is obtained from z by scaling by

a factor 1
3 ı

. Hence, w can be connected to z using a folding path and tension

graph of �Ww ! z is all of w. The map from y to w scales two of the edges and

contracts the third. The loop  m.a/ is maximally stretched from y to w because
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Table 2

x y w z

label length label length label length label length

Edge 1 a ı  m.a/ ı  m.a/ FmC3 ı a 1
3

Edge 2 b ı  m.b/ ı  m.b/ FmC2 ı b 1
3

Edge 3 c 1� 2ı c 1� 2ı c ı c 1
3

FmC3 � FmC2. Both loops  m.a/ and  m.b/ are maximally stretched from w

to z. Since the same loop  m.a/ is stretched maximally from y to w and from w

to z, we have d.y; z/ � d.y; w/C d.w; z/. Hence, the standard geodesic from y

to z constructed above passes through w.

Next, we compute the distance from x to these points. Let ˛ be the loop

representing the element a 2 F3 and ˇ be the loop representing b 2 F3. The

loop ˛ has a combinatorial length FmC2 (which is the word length of  �m.a/) in

both y and w and ˇ has a combinatorial length FmC3 (which is the word length

of ��m.b/) in both y and w. In particular,

jˇjw � FmC3 � .FmC2 ı/

because the geodesic representative of ˇ in w consists of FmC3 edges each having

a length of at least FmC2 ı. We have

d.x; y/ D log
jˇjy
jˇjx

D log
FmC3ı

ı
D logFmC3;

d.x; z/ D log
j˛jz
j˛jx

D log
jˇjy
jˇjx

D log
1=3

ı
D log

1

3ı
;

d.x; w/ � log
jˇjy
jˇjx

> log
FmC3 � .FmC2 ı/

ı
D log.FmC3 FmC2/:

We now set R D logFmC3 which is larger than log 1
3ı

. Then, y; z 2 Bout.x; R/.

There is a constant c, (slightly larger than the logarithm of the golden ratio) so

that

log.FmC2 FmC3/ � 2 log.FmC3/ � c D 2R � c

which implies w 62 Bout.x; 2R � c/. This finishes the proof. �

The most well-behaved geodesic often considered is a greedy folding path.

In fact, as mentioned in the introduction, the lengths of curves are quasi-convex

function of distance along a greedy folding path. However, we show that a greedy

folding path with endpoint inside of a ball may exit the ball.



930 Y. Qing and K. Rafi

Proposition 6.4. For n � 4 and every R > 0, there are points x; y; z 2 CVnC2

where y and z are connected by a greedy folding path Œy; z�gf such that

y; z 2 Bout.x; R/ but Œy; z�gf 6� Bout.x; R/:

Proof. Let x; y; z; w 2 CVnC2 be four graphs that are each a bouquets of n C 2

simple loops. Consider FnC2 as being generated by a, b and ci , for i D 1; : : : ; n.

The lengths and the labels of these graphs are described in Table 3 below where

� is a small positive number.

Table 3

x y z w

label length label length label length label length

Edge 1 a � ab2 3=.2nC 4/ a 1=.nC 2/ ab 2=.nC 3/

Edge 2 b .1��/

2
b 1=.2nC 4/ b 1=.nC 2/ b 1=.nC 3/

Edge i ci
.1��/

2n
cib 2=.2nC 4/ ci 1=.nC 2/ ci 1=.nC 3/

Note that there is an obvious optimal map from y to z that linearly expands

each edge of y around the edges in z according to the labeling. The greedy folding

path from y to z passes through w. In fact, Œy; z�gf consists of two subsegments,

in the first part cib and ab2 wrap around b simultaneously to reach w, and in

the second part the edge labeled ab wraps around b to reach z. The distance

d.y; w/ D log 2nC4
nC3

and the associated stretch factors of edges

�.ab2/ D
3=.nC 3/

3=.2nC 4/
D
2nC 4

nC 3
;

�.b/ D
1=.nC 3/

1=.2nC 4/
D
2nC 4

nC 3
;

�.cib/ D
2=.nC 3/

2=.2nC 4/
D
2nC 4

nC 3
;

are all the same. Likewise, the distance d.w; z/ D log nC3
nC2

and associated stretch

factors of edges are

�.ab/ D
2=.nC 2/

2=.nC 3/
D
nC 3

nC 2
;

�.b/ D
1=.nC 2/

1=.nC 3/
D
nC 3

nC 2
;
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�.ci / D
1=.nC 2/

1=.nC 3/
D
nC 3

nC 2
;

which again are the same for every edge.

Next, we measure distances from the center of the ball x. Let ˛ be the loop

associated with the element a 2 F3. For � small enough, all three distances are

realized by the stretch factor associated to ˛. That is,

d.x; y/ D log
j˛jy
j˛jx

D log
5=2nC 4

�
D log

5

2n� C 4�
;

d.x; z/ D log
j˛jz
j˛jx

D log
1=nC 2

�
D log

1

n� C 2�
;

d.x; w/ D log
j˛jw

j˛jx
D log

3=nC 3

�
D log

3

n� C 3�
:

But, for all n � 4, we have

3

n� C 3�
> max

� 1

n� C 2�
;

5

2n� C 4�

�
:

Thus, if we set R D 1
n�C2�

, we have an example of a greedy folding path with

endpoint in Bout.x; R/ that travels outside the ball. �

7. In-coming balls

In contrast with out-going balls, we prove that in-coming balls are not weakly

quasi-convex:

Theorem 7.1. For any constant R > 0, there are points x; y; z 2 CVn such that,

y; z 2 Bin.x; 2/ but, for any geodesic Œy; z� connecting y to z,

Œy; z� 6� Bin.x; R/:

Proof. We show that there exists a family of balls and pairs of points ym and zm
in these balls such that the geodesic connecting ym to zm is unique and it travels

arbitrarily far away from the center of the corresponding ball. Since the geodesic

is unique, this can be restated as: every geodesic connecting ym to zm travels

arbitrarily far from the center of the balls.

Fix an integer m > 0 and, as usual, let a; b and c be generators for F3.

Examples in higher dimension can be adapted from this example by adding loops

on which the map is identity along the path. Let x D xm, y D ym and z D zm be

roses with labels and lengths specified in Table 4.
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Table 4

x y w z

label length label length label length label length

Edge 1 a 1
2

� 1
m

abm mC1
2mC4

a 1
mC4

a 1
3

Edge 2 b 1
m

b 1
2mC4

b 1
mC4

b 1
3

Edge 3 c 1
2

cbma mC2
2mC4

cbma mC2
mC4

c 1
3

Note that w is obtained from y by wrapping the edge labeled abm around

the edge labeled b m-times and then scaling by a factor 2mC4
mC4

. Throughout this

portion, the illegal turn habm; bi is the only illegal turn. Similarly, z is obtained

from w wrapping the edge labeled abm around the edge labeled a once, then

around the edge labeled b m-times and finally scaling by mC4
3

. Again, during

each sub-segment, there is exactly one non-yo-yo illegal turn; first hcbma; ai and

next hcbm; bi. The illegal turn is never a yo-yo since there is no cut edge in the

graphs along the paths. The loop labeled b in y is legal throughout and hence is

maximally stretched from y to w and from w to z. Therefore w lies on a rigid

folding path from y to z. By Theorem 1.5 the folding path is the unique (up to

re-parametrization) geodesic from y to z.

We now compute distance to the center of the ball. For large enough m, we

have

d.y; x/ D log
jcbmajx

jcbmajy
D log

1
2

C 1C 1
2

� 1
m

mC2
2mC4

D log
4m2 C 6m � 4

m2 C 2
< log 5<2;

d.w; x/ D log
jajx
jajw

D log
1
2

� 1
m

1
mC4

D log
m2 C 2m� 8

2m
� log

m

2
;

d.z; x/ D log
jcjx
jcjz

D log
1
2
1
3

D log
3

2
< 2:

That is, y; z 2 Bin.x; 2/ and the distance d.w; x/ can be made to be arbitrarily

large. �
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