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A complex Euclidean reflection group

with a non-positively curved complement complex
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Abstract. The complement of a hyperplane arrangement in Cn deformation retracts onto

an n-dimensional cell complex, but the known procedures only apply to complexifications

of real arrangements (Salvetti) or the cell complex produced depends on an initial choice

of coordinates (Björner–Ziegler). In this article we consider the unique complex Euclidean

reflection group acting cocompactly by isometries on C2 whose linear part is the finite

complex reflection group known as G4 in the Shephard-Todd classification and we construct

a choice-free deformation retraction from its hyperplane complement onto a 2-dimensional

complex K where every 2-cell is a Euclidean equilateral triangle and every vertex link is a

Möbius–Kantor graph. The hyperplane complement contains non-regular points, the action

of the reflection group on K is not free, and the braid group is not torsion-free. Despite all

of this, since K is non-positively curved, the corresponding braid group is a CAT.0/ group.
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Introduction

The complement of a hyperplane arrangement in Cn is obtained by removing the

union of its hyperplanes. When the arrangement under consideration is the com-

plexification of a real arrangement, there is a classical construction due to Salvetti

that provides a deformation retraction onto an n-dimensional cell complex now

known as the Salvetti complex of the arrangement [19]. Björner and Ziegler ex-

tended Salvetti’s construction so that it works for an arbitrary complex hyperplane

arrangement, but their construction depends on an initial choice of a coordinate

system [3]. In this article we deformation retract the complement of a specific

infinite affine hyperplane arrangement in C2 onto a 2-dimensional piecewise Eu-

clidean complex that involves no choices along the way. The arrangement we

consider is the set of hyperplanes for the reflections in a complex Euclidean re-

flection group that we denote Refl. zG4/. This is the unique complex Euclidean
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reflection group acting cocompactly by isometries on C2 whose linear part is the

finite complex reflection group known as G4 in the Shephard-Todd classification.

Theorem A. The hyperplane complement of Refl. zG4/ deformation retracts onto
a non-positively curved piecewise Euclidean 2-complex.

Our construction is easy to describe. We use the set of 0-dimensional hyper-

plane intersections to form Voronoi cells and then construct a deformation retrac-

tion from the hyperplane complement onto the portion of the Voronoi cell struc-

ture contained in the complement. For the group Refl. zG4/ all of the Voronoi cells

are isometric and their shape is that of the regular 4-dimensional polytope known

as the 24-cell. The 0-dimensional intersection at the center of each Voronoi cell

means that as a first step one can remove its interior by radially retracting onto

its 3-dimensional polytopal boundary. This procedure works for this particular

complex Euclidean reflection group but it appears that this is one of the few cases

where it can be carried out without significant modifications. See Remark 9.2.

Recall that for any group G acting on a space X a point x 2 X is said to be

regular when its G-stabilizer is trivial (and irregular otherwise). For complex

spherical reflection groups, one consequence of Steinberg’s theorem is that the

hyperplane complement is exactly the set of regular points [21, 14, 15]. For

complex Euclidean reflection groups the two spaces can be distinct, as discussed

in [18], and they are distinct in this case, i.e. there are points inC2 that are irregular

under the action of Refl. zG4/, even though they are not fixed by any reflection in

the group. In fact, these points are isolated in the sense that each such point has a

neighborhood where every other point in the neighborhood is regular.

Theorem B. Under the action of Refl. zG4/ on C2, there are isolated irregular
points.

Isolated irregular points, of necessity, are disjoint from the union of the hyper-

planes fixed by the reflections, and thus contained in the hyperplane complement.

These isolated irregular points are the vertices of the 2-complex K and we use K

to study the structure of the braid group of Refl. zG4/ acting on C2. Recall that

the space of regular orbits is the quotient of the subset of regular points by the

free G-action and the braid group of G acting on X is the fundamental group of

the space of regular orbits. The name “braid group” alludes to the fact that when

the symmetric group Symn acts on Cn by permuting coordinates, the braid group

of this action is Artin’s classical braid group Braidn. Let Braid. zG4/ denote the

braid group of Refl. zG4/ acting on C2. The well-behaved geometry of K and

the isolated fixed points in the hyperplane complement lead to an unusual mix of

properties for a braid group of a reflection group.

Theorem C. The group Braid. zG4/ is a CAT.0/ group and it contains elements
of order 2.
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The group Braid. zG4/ is a CAT.0/ group because it acts properly discontinu-

ously and cocompactly by isometries on the CAT.0/ universal cover of K and it

has elements of order 2 that stabilize lifts of the isolated fixed points in the hy-

perplane complement. Since every finitely generated Coxeter group is a CAT.0/

group that contains 2-torsion, this combination is not unusual in the broader world

of CAT.0/ groups. However, torsion is unusual in the braid group of a reflection

group. The braid groups of finite complex reflection groups are torsion-free [2],

as are the braid groups of complexified Euclidean Coxeter groups, also known

as Euclidean Artin groups or affine Artin groups [16]. In fact, it is conjectured

that the braid groups of all complexified Coxeter groups, i.e. all Artin groups, are

torsion-free [12]. Thus, this example is a departure from the norm.

The article is structured from general to specific. Sections 1 and 2 contain basic

definitions and results about complex spherical and complex Euclidean reflection

groups. Section 3 briefly focuses attention on the groups acting on the complex

Euclidean line. This section highlights our approach and it contains an explicit

computation used to prove the main theorems. The next sections develop tools for

visualizing and describing the action of the complex spherical reflection group

Refl.G4/ on C2. Concretely, Section 4 uses the quaternions to describe the 4-

dimensional regular polytope known as the 24-cell, and Section 5 introduces a

novel way to visualize the natural action of Refl.G4/ on this polytope. Section 6

describes how quaternions can be used to give efficient linear-like descriptions of

arbitrary isometries of the complex Euclidean plane, Section 7 applies these tools

to the complex spherical reflection group Refl.G4/, and Section 8 extends them to

the complex Euclidean reflection group Refl. zG4/. Finally, Section 9 contains the

proofs of our three main results. The authors would like to thank the anonymous

referee for their detailed comments on an earlier version of this article.

1. Complex spherical reflection groups

This section reviews the notion of a complex spherical reflection group. Recall

that a geometry is a proper metric space in which metric balls are compact and

that a group acting on a geometry is acting geometrically if the action is properly

discontinuous and cocompact by isometries. In this language, complex spherical

reflection groups act geometrically on the complex unit sphere.

Definition 1.1. We call V D Cn a complex spherical geometry when it comes

equipped with a positive definite hermitian inner product that is linear in the sec-

ond coordinate and conjugate linear in the first. The unitary linear transformations

that preserve this inner product act on the unit sphere S2n�1 � Cn and they form

the unitary group U.n/.

A complex reflection is an elementary unitary isometry.



992 B. Coté and J. McCammond

Definition 1.2. Let V be a complex spherical geometry. A complex (spherical)
reflection r is a non-trivial unitary transformation of V that multiples some unit

vector v by a unit complex number z 2 C and fixes the orthogonal complement of

v pointwise. The formula for the reflection r D rv;z is r.w/ D w � .1� z/hv; wiv.

The reflection r has finite order if and only if z D eai where a is a rational multiple

of � . When this occurs, r is called a proper complex reflection. All reflections

in this article are proper and we drop the adjective. The complex reflection rv;z is

primitive when the complex number z is of the form z D e
2�

m
i for some positive

integer m.

We are interested in groups generated by complex reflections.

Definition 1.3. A group G is called a complex spherical reflection group if it is

generated by complex reflections acting on a complex spherical geometry V so

that the action restricted to the unit sphere is geometric. They are also known as

finite complex reflection groups since the action is geometric if and only if the

group is finite. If there is an orthogonal decomposition V D V1 ˚ V2 preserved

by all of the elements of G, then G is reducible and it is irreducible when such a

decomposition does not exist.

Shephard and Todd completely classified the irreducible complex spherical

reflection groups in 1954. There is a single triply-indexed infinite family and 34

exceptional cases denoted G4 through G37 [20, 7]. We write Refl.Gk/ to denote

the complex spherical reflection group of type Gk . This is done to distinguish the

reflection group from its corresponding braid group. Our focus is on the braid

group of the unique Euclidean extension of Refl.G4/, the smallest exceptional

complex spherical reflection group.

2. Complex Euclidean reflection groups

In this section, we transition to complex Euclidean reflection groups, by replacing

the underlying vector space with an affine space, where all points are on an equal

footing.

Definition 2.1. For any vector space V , the corresponding affine space is a set

E together with a simply transitive V -action on E; the image of x 2 E under

v 2 V is written x C v. For each linear subspace U � V and point x 2 E there

is an affine subspace x C U � E and the functions f W E ! E that send affine

subspaces to affine subspaces are affine maps. We write Aff.E/ for the group of

all affine maps under composition. For each vector v 2 V there is a translation
map tv that sends each point x to x C v. The translations form a normal abelian

subgroup.
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When the vector space V is a complex spherical geometry, one can restrict

attention to those affine maps that preserve the inner product.

Definition 2.2. If E is an affine space for a complex vector space V and V is a

complex spherical geometry, then E is a complex Euclidean geometry. Since an

ordered pair .x; x0/ of points in E determines a vector vx;x0 2 V that sends x to

x0, an ordered quadruple .x; x0; y; y0/ of points in E determines an ordered pair of

vectors .vx;x0 ; vy;y0/ in V . An affine map f W E ! E is called a complex Euclidean
isometry when f preserves the hermitian inner product of the ordered pair of

vectors derived from an ordered quadruple of points in E. We write Isom.E/ for

the group of all complex Euclidean isometries.

Translations are complex Euclidean isometries and an affine map fixing a

point x is a complex Euclidean isometry if and only if the corresponding linear

transformation of V is unitary. The notion of a reflection extends to this new

context.

Definition 2.3. An isometry of a complex Euclidean space E is called a com-
plex (Euclidean) reflection if it can be viewed as a complex spherical reflection

(Definition 1.2) after choosing an appropriate origin. A crystallographic complex
Euclidean reflection group is a group G generated by complex reflections that acts

geometrically on a complex Euclidean space [17]. The image of G under the pro-

jection map from Isom.E/ ! U.V / is called its linear part and the kernel is its

translation part.

The reducibility of a complex Euclidean reflection group is determined by its

linear part and two such groups G and G0 acting on complex Euclidean spaces E

and E 0 are called equivalent when there is an invertible affine map from E to E 0

so that the action of G on E corresponds to the action of G0 on E 0.

Remark 2.4. The irreducible crystallographic complex Euclidean reflection

groups were classified by Popov in [17], although Goryunov and Man found one

additional 2-dimensional example [13]. There are roughly 30 infinite families and

20 isolated examples.

There is a unique complex Euclidean reflection group whose linear part is

the spherical group Refl.G4/. We write Refl. zG4/ to denote this group. Popov

denotes it ŒK4�.

3. Isometries of the complex Euclidean line

This section focuses on complex Euclidean reflection groups acting geometrically

on the complex Euclidean line. It includes an explicit computation needed in the
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proof of Theorem B and it previews the Voronoi cell argument in this easy-to-

visualize context. Isometries of the complex Euclidean line are functions of the

form f .x/ D eai x C z where a is real and z is an arbitary complex number. A

reflection must fix a point z0 and it can be written as eai .x � z0/ C z0. There are

very few 1-dimensional complex Euclidean reflection groups.

Theorem 3.1. If G is a complex Euclidean reflection group that acts geometrically
on the complex Euclidean line, then every reflection in G has order 2, 3, 4 or 6 and
its reflections of maximal order generate G. When the maximal order is 2 there is
a 1-parameter family of such groups, but when it is 3, 4 or 6 there is a unique such
group up to affine equivalence.

Complex reflections in this context are real rotations.

Example 3.2. There are three real irreducible 2-dimensional Euclidean Coxeter

groups (of type zA2, zB2 and zG2) and each is the symmetry group of a triangular

tiling of R2. Each rigid case mentioned in Theorem 3.1 is the index 2 subgroup

of the orientation-preserving isometries in one of these Coxeter groups. These

subgroups are denoted ŒK3.m/� in Popov’s notation and Refl. zG3.m// in ours,

where �
m

is the smallest angle in the triangular tiling mentioned above. The

complex reflections which generate the group Refl. zG3.m// are the real rotations

that fix a point where 2m triangles meet, rotating through an angle of 2�
m

.

Fixed points of the reflections are related to the translation subgroup.

Remark 3.3. Consider a complex Euclidean reflection group acting on C where

the origin is fixed by a primitive reflection r of maximal order. If T0 denotes the

images of the origin under the action of the translation subgroup and FPm denotes

the fixed points of the primitive reflections of order m, then the computation

tv ı r ı t�1
v .x/ D z.x � v/ C v D zx C .1 � z/v D t.1�z/v ı r.x/ with

z D e
2�

m
i shows that .1 � z/ � FPm D T0. In the group Refl. zG3.6//, for example,

2 � FP2 D .1 � !/ � FP3 D FP6 D T0, where ! D e2�i=3 is a primitive cube-root

of unity.

The corresponding braid group can be computed using Voronoi cells.

Example 3.4. Let G be Refl. zG3.m// with m 2 ¹3; 4; 6º and let S be the set of

fixed points for the reflections in G. The vertices of the Voronoi cells for this set S

are the incenters of the triangles in the corresponding triangular tiling. The case

m D 3 is illustrated in Figure 1. The Voronoi cells can be used to understand the

corresponding braid group. Once the fixed points of the reflections are removed,

the remainder deformation retracts to the 1-skeleton of the Voronoi cell structure.

The braid group acts freely on the 1-skeleton but it does not act transitively on the

vertices. The quotient graph has 2 vertices with 3 edges connecting them, a graph

whose fundamental group is the free group of rank 2.
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Figure 1. The Voronoi cell structure for the complex Euclidean reflection group

Refl. zG3.3// is a hexagonal tiling of C and the hyperplane complement deformation re-

tracts to its 1-skeleton.

4. Quaternions and the 24-cell

This section describes the 24-cell using the quaternions.

Definition 4.1. Let H denote the quaterions viewed as a 4-dimensional Euclidean

space with orthonormal basis ¹1; i; j; kº and identify the reals R with the R-span

of 1. The unit quaternions of norm 1 correspond to the unit 3-sphere. The convex

hull of the set

ˆ D ¹˙1; ˙i; ˙j; ˙kº [
°˙1 ˙ i ˙ j ˙ k

2

±

is a 4-dimensional regular polytope known as the 24-cell [8]. The centers of its 24

regular octahedral facets are at the points i�j
2

� ˆ, a scaled and rotated version of

ˆ obtained by left multiplying every element of ˆ by i�j
2

. In particular, i�j
2

� ˆ

consists of the 24 quaternions of the form ˙u˙v
2

for u; v 2 ¹1; i; j; kº with u ¤ v.

We use ˆ for this set because it is the conventional letter used for root systems

and the type D4 root system is the set ˆD4
D .i � j / � ˆ.

The unit quaternions are a compact Lie group (and those in ˆ are a finite

subgroup). The unique real subalgebra of H identifies S3 with Spin.3/, the double

cover of SO.3/, but H contains a continuum of subalgebras isomorphic to C, and

each one produces a complex spherical structure and an identification of S3 with

SU.2/, see [9].



996 B. Coté and J. McCammond

Definition 4.2. For each purely imaginary unit quaternion u, u2 D �1 and the

R-span of 1 and u is a subalgebra of H isomorphic to the complex numbers with

u playing the role of
p

�1. More generally, note that every nonreal quaternion q0

determines a complex subalgebra of H in which q0 has positive imaginary part.

Concretely, the R-span of 1 and q0 is a complex subalgebra and the isomorphism

with C identifies
p

�1 with the normalized imaginary part of q0. We call this the

complex subalgebra determined by q0. Let Hq0
denote the complexified quater-

nions with a fixed complex subalgebraC determined by the nonreal quaternion q0.

The right cosets qC of C inside Hq0
partition the nonzero quaternions into right

complex lines. Vector addition and this type of right scalar multiplication turn

Hq0
into a 2-dimensional right vector space over this subalgebra C. In addition,

there is a unique positive definite hermitian inner product on this 2-dimensional

C-vector space so that the unit quaternions have length 1 with respect to this inner

product.

We use elements in ˆ to define a complex structure on H.

Definition 4.3. Let ! D �1CiCj Ck
2

and let � D 1CiCj Ck
2

, and note that ! is a

cube-root of unity, � is a sixth-root of unity and �2 D !. For the remainder of the

article we identify C with the subalgebra of H that contains both ! and �. Since ˆ

is a group of order 24 and � is an element in ˆ of order 6, we can partition ˆ into

the four cosets qh�i with q 2 ¹1; i; j; kº. Thus every element in ˆ is of the form

q�` with q 2 ¹1; i; j; kº and ` an integer mod 6 and ˆ is contained in the union of

the four complex lines 1C, iC, jC and kC.

Those who prefer computations over C can select an ordered basis and work

with coordinates. Note that we use the letter z rather than q when we wish to

emphasize that a particular quaternion lives in the distinguished copy of C.

Definition 4.4. Let Hq0
be the complexified quaternions. Every ordered pair

of nonzero quaternions q1 and q2 that belong to distinct complex lines form an

ordered basis of Hq0
viewed as a 2-dimensional right complex vector space. In

particular, their right C-linear combinations q1C C q2C span all of Hq0
and for

every q 2 Hq0
there are unique coordinates z1; z2 2 C such that q D q1z1 C q2z2.

When the basis B D ¹q1; q2º is ordered we view the coordinates of q as a column

vector.

In Hj with ordered basis B D ¹1; iº, for example, the quaternion q D
a C bi C cj C dk has coordinates z1 D a C cj and z2 D b C dj because

q D 1.a C cj / C i.b C dj /. In other words, in Hj

q D a C bi C cj C dk D
�

z1

z2

�

B

D
�

a C cj

b C dj

�

B

:

Since our chosen C in H contains ! and �, we are working with H! D H� and

the computations there are slightly more complicated. To compensate, we at least
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simplify the notation for unit complex numbers. The copy of C in H! does not

contain the quaternion i and, in fact, the element that plays the role of
p

�1 is
iCj Ckp

3
. Nevertheless, we still write z D eai for the numbers on the unit circle in

this copy of C. This misuse of the letter i only occurs as an exponent and only in

this particular formulation.

5. Visualizing the 24-cell

In 2007 John Meier and the second author developed a technique for visualizing

the regular 4-dimensional polytopes as a union of spherical lenses that has been

very useful for understanding the various groups that act on these polytopes. To

our knowledge this is the first time that this technique has appeared in print.

Definition 5.1. A lune is a portion of a 2-sphere bounded by two semicircular

arcs with a common 0-sphere boundary and its shape is completely determined

by the angle at which these semicircles meet. A lens is a portion of the 3-sphere

determined by two hemispheres sharing a common great circle boundary and the

shape of a lens is completely determined by the dihedral angle between these

hemispheres along the great circle where they meet. This is the 3-dimensional

analog of a lune.

In the same way that lunes can be used to display the map of a 2-sphere such

as the earth in R2 with very little distortion, lenses can be used to display a map

of the 3-sphere in R3 with very little distortion.

Definition 5.2. To visualize the structure of the 24-cell it is useful to use the

6 lenses displayed in Figure 2. Each of the six figures represents one-sixth of

the 3-sphere. The outside circle is a great circle in S3, the solid lines live in

the hemisphere that bounds the front of the lens, the dashed lines live in the

hemisphere that bounds the back of the lens and the dotted lines live in the

interior of the lens. The dihedral angle between the front and back hemispheres,

along the outside boundary circle is �
3

and all the edges are length �
3
. The six

lenses are arranged so that the front hemisphere of each lens is identified with the

back hemisphere of the next one in counter-clockwise order. Each lens contains

one complete octahedral face at its center and six half octahedra, three bottoms

halves corresponding to the squares in the front hemisphere and three top halves

corresponding to the squares in the back hemisphere. The label at the center of

each lens is the coordinate of the center of the Euclidean octahedron spanned by

the six nearby vertices. The arrows in Figure 2 indicate how the 24 vertices move

under the map which right multiplies by �. The arrows glue together to form 4

(oriented) moved hexagons with vertices qh�i that live in the 4 complex lines qC

where q is 1, i , j or k.
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Figure 2. Six lenses that together display the structure of the 24-cell. Each figure repre-

sents a one-sixth lens in the 3-sphere with dihedral angle �

3
between its front and back

hemispheres. They are arranged so that every front hemisphere is identified with the back

hemisphere of the next one when ordered in a counter-clockwise way.

6. Complex spherical isometries of the quaternions

Every spherical isometry of C2 can be described using quaternions. This material

is elementary and similar treatments can be found in [9, 15, 11]. Even these ref-

erences, however, do not treat the case where a non-standard complex structure is

being preserved. We begin with general maps given by left and right multiplica-

tion.
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Definition 6.1. For each quaternion q there are left and right multiplication maps

Lq.x/ D qx and Rq.x/ D xq from H to itself. When q is a unit quaternion, both

Lq and Rq are orientation preserving Euclidean isometries that fix the origin, send

the unit 3-sphere to itself and move every point in S3 the same distance. For each

pair of unit quaternions q and q0, there is a function Lq.Rq0.x// D Rq0.Lq.x// D
qxq0 that we call a spherical map. Every orientation preserving isometry of S3

can be uniquely represented as a spherical map, up to negating both q and q0. This

correspondence essentially identifies the topological space S3 �S3 of pairs of unit

quaternions with Spin.4/, the double cover of SO.4/ [9].

The spherical maps that preserve a complex structure are special.

Definition 6.2. When the quaternions have a fixed complex structure, only some

spherical maps preserve it, and we call these complex spherical maps. For every

unit quaternion q, Lq is a complex spherical map. However, right multiplication

maps are complex spherical maps only if of the form Rz where z D eai is a

unit complex number. In this case, Rz stabilizes each individual complex line qC

setwise and rotates it by through an angle of a radians. As z varies through the

unit complex numbers, this motion is called the Hopf flow.

The next proposition records the fact that left multiplication and the Hopf flow

are sufficient to generate all complex spherical isometries.

Proposition 6.3. The spherical maps that preserve the complex structure of Hq0

are precisely those of the form x 7! qxz where q is a unit quaternion and z is a
unit complex number in the chosen complex subalgebra.

As with general spherical maps, each complex spherical map can be repre-

sented in two ways because of the equality qxz D .�q/x.�z/. This gives a map

from S3 � S1
� U.2/ with kernel ¹˙1º, which corresponds to the short exact

sequence O.1/ ,! Sp.1/ � U.1/ � U.2/.

Definition 6.4. Let Hq0
be the quaternions with a complex structure, let q1 be any

unit quaternion orthogonal to both 1 and q0, and let z D eai with a real be a unit

complex number. The complex spherical map Lz ı Rz.x/ D zxz is a complex

reflection because it fixes the complex line q1C pointwise and rotates the complex

line C D 1C through an angle of 2a radians. In the notation of Definition 1.2

this map is r1;z2 . To create an arbitrary complex spherical reflection rq;z2 with

q a unit quaternion, it suffices to conjugate r1;z2 by Lq since the composition

Lq ı r1;z2 ı Lq�1 defined by the equation x 7! .qzq�1/xz rotates the complex

line qC through an angle of 2a and fixes the unique complex line orthogonal to

qC pointwise.

This explicit description makes complex reflections easy to detect. Both

directions are easy quaternionic exercises.
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Proposition 6.5. Let Hq0
be the quaternions with a complex structure. A complex

spherical map f .x/ D qxz with q a unit quaternion and z a unit complex number
is a complex reflection if and only if Real.q/ D Real.z/.

7. The group Refl.G4/

The complex spherical reflection group Refl.G4/ acts on C2 and its hyperplane

complement deformation retracts to a non-positively curved 2-complex in the 2-

skeleton of the 24-cell. This model for the Refl.G4/ hyperplane complement is

being introduced here.

Definition 7.1. We define the group Refl.G4/ as the complex spherical reflection

group generated by order 3 reflections r1;!.x/ D �x� and ri;!.x/ D �ix�,

where �i D .�i/� i D i�.�i/ D ��i . For simplicity we abbreviate these as

r1 D r1;! and ri D ri;! . The resulting group also includes the order 3 reflections

rj D rj;!.x/ D �j x� and rk D rk;!.x/ D �kx� as well as the reflections

r2
q D rq;!2 for q 2 ¹1; i; j; kº. This group includes the map that multiplies

by �1, so it also includes the negatives of these eight reflections, which are no

longer reflections. Finally, Refl.G4/ contains elements which left multiply by

˙q with q 2 ¹1; i; j; kº. Thus the full list of all 24 elements in Refl.G4/ is

¹˙Lqº [ ¹˙rqº [ ¹˙r2
q º with q 2 ¹1; i; j; kº.

This presentation of Refl.G4/ is new, but closely related to that given in

[15, Chapter 6]. These authors, however, write matrices using the complex

structure Hj . The computations are simpler, but the underlying symmetry is

obscured. We use the lens diagram in Figure 2 to understand how the reflections

in Refl.G4/ act on the 24-cell. Since radial projection identifies points in the

boundary of the 24-cell with points in the 3-sphere, we can use the piecewise

spherical structure in the lens picture as a proxy for the piecewise Euclidean

structure of the 24-cell boundary.

Definition 7.2. Each reflection rq with q 2 ¹1; i; j; kº rotates the complex line

qC and fixes the orthogonal complex line pointwise. Concretely, the fixed hyper-

planes for the reflections r1, ri , rj and rk are .i � j /C, .1 C k/C, .1 � k/C and

.i Cj /C, respectively. The moved lines intersect the boundary of the 24-cell in the

four moved hexagons (Definition 5.2). Each fixed line also intersects the bound-

ary of the 24-cell in a hexagon, but these fixed hexagons are disjoint from the

1-skeleton of the 24-cell. The smallest subcomplex of the 24-cell boundary con-

taining a fixed hexagon is a union of 6 octahedra, overlapping on triangles, that

we call a necklace. Thus each reflection rq has a moved hexagon in the 1-skeleton

and a fixed hexagon in the interior of its antipodal necklace.

To see this, consider the action of r1 on the 6 lens picture (Figure 2).
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Remark 7.3. In Figure 2, each of the six lenses is stabilized and rotated by r1 and

the common boundary circle of the lenses represents the moved hexagon of r1.

Recall from Definition 5.2, that the 4 moved hexagons correspond to the 4 complex

lines qC, with q 2 ¹1; i; j; kº. These are permuted by the action of r1. The moved

hexagon containing 1 is rotated by 2�
3

, the three moved hexagons containing i ,

j and k are cyclically permuted. In the top lens, for example, the three points

¹1; �2; �4º 2 1C are cyclically permuted and three points ¹i; j�2; k�4º, in iC, jC

and kC, respectively, are cyclically permuted. The fixed hexagon for r1 is formed

from the line segment in each lens connecting the center of the back hemisphere

to the center of the front hemisphere through the center of its central octahedron.

These six octahedra form the r1 necklace.

We now extend these observations to all of the reflections.

Remark 7.4. The reflections rq with q 2 ¹1; i; j; kº are conjugate in Refl.G4/,

and therefore geometrically similar. The reflection rq rotates the complex line

qC and it cyclically permutes the other three complex lines. Thus, it rotates one

moved hexagon and permutes the other three moved hexagons. The necklaces

containing the four fixed hexagons have disjoint interiors and they partition the 24

octahedra into 4 necklaces with 6 octahedra each (see Figure 3). The boundary

of each necklace contains three moved hexagons and each moved hexagon is in

the boundary of three of the necklaces. The action of rq fixes its fixed hexagon

and rotates the surrounding necklace around this core curve. The other three

necklaces, which contain the moved hexagon, are cyclically permuted as the

moved hexagon rotates.

The portion of the 24-cell that avoids the fixed hyperplanes of the reflections

in Refl.G4/ is of particular interest.

Definition 7.5. Let K0 be the largest subcomplex of 24-cell P that avoids any point

fixed by a reflection in Refl.G4/. The interior of P is removed because the origin

is fixed by all reflections. In addition, all 24 octahedral facets of P , and some of

the equilateral triangles in its 2-skeleton are removed because they intersect the

fixed hexagons of the reflections. What remains is the entire 1-skeleton of P and

some of its triangles. From the description of the fixed points given in Remark 7.4

we see that a triangular face of P is excluded precisely when all three of its vertices

belong to distinct complex lines and included when two of the vertices belong to

the same complex line. In Figure 2 the included triangles can be characterized as

those which contain an arrow (representing right multiplication by �) as one of its

edges.

One nice property of complex K0 is that it is non-positively curved. We only

need a few basic facts. See [4] for additional details.
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Figure 3. The 4 octahedral necklaces centered around the fixed orthogonal circles/hexagons

are created by identifying the top and bottom triangle in each pillar. The triangles in the

boundaries of the necklaces can be pairwise identified to form the boundary of the 24-cell

homemorphic to a 3-sphere.

Remark 7.6. A piecewise Euclidean 2-complex is non-positively curved when

every simple loop in every vertex link has length at least 2� . The universal cover

of a non-positively curved 2-complex is a complete, contractible CAT.0/ space,

and a group that acts geometrically on a such a space is a CAT.0/ group.

Theorem 7.7. The hyperplane complement of Refl.G4/ deformation retracts
onto a non-positively curved piecewise Euclidean 2-complex K0 contained in the
boundary of the 24-cell. Every 2-cell in K0 is an equilateral triangle and every
vertex link is a subdivided theta graph.

Proof. The deformation retraction from the hyperplane complement to K0 has

two stages. First, we can retract the hyperplane complement onto the boundary of

the 24-cell, radially pushing away from the origin and pulling away from 1. This

is possible because the origin belongs to all 4 fixed hyperplanes. The end result of

this first deformation is the boundary of the 24-cell minus the four fixed hexagons.

The second step focuses on the four necklaces that contain the four fixed hexagons

in their interiors. Topologically, each necklace is a solid torus with a missing core
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curve and we can retract away from the missing fixed hexagon onto the boundary

torus of the necklace. Geometrically, each punctured triangle retracts onto its

boundary and each pierced octahedron retracts onto the annulus formed by the six

triangles that are not punctured. See Figure 3. This completes the deformation

retraction to K0. Each vertex of K0 belongs to 9 triangles and each vertex link has

9 edges of length �
3

. These edges connect to form three paths of length � sharing

endpoints. Since every simple loop in this “theta graph” has length at least 2� ,

K0 is non-positively curved. �

A presentation for the corresponding braid group Braid.G4/ can be derived

from its action on K0. We include this without proof.

Corollary 7.8. The group Braid.G4/ is a CAT.0/ group isomorphic to the three-
strand braid group and it is defined by the presentation ha;b; c;d j abd;bcd; cad i:

The fact that the braid group of Refl.G4/ is isomorphic to the 3-strand braid

group is well-known [1, 5, 6]. The novelty of our presentation is that we use an

explicit piecewise Euclidean 2-complex in the 2-skeleton in the boundary of the

24-cell to establishes this connection.

8. The group Refl. zG4/

This section extends results about the spherical reflection group Refl.G4/ to the

Euclidean reflection group Refl. zG4/, which is the focus of our main theorems. It

establishes key facts about translations, reflections, fixed hyperplanes and Voronoi

cells.

Definition 8.1. For every quaternion q the translation map tq.x/ D x C q is an

orientation preserving isometry of the canonical Euclidean structure of H. When

a spherical map is combined with translation by an arbitrary quaternion q00 we

call the resulting function f .x/ D qxq0 C q00 a Euclidean map. As was the case

with spherical maps (Definition 6.1), every Euclidean map is an orientation pre-

serving Euclidean isometry and every orientation preserving Euclidean isometry

can be represented as a Euclidean map in precisely two ways (with the second

representation obtained by negating q and q0).

Once translations are allowed, and the location of the origin is forgotten, Hq0

can be viewed as the complex Euclidean plane. The images of the complex

lines qC under translation are called affine complex lines and they are sets of the

form qC C v. Every translation preserves this complex Euclidean structure and

Propositions 6.3 and 6.5 extend.
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Proposition 8.2. The Euclidean maps that preserve the complex Euclidean struc-
ture of Hq0

are precisely those of the form x 7! qxz C v where q is a unit quater-
nion, z is a unit complex number in the chosen complex subalgebra and v is arbi-
trary.

Proposition 8.3. Let Hq0
denote the quaternions with a complex structure. A map

f .x/ D qxz C v with q a unit quaternion, z a unit complex number and v

arbitrary is a complex Euclidean reflection if and only if f has a fixed point and
Real.q/ D Real.z/.

When a complex reflection is conjugated by a translation, the result is a parallel
reflection. The group Refl. zG4/ is generated from Refl.G4/ by adding an affine

reflection parallel to an existing reflection. See [17].

Definition 8.4. Let Refl. zG4/ denote the group generated by the reflections r1, ri

and r 0
1 D t1Ckır1ıt�1

1Ck
D t2ır1. The first two generate Refl.G4/ as before and the

third, r 0
1.x/ D �x� C 2, is a complex Euclidean reflection whose action on H! is

a translated version of r1. The first equation shows that r 0
1 is a complex Euclidean

reflection fixing 1 C k and the second equation is useful for computations.

One can also write r 0
1 D t1Ci ı r1 ı t�1

1Ci . Our choice of t1Ck as the conjugating

translation is motivated by the following computation.

Example 8.5. The sets Fix.r1/ D .i � j /C, Fix.ri / D .1 C k/C and Fix.r 0
1/ D

.1 C k/ C .i � j /C can be described as

Fix.r1/ D ¹a C bi C cj C dk j a D 0; b C c C d D 0º;

Fix.ri/ D ¹a C bi C cj C dk j b D 0; a C c � d D 0º;
Fix.r 0

1/ D ¹a C bi C cj C dk j a D 1; b C c C d D 1º:
Solving these equations, one finds that 1 C k 2 ˆD4

is the unique point in the

intersection Fix.r 0
1/ \ Fix.ri /. Thus r 0

1 and ri generate a copy of Refl.G4/ that

uses 1 C k as its origin.

The complex spherical reflection group Refl.G4/ acts on the root system ˆ

and the complex Euclidean reflection group Refl. zG4/ acts on the Hurwitzian

integers.

Definition 8.6. The Z-span of ˆ inside H is the set ƒ of Hurwitzian integers. It

consists of all quaternions of the form aCbiCcj Cdk
2

where a, b, c and d are all even

integers or all odd integers. Our notation is derived from the theory of Coxeter

groups. The Z-span of a root system ˆ is its root lattice ƒ and, as with ˆ, we write

q � ƒ for the Z-span of q � ˆ and ƒD4
D ¹.a; b; c; d/ 2 Z4 j a C b C c C d 2 2Zº

for the Z-span of ˆD4
. We note that 2 � ƒ � ƒD4

� ƒ and that each is an index 4

subset of the next.
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The Hurwitzian integers have many nice properties. They form a subring of

the quaternions with ˆ as its group of units. Every element has an integral norm

and ƒ satisfies a noncommutative version of the Euclidean algorithm. See [9,

Chapter 5] for details. The remainder of the section records basic facts about the

action of Refl. zG4/ on H! .

Lemma 8.7. The elements of the translation subgroup of Refl. zG4/ are precisely
those of the form tq with q 2 2 � ƒ.

Proof. The element t2 D r 0
1 ı r�1

1 is a translation in Refl. zG4/ and conjugating

t2 by elements of Refl.G4/ shows that all the translations tq for all q 2 2 � ˆ

are also in Refl. zG4/. Thus Refl. zG4/ contains the abelian subgroup T that they

generate and this consists of all translations of the form 2 � ƒ. The subgroup T is

normal in Refl. zG4/ since it is stabilized by the generating set and, because the

quotient of Refl. zG4/ by T is Refl.G4/, the elements in T are the only translations

in Refl. zG4/. �

Lemma 8.8. For each v in the lattice ƒD4
, there is a copy of Refl.G4/ inside

Refl. zG4/ fixing v. In particular, every point in ƒD4
is an intersection of fixed

hyperplanes of complex reflections in Refl. zG4/.

Proof. By Example 8.5 this holds for v D 1 C k and if we conjugate the copy of

Refl.G4/ fixing 1 C k by an element of the copy fixing the origin we find copies

fixing v for all v 2 ˆD4
. Next, conjugating the copy at the origin by elements in

the copies fixing the points in ˆD4
shows that there is a copy fixing every point that

is a sum of two elements in ˆD4
. Continuing in this way shows that there is a copy

fixing any point that is a finite sum of elements in ˆD4
, a set equal to ƒD4

. �

Lemma 8.9. The primitive complex reflections in Refl. zG4/ are of the form
tv ı rq ı t�1

v where v 2 ƒD4
and q 2 ¹1; i; j; kº.

Proof. All of these primitive complex reflections are in Refl. zG4/ by Lemma 8.8.

On the other hand, every primitive complex reflection r 0 in Refl. zG4/ must be

parallel to one of the primitive reflections rq with q 2 ¹1; i; j; kº in Refl.G4/,

since quotienting by the normal translation subgroup sends primitive reflections

in Refl. zG4/ to primitive reflections in Refl.G4/. Finally, if r 0 D tv ı rq ı t�1
v

and v 62 ƒD4
, then r 0 ı r�1

q D tv ı rq ı t�1
v ı r�1

q D tu with u 62 2 � ƒ, violating

Lemma 8.7. �

Lemma 8.10. The fixed hyperplanes of the complex reflections in Refl. zG4/ of the
form tv ı rq ı t�1

v with v 2 ƒD4
and q 2 ¹1; i; j; kº can be described as follows:

Fix.tv ı r1 ı t�1
v / D ¹a C bi C cj C dk j a D `; b C c C d D mº;
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Fix.tv ı ri ı t�1
v / D ¹a C bi C cj C dk j b D `; a C c � d D mº;

Fix.tv ı rj ı t�1
v / D ¹a C bi C cj C dk j c D `; a C d � b D mº;

Fix.tv ı rk ı t�1
v / D ¹a C bi C cj C dk j d D `; b C c � a D mº;

where ` and m are the unique integers so that v satisfies the equations.

Proof. Direct computation. �

Now that the reflections and their fixed hyperplanes have been computed, one

sees that the isolated fixed points listed in Lemma 8.8 are the only points that arise

as intersections of fixed hyperplanes and this set then determines the structure of

the Voronoi cells.

Lemma 8.11. In the Voronoi cell structure around the set of isolated hyperplane
intersections for the group Refl. zG4/ the Voronoi cell around the origin is the
standard 24-cell with vertices ˆ, the other Voronoi cells are translates of the 24-
cell by vectors in ƒD4

and the link of each vertex in the Voronoi cell structure is
a 4-dimensional cube.

Proof. This is a standard computation. See [8, Section 7.2]. �

Lemma 8.12. The vertices of the Voronoi cell structure are located at the points
in ƒ n ƒD4

and the group Refl. zG4/ acts transitively on this set.

Proof. Since the translates of the 24-cell are centered at the elements of ƒD4
,

every vertex of the Voronoi cell structure can be described as uCv with u 2 ˆ and

v 2 ƒD4
. The set ƒ contains ƒD4

as an index 4 sublattice, and the 3 other cosets

of ƒD4
are of the form u C ƒD4

with u 2 ˆ. In particular, every element of ƒ

that is not in ƒD4
differs from an element of ƒD4

by an element in ˆ. Transitivity

follows from the connectivity of the 1-skeleton of the Voronoi cell structure. Given

two vertices and a path between them, every edge in this path is in the boundary of

some 24-cell. The local copy of Refl.G4/ fixing this 24-cell acts transitively on

its vertices, making it possible to move the initial vertex of this edge to its terminal

vertex. Combining these local transitivities gives the global transitivity. �

The following fact is crucial to the proofs of our main results.

Lemma 8.13. The intersection of a fixed hyperplane H of a complex reflection in
the group Refl. zG4/ with a closed Voronoi cell V is either empty, or it is a closed
hexagon passing through the point at the center of V . The boundary of this closed
hexagon is the fixed hexagon from the interior of a necklace in the boundary of V .
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Proof. This assertion follows from an explicit description of the minimal cel-

lular neighborhood containing a fixed hyperplane. From the equations listed in

Lemma 8.8, one sees that every fixed hyperplane contains at least one point from

the set ƒD4
, i.e. the center of some Voronoi cell, and the fixed hyperplane in-

tersects the boundary of this Voronoi cell as described above (Remark 7.4). In

particular, it then passes into the interiors of the Voronoi cells that also contain

the octahedra and triangles pierced by the fixed hexagon. There is only one other

Voronoi cell containing any particular octahedron and only two other Voronoi cells

containing any triangle. Given that the hyperplane orthogonally intersects the oc-

tahedra and the triangles, the extension of the hyperplane also passes through the

centers of the neighboring Voronoi cells. Overall, the intersection of the 3-skele-

ton of the Voronoi cell structure with a fixed hyperplane gives this affine complex

plane the cell structure of a regular hexagonal tiling. The interior of each hexagon

lies in the interior of a Voronoi cell, the interior of each edge lies in the interior of

an octahedron, and each vertex lies at the center of a triangle. Since the union of

the closed Voronoi cells that non-trivially intersect H contain an �-neighborhood

of H , every other Voronoi cell intersects H trivially. �

9. Proofs of Main Theorems

In this section we prove all three of our main results. We begin by defining the

complement complex K. Throughout this section we use G to denote the group

Refl. zG4/ and B to denote the group Braid. zG4/.

Definition 9.1. The complement complex K is the portion of the Voronoi cell

structure of the group G that is disjoint from the union of the fixed hyperplanes

of its complex reflections.

By Lemma 8.13, around each fixed hyperplane intersection point the portion of

K in the boundary of this particular 24-cell is a copy of the 2-complex K0 defined

in Definition 7.5. Thus K can be viewed as a union of local copies of K0. The

proof of our first main theorem reduces to an observation about the structure of

the vertex links of K, which turn out to be isomorphic to a well-known graph.

Proof of Theorem A. The proof combines the local deformations described in

Theorem 7.7 into a global deformation. The first step is to radially deformation

retract from the removed isolated fixed point at the center of each Voronoi cell

to its boundary, which can be carried out because of Lemma 8.13. Next, the

secondary deformations applied to the punctured equilateral triangles and the

skewered octahedra are compatible regardless of which Voronoi cell one views

them as belonging to. The link of a vertex in the complement complex K is

the portion of the 1-skeleton of the 4-cube shown in Figure 4. This is a 16
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vertex 3-regular graph known as the Möbius–Kantor graph [10]. The 8 removed

edges correspond to the equilateral triangles whose center lies in one of the fixed

hyperplanes. The portion of this graph that lives in one of the eight 3-cubes in

the 4-cube is the subdivided theta graph that is the link of this vertex inside the

corresponding copy of K0 inside a particular 24-cell. Finally, every edge in every

vertex link has length �
3

and since Möbius–Kantor graphs have no simple cycles of

combinatorial length less than 6, there are no simple loops of length less than 2� ,

the vertex links are CAT.1/ and K is non-positively curved. �

a

B

c

C

A

d

D

b

D

b

A

d

c

C

a

B

Figure 4. The Möbius–Kantor graph as a subgraph of the 1-skeleton of a 4-cube with 8

edges removed.

Remark 9.2. Although we have attempted to extend our main theorems to other

complex Euclidean reflections groups acting onC2, it is the analog of Lemma 8.13

where those attempts have failed. If a fixed hyperplane intersects the boundary

of a Voronoi cell without passing through its center, then the initial deformation

retraction onto a portion of the 3-skeleton of the Voronoi cell structure might not

be possible due to the fact that points from the interior of the Voronoi cell are

being pushed to points in the boundary that are missing.

Our second main theorem asserts that there are isolated irregular points inside

the hyperplane complement. We prove this in two steps. We first prove that

irregular points exist in the hyperplane complement, and then we classify the full

set of irregular points, in order to see that these other irregular points are isolated.
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Theorem 9.3. Under the action of G, the vertices of the complement complex K

are irregular points contained in the complement of the fixed hyperplanes.

Proof. Let T be the set of translations in G, let T0 the images of the origin under

the translations in T and let FPA be the set of points fixed by some element in

G whose linear part is the antipodal map. As in Remark 3.3, the simplification

�.x � v/ C v D �x C 2v shows that 2 � FPA D T0. Since T0 D 2 � ƒ, this

means that FPA D ƒ. The vertices of the complement complex K are contained

in ƒ (Lemma 8.12), so there is an element of order 2 fixing each of them. By

Lemma 8.13, the fixed hyperplanes of the reflections avoid the vertices of K. �

Theorem 9.4. Under the action of G, the only irregular points in the hyperplane
complement are the vertices of the complement complex K, and they are isolated
irregular points.

Proof. Suppose a point x is stabilized by a non-trivial element s. If x does not lie

on a fixed hyperplane, the linear part of s must be something other than a complex

reflection, and every such s has a power that is the antipodal map. Concretely, the

second power of ˙Lq and the third powers of �rq and of �r2
q are antipodal maps,

and these are the only possibilities for the linear part of s. In particular, the point

x must lie in FPA D ƒ. By Lemma 8.8, all of the points in ƒ are either vertices

of K or contained in the fixed hyperplanes. Thus x is a vertex of K. The second

assertion follows from the complete classification of irregular points. �

Taken together, Theorems 9.3 and 9.4 prove Theorem B. For later use we record

the following properties of the quotient K=G.

Proposition 9.5. The quotient K=G is a compact 2-complex.

Proof. The action of G on K is not free, but it is proper and cellular with trivial

stabilizers for every cell of positive dimension (Theorem 9.4). As a consequence,

the quotient remains a 2-complex. In addition, the translations in G show that

every cell orbit contains a representative in the boundary of the 24-cell containing

the origin. Thus there are finitely many orbits of cells and the quotient is compact.

�

Remark 9.6. The quotient K=G is the presentation complex for the presentation

ha; b; c; d j abd; bcd; cad; cbai. It has one vertex, four edges and four triangles.

The finite group defined by this presentation is called the binary tetrahedral group

and the universal cover of this complex is the 2-skeleton of the 24-cell. When this

same one-vertex presentation 2-complex K=G is viewed as the orbifold quotient

of G acting on K, the infinite complex Euclidean reflection group G is its orbifold

fundamental group.
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We now use the complete classification of irregular points to compute the

corresponding braid group. Since the braid group of a group action is defined

as the fundamental group of the space of regular orbits, and the vertices of K are

not regular points, the complement complex K needs to be modified.

Definition 9.7. The modified complex K 0 is constructed in three steps through

two intermediate spaces. Let K1 be the union of the complement complex K

and the set of small closed balls of radius � > 0 in C2 centered at each of the

vertices of K. Next, let K2 be the metric space obtained by removing from K1 the

points corresponding to the vertices of K. Finally, let K 0 be the space obtained by

removing from K1 the open balls of radius � centered at each of the vertices of K.

We call K 0 the modified complement complex.

The modified complex K 0 is related to the space of regular points.

Proposition 9.8. The space K 0 is homotopy equivalent to the space of regular
points.

Proof. We construct a deformation retraction from the space of regular points to

K 0 in two steps using the intermediate complexes K1 and K2 (Definition 9.7).

First, we modify the deformation retraction of Theorem A, from the hyperplane

complement to K, by simply stopping the retraction whenever a point is distance

� from a vertex. This shows that the hyperplane complement deformation retracts

to the space K1. Moreover, removing the stationary vertices of K from this defor-

mation retraction shows that the space of regular points is homotopy equivalent

to K2. Finally, the space K2 is homotopy equivalent to K 0 since around each

deleted vertex, the punctured 3-ball radially deformation retracts onto its bound-

ary 2-sphere. �

The action of G on K 0 is free and the fundamental group of the quotient K 0=G

is the group B , by definition. The quotient K 0=G is closely related to the quotient

complex K=G.

Proposition 9.9. K 0=G is a copy of the one vertex 2-complex K=G with a neigh-
borhood of the unique vertex removed and a real projective plane attached in its
place.

Proof. The proof uses the intermediate spaces K1 and K2 (Definition 9.7). The

relationship between K1=G and K2=G is as follows. The former is a modification

of K=G where the neighborhood of the unique vertex becomes a cone on an RP 2

with the vertex as its cone point, and the latter is this space with the cone point

removed. Thus K 0=G is a copy of K=G with a neighborhood of the vertex removed

and a real projective plane attached instead. �
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The group B acts freely by deck transformations on the universal cover of the

quotient K 0=G, which is the same as zK 0, the universal cover of K 0. And note that

the quotient zK 0=B is the same as K 0=G. From this we deduce an action on the

universal cover of K.

Theorem 9.10. The group B acts geometrically on zK, the CAT.0/ universal cover
of the complement complex K. In particular, the action is free away from the vertex
set and every vertex stabilizer has order 2.

Proof. Because 2-spheres are simply connected, the space zK 0 is a modified ver-

sion of zK, the CAT.0/ universal cover of K. The local modifications around each

vertex are identical to the ones described in Definition 9.7. In short, zK is a modi-

fied version of zK 0, K is a modified version of K 0 and zK=B D K=G is a modified

version of zK 0=B D K 0=G. This shows that the action of B on zK is cocompact,

because zK=B D K=G is a compact 2-complex by Proposition 9.5. Finally, the

free and isometric action of B on zK 0 induces a proper isometric action of B on zK.

The only non-trivial stabilizers are order 2 and they only occur at the vertices of zK,

which arise from the collapsing of each tiny 2-sphere in zK 0 to a point. �

And this proves our third main result, Theorem C.
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