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Random walks on the discrete affine group
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Abstract. We introduce the discrete affine group of a regular tree as a finitely generated
subgroup of the affine group. We describe the Poisson boundary of random walks on it
as a space of configurations. We compute isoperimetric profile and Hilbert compression
exponent of the group. We also discuss metric relationship with some lamplighter groups
and lamplighter graphs.
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1. Introduction

The affine group Aff.T/ of an infinite .q C 1/-regular tree T is the group of auto-
morphisms that fix a given end. Random walks with respect to spread-out mea-
sures on this locally compact group have been extensively studied by Cartwright,
Kaimanovich and Woess [10] and Brofferio [7]. In particular, they identified the
Poisson boundary with the end boundary of the tree, endowed with a limiting dis-
tribution. The affine group of the tree contains many interesting finitely generated
subgroups, such as solvable Baumslag–Solitar groups, lamplighter groups over
the integers and of course any group acting on a rooted tree, e.g. automata groups.
In fact, the affine tree can be pictured as a rooted tree where the root has been sent
to the boundary.

In this view point, we consider a .q C 1/-regular tree with a distinguished
infinite geodesic ray from a vertex to an end. If we remove the chosen vertex, we
are left with q C 1 subtrees which are all isomorphic. Let us fix some canonical
identification between these subtrees. We define the discrete affine group DA.T/

as the subgroup of Aff.T/ generated by all permutations of the q subtrees not
containing the ray together with the “shift” along the ray – see Section 3 for a
more natural definition, equivalent by Proposition 3.1. This group resembles the
“mother” automata groups which are generated by rooted permutations together
with other “spreading action” generators [5], [3].

https://creativecommons.org/licenses/by/4.0/
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The present paper studies basic algebraic properties of the group DA.T/, the
metric characteristics and random walks on it. The main result is a description of
its Poisson boundary with respect to any finitely supported probability measure.

The Poisson boundary of a group endowed with a probability measure is a
measure space giving description of the bounded harmonic functions via a Poisson
formula [18], [19], [20], [30], [28], [17], and [33, Chapter 16]. When the Poisson
boundary is trivial (i.e. a point), then all bounded harmonic functions are constant,
which is called the Liouville property. An abstract description of the Poisson
boundary is always available. However giving explicit descriptions for various
classical groups has been an extensive subject of study over the last decades.

As Kaimanovich has pointed out in [29, Introduction], known examples of ex-
plicit non-trivial Poisson boundary essentially fall into two categories: either they
are geometric boundaries related to hyperbolicity or they are spaces of configura-
tion obtained by stabilization along some sample path.

In the first category, natural geometric boundaries are identified with the
Poisson boundaries of, among others, word hyperbolic groups, some Lie groups
and their lattices, where Kaimanovich’s Ray and Strip criteria can be applied,
see [26] and [28]. These criteria unify many descriptions studied before in (among
others) [14], [20], [32], and [13] for classical examples as well as [27] for affine
groups over the reals and [10] for affine group over local fields and Aff.T/. They
also apply to some dense subgroups in Lie groups [8] and [9].

In the second category, key examples are lamplighter groups. The space of
functions from the base group to the lamp group (space of configurations) is
known since [30] to be a non-trivial quotient of the Poisson boundary, provided
the random walk on the base group is transient. Kaimanovich and Vershik con-
jectured that this space of configurations would be the entire Poisson boundary.
Kaimanovich proved it when the base group is Z and the driving measure is
drifted [27]. For symmetric driving measures, this conjecture was first proved
true when the base group is free of rank at least 2 by Karlsson and Woess [31],
and when it is abelian of rank at least 5 by Erschler [16], both using Ray or
Strip criterion. The conjecture was finally proved true in general by Lyons and
Peres [34]. For this purpose, they strengthened Kaimanovich’s criteria and es-
tablished a stronger criterion which we call the Trap criterion, stated below as
Theorem 4.1.

For many groups defined in terms of their action, one can find a space of
configurations which stabilize along the sample path to ensure non-triviality of the
Poisson boundary. This is the case for some groups of intermediate growth [15],
for higher degree (d � 3) mother automata groups [4], for higher rank groups
of interval exchange maps [24] and for Thompson’s group F [29]. This type of
quotient of the Poisson boundary is sometimes referred to as “the lamplighter
boundary,” see [15, Remark 5]. In the aforementioned examples it is an open
question what is a full description of the Poisson boundary, see for instance [24,
Question 5.8].



Random walks on the discrete affine group 937

For the discrete affine group, we give a complete description of the Poisson
boundary in terms of a space of configurations.

Theorem 1.1. For any finitely supported non-degenerate probability measure

�, the Poisson boundary of .DA.T/; �/ is the space of functions from T to Sq,

endowed with the corresponding harmonic measures.

This description is in strong contrast with spread-out probability measures on
the whole affine group Aff.T/, for which the Poisson boundary is the geometric
boundary of the tree [10]. In fact, with probability one the support of the configu-
ration function from T to Sq has exactly one accumulation point on the boundary
of the tree (Lemma 4.7). This corresponds to the geometric boundary as described
by Cartwright, Kaimanovich and Woess for spread-out measures on Aff.T/. It
follows that for DA.T/ the geometric boundary is a much smaller quotient (i.e.
�-boundary) of the configuration Poisson boundary, see Remark 4.14.

To briefly describe the origin of these configurations, observe that any element
in the affine group can be described by an integer determining the action on
horocycles (the vertical direction) together with a map from the vertex set of the
tree to the permutation group Sq, called the portrait – see Section 2. The discrete
affine group consists precisely of the elements with portrait non-trivial only at
finitely many vertices.

Along a sample path of the random walk, the portraits stabilize pointwise to
give a function from T to Sq . The configuration space consists of such portraits
T ! Sq. One key difference between this configuration space of DA.T/ and the
lamp configuration space of a wreath product is that for DA.T/ the configurations
are supported on a Schreier graph of the group, instead of the Cayley graph of the
base group. Therefore we are lead to study the inverted orbits onT. The reason for
stabilization of configurations is that along the trajectory, the portrait is modified
only at bounded distance from the inverted orbit of our chosen vertex, which is
transient. This is similar to [24] and [29]. The key point to get Theorem 1.1 is a
clear description of the inverted orbits – see Section 3.2. The discrete affine group
seems to provide the first non-trivial example of an action with well-understood
inverted orbits, other than actions of groups on their Cayley graphs.

It is interesting to compare the group DA.T/ with lamplighter groups. For
instance, both admit a word metric described by a traveling salesman problem –
Proposition 3.8. The group DA.T/ also resembles the lamplighter graph onTwith
its affine structure introduced by Sava in her thesis [42] and [43]. The difference
is that the moves on T are somewhat twisted by the action of DA.T/ on T. From a
quasi-isometric perspective, we can show that the discrete affine group embeds bi-
Lipschitz into Sava’s lamplighter graph – see Section 5. We do not know whether
they are quasi-isometric.

The same argument shows that DA.T/ admits a bi-Lipschitz embedding into
the wreath product between the free product of q C 1 copies of Z2 (whose Cayley
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graph is a .q C 1/-regular tree) and the permutation group Sq . Together with
general results of Cornulier, Stadler, and Valette [11], and Naor and Peres [35]
and [36], this implies:

Proposition 1.2. The group DA.T/ admits a bi-Lipschitz embedding into L1, and

for all p � 1, the Lp-compression exponent of the discrete affine group is

˛�
p .DA.T// D max

° 1

p
;

1

2

±

:

The Lp-compression exponent is defined in Section 5.2. The L1-isoperimetric
profile and the return probability, see Section 6 for definitions, are two other
invariants of quasi-isometry that can be computed for DA.T/:

Proposition 1.3. Let � be a finitely supported non-degenerate symmetric proba-

bility measure on DA.T/. Then the L1-isoperimetric profile satisfies

ƒ1;DA.T/;�.v/ '
1

log log v
;

and the return probability

�.2n/.e/ ' e�n=.log n/2

:

Finally, let us mention that the discrete affine group is an example of a locally-
finite-by-Z group without Shalom’s property HFD, see [6].

The paper is organised as follows. In Section 2, we review general proper-
ties of the full affine group Aff.T/. In Section 3, we introduce the discrete affine
group DA.T/, present some basic properties of the group, and describe the met-
ric structure of a Cayley graph. In Section 4, we derive our main Theorem 1.1.
We also show that two random walks with vertical drifts of different signs, have
mutually singular harmonic measures in Section 4.4. In Section 5, we give an em-
bedding of DA.T/ into a wreath product group, and compute the Lp-compression.
In Section 6, we compute the L1-isoperimetric profile and the return probability
of random walk with respect to any finitely supported symmetric measure.

2. The affine group of a regular tree

2.1. Generalities. We recall the background on the affine group of a regular tree.
We refer to [10] for a detailed exposition.

LetT D TqC1 be the .qC1/-regular tree, equipped with the graph distance dT.
An end of the tree is an equivalence class of geodesic rays (semi-infinite rays with-
out backtracking), where two geodesic rays are equivalent when their symmetric
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difference is finite. We denote by @T the set of all ends. Fix, once and for all, an
end ! and a distinguished vertex o in T. We still denote by ! the unique geodesic
ray issuing from o towards !, and by !.n/ the vertex on ! at distance n from o.
The Busemann function ˇWT ! Z is defined by

ˇ.x/ D lim
n!1

.dT.x; !.n// � dT.o; !.n///;

where the limit exists for each x, since the sequence stabilizes eventually. The
horocycle Hm is defined as the set of vertices whose value of ˇ is m. Then one
can regard the tree T as a phylogenic tree rooted at infinity !, and the horocycle
Hm as the m-th generation.

The group of graph automorphisms of T which fix ! is called the affine

group of T and denoted by Aff.T/. (Changing the end ! yields an isomorphic
group as the tree is regular.) Observe that each affine transformation sends one
horocyle to the other and this fact motivates to define a map from the group
Aff.T/ to the integers as follows. For each 
 2 Aff.T/ and x 2 T, we define
ˆ.
/ WD ˇ.x:
/ � ˇ.x/. Note that ˆ.
/ does not depend on the choice of x, and
thus the map ˆW Aff.T/ ! Z is, in fact, a homomorphism. Define the subgroup
Hor.T/ of Aff.T/ as the kernel of ˆ. The group Hor.T/ preserves each horocycle.

One can verify that for the topology induced by the pointwise convergence
on T, the group Hor.T/ is an inductive limit of compact groups (the subgroups
fixing a vertex on the geodesic ray !). Moreover, the exact sequence

1 �! Hor.T/ �! Aff.T/ �! Z �! 1

splits. Indeed, choosing some ˛ such that ˆ.˛/ D 1 determines the semidirect
product decomposition of Aff.T/ by Hor.T/ Ì Z. The group Aff.T/ is a locally
compact topological group which is non-unimodular by [45] and amenable as a
topological group by [37].

2.2. Labelling of the tree. Let us introduce a labelling of the tree T. We
identify the horocycle Hm D ˇ�1.m/ with the set of all sequences indexed by
� � 1; m� \ Z DK � 1; mK, taking values in the alphabet Aq D ¹0; : : : ; q � 1º,
and constant equal to 0 on a subinterval K � 1; nK. In the phylogenic description,
the k-ancestor of a sequence is obtained by deleting the last (rightmost) k entries.
The edges of the tree link each vertex to its first ancestor.

Up to changing the labelling, we can choose !.n/ to be the constant sequence
equal to 0 on K�1; �nK, and ˛ to be the shift .uk/k�m 7! .uk�1/k�mC1 from Hm

to HmC1.
The labelling extends naturally to the boundary, parametrized by the set of

sequences indexed by Z taking values in Aq and constant equal to 0 on a neigh-
borhood of �1, plus the empty sequence corresponding to our chosen end ! –
see Figure 1. We warn that the sign of index n for !.n/ and Hn is opposite.
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@T n ¹!º

o0 o1

!.0/ D o

!.1/

!.1/10 !.1/11

!.1/1

!.2/

!

H1

H0

H�1

Figure 1. The affine 3-regular tree with its labelling.

2.3. Notion of portrait. If an element 
 of Hor.T/ fixes a vertex v, then it
induces an automorphism of the rooted subtree Tv obtained by restriction to the
root vertex v and all its descendants. Automorphism groups of rooted trees have
been largely studied – see for instance [21], [38], [48], and references therein.
The notion of portrait is a useful tool in their study, and can be generalized here
as follows.

Consider the symmetric group Sq acting by permutations on Aq. Let 
 WT !

Sq be a function denoted v 7! 
Œv�. Assume that 
Œ!.n/� D e for all but finitely
many n. Such a function defines an element of Hor.T/, still denoted 
 , as follows.

For n � N D max¹nW 
Œ!.n/� ¤ eº, the action of 
 on the vertex !.n/ is
trivial. Now assume that we know the action of 
 on a vertex v identified with its
labelling sequence. The action of 
 on the descendant vt , where t 2 Aq, is given
recursively by the “automata rule”

vt:
 D .v:
/.t:
Œv�/; (1)

where t:
Œv� is the action of 
Œv� 2 Sq on t 2 Aq. This permits to define by
induction the action of 
 on all T since any vertex v has the form !.n/t1 : : : tk for
some n � N and ti in Aq .

By construction, any element 
 2 Hor.T/ can be obtained bijectively from
such a functionT ! Sq still denoted by 
 and called its portrait. The composition
rule for the portrait of a product is



 0Œv� D 
Œv�
 0Œv:
�: (2)



Random walks on the discrete affine group 941

We use right action, meaning 
 is applied first and then 
 0. We refer to [21] for
details in the case of a rooted tree.

By the semidirect product decomposition Aff.T/ D Hor.T/ Ì Z, an element
of the affine group is identified with a pair g D .
; m/ D 
˛m. The product rule
is

gh D .
; m/.
 0; m0/ D .
.
 0/˛m

; m C m0/;

where the conjugate 
˛ D ˛
˛�1 has the portrait 
˛Œv� D 
Œv:˛�.
By abuse of notation, we denote by gŒv� instead of 
Œv� when g D 
˛m, so for

instance ˛Œv� D e for all v. The combination of the previous line with (2) gives

ghŒv� D gŒv�hŒv:g� for g; h 2 Aff.T/; v 2 T: (3)

It follows that the portrait of a product gh is obtained from that of g after multi-
plying by hŒu� at position u:g�1, for every u in T.

3. The discrete affine group

3.1. Generalities. Since the subgroup Horfin.T/ of Hor.T/ consisting of ele-
ments with finitely supported portrait is invariant under conjugation by the shift,
the following is a subgroup of Aff.T/, which we call the discrete affine group of

the tree T.

DA.T/ WD ¹g 2 Aff.T/W gŒv� D e for all but finitely many vº:

This is neither a lattice of the affine group Aff.T/ (which cannot exist by the non-
unimodularity), nor a discrete subgroup of the affine group Aff.T/ (seen as a
locally compact topological group), but a finitely generated dense subgroup of
Aff.T/ – see Proposition 3.1. The subgroup Horfin.T/ is a natural dense subgroup
of Hor.T/, and the discrete affine group is a natural dense subgroup of Aff.T/

associated to Horfin.T/. We point out that contrary to Horfin.T/, the group DA.T/

is finitely generated. Notice that any finitely generated subgroup with finitely
supported portraits is contained in DA.T/.

For each element � 2 Sq and each vertex v 2 T, denote ı�
v the horocyclic

element with portrait given by

ı�
v Œw� D

´

e if w ¤ v;

� if w D v:

For each v 2 T, the morphism � 7! ı�
v is injective of finite image ı

Sq
v � Hor.T/

isomorphic to Sq.
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Proposition 3.1. The group DA.T/

(1) is generated by the finite set S0 D ¹˛; ˛�1º [ ı
Sq
o ,

(2) is dense in Aff.T/ in the pointwise convergence topology,

(3) is elementary amenable,

(4) does not satisfy any group law.

Recall that a group G satisfies a group law if there exists a non-trivial irre-
ducible word w in an alphabet of size k such that w.g1; : : : ; gk/ D id for all
gi 2 G, 1 � i � k.

Proof. (1) As for all m 2 Z, we have .ı�
o /˛m

D ı�
!.m/

, it is sufficient to check that

ı
Sq

!.m/
for m in Z generates Hor.T/\DA.T/. It follows from the following folklore

lemma applied to show that ı
Sq

!.m/
for m D �M to M generate the subgroup

of Hor.T/ consisting of elements with portrait trivial outside the q-ary subtree
rooted at !.M/ of depth 2M C 1 (which is naturally isomorphic to the group of
automorphism of this finite rooted tree).

Lemma 3.2. Let T .k/ be a q-regular rooted tree of finite depth k C 1, with a

distinguished ray from the root to a leaf. For 0 � i � k, denote �i ' Sq the

subgroup of automorphisms of T .k/ with portrait supported on the i-th vertex of

the ray. Then the union [k
iD0�i is a generating set of Aut.T .k//.

Proof. We use induction on k and the permutational wreath product isomorphism
Aut.T .k// ' Aut.T .k � 1// o¹0;:::;q�1º �0. By induction, �1; : : : ; �k generate
the first copy of Aut.T .k � 1//. The other copies are obtained by conjugation
by �0. 4

(2) We have to prove that given an element g D .
; m/ in Aff.T/ and a finite
collection of points in the tree, we can find an element in DA.T/ with the same
action as 
 on these points. For this, choose !.n/ a common ancestor of all the
given points. Any element 
 0 in Hor.T/ fixing !.n/ and with the same portrait
as 
 on a finite subtree containing !.n/ and the given points will have the same
action as the horocyclic part of g. Thus 
 0˛m is the required element.

(3) This group is a cyclic extension of the subgroup of Hor.T/ the elements of
which have finite support. The latter is locally finite, whence the group DA.T/ is
elementary amenable.

(4) is obtained from the following theorem by Abért.

Theorem 3.3 (Theorem 1 in [1]). Let G be a group acting on a set X , satisfying

the following separability condition: for every finite subset Y of X , the pointwise

stabilizer

GY WD
\

v2Y

¹g 2 GW gv D vº

does not stabilize any point outside Y . Then G does not satisfy any group law.
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We observe that the action of DA.T/ on @T n ¹!º satisfies the separability
condition in Theorem 3.3. Indeed, it follows from the fact that for every v 2 T,
we have ı

Sq
v � DA.T/. �

Remark 3.4. The subgroups ı
Sq
v are somewhat the smallest subgroups of Hor.T/.

It is clear from the proof above that such a subgroup together with ¹˛; ˛�1º

generates DA.T/ if and only if v D ˛m.o/ for some m. When v is not of this
form, they generate a subgroup isomorphic to the lamplighter group Sq o Z D
�

L

Z
Sq

�

Ì Z.

Remark 3.5. We can replace Sq by any of its subgroup S with transitive action
on Aq D ¹0; : : : ; q�1º, and obtain a group DAS .T/ finitely generated, elementary
amenable and dense in AffS .T/ in which all permutations of the portrait are in S

rather than arbitrary.

Remark 3.6. The terminology of affine group of T is justified by the similarity
with the affine group Aff.K/ D K Ì K� of a local field K and its multiplicative
group K�. In this case ˛ corresponds to multiplication by a uniformizer of the
field and adding one corresponds to applying the product

Q

v2H0
ıc

v where c is a
cycle of length q, see [10, Section 4]. If K D Qq for a prime q, then the group
DAZq

.T/ corresponds to Aff.K/, where we replace the action “adding one” by the
action “adding one only on the ball of valuation one.” Observe that if K D R, then
Aff.R/ is identified with the group of isometries fixing one boundary point 1 in
the upper half plane H2, whereas if K D Qq , then Aff.Qq/ is a proper subgroup
of Aff.T/ (which is the group of isometries fixing one boundary point ! in the
tree T), as it has been already pointed out in [10, Introduction]. The group DA.T/

is a natural subgroup of Aff.T/ which is not a subgroup of Aff.Qq/ (the “discrete”
affine group).

3.2. Description of the word metric. Our first aim here is to understand how to
compute the portrait of a given word in the generators S0 D ¹˛; ˛�1º [ ı

Sq
o of the

discrete affine group DA.T/.
By induction, let g be such a word and h be a generator. By (3), the portrait of

gh satisfies that for v 2 T,

ghŒv� D gŒv�hŒv:g� D

´

gŒv� if h 2 ¹˛; ˛�1º;

gŒv�ı�
o Œv:g� D gŒv�ı�

o:g�1Œv� if h D ı�
o :

(4)

In particular, the portrait is the same as that of g except possibly at the point
o:g�1. This makes it important to understand what happens to this point when we
multiply by a generator in S0. So we want to express o:.gh/�1 D o:h�1g�1 in
terms of o:g�1 and the generator h.
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Fact 3.7. We have the following multiplication rules:

(1) if h D ı�
o , then o:.ı�

o /�1 D o, so o:.gı�
o /�1 D o:g�1;

(2) if h D ˛, then o:˛�1 D !.1/ is the first ancestor of o, so o:.g˛/�1 is the

ancestor of o:g�1;

(3) if h D ˛�1, then o:˛ D o0, so by the automata rule (1)

o:.g˛�1/�1 D o0:g�1 D .o:g�1/0:g�1Œo�;

which is a first descendant of o:g�1 determined by g�1Œo� D .gŒo:g�1�/�1.

Consider a word wn D x1 : : : xn (which may not be reduced) in the generators
S0 and denote by wi D x1 : : : xi its prefix of length i . It follows from (4)
that the support of the portrait of wn is included in the inverted orbit On D
¹o; o:w�1

1 ; o:w�1
2 ; : : : ; o:w�1

n º.
The inverted orbit On is a sequence of points in the Schreier graph G.DA.T/;

S0; o/ – see Figure 2. Usually, it is extremely difficult to understand the inverted
orbit of a word in a given action. In the present particular case, Fact 3.7 permits
to describe clearly On from the word wn. We make use of it to estimate the word
metric in DA.T/.

The set S1 D ı
Sq
o ¹˛˙1ºı

Sq
o is also a generating set of DA.T/, as follows

easily from Proposition 3.1(1). It can be compared to the “switch-walk-switch”
generating sets in lamplighter groups, for which the word metric is given by
travelling salesman paths on the base graph. This is also the case here.

In a graph G, given a starting vertex x, an end vertex y and a collection A of
vertices, we denote by TSPG.AI x; y/ the length of the shortest path starting at x,
visiting all vertices in A and ending in y, called a traveling salesman path.

Let us denote by supp.g/ D ¹v 2 TW gŒv� ¤ eº the support of the portrait of
an element g of DA.T/. We set `.g/ to be the number of edges of the smallest
subtree T .g/ containing supp.g/ [ ¹o; o:g�1º.

Proposition 3.8. The word metric in DA.T/ with respect to the generating set

S1 D ı
Sq
o ¹˛˙1ºı

Sq
o is given by

jgjS1
D TSPT.supp.g/I o; o:g�1/ D 2`.g/ � dT.o; o:g�1/:

for all g 2 DA.T/ n ı
Sq
o . Moreover jı�

o jS1
D 2 for � non-trivial in Sq.

The second equality is obtained by the well-known description of travelling
salesman paths in trees. We could also express the word metric with respect to S0

but it would be slightly less elegant.

Proof. By Fact 3.7, the inverted orbit of a word in the generators S1 is a path in
the tree T. By (4) when we multiply by a generator in S1, we modify the portrait
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at the two endpoints of the corresponding edge in the path. So the length of a
representative word of g is at least the length of a path solution to a travelling
salesman problem in T starting in o ending in o:g�1 and visiting all vertices in
supp.g/. This gives the lower bound.

There remains to give a representative word of g of right length. For this, let us
first describe a path solution to the travelling salesman problem. The edges of this
path are precisely those of the tree T .g/. The edges located on the geodesic from
o to o:g�1 are covered exactly once, and those not on this geodesic are covered
exactly twice. We can define a word wn in S1 with inverted orbit precisely this
path, and such that the portrait of the prefix wi coincides with the portrait of g

restricted to the vertices that have been visited for the last time before time i .
Indeed, assume wi is given, we can obtain wiC1 as follows.
If time i is the last visit of the path to vertex o:w�1

i , multiply by an element in

ı
Sq
o that ensures wiC1Œo:w�1

i � D gŒo:w�1
i �. Then multiply by ˛ or ˛�1 to reach

the next point of the path.
If time i is not the last visit of the path to vertex o:w�1

i , multiply by an element

in ı
Sq
o that ensures o:w�1

iC1 is the next vertex of the path (this is possible by
Fact 3.7). Then multiply by ˛ or ˛�1 to reach the next point of the path.

At final time n, multiply by an element in ı
Sq
o that ensures wnŒo:w�1

n � D
gŒo:w�1

n �. �

!.1/
!.2/1

!.2/2

o
!.1/1

!.1/2

o0

o1

o2

o000

o00

o10

o20 o01

o11

o21 o02

o12

o22

Figure 2. Schreier graph G.DA.T/; S0; o/ for q D 3.
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3.3. The Schreier graph of the action on T. For future use, we describe the
Schreier graph associated with the action of DA.T/ on T with respect to the
generating set S0 of Proposition 3.1 and the orbit of o. We denote it by G D

G.DA.T/; S0; o/. The set of vertices is T D ¹o:xW x 2 DA.T/º, and the set
of directed (labelled) edges is defined by ¹o:x; o:xsº for some s 2 S0. Both
¹o:x; o:xsº and ¹o:xs; o:xº are edges by the symmetry of S0, and there are also
loops. We draw a picture of G without loops and multiple edges in Figure 2. We
denote the graph distance by dG.

Lemma 3.9. For every x 2 DA.T/, we have

dT.o; o:x/ � dG.o; o:x/ � 2dT.o; o:x/:

Proof. First note that in T we have dT.o; o:x/ D dT.o; o:x�/ for all � 2 ı
Sq
o . For

each o:x 2 G, let w be a reduced word which realizes a directed path from o to o:x

with o:x D o:w. The number of ¹˛; ˛�1º in w bounds the number of steps from o

to o:x in T; this gives dT.o; o:x/ � dG.o; o:x/.
On the other hand, first let us consider those vertex o:x in the subtree To. For

a (unique) geodesic path from o to o:x, each step in order to obtain o:x we may
apply a � 2 ı

Sq
o ; hence 2 times the number of steps gives the bound of dG.o; o:x/.

In general, we note that a geodesic path from o and o:x in T is realized in such a
way that there exists a subtree To:˛�l for some l � 0, the path is a concatenation
of the segment between o and o:˛�l , and the geodesic path between o:˛�l and
o:x. The geodesic between o:˛�l and o:x is the isomorphic image of the geodesic
between o and o:x˛l via ˛�l in T; applying the argument used in above special
case, we have dG.o; o:x/ � 2dT.o; o:x/. �

4. The Poisson boundary of the discrete affine group

Let � be a probability measure on DA.T/. We consider the associated right
random walk wn D x1 : : : xn, where the factors xi D 
i˛

mi form a sequence
of independent random variables of law �. We will always assume that � is non-

degenerate, i.e. its support generates DA.T/ as a semigroup.
By Fact 3.7, understanding the random inverted orbit On D ¹o; o:w�1

1 ; : : : ;

o:w�1
n º is important to describe the behavior of the random walk. For a fixed n,

the random word w�1
n D x�1

n : : : x�1
1 D Lwn coincides with the left random walk

of law L� given by L�.g/ D �.g�1/.
Both right and left random walks on the topological affine group ofT have been

studied by Cartwright, Kaimanovich, and Woess [10]. Note that as we use right
actions on the tree, the roles of left and right random walks here are unfortunately
exchanged with their paper.
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As already observed in [10], the inverted orbit ¹o: Lwnº is not a Markov process
on T, except in extremely particular case – see Remark 4.4. On the contrary, the
direct orbit ¹o:wnº is always a Markov chain, because the transitions depend only
on space and not on time.

4.1. Poisson boundary. We recall here basic facts about Poisson boundaries.
We refer to [30], [28], [17] or [33, Chapter 14] for more informations. The
space of trajectories � WD �N of a random walk of law � on a group � is
endowed with the (left) diagonal action of the group � via each coordinate and
the probability measure Px D ���N obtained by pushing forward the Bernoulli
measure �N on the space of increments by � W .x1; x2; : : : / 7! .w0; w1; w2; : : : /

where w0 D x corresponds to the starting point. Moreover the shift naturally acts
on the space of trajectories by � W .w1; w2; : : : / 7! .w2; w3; : : : /. Note that the shift
� commutes with the group action. Let I be the �-field of shift-invariant events.
The Poisson boundary of .�; �/ is the measurable space .�; I/, or rather, as I

does not in general separate points, the associated quotient space. The question of
determining the Poisson boundary amounts to giving a precise description of the
�-field I.

The Poisson boundary is endowed with the family of probability measures
¹Pxºx2� . Notice that arbitrary two measures Px and Py are mutually abso-
lutely continuous since � is non-degenerate; it follows that L1.�; I;Px/ and
L1.�; I;Py/ are naturally isomorphic. Let us denote by P WD Pe.

We call a function f W � ! R is �-harmonic if
P

h2� f .gh/�.h/ D f .g/ for
all g in �. Let H 1.�; �/ be the space of all bounded �-harmonic functions on �

endowed with `1-norm. One can check that the linear map from L1.�; I;P/ to
H 1.�; �/ defined by

' 7�!

Z

�

'.!/dPx.!/;

(where the right hand side is a function of x in �), gives an isometric isomorphism
as Banach spaces by the bounded martingale convergence theorem.

In practice, many explicit description of Poisson boundaries, e.g. [31], [8],
[9], and [43], have been done using the “Strip criterion” due to Kaimanovich [28].
Indeed, the Strip criterion also works for a special random walk on DA.T/ (where
one can adapt the methods in [31]). In order to deal with a general random walk,
we use the following enhanced version of this criterion.

Theorem 4.1 (Lyons–Peres Trap criterion [34], Corollary 2.3, and [33], Proposi-
tion 14.42). Let A be a �-invariant sub-�-field of I. Assume that for every " > 0,

there exists a random sequence of finite subsets ¹D`º
1
`D1

of � and a constant c > 0

such that
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(i) each D` is a (set-valued) measurable function with respect to A;

(ii) almost surely there exists N such that jD`j � e"` for all l � N ;

(iii) lim sup`!1 P.9n � `; wn 2 D`/ � c.

then A D I modulo P-null sets. In particular, .�;A/ gives a realization of the

Poisson boundary.

The sets Dl can be thought of as “traps” which can be defined in terms of A
by (i), are small by (ii) and catch the random walk with positive probability by (iii).

4.2. Description of the Poisson boundary: main result. Our aim here is to
describe the Poisson boundary of DA.T/. Let us first assume that the step distri-
bution � is finitely supported. Denote by R the minimal integer such that for all
g 2 supp.�/,

jˆ.g/j � R and gŒv� D e when dT.v; o/ > R: (5)

We assume that � is non-degenerate. In many cases we also assume that � is
aperiodic, i.e. for any given group elements g and g0 there exists a number l � 1

such that the support of the l-times convolution power of � contains both g and g0.
If � is not aperiodic, then one may replace it by Q� WD .1=2/� C .1=2/ıe, which
is aperiodic and non-degenerate; moreover �-harmonic functions are always Q�-
harmonic functions and the converse is also true.

Cartwright, Kaimanovich and Woess observed that the sequence ¹o: Lwnº con-
verges to an end @T almost surely. More precisely:

Proposition 4.2 (a special case of Theorem 2 in [10]). Assume that � is non-

degenerate on DA.T/, and consider the standard compactified topology inT[@T.

(i) If E L�ˆ > 0, then ¹o: Lwnº converges to a random element in @T n ¹!º almost

surely.

(ii) If E L�ˆ � 0, then o: Lwn ! ! almost surely.

As the group DA.T/ acts by automorphisms of the tree T, we always have
dT.o; v/ D dT.o: Lwn; v: Lwn/. Combined with (3) and (5), It follows by (3) and (5)
that for a fixed v in T the sequence wnŒv� changes values only when dT.o: Lwn; v/ �

R, so is eventually constant by Proposition 4.2. Denote 
1Œv� 2 Sq its limit. This
means that the sequence of portraits converges almost surely pointwise to a final
configuration given by a Borel measurable map


1W � �!
Y

T

Sq :

Let A D �.
1/ be the sub-�-field of I generated by final configurations. The map

1 is �-equivariant with respect to a natural �-action on

Q

T
Sq . We will show

that the hypothesis of Lyons–Peres Trap criterion stated in Theorem 4.1 apply to
A and deduce the following more precise version of Theorem 1.1.
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Theorem 4.3. Assume that � is a finitely supported, non-degenerate probability

measure on DA.T/. Then the space
Q

T
Sq of final configurations with the distri-

bution 
1�P is a realization of the Poisson boundary of .DA.T/; �/.

This statement is completely analogous of what happens for lamplighter
groups. The Trap criterion was designed in [34] to show that final configurations
realize the Poisson boundary for random walks in lamplighter groups.

Remark 4.4. In her thesis [42, Section 5.3], Sava introduced some lamplighter
random walks on the graph Z2 o T and identified their Poisson boundaries as
spaces of lamp configurations. Random walks in the group DA.T/ resemble very
much random walks in the graph Z2 o T, as the portrait corresponds to the lamp
configuration.

Sava’s results were improved by Lyons and Peres [34, Theorem 3.2]. Our
proof will follow their ideas. A major difference in our case is that the random
trajectory ¹o: Lwºn induced on T is usually not a Markov process. It has some
memory encoded in the portrait.

A particular case where this process is actually Markov is obtained when �

is the equidistribution measure on the set S1 D ı
Sq
o ¹˛˙1ºı

Sq
o . Indeed we see by

Fact 3.7 that the entry wnŒo: Lwn� is completely randomized before each move by
˛�1. This is no longer true for general step distribution, even when � is symmetric,
i.e., � D L�.

4.3. Proof of Theorems 1.1 and 4.3. The measure � on DA.T/ induces a
random walk on G given by the forward orbit ¹o:wnº. This is a Markov chain
on G with transition probability p.x; y/ D �.¹sW x:s D yº/ for x, y 2 G.

Lemma 4.5. For � on DA.T/ as in Theorem 4.3, the random walk induced by �

on the Schreier graph G D G.DA.T/; S0; o/ is transient.

In particular, if BG.o; R/is the ball of radius R centered at o in G, there exist

n0 and cR > 0 such that

P.8n � n0; o:wn … BG.o; R// � cR > 0:

Proof. We regard the Schreier graph G as a network endowed with conductance 1

on each edge. We use reduction of the network by contracting edges corresponding
to � 2 ı

Sq
o , and observe that the reduced network contains a copy of To, which is

transient. The Rayleigh monotonicity implies that the simple random walk on G is
transient as well (e.g. [33, Chapter 2]). For the network endowed with transition
probability p.x; y/, which is uniformly bounded away from 0, but need not be
reversible, the random walk ¹o:wnº is still transient by [47, Theorem 2.25 and
Theorem 3.1] . Here n0 is the smallest number of steps to get out from the ball
BG.o; R/. �
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Assume E L�ˆ > 0 (resp. E L�ˆ � 0), let us define �` for ` > 0 as the first time
when the random trajectory o: Lwn hits or crosses the horocycle H` (resp. H�`).
This coincides with the first time ˆ.wn/ hits or crosses ` (resp. �`), thus is almost
surely well defined.

Removing the point o: Lwn splits T into q C1 subtrees. We denote T` the subtree
containing o and all other previous points of the inverted orbit. The following
lemma asserts that the random trajectory ¹o: Lwnº does not come back to T` with
positive probability. This is a quantitative form of transience.

Lemma 4.6. There exists a constant c depending only on � such that for all ` > 0,

P.8n � �`; o: Lwn … T` j F�l
/ � c > 0;

where F�l
is the �-algebra generated by sequence ¹ Lwiºi��l

up to �l . In particular,

for all ` > 0,

P.8n � �`; o: Lwn … T`/ � c > 0:

This lemma is obvious whenE L�ˆ ¤ 0 for in this case we can use transience of
the projected random walk ˇ.o: Lwn/ D �ˆ.wn/ on the integers, which is finitely
supported and drifted.

Proof of Lemma 4.6. Recall that �` is the first time when the random trajectory
o: Lwn hits or crosses the horocycle H�`. Then ¹ Lw�`

wnC�`
ºn�0 has the same

distribution as ¹wnºn�0 by the strong Markov property. Let R be as in (5). If
dG.o; o: Lw�`

wnC�`
/ � 2R, then dT.o; o: Lw�`

wnC�`
/ � R by Lemma 3.9, and so

dT.o: Lw�`
; o: LwnC�`

/ � R. Therefore if o:wn … BG.o; 2R/ for all n � �`, then
o: Lwn … BT.o; R/ for all n � �`.

In fact, the last condition implies that o: Lwn … T` for all n � �`. Indeed, by
definition of R, the condition implies that either all o: Lwn for n � �` are in T`,
which cannot happen because the projection ¹ˆ.wn/º is recurrent on integers, or
none.

By Lemma 4.5, we obtain

P.8n � �` C n0; o: Lwn … T` j F�l
/ � P.8n � n0; o:wn … BG.o; 2R// � c2R > 0:

(6)
To get Lemma 4.6, observe that for any `0 � `, the probability that o: Lwn does

not belong to T` for �` � n � �`0 is bounded below by a constant c1 > 0. Choosing
`0 D n0.RC1/C` guarantees that o: Lwn does not belong to T` for �`0 � n � �`0Cn0.
Lemma 4.6 holds with c D c1c2R > 0. �

Lemma 4.7. Assume that � is aperiodic. The limit lim o: Lwn 2 @T is almost surely

the unique point of accumulation of supp.
1/.

Proof. We give the proof in the case E L�ˆ � 0. Since � is non-degenerate
and aperiodic, one can find an integer j such that �˝j .v/ and �˝j .v0/ are both
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positive, where v D ˛RC1 and v0 D �˛RC1 with � 2 ı
Sq
o non trivial (in the case

E L�ˆ > 0, take negative powers of ˛ instead) and R defined in (5).
There almost surely exist infinitely many integers n such that the random word

wn ends with v or v0 at n D �`, where ` is a positive multiple of R C 1. Moreover,
by Lemma 4.6, almost surely there is an infinite subsequence .`k/k�0 of this set
of integers such that

o: Lwn … T`k
for alln � �`k

: (7)

Indeed, for each `, the probability that (7) does not hold is at most 1 � c, so the
probability that this does not happen for n successive cases is at most .1 � c/n.
This shows that supp.
1/ has almost surely at most one accumulation point. There
remains to show that supp.
1/ is almost surely infinitely supported.

Now for each k, at least one of the two possibilities v or v0 guarantees to have
a non-trivial portrait at o: Lw�`k

. This also holds for 
1 by (7) and this can be done
independently for different k as the `k differ by at least RC1. Note that v0 appears
infinitely many times, because the probabilities of occurrence of v or v0 are given
by independent Bernoulli laws of the same non-trivial parameter. So the size of
supp.
1/ is almost surely infinite. �

Proof of Theorems 1.1 and 4.3. In order to apply Theorem 4.1, define the random
sequence of subsets ¹D`º

1
`D1

of DA.T/ as follows. Let c1 > 0 be a parameter to be
fixed below. We denote oc1` the point at distance c1` from o on the unique geodesic
ray from o to lim o: Lwn 2 @T. Let Tc1` be the subtree of T n ¹oc1`º containing o.

The subset D` consists of all elements g D .
; m/ such that c1` � m � c1`CR

and


Œv� D

´


1Œv� if dT.v; oc1`/ > R and v 2 Tc1`;

e if dT.v; oc1`/ > R and v … Tc1`:

Clearly the size of D` is bounded by a constant depending only on q and R, so
point (ii) is satisfied. By Lemma 4.7, the limit lim o: Lwn is almost surely the unique
point of accumulation of supp.
1/, so the set D` is measurable with respect to
A D �.
1/ and point (i) is satisfied.

Now let �c1` as above be the first hitting or crossing time of Hc1` when
E L�ˆ > 0 (resp. H�c1` when E L�ˆ � 0). Also denote o0

c1`
the point at the

intersection of the horocycle Hc1` (or H�c1`) and the geodesic between o and
o: Lw�c1`

. Lemma 4.6 asserts that with probability greater than c > 0, we have
o0

c1`
D oc1` and w�c1`

belongs to D`. So point (iii) is satisfied when c1 > R

because �c1` � c1`=R by (5).
Note that when E L�ˆ � 0, we always have o0

c1`
D oc1` D !.c1`/. �



952 J. Brieussel, R. Tanaka, and T. Zheng

Remark 4.8. Note that the existence of the subsequence .`k/ in the proof of
Lemma 4.7 provides another proof of Proposition 4.2, where the end is given
by the intersection of all T n T`k

. The original proof used a general result on
transience in non-unimodular groups by Guivarc’h, Keane, and Roynette: as �

is non-degenerate and DA.T/ is dense in Aff.T/ by Proposition 3.1, the closed
subgroup generated by the support of � is Aff.T/ which is non-unimodular. It
follows by [23, Theorem 51] that the random walks ¹wnº and ¹ Lwnº are transient
in Aff.T/, i.e. they leave every compact set almost surely; for details, see [10,
Theorem 2].

Remark 4.9. In the case E�ˆ ¤ 0, Theorem 4.3 still holds when � has a finite
first moment. The proof above can be adapted as follows. Given " > 0, the sets
D` now consist of all elements such that c1` � m � c1` C "` and


Œv� D

´


1Œv� if dT.v; oc1`/ > "` and v 2 Tc1`;

e if dT.v; oc1`/ > "` and v … Tc1`:

The drift of the random walk induced on the integers still gives Lemma 4.6 and
point (i). The first moment condition ensures that the sequence of increments
almost surely has a sublinear word norm. Combined with Proposition 3.8, this
shows that (5) can be replaced by the almost sure existence of N such that for all
n � N ,

jˆ.xn/j � "n and xnŒv� D e when dT.v; o/ > "n:

The drift of the random walk induced on the integers still gives Lemma 4.6 and
so w�c1`

still belongs to D` with positive probability. Point (i) also still holds.
Finally, the law of large numbers gives a constant c2 > 0 depending only on �

such that �`=` ! c2 almost surely. So point (iii) is satisfied when c1 > 1=c2.

Remark 4.10. We sketch here another proof of Lemma 4.6 when E�ˆ D 0,
considering only the random trajectory o: Lwn in the tree T. Looking at times
when ˆ.wn/ first visits negative integers, we see that the line ! D o:˛Z is
recurrent. The metric projection proj.o: Lwn/ onto this line is a random process
on Z with memory encoded in the portrait of wn. However it is stochastically
dominated by a random walk on Z drifted towards �1. The reason is that at
times when o: Lwn is not on the line, the projection may only decrease, and at times
when it is on the line, the projection may decrease by x < 0 with probability
p.x/ D ˆ��.x/ but it may increase by x > 0 with probability p.x/ satisfying
only

P

x>0 xp.x/ �
P

x>0 xˆ��.x/ � c1 for some c1 > 0 independent of the
past. A precise coupling argument can be developed, but we prefer to omit the
tedious details.

Remark 4.11. The Schreier graph G shares some visual similarities with the
Schreier graph of Thompson’s group F acting on dyadic rationals pictured in [44].
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Both are essentially infinite binary rooted trees with infinitely many rays attached
to it. Transience of this Schreier graph was used by Kaimanovich to show that the
Poisson boundary of F with respect to finitely supported measures is non-trivial
[29]. In the discrete affine group, we can actually identify the Poisson boundary
because the inverted orbit respects the geometric structure of T, and this permits
to define the traps. It is not known whether the �-boundary of F described in [29]
is the whole Poisson boundary. Note that this boundary is actually trivial for some
infinitely supported measures [25].

4.4. Description of the harmonic measure. The aim here is to give a descrip-
tion of the distribution (the harmonic measure) 
1�P on the space …TSq of final
configurations, which is the Poisson boundary by Theorem 4.3. We first describe
a sublinear geodesic tracking property in the tree T when E L�ˆ ¤ 0, in the spirit
of Tiozzo [46].

Proposition 4.12. Let � be as in Section 4.2. If E L�ˆ ¤ 0, then there exists a

constant C > 0 such that for P-almost every sample, there is a (random) geodesic

ray � from o converging to a point @T satisfying that

lim sup
n!1

dT.o: Lwn; �/

log n
� C:

In the case when E L�ˆ < 0, the geodesic ray � is a deterministic one converging to

!, while in the case whenE L�ˆ > 0, the geodesic ray � is a random one converging

to some point in @T n ¹!º.

Applying a general theorem by Tiozzo [46, Theorem 6] immediately gives
deviation of order o.n/ instead of log n for E L�ˆ ¤ 0.

Proof. First we prove the claim whenE L�ˆ > 0. Let F WD maxg2supp � dT.o; o:g/.
We define a sequence of regeneration time; namely, let

N�.n/ WD inf¹k > 0W for all ek such that ˆ. Lwi / > F nº

for n � 0. We have N�.n/ < N�.n C 1/ for all n. Note that N�.n/ are not stopping
times. Given the sequence ¹ N�.n/W n � 0º, a family of excursions ¹X

.n/
i W i 2 Inº for

In WD Œ0; N�.n C 1/ � N�.n// defined by

X
.n/
i WD ˆ. LwiCN�.n// � ˆ. Lw N�.n//

are independent, and each excursion is an asymmetric random walk on Z drifted
toward C1 conditioned on the event XN�.nC1/�N�.n/�1 2 .�1; F �. By comparison
with the asymmetric random walk onZ, we have that there exist constants c1; c2 >

0 such that for every n � 0 and for every M � 0,

P.max
i2In

X
.n/
i � M j ¹ N�.m/W m � 0º/ � c1e�c2M :
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Therefore given the sequence ¹ N�.n/W n � 0º, there exists a constant C > 0 such
that

max
k2Œ N�.n/; N�.nC1//

dT.o: Lw N�.n/; o: Lwk/ � C log n;

for all large enough n almost surely. Notice that the F -neighbourhood T.n; F / of
the subtree Tvn

where vn WD o: Lw N�.n/ are nested: T.n; F / � T.n C 1; F / � � � � ,
and thus there exists a geodesic ray � from o converging to some � in @T n ¹!º,
where we use the same symbol �, such that dT.o: Lw N�.n/; �/ � F . Clearly, we have
n � N�.n/. We have that P-almost surely

dT.o: Lwn; 
/ � C log n C F

for all large enough n, and obtain the claim.
Next we show the claim when E L�ˆ < 0. We define the sequence of stopping

times: for n � 0,
�.n/ WD min¹k � 0W ˆ. Lwk/ � �F nº:

The family of excursions ¹X
.n/
i W i 2 Inº for n D 0; 1; 2; : : : defined in a similar

way to above are independent, and each excursion is an asymmetric random walk
on Z drifted toward �1 up to a random stopping time. Again comparison with
the walk on Z yields the proof. �

Let us denote the harmonic measure by �� which is 
1�P on the space …TSq.
We show that �� have distinct supports depending on the signs of E L�ˆ.

Proposition 4.13. Let ��, �0 and �C be the harmonic measures for aperiodic step

distributions ��, �0, and �C respectively satisfying E L��
ˆ < 0, E L�0

ˆ D 0 and

E L�C
ˆ > 0. Then ��, �0 and �C have distinct supports in …TSq. In particular,

they are mutually singular.

Proof. First we observe that, by Lemma 4.7, the support of final configurations
supp 
1 has the accumulation point ! in the case when E L�ˆ � 0, and a (random)
accumulation point in @T n ¹!º in the case when E L�ˆ > 0. This shows that the
support of �C is distinct from that of �� and �0 There remains to show that �� and
�0 have distinct supports.

Let us consider the infinite subtree T` D T!.`/ rooted at !.`/ and its finite
subtree T`;f .`/ consisting of all descendants up to distance f .`/ from the root
!.`/. We define a subset in T by

D.`; f / WD T` [
[

m�`

Tm;f .m/;

Let us define a set of configuration

yD.f / WD ¹' 2 …TSqW there exists ` such that supp ' � D.`; f /º:

Proposition 4.12 gives a constant C > 0 such that ��. yD.C log// D 1.
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There remains to show that �0. yD.C log// D 0. In fact, for f .`/ D ` C g.`/

with g.`/ � `, we claim that �0. yD.f // D 0.
We argue as in the proof of Lemma 4.7, where v and v0 were defined. By

properties of zero mean random walks on Z, there are almost surely infinitely
many `k’s such that the trajectory o: Lwn reaches level g.`k/ C 1 in the tree T`k

.
Let �k be the stopping time when o: Lwn first comes back to a level � g.`k/. We
consider only the almost surely infinitely many k’s where w�k

ends with v or v0.
By Lemma 4.6, there is a fixed positive probability that the trajectory never visits
again the subtree above vertex o: Lw�k

. At least one of the two possible endpoints
v or v0 guarantees that the final configuration is non trivial in T`k

n T`k ;f .`k/,
proving the claim. �

Remark 4.14. Considering only the accumulation point of Lemma 4.7 gives a
�-boundary of the random walk (see [28] and [17] for a definition) which is a
quotient of the Poisson boundary. In topological (spread-out measures) random
walks on Aff.T/, this accumulation point is actually the Poisson boundary by [10].

5. Embeddings into wreath products and Lp-compression

5.1. Embeddings into wreath products. We consider the group DA.T/ and fix
the set of generators S1 as in Proposition 3.8, and write the corresponding word
metric by dDA.x; y/ WD jx�1yjDA, where we do not write it such as jx�1yjS1

for
clarity of notation. We compare this metric in DA.T/ with a group of wreath
product.

Given two groups H and F , recall that the wreath product H o F is defined as
˚F H Ì F , where the semidirect product is given by the left action: ' 7! '.x�1�/
for x 2 F and ' 2 ˚F H .

The set ¹.ıh
e ; e/ºh2Sq

[¹.1; s/ºs2SF
, where e is the identity element of the base

group F , ıh
e is the element in ˚F H given by h at e and the identity otherwise,

and 1 is the identity everywhere on F , generates H o F and is often called the
“switch-or-walk” generating set. The set

¹.ıh1
e ; e/.1; s/.ıh2

e ; e/W h1; h2 2 H; s 2 SF º; (8)

is another generating set of H oF called “switch-walk-switch” generating set, more
convenient for our purpose.

Let us consider the wreath product where H D Sq and F D FqC1 is the
free product of .q C 1/-copies of Z2. The Cayley graph of FqC1 with respect to
the standard symmetric set of generators SF is a .q C 1/-regular tree. We fix an
identification of this tree with T. We consider the Cayley graph of � WD Sq oFqC1

associated with the set of generators in (8), and denote the corresponding word
metric by d�.x; y/ WD jx�1yj� .
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Lemma 5.1. There exists an isometric embedding f W DA.T/ ! � D Sq o FqC1,

i.e. for all x; y in DA.T/, one has d�.f .x/; f .y// D dDA.x; y/.

Proof. We define the map f W DA.T/ ! � D Sq o FqC1 by

g 7�! .¹gŒv�ºv2T; o:g�1/

under the identification FdC1 with T. It is well-known that the word metric d� of
wreath product with switch-walk-switch generating set is given by

j.'; x/j� D

´

TSP.supp 'I e; x/ if .'; x/ ¤ .ıh
e ; e/;

2 if .'; x/ D .ıh
e ; e/ with h ¤ e;

where TSP.supp 'I e; x/ denotes the minimal length of path in T from e to x

visiting all the points in supp '. This is an isometry by Proposition 3.8. �

Remark 5.2. The argument shows that there are bi-Lipschitz embeddings of
DA.T/ into Sava’s lamplighter graphs Sq o T and into the wreath product group
Sq o G as soon as the group G contains an infinite bi-Lipschitz embedded binary
tree.

Of course, the group DA.T/ is not quasi-isometric to � because the latter is
non-amenable. It would be interesting to show that it is not quasi-isometric to
Sava’s lamplighter graphs, nor to Sq o .Z2 o Z/.

5.2. Lp-compression of the discrete affine group. Recall that for a finitely
generated group �, and for 1 � p < 1, the Lp-compression exponent ˛�

p .�/ is
the supremum of all those ˛ � 0 for which there exists a Lipschitz map � ! Lp

such that for some constant c > 0 and for all x; y in �,

kf .x/ � f .y/kp � cd�.x; y/˛;

where d� denotes a word metric in �. If p D 2, then ˛�
2 .�/ is called the Hilbert

compression exponent. These are quasi-isometric group invariants introduced
in [22]; for backgrounds and related results, see e.g. [35], [36] and references
therein. For all 1 � p < 1, we determine the exact values of Lp-compression
exponents for DA.T/.

Proposition 5.3 (Proposition 1.2). The group DA.T/ admits a bi-Lipschitz em-

bedding into L1. Moreover, for 1 � p < 1,

˛�
p .DA.T// D max

° 1

p
;

1

2

±

:

The proposition follows from several known results: the upper bound is
obtained by the method using escape rate of random walks due to Naor and
Peres [36], and the lower bound is derived from the corresponding result on wreath
products over free groups by Cornulier, Stalder, and Valette [11].
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Proof of Proposition 5.3. First we show the upper bound for ˛�
p .DA.T//. For a

finitely generated group G, let ˇ�.G/ be the supremum of all those ˇ � 0 for
which there exits a finite symmetric set of generators S , and a constant c > 0 such
that for every n � 1,

EŒdG.e; wn/� � cnˇ ;

where ¹wnº1
nD0 is the simple random walk on the Cayley graph of G associated

with S , starting at the identity e. Naor and Peres show that if G is amenable, then

˛�
p .G/ � max

° 1

p
;
1

2

± 1

ˇ�.G/
; (9)

see [36, (5) in Section 1 and Theorem 1.3]. In DA.T/, the simple random walk
on any Cayley graph has a linear rate of escape since the Poisson boundary is
non-trivial (Theorem 4.3), and thus we have ˇ�.DA.T// D 1; then (9) gives the
desired upper bound for ˛�

p .DA.T//.
Next we show the lower bound for ˛�

p .DA.T//. A result of Cornulier, Stalder,
and Valette implies that ˛�

1 .Sq oFqC1/ D 1; in fact, the group admits a bi-Lipschitz
embedding into L1 [11, Proof of Proposition 7.2]. Combining with Lemma 5.1,
we deduce that DA.T/ admits a bi-Lipschitz embedding into L1, in particular,
˛�

1 .DA.T// D 1. In general, we have

˛�
p .DA.T// � max

° 1

p
;

1

2

±

˛�
1 .DA.T//

by [36, p. 103]. This yields the required lower bound for ˛�
p .DA.T//. �

6. Return probability and isoperimetric profile

For a finitely generated group � and for a symmetric probability measure � on the
group �, the L1-isoperimetric profile ƒ1;�;�W Œ1; 1/ ! R is defined by

ƒ1;�;�.v/ WD inf
°1

2

X

x;y2�

jf .x/ � f .y/j�.y/W j suppf j � v; kf k1 D 1
±

:

By using the co-area formula, the L1-isoperimetric profile ƒ1;�;� is equivalent to

ƒ1;�;�.v/ ' inf
° 1

jU j

X

x;y2�

1U .x/1�nU .xy/�.y/W jU j � v
±

; (10)

where given functions f; gW .0; 1/ ! .0; 1/ (where the domain might be re-
stricted on integers), we write f . g if there exist constants C1; C2 > 0 such that
f .t/ � C1g.C2t / for all large enough t , and write f ' g if we have both f . g

and f & g.
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For a finite symmetric set of generators S of a group �, let �S be the uniform
measure on S . For another finite symmetric set of generators H of �, we have
ƒ1;�;�S

' ƒ1;�;�H
. In fact, one can check that the equivalence class (the

asymptotic type) of ƒ1;�;�S
is a quasi-isometric invariant of the group �.

The L1-isoperimetric profile gives an estimate for the return probability
�.2n/.e/, where �.2n/ denotes the 2n-times convolution power of �. Again,
for any two finite symmetric set of generators S; H of a group �, we have
�

.2n/
S .e/ ' �

.2n/
H .e/, and in fact, the asymptotic type of �

.2n/
S .e/ is a quasi-

isometric invariant of the group � as shown by Pittet and Saloff-Coste [39, Theo-
rem 1.2].

Proposition 6.1 (Proposition 1.3). Let � be a finitely supported symmetric proba-

bility measure on DA.T/. Assume that the support of � generates the whole group

as a semigroup. Then

ƒ1;DA.T/;�.v/ '
1

log log v
; (11)

and

�.2n/.e/ ' e�n=.log n/2

: (12)

Proof. Given r 2 N, consider the set Lr which consists of vertices in the horo-
cycle Hr that are descendants of o, that is those vertices with labeling : : : 000:w,
w 2 ¹0; : : : ; q � 1ºr . Let Cr be the subgroup of elements of Hor.T/ such that the
support of the portrait is contained in Lr ,

Cr D ¹
 2 Hor.T/W supp 
 � Lrº:

Then Cr is isomorphic to the product SjLr j
q . Consider the transition kernel that

chooses one coordinate uniformly from Lr and update the permutation to be
uniform in Sq, that is

�r D
1

jLr j

X

v2Lr

1

jSqj

X

�2Sq

ı�
v ;

where ı�
v is the indicator function on the element 
 with portrait � at v and

trivial everywhere else. We apply Erschler’s isoperimetric inequality as in [41,
Proposition 3.1], then we have

ƒ1;Cr ;�r
.v/ �

1

2K
for all v �

1

K
jSq jjLr j=K

for some absolute constant K > 0. Here for elements in the support of �r , the word
distance relative to S0 in DA.T/ is bounded by 2r C 1. Therefore by comparison,
for the uniform measure �S0

on the set of generators S0 of DA.T/, we have

ƒ1;DA.T/;�S0
.v/ �

1

2C r
for all v �

1

K
jSq jjLr j=K D

1

K
.qŠ/qr=K :
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This gives
ƒ1;DA.T/;�S0

.v/ & 1= log log v: (13)

On the other hand, for r 2 N, consider the finite subset of DA.T/,

U WD ¹
˛i W 0 � i � r; supp 
 � L0
rº;

where L0
r is the set of vertices descendant of o belonging to [0�s�rHs. Then for

�S0
, we have

ƒ1;DA.T/;�S0
.v/ �

2

jS0jr
for all v � jU j D r.qŠ/qr

;

and this yields ƒ1;DA.T/;�S0
.v/ . 1= log log v: As we noted, ƒ1;DA.T/;�S0

'
ƒ1;DA.T/;� for a general finitely supported probability measure � that generates
the whole group as a semigroup.

The lower bound (13) of ƒ1;DA.T/;� gives an upper bound of the return prob-
ability:

�.2n/.e/ . e�n=.log n/2

;

by using the Nash inequality [12] (see also [40]); we omit the detail. For the return
probability lower bound, we can use a simple argument that on the event that the
projection to Z is confined in Œ�r; r�, then the portrait is confined to BT.o; r/.
There exist constants c1; c2 > 0 such that for all large enough r and n, one has

P. max
0�k�n

jˆ. Lwk/j � r/ � c1e�c2n=r2

;

see [2, Lemma 1.2]. Then

�.2n/.e/ �
1

2r.qŠ/jBT.o;r/j
e�Cn=r2

:

Optimise choice of r we obtain a matching lower bound. �
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