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Alternating quotients of right-angled Coxeter groups
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Abstract. Let W be a right-angled Coxeter group corresponding to a finite non-discrete

graph G with at least 3 vertices. Our main theorem says that Gc is connected if and

only if for any infinite index convex-cocompact subgroup H of W and any finite subset

¹1; : : : ; nº � W nH there is a surjection f from W to a finite alternating group such that

f .i / … f .H/. A corollary is that a right-angled Artin group splits as a direct product of

cyclic groups and groups with many alternating quotients in the above sense.

Similarly, finitely generated subgroups of closed, orientable, hyperbolic surface groups

can be separated from finitely many elements in an alternating quotient, answering posi-

tively the conjecture of Wilton [9].
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1. Introduction

It is often fruitful to study an infinite discrete group via its finite quotients. For

this reason, conditions that guarantee many finite quotients can be useful.

One such notion is residual finiteness. A group G is said to be residually finite

if for every g 2 G n ¹eº, there exists a homomorphism f W G ! F , where F is a

finite group and f .g/ ¤ e.

We could try to strengthen this notion by requiring that any finite set of non-

trivial elements is not killed by some map to a finite group. But these two notions

are equivalent as we could simply take product of maps, which don’t kill the

individual elements.

Another way to modify this is to require that the image of  avoids the image

of a specified subgroup H < G, which does not contain  . If this is true for all

finitely generated subgroups H , we say that G is subgroup separable.

Finitely generated free groups are subgroup separable [5, Theorem 5.1]. The

finite quotient F of a free group could be a priori anything. Wilton proved that

(for a free group with at least two generators) we can require f to be a surjection

https://creativecommons.org/licenses/by/4.0/
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onto a finite alternating group, thus giving us some control over the maps which

‘witness’ subgroup separability [9].

Scott showed that closed, orientable, hyperbolic surface groups are subgroup

separable [7].

Extending and combining methods from both papers, our main theorem shows

that even in the case of hyperbolic surface groups, we can require the image to be

a finite alternating group.

Definition 1.1. Let H be a subgroup of a finitely generated group G, let C be a

class of groups. We say that H is C-separable if for any choice of ¹1; : : : ; mº �
G n H there is a surjection f from G to a group in C such that f .i / … f .H/ for

all i .

Note the difference between this terminology and the one above. We talk

about subgroups as C-separable in contrast with subgroup separability, which is a

property of the entire group.

We will usually take C to be the class of alternating groups or symmetric

groups. We will denote these classes by A and S, respectively.

In this case, there is a difference between taking a single 1 and multiple group

elements as a product of maps surjecting alternating groups is not a map onto an

alternating group. In particular, if G D An � Am then any  2 G n ¹eº does not

map to e under at least one of the projections onto factors. However, if we take

1; : : : ; k to be an enumeration of G n ¹eº, then the image of any map injective

on these elements is isomorphic to G and hence not an alternating group.

The following is our main result.

Theorem A (Main Theorem). Let G be a non-discrete finite simplicial graph of

size at least 3. Every infinite index convex-cocompact subgroup of a right-angled

Coxeter group W associated to G is A-separable (and S-separable) if and only if

Gc is connected.

If G was a discrete graph, there would be difficulties in controlling a permu-

tation parity of the images of generators. It is possible that this can be resolved.

A weaker preliminary result, where we can’t control parities, still applies in the

discrete case. Here (A [ S)-separable means that the quotient is required to be

either an alternating or a symmetric group.

Lemma B. Let G be a finite simplicial graph of size at least 3. Every infinite index

convex-cocompact subgroup of a right-angled Coxeter group W associated to G

is (A [ S)-separable if and only if Gc is connected.

We require infinite index as otherwise the finite quotient by the normal sub-

group contained in H could potentially have no alternating quotients.
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Convex-cocompactness is required as not all finitely generated subgroups of

RACG are C-separable, where C is the set of finite groups [4, Example 10.3].

Corollary C. Every finitely generated right-angled Artin group is a direct product

of cyclic group and groups whose infinite index convex-cocompact subgroups are

A-separable.

Corollary D. Infinite index finitely generated subgroups of closed, orientable,

hyperbolic surface groups are A-separable.

To prove Theorem A we will construct a specific finite sheeted cover of the

presentation complex of the RACG; this cover will correspond to a finite index

subgroup of the right-angled Coxeter group and the action on the cosets of this

subgroup will demonstrate the A-separability.

A right-angled Coxeter group acts on Davis–Moussong complex – which is

essentially the Cayley complex with 2-cells uniquely specified by their boundary

and with some higher dimensional cells. A convex-cocompact subgroup K acts

cocompactly on some convex subcomplex Y of the Davis–Moussong complex.

The group �0 generated by the reflections in the hyperplanes, which bound Y ,

tiles the complex with the translates of Y . Together �0 and K generate a subgroup,

which has index jKnY j in the RACG. This finite-index subgroup depends on the

choice of the convex subcomplex. We will iteratively modify the subcomplex until

we arrive at one with quotient of prime size with a long protrusion, which does

not contain edges with a certain generator as a label (this is where we use the

conditions on G). That generator will fix cosets corresponding to the vertices of

the protrusion. Prime size and the element fixing many cosets are ingredients of

Jordan’s theorem, which says that the action on cosets is symmetric or alternating.

Finally, we’ll tinker a bit to control the parities of the actions and hence whether

the image is symmetric or alternating.

2. Preliminaries

2.1. A-separability. We will establish some properties of A-separability.

Lemma 2.1. Let A and B be non-trivial finitely generated groups. Then ¹eº <

A � B is not A-separable.

Proof. There are only finitely many surjections from A � B onto A2; A3 and A4.

If A � B is infinite, then there is a non-identity element g in the kernel of all

these maps. Consider elements g; .e; b/; .a; e/, where a ¤ e, b ¤ e. Suppose

f W A � B ! An is a surjection, which does not map these elements to e.
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By the choice of g, we have n > 4. The group f .A � e/ is a normal subgroup

of An, so it is e or An. Similarly for e � B . However An is not commutative, so

one of A � e; e � B is mapped to e.

If both A and B are finite and ¹eº < A �B is A-separable, enumerate A �B as

1; : : : m. Applying the A-separability condition with respect to this set, we get

an isomorphism f W A � B ! An. However, An is not a direct product, so one of

A; B is An and the other is trivial. �

This implies that passing to a finite degree extension does not in general

preserve A-separability of convex-cocompact subgroups. However passing to a

finite-index subgroup does:

Lemma 2.2. Let G be a finitely generated group, let H be a finite-index subgroup

of G, and let K be an infinite index subgroup of H . If K is A-separable in G, then

it is A-separable in H .

We need K to be infinite index in H , as otherwise it is possible that K D N.H/

in the notation of the proof below. E.g. take G D An, H a proper subgroup,

K D ¹eº.

Proof. Suppose 1; : : : ; n 2 H n K. Let N.H/ D
T

g2G H g be a normal

subgroup contained in H . Then N.H/ is still finite index and let M D ŒG W N.H/�

be this index. Since G is finitely generated, there are only finitely many surjections

f W G � Am with m � M . The intersection of preimages of f .K/ over such

surjections is a finite intersection of finite index subgroups, hence a finite index

subgroup. So there exists some 0 2 G n K such that f .0/ 2 f .K/ for all

f W G � Am with m � M .

As K is A-separable in G, there exists a surjection f W G � Am, such that

f .i / … f .K/ for all i 2 ¹0; : : : nº. By the choice of 0 we have m > M . But

ŒAm W f .N.H//� � M , so f .N.H// D Am. In particular, f .H/ D Am and f jH
is the desired surjection. �

2.2. Cube complexes. For further details of the definitions from this section, the

reader is referred to [4].

Definition 2.3 (cube, face). An n-dimensional cube C is I n, where I D Œ�1; 1�.

A face of a cube is a subset F D ¹
N
xW xi D .�1/�º, where 1 � i � n, � D 0; 1.

Definition 2.4 (cube complex). Suppose C is a set of cubes and F is a set of maps

between these cubes, each of which is an inclusion of a face. Suppose that every

face of a cube in C is an image of at most one inclusion of a face f 2 F. Then the

cube complex X associated to .C;F/ is

X D
� G

C2C

C
�
= �
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where � is the smallest equivalence relation containing x � f .x/ for every f 2 F,

x 2 Dom.f /.

Definition 2.5 (midcube). A midcube M of a cube I n is a set of the form

¹
N
xW xi D 0º

for some 1 � i � n.

If f W C ! C 0 is an inclusion of a face and M is a midcube of C , then f .M/ is

contained in unique midcube M 0 of C 0. Moreover f jM W M ! M 0 is an inclusion

of a face.

Definition 2.6 (hyperplane). Let X be a cube complex associated to .C;F/. Let

M be the set of midcubes of cubes of C. Let F0 be the set of restrictions of maps

in F to midcubes.

The pair .M;F0/ satisfies that every face is an image of at most one inclusion

of a face, so there is an associated cube complex X 0. Moreover, inclusions

of midcubes descend to a map 'W X 0 ! X . A hyperplane H is a connected

component of X 0 together with a map 'jH .

Hyperplanes are analogous to codimension-1 submanifolds.

Definition 2.7 (elementary parallelism, wall). Suppose X is a cube complex.

Define a relation of elementary parallelism on oriented edges of X by Ee1 � Ee2

if they form opposite edges of a square. Extend this to the smallest equivalence

relation. The wall W.Ee/ is the equivalence class containing Ee. Similarly, we

can define an elementary parallelism on unoriented edges and an unoriented

wall W.e/.

We denote by Ee the edge Ee with the opposite orientation. There is a bijective

correspondence between unoriented walls and hyperplanes, where W.e/ corre-

sponds to H.e/, a hyperplane which contains the unique midcube of e. We say

H.e/ is dual to e. By abuse of notation, we sometimes identify H.e/ with its

image.

The following notion was invented by Haglund and Wise and was originally

called A-special [4, Definition 3.2].

Definition 2.8 (special cube complex). A cube complex is special if the following

holds.

(1) For all edges Ee … W. Ee/. We say the hyperplanes are 2-sided.

(2) Whenever Ee2 2 W.Ee1/, then e1 and e2 are not consecutive edges in a square.

Equivalently, each hyperplane embeds.



970 M. Buran

(3) Whenever Ee2 2 W.Ee1/, Ee2 ¤ Ee1, then the initial point of Ee2 is not the initial

point of Ee1. We say that no hyperplane directly self-osculates.

(4) Whenever Ee2 2 W.Ee1/ and Ef2 2 W. Ef1/ and e1 and f1 form two consecutive

edges of a square, if Ee2 and Ef2 start at the same vertex, then Ee2 and Ef2 are two

consecutive edges in some square, and if Ee2 and Ef2 start at the same vertex,

then Ee2 and Ef2 are two consecutive edges in some square. We say that no two

hyperplanes inter-osculate.

Haglund and Wise have shown that CAT.0/ cube complexes are special [4,

Example 3.3.(3)]. In this paper, we will only ever use specialness of these com-

plexes.

Every special cube complex is contained in a nonpositively curved complex

with the same 2-skeleton [4, Lemma 3.13]. The hyperplane H.e/ separates a

CAT.0/ cube complex X into two connected components.

Definition 2.9 (half-space [3]). Suppose X is a cube complex and H is a hyper-

plane. Let XnnH be the union of cubes disjoint from H . If X is CAT.0/, XnnH

has two connected components. Call them half-spaces H � and H C

Definition 2.10. Define N.H/ to be the union of all cubes intersecting H . Let

@N.H/ consist of cubes of N.H/ that do not intersect H . In the case of a simply

connected special cube complex @N.H/ has two components; call them @N.H/C

and @N.H/�.

Definition 2.11 (convex subcomplex). A subcomplex Y of a cube complex X is

(combinatorially geodesically) convex if any geodesic in X .1/ with endpoints in

Y is contained in Y .

The components of the boundary of a hyperplane @N.H/C, @N.H/� and half-

spaces are combinatorially geodesically convex [3, Lemma 2.10]. Any intersec-

tion of half-spaces is convex [3, Corollary 2.16] and a convex subcomplex of a

CAT.0/ cube complex coincides with the intersection of all half-spaces contain-

ing it [3, Proposition 2.17].

Definition 2.12 (bounding hyperplane). A hyperplane bounds a convex cubical

subcomplex Y � X if it is dual to an edge with endpoints v 2 Y and v0 … Y .

2.3. Right-angled Coxeter and Artin groups

Definition 2.13 (right-angled Coxeter group). Given a graph G with vertex set I ,

let S D ¹si W i 2 I º. The right-angled Coxeter group associated to G is the group

C.G/ given by the presentation

hS j s2
i D 1 for i 2 I; Œsi ; sj � D 1 for .i; j / 2 E.G/i:
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The right-angled Coxeter group C.G/ acts on the Davis–Moussong complex

DM.G/, see [4]. Throughout the paper if we talk about the action of C.G/ on a

cube complex, we mean this action. The Davis–Moussong complex is similar to

Cayley complex, but it does not contain ‘duplicate squares’ and it contains higher

dimensional cubes.

Fix a vertex v0 2 DM.G/. There is a bijection between the vertices of DM.G/

and the elements of C.G/ given by gv0 $ g. Vertices gv0 and gsv0 are connected

by an edge ges labelled s. If the generators si1 ; si2; : : : sin pairwise commute, there

is an n-cube with the vertex set ¹g.…j 2P sij /vW P � ¹1; : : : ; nºº.

Note that gsi g
�1 acts on the left on DM.G/ as a reflection in H.gesi

/. There is

also a right action of C.G/ on DM.G/0, where si sends gv0 to gsi v0 – the vertex

to which g is connected by an edge labelled si . This action does not extend to

DM.G/ unless the Coxeter group is abelian.

More generally, if � is a subgroup of C.G/, the action of C.G/ on the right

cosets of � can be realised geometrically as an action of C.G/ on �n DM.G/0.

This action is given by .�hv0/:g D �hgv0. If � acts on DM.G/ co-compactly,

this gives a finite permutation action. We will use this to construct maps from

C.G/ to Sn.

Definition 2.14 (convex-cocompact subgroup). If G acts on a cube complex X ,

we say H < G is convex-cocompact if there is a non-empty convex subcomplex

Y � X , which is invariant under H and moreover H acts on Y cocompactly. We

say, that H acts on X with core Y .

If X is hyperbolic, this coincides with the usual notion of convex-cocompact-

ness [3].

Definition 2.15 (right-angled Artin group). The right-angled Artin group associ-

ated to a simplicial graph G is

A.G/ D hgvW g 2 V.G/ j gugv D gvgu for ¹u; vº 2 E.G/i:

The next lemma relates RAAGs and RACGs.

Lemma 2.16 ([1]). Given a graph G, define a graph H as follows.

� V.H/ D V.G/ � ¹0; 1º.

� .u; 1/ and .v; 1/ are connected by an edge if ¹u; vº is an edge of G. The

vertices .u; 0/ and .v; 1/ are connected by an edge if u and v are distinct.

Similarly, .u; 0/ and .v; 0/ are connected by an edge if u and v are distinct.

The right-angled Artin groups A.G/ is a finite-index subgroups of the right-angled

Coxeter group C.H/ via the inclusion � extending gu ! s.u;0/s.u;1/.

Definition 2.17 (Salvetti complex). A right-angled Artin group A.G/ acts on

Salvetti complex X D X.G/, which consists of the following:
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� X0 D A.G/;

� if generators gu1
; gu2

; : : : gun
pairwise commute and g 2 A.G/, there is a

unique n-cube with the vertex set ¹g.…j 2P guj
/W P � ¹1; : : : ; nºº.

The action of the right-angled group on the vertex set is by the left multiplication

and it extends uniquely to the entire cube complex.

For the rest of the paper whenever we talk about the action of a RACG or

RAAG on a cube complex, we mean the canonical action on the associated Davis–

Moussong complex or Salvetti complex, respectively.

2.4. Jordan’s theorem

Definition 2.18 (primitive subgroup). A subgroup G < Sn is called primitive if

it acts transitively on ¹1; : : : ; nº and it does not preserve any nontrivial partition.

If n is a prime and G is transitive, then the action is primitive.

Our main tool is the following.

Theorem 2.19 (Jordan’s theorem, [2, from Theorems 3.3A and 3.3D]). For each

k > 2 there exists N such that if n > N , G < Sn is a primitive subgroup and there

exists  2 G n ¹eº, which moves less than k elements, then G D Sn or An.

3. The Main Theorem and its consequences

Our main theorem relates the combinatorics of G to the A-separability of C.G/.

Theorem 3.1 (Main Theorem). Let G be a non-discrete finite simplicial graph of

size at least 3. Then all infinite-index convex-cocompact subgroups of the right-

angled Coxeter group associated to G areA-separable and S-separable if and only

if Gc is connected.

Recall that here convex-cocompact means that it acts cocompactly on a convex

subcomplex of the Davis–Moussong complex. A similar result holds for RAAGs.

Corollary 3.2. Let G be a finite simplicial graph of size at least 2. Then all infinite

index convex-cocompact subgroups of the right-angled Artin group associated to

G are A-separable if and only if Gc is connected.

Here convex-cocompact means that the subgroup acts cocompactly on a con-

vex subcomplex of the Salvetti complex.There is another action of the Artin group

on a cube complex given by embedding the group in right-angled Coxeter group

as described in the Lemma 2.16. We will first show that convex-cocompactness

with respect to the Salvetti complex implies convex-cocompactness with respect

to the Davis–Moussong complex.
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Lemma 3.3. Suppose G is a simplicial complex, and K a convex-cocompact

subgroup of A.G/ with respect to the action on X.G/. Let H be as in Lemma 2.16

and identify A.G/ with a subgroup of C.H/ in the same lemma. Then K is convex-

cocompact in C.H/ with respect to the action on DM.H/.

Proof. Recall that N.H/ is the union of all cubes intersecting a hyperplane H .

For a hyperplane H in a CAT.0/ cube complex X , N.H/ ' H � Œ0; 1�. We

can collapse N.H/ onto H . Formally, say .x; t / � .x; t 0/ for all x 2 H and

t; t 0 2 Œ0; 1�. Collapse of neighbourhood of H is the quotient map X ! X= �.

We can collapse multiple neighbourhoods simultaneously by quotienting by the

smallest equivalence relation, which contains the equivalence relation for each

hyperplane.

Let v0 be a specified vertex in the Davis–Moussong complex, which under

the bijection between vertices and group elements corresponds to the identity. Let

f W .DM.H/; v0/ ! .Y; y/ be the simultaneous collapse of all hyperplanes labelled

by s.v;0/ for all v 2 G. See Figure 1. Here, the base point y is the image of v0. The

equivalence relation commutes with the action of C.H/, so there is an induced

action of C.H/ on Y .

Figure 1. The Salvetti complex for the free group on two generators overlaid with the Davis–

Moussong complex for a path of length 3. The Davis–Moussong complex retracts onto the

Salvetti complex by the collapse of hyperplanes.

We collapsed all edges with labels from G � ¹0º so for all s.v;0/ and all

g 2 C.H/, we have gs.v;0/:y D g:y.
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Let f 0W X.G/ ! Y be defined as follows.

� Vertices: send g to g:y.

� Edges: send the edge between g and ggv to the edge between g:y and ggv:y.

It is indeed an edge as g:y D gs.v;0/:y and ggv :y D gs.v;0/s.v;1/:y

� Squares: send the square with vertices g; ggv ; ggu; ggugv to the square with

vertices g:y; ggv:y; ggu:y; ggugv:y.

� Higher dimensions: extend analogously.

The right-angled Artin group A.G/ acts on Y by g:.h:y/ D gh:y. The map f 0

is A.G/-equivariant cube complex isomorphism since g:f 0.h/ D g:h:y D gh:y D
f 0.gh/.

No two hyperplanes of C.H/ labelled s.u;0/ and s.v;0/ osculate since either

the neighbourhoods of the associated hyperplanes do not intersect or u is distinct

from v, .u; 0/ is connected to .v; 0/ and the associated hyperplanes intersect.

I want to prove that if K acts cocompactly on Z a convex subcomplex of X.G/,

then it acts cocompactly on W WD f �1f 0.Z/ � DM.H/. The collapsing map

f sends cubes to cubes (of potentially lower dimension), therefore W is a cube

complex. To prove cocompactness, it is enough to show that every vertex y 2 Y

has finitely many vertices in its preimage under f . Suppose x and x0 are vertices

of DM.H/ and that they both map to y. Then there is some sequence H1; : : : Hk

of hyperplanes with labels from G� 0 and vertices x1; : : : ; xkC1 such that x1 D x,

xkC1 D x0 and xi maps to the same element as xiC1 under the collapse of Hi for

all i . But then N.Hi / and N.HiC1/ intersect and as they do not osculate, Hi and

HiC1 intersect. Since they do not interosculate, xi�1; xi and xiC1 are successive

vertices in some square. But now xiC1 2 N.Hi�1/ and by induction Hi intersects

Hj whenever i ¤ j . Therefore H1; : : : ; Hk have distinct labels and k � jGj and

the preimage of y 2 Y contains at most 2jGj vertices.

It remains to show that W is convex. Let e be an edge in DM.H/ with exactly

one endpoint in W . The edge e is labelled by some s.v;1/ as all edges labelled by

s.v;0/ either lie entirely in W or have an empty intersection with it. The collapsing

map sends parallel edges to parallel edges (unless it sends them both to a vertex)

and any sequence of elementary parallelisms in codomain lifts to the domain, so

f .H.e// D H.f .e//. In particular, if H.e/ intersects W , then H.f .e// intersects

Z and by the convexity of Z, f .e/ lies entirely in Z, which contradicts that e does

not lie entirely in W .

So convex-cocompactness with respect to the action on X.G/ implies convex-

cocompactness with respect to the action on DM.H/. �

Proof of Corollary 3.2. H)) If H; K are components ofGc, then A.G/ D A.H c/�
A.Kc/ so by Lemma 2.1 the trivial subgroup ¹eº is not A-separable in A.G/.

(H) Let H be as in Lemma 2.16. Suppose U is a proper component of Hc.

The vertices .v; 0/ and .v; 1/ are not connected by an edge in H, so U 0 is of the
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form V � ¹0; 1º for some V ¨ G0. But then looking at V � ¹1º � G � ¹1º gives

that V 0 is a vertex set of a proper component of Gc .

So Gc being connected implies that Hc is connected.

By Lemma 3.3 K is convex-cocompact in C.H/ and hence by 3.1 it is A-sep-

arable in C.H/. By Lemma 2.2 K is also A-separable in A.G/. �

Lemma 3.4 ([8, correction to the proof of Theorem 3.1]). A closed, orientable,

hyperbolic surface group G is a finite index subgroup of C.C5/, where C5 is a

cycle of length 5. Moreover, for a suitable embedding G ,�! C.C5/, all finitely

generated subgroups of G are convex-cocompact in C.C5/ with respect to the

action on DM.C5/.

Remark 3.5 (idea of proof ). Scott uses a different terminology, so it makes sense

to summarise the proof. The natural generators of C.C5/ act on the hyperbolic

plane by reflections in the sides of a right-angled pentagon. Translates of the

pentagon give a tiling of the hyperbolic plane. Dual to this cell complex is a

square complex DM.C5/. Under this identification, the geodesic lines bounding

the pentagons of the tiling become hyperplanes of DM.C5/.

Suppose H is a finitely generated subgroup of the surface group G D �1.†/.

Let †H be the covering space associated to H . By Lemma 1.5 in [7], there exists

a closed, compact, incompressible subsurface †0 � †H such that the induced

map �1†0 ! �1†H is surjective. Moreover, by [8, Correction to the proof of

Theorem 3.1] we can require †0 to have a geodesic boundary.

Let e†0 be the lift of †0 to H
2 D DM.C5/. Let Y be the intersection of all half-

spaces containing e†0. Suppose y lies in Y , but not in N3. e†0/ and that e1; e2 are

the first two edges of the combinatorial geodesic from y to e†0. Since y 2 Y , both

H.e1/ and H.e2/ intersect e†0. Consequently, H.e1/ intersects H.e2/ as H.e2/

does not separate H.e1/ from e†0. Call the intersection y0. The point y is a centre

of a pentagon and y0 is a vertex of the same pentagon, so the distance between

them does not depend on y (for example by specialness of DM.G/). See Figure 2.

The closest boundary component L of e†0 to y is seen from y0 at more than

the right angle (remember that the hyperplanes are geodesics). But such a point

is within distance
R �=4

tD0
1

cos.t/
dt of L. To see this, take L to be the vertical ray

through .0; 0/ in the upper half-plane model to the. Then the set of points with

obtuse subtended angle is contained between rays y D x and y D �x. Geodesic

between these rays and L is an arc of length

�=4Z

tD0

r
p

cos2.t / C sin2.t /

r cos.t /
dt D

�=4Z

tD0

1

cos.t /
dt:
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y

e1

e2 H.e1/

H.e2/

L

90°

Figure 2. Sketch of proof of Lemma 3.4.

L

y0

a

90°

> 90°

Figure 3. If the angle subtended by L from y is obtuse, then y is uniformly close to L.
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Therefore y0 (and hence y) is at a uniformly bounded distance from e†0 and the

action of H on Y is cocompact.

Corollary 3.6. All finitely generated infinite index subgroups of closed, ori-

entable, hyperbolic surface group G are A-separable in G.

Proof. By Lemma 3.4, finitely generated subgroups of G are convex-cocompact

in C.C5/. By the Main Theorem 3.1 they are A-separable in C.C5/. By

Lemma 2.2, they are A-separable in G. �

4. Proof of the Main Theorem

Definition 4.1 (disjoint hyperplanes, bounding hyperplanes, positive half-space).

Let X be a cube complex, Y a convex subcomplex. Let D.Y / be the set of

hyperplanes disjoint from Y . Let B.Y / be the set of hyperplanes bounding Y

(a hyperplane bounds Y if it is dual to some e with one endpoint in Y and one not

in Y ).

If H 2 D.Y /, denote by H C the half-space of XnnH containing Y .

Lemma 4.2. Any hyperplane H bounding a convex subcomplex Y in a CAT.0/

complex is disjoint from Y .

Proof. Let e be an edge dual to H such that i.e/ 2 Y and t .e/ … Y . Suppose

H intersects Y . Then there is an edge e0 2 Y dual to H . Without loss of

generality i.e0/ belongs to the same half-space of H as i.e/. By convexity of Y

any (combinatorial) geodesic between i.e/ and t .e0/ lies entirely in Y . A geodesic

between two vertices in a CAT.0/ complex is precisely a path, which crosses each

hyperplane separating the two vertices once [6, p. 613]. Therefore a concatenation

of e and a geodesic from t .e/ to t .e0/ is a geodesic from i.e/ to t .e0/. The vertex

t .e/ lies on this geodesic and hence belongs to Y giving a contradiction. �

Recall that any intersection of half-spaces is convex and conversely any convex

subcomplex is an intersection of the half-spaces containing it. Hence it is equiv-

alent to specify a convex subcomplex or the half-spaces in which it is contained

(or the set of disjoint hyperplanes if there can be no confusion about the choice of

half-spaces, e.g. if only one choice gives a non-empty intersection).

Definition 4.3 (deletion, vertebra). Suppose G acts on a cube complex X with

core Y . Define deletion as removing a bounding hyperplane H0 and all its G-trans-

lates from D.Y /. The result of deletion of H0 is Y 0 D \H2D.Y /nG:¹H0ºH
C.

The cube complex V D H �
0 \ Y 0 is called a vertebra. See Figures 4 and 5.
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s1 s4

s2

Figure 4. Cocompact subgroup hs1s4i < C.C5/ has a core dual to a row of pentagons. By

deletion of the hyperplane labelled s2, we get a larger core for the same group.

VH0

Y 0

Y

Figure 5. Here X is a 3-regular tree and G is trivial.

A vertebra is an intersection of two combinatorially geodesically convex sets,

so it also is combinatorially geodesically convex. In particular, it is connected.

Definition 4.4 (acting without self-intersections). We say G acts without self-

intersections on a cube complex X , if N.gH/ \ N.H/ ¤ ; implies gH D H for

all hyperplanes H of X and g 2 G.

Definition 4.5 (special action). An action of G on a cube complex X is special if it

is without self-intersections and moreover if N.H/\N.K/ ¤ ; and H \gK ¤ ;,

then H \ K ¤ ;.
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Lemma 4.6. Suppose that G acts without self-intersections on a locally compact

CAT.0/ cube complex X with core Y and H0 2 B.Y /. Then the result Y 0 of

deletion of H0 is also a core for G. Let GH0
WD ¹g 2 Gjg:H0 D H0º be the

stabiliser of H0 in G. If C is a set of orbit representatives for the action of G on

the vertices of Y and D is a set of orbit representatives for the action of GH0
on

the vertices of the vertebra V D H �
0 \ Y 0, then C 0 D C t D is a set of orbit

representatives for the action of G on the vertices of Y 0. Moreover, Y 0 � N.Y /.

Proof. Recall that CAT.0/ implies special. First note thatD.Y 0/ D D.Y /nG:¹H0º
by definition andB.Y /nG:¹H0º � B.Y 0/ as a bounding hyperplane Y still bounds

Y 0 unless it is a translate of H0.

The set of half-spaces containing Y is invariant under G, hence Y 0 is invariant.

The subcomplex Y 0 is an intersection of half-spaces, hence convex. Suppose

v 2 Y 0 n Y . Let v0; v1 : : : vk be a combinatorial geodesic from v to Y of shortest

length with edges e1; : : : ek and suppose k > 1. Let’s Hi be the hyperplane dual

to ei . Then as vk�1 … Y , we have Hk 2 G:¹H0º. Since G acts on X without

self-intersections Hk�1 … G:¹H0º. And Hk�1 … D.Y 0/, because v0; vk 2 Y 0 and

Y 0 is convex, so ek�1 2 Y 0

Therefore Hk�1 … D.Y /. It must intersect Y , so it is not entirely contained in

H �
k

and it intersects Hk. Because the cube complex is special, Hk and Hk�1 do

not interosculate. In particular, there is a square with two consecutive sides ek�1

and ek. Let e0
j be the edge opposite ej in this square. By Lemma 4.2 Hk�1 does

not bound Y and e0
k�1

2 Y . We can now construct a shorter path from v0 to Y

with edges e1; : : : ; ek�2; e0
k
. Contradiction.

So k � 1 and Y 0 lies in a 1-neighbourhood of Y and therefore the action is

cocompact.

There is a unique edge connecting v 2 Y 0 n Y to Y as any path of length 2 is

a geodesic or is contained in some square. In the first case by convexity of Y , we

have v 2 Y . In the second, H0 … D.Y /.

By invariance of Y , the G-translates of V do not intersect Y . Suppose v 2
Y 0 nY . There is a unique hyperplane in G:¹H0º dual to an edge e1, which connects

v to Y , say g:H0. Then v belongs to a unique translate of V , namely g:V . �

Corollary 4.7. Let G be a finite simplicial graph. If K is a subgroup of a right-

angled Coxeter group C.G/ and it acts on the Davis–Moussong complex with

core Y , then deletion produces another core.

Proof. The Davis–Moussong complex DM.G/ is a CAT.0/ cube complex, hence

simply connected and special. The action of C.G/ on it preserves labels. In this

complex any two consecutive edges have distinct labels, so the action is without

self-intersections. The restriction to K is also without self-intersections. �
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Lemma 4.8. Suppose G acts on a CAT.0/ cube complex X with core Y . If

Y 0 � X is constructed from Y using a deletion of H D H.e/, then each edge

in V D H � \ Y 0 is dual to a hyperplane intersecting H .

Proof. Let e0 be an edge in V and H 0 a hyperplane dual to e0. If H 0 \ H D ;, H 0

is contained entirely in H �. But then H 0 is disjoint from Y . In particular one of

the endpoints of e0 is in the opposite half-space of XnnH 0 than Y .

Since Y 0 is the intersection of all half-spaces containing Y with the exception

of the G-translates of H C, the hyperplane H 0 is gH for some g 2 G.

The subcomplex Y is G-invariant and H bounds Y , hence H 0 bounds Y . This

contradicts H 0 � H �. �

Corollary 4.9. Suppose G < C.G/ acts on DM.G/ with core Y . If Y 0 � X is

constructed from Y using a deletion of H D H.e/, then each edge in V D H �\Y 0

has a label which commutes with the label of e.

Definition 4.10 (Deletion along a path, deletion with labels, tail). Suppose Y is a

subcomplex of a CAT.0/ complex X and a core for the action of G on X . Suppose

p D e1e2 : : : en is a path in X , which starts in Y . The deletion of hyperplanes along

the path p is a subcomplex Y 0 D \H C, where H goes over hyperplanes disjoint

from Y and from G:p.

Suppose additionally that edges of X are labelled in such a way that for every

vertex and every label, there is precisely one edge starting at that vertex of the

given label. Suppose v 2 Y , and s1; s2; : : : sn is a sequence of edge labels, then

the deletion with labels s1; s2; : : : sn at v is the deletion of hyperplanes along p,

where p is a path e1; e2; : : : en starting at v with ei labelled si .

Suppose Yn was built from Y0 using a series of deletion of hyperplanes

H1; : : : Hn. We call T D Yn \ H �
1 a tail.

Lemma 4.11. Suppose G is a finite simplicial graph. Suppose Gc is connected,

jGj > 1 and H acts on DM.G/ with a core Y ¨ DM.G/. Then there exists a core

Y 0 which can be obtained from Y by deletion along a path e1; e2 : : : en with the

vertebra Y 0 \ H.en/� a single vertex.

Remark 4.12. The hypothesis that Gc is connected is necessary. Consider the

situation when G is a square. Then C.G/ D D1 � D1 and DM.G/ is the standard

tiling of R2. Let H D D1 be the subgroup generated by two non-commuting

generators of C.G/. The invariance of the core and cocompactness of the action

imply that any core for H is of the form R � Œk; l� for some k; l 2 Z.

Every hyperplane intersecting such a core divides it into two infinite parts.

Proof of Lemma 4.11. Since Y is a proper subcomplex, there exists e1 be such

that H.e1/ D H1 bounds Y . Let v0 be the endpoint of e1, which lies in Y . Let v1
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be the other endpoint. Say the label of e1 is s1. Let Y1 be a cube complex obtained

from Y by deletion of H1.

Let S1 be the set of generators labelling the edges of vertebra V1. Then by

Corollary 4.9, s1 commutes with all generators in S1.

If e2 … V1 is an edge with endpoint v1, whose label s2 does not commute

with s1, we can define H2; Y2; V2 and S2 similarly as before. Just as before the

generators of S2 commute with s2.

The hyperplanes H1 and H2 do not intersect, so N.H2/ � H �
1 . There is an

inclusion of V2 into V1 given by sending a vertex of V2 to the unique vertex of V1

to which it is connected by an edge labelled s2. Extending this map to edges and

cubes is a label preserving map between cube complexes V2 and V1. It follows

that S2 is a (not necessarily proper) subset of S1.

We will now show that, by a series of such operations, we can reach a situation

where Sn D ;. I.e. the vertebra Vn is a single vertex.

Suppose we have already applied deletion i times and Si is non-empty. We

will use a series of deletions to get SkC1 ¨ Sk � Sk�1 � : : : � SiC1 � Si . By

an abuse of notation, we’ll identify the vertices of Gc with the labels and with the

generators of the right-angled Coxeter group. (Rather than having a generator sv

for every vertex v 2 V.G/ and using these as labels.)

Since the group does not split as a product, there exists some a 2 Si and

b … Si which do not commute. Since Gc is connected, there exists a vertex path

si�1; : : : sk D b in Gc from the vertex si�1, which is the label of the hyperplane

we removed last.

Successive generators in this path do not commute. Indeed assume that sj and

sj C1 commute. Take v 2 DM.G/, let e1; e2; e3; e4 be edges of the path starting at

v with labels sj ; sj C1; sj ; sj C1. This is a closed loop, since sj and sj C1 commute.

The hyperplane H.e1/ separates v from sj sj C1v, so it has to be dual to one of

e3 and e4. Parallel edges have the same labels so H.e1/ D H.e3/. Similarly

H.e2/ D H.e4/. The hyperplane H.e1/ separates e2 from e4, so H.e1/ and H.e2/

have to cross. The Davis–Moussong complex is special, so there is a square where

e1 and e2 are successive edges. By construction of the complex, sj and sj C1 are

connected by an edge is G. This contradicts adjacency of sj and sj C1 in Gc .

Apply deletion of hyperplanes labelled si ; : : : ; sk starting at some vertex of

v 2 Vi�1. Note that the j th hyperplane we remove belongs in a subset of

B.Yj �1/ as si : : : sj �1v 2 Vj �1 and sj does not commute with sj �1. Moreover,

Sj D ¹s 2 Sj �1W ssj D sj sº. In particular, SkC1 � Si and a does not belong to

SkC1 as ask ¤ ska. Similarly, the hyperplane H 0 dual to edge between v and sj C1

is dual.

Therefore SkC1 is a proper subset of Si and we can continue this process until

we get an empty Sn. �

Remark 4.13. We can even control the label of the hyperplane which was removed

last. Indeed, if the last removed hyperplane had label si , and b is some other
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generator, pick a vertex path between si and b in Gc . Then remove hyperplanes

labelled by vertices on this path, starting at the unique vertex of a vertebra.

By Lemma 4.6 there is a set of orbit representatives K for the action of G on

Yn with T � K.

Haglund shows the following [3, Proof of Theorem A].

Lemma 4.14. Suppose G < C.G/ acts on DM.G/ with a core Y and with a set

of orbit representatives K. Let �0 < C.G/ be generated by the reflections in the

hyperplanes bounding Y . Let �1 D �1.Y / D hG; �0i. Then Y is a fundamental

domain for the action of �0 on X and K is a set of orbit representatives for the

action of �1 on X .

Let C.G/ act on the right cosets of �1 < C.G/. We have that s 2 S sends �1g

to �1gs D .�1gsg�1/g. But gsg�1 is a reflection in the hyperplane H.ges/. By

definition of �0 if H.ges/ bounds Y , gsg�1 2 �0 and �1g is fixed by s.

Moreover, if K D ¹g1v0; : : : ; gnv0º, then ¹g1; : : : gnº is a set of right coset

representatives for �1.

We will first prove that by a suitable sequence of deletions, we can satisfy the

conditions of Jordan’s theorem. It follows that we can construct quotients that are

either alternating or symmetric.

Definition 4.15. If Y is a subset of a cube complex X , then N1.Y / is a union of

closed cubes, which have non-empty intersection with Y . We define inductively

Ni .Y / D N1.Nr�1.Y //.

If Y is convex, then so is Nr .Y / (as a neighbourhood is obtained by removing

bounding hyperplanes and therefore it is an intersection of convex subcomplexes).

And if H acts cocompactly on Y , it still acts cocompactly on Nr .Y / assuming that

X is locally compact.

Proposition 4.16. Let C.G/ be the right-angled Coxeter group associated to G a

finite simplicial graph, jGj > 2 , and suppose that H < C.G/ acts on the associated

Davis–Moussong complex with a proper core Y . Let C be the class of symmetric

and alternating groups. If Gc is connected, then H is C-separable.

Proof. As H acts with a proper core, there exists a generator of C.G/ not contained

in H . Say s0 … H .

Suppose 1; : : : ; n … H . Fix v 2 Y . Without loss of generality, we may

assume that Y contains N.v/ and i v for all i (otherwise replace Y with Nr.Y /

for a sufficiently large r). Moreover, by Lemma 4.11 we may assume that there

exists a hyperplane H0 … D.Y / with jH �
0 \ Y j D 1 and by the Remark 4.13 we

may assume that the label of H0 is s0.



Alternating quotients of right-angled Coxeter groups 983

As Gc is connected, there exists a generator s1 not commuting with s0. Let v0

be the unique vertex of H �
0 \ Y . Let e1 be the edge starting at v0 with a label s1.

Obtain Y1 by deleting H.e1/ from the boundary of Y . By Lemma 4.6 Y 0 � N.Y /.

If v1 2 Y 0 \ H.e1/�, then there is an edge starting at v with the other endpoint

in Y . This edge is labelled s1 and is dual to H.e1/. Now N.H.e1// \ Y D v0

since otherwise H.e1/ would have to intersect H0 and s1 would commute with s0.

Therefore v1 is uniquely determined as the other endpoint of e1.

Continue this by taking ei to be the edge starting at vi�1 labelled s0 for even i

and s1 for odd i and let vi be the other endpoint of ei . Let Yi be Yi�1 with H.ei/

deleted from the boundary. Let Y 0 D Yk with k to be specified later.

Let �0 be the group generated by the reflections in the hyperplanes bound-

ing Y 0. Let �1 D h�0; H i. Then ŒC.G/ W �1� D jH n Y 0j, where jH n Y 0j denotes

the number of vertices of H n Y 0. Every successive vertebra consists of a single

vertex, so by Lemma 4.6 jH n YiC1j D jH n Yi j C 1. We can choose k to make

jH n Y 0j a prime. As V.�1 n C.G// is in a natural bijection with V.H n Y 0/ and

i v … H:v, we may choose i as one of the coset representatives. �1:i ¤ �1.

Since H < �1, for every h 2 H we have �1h D �1. Therefore i does not act as

an element of H , i.e. f .i / … f .H/.

Let s3 be a generator distinct from s0 and s1. By the remark after Lemma 4.14,

we can identify the right cosets of �1 with orbits of Y 0 under the action of H and

we can read of the action from the geometry as follows. Pick v 2 Y in an orbit

corresponding to �1g, let u be a vertex connected to v by an edge labelled s. If

u … Y 0, then �1g D �1gs. If u … Y 0, then �1gs is the coset corresponding to H:u.

Since the tail contains no edge labelled s2, every coset corresponding to a vertex

in the tail is fixed by s2.

So s2 moves at most jH n Y j elements. By taking k large enough while

jH n Y 0j is still a prime, we may ensure that the conditions of Jordan’s lemma

are satisfied (the primitivity follows from transitivity and a non-existence of non-

trivial partition of a prime number of elements into sets of the same size). �

5. Changing parity

We shall now prove that we may force the action to be alternating (similarly we

can force it to be symmetric). Let G be a non-discrete locally compact finite graph

throughout this section.

Definition 5.1. Suppose Y is a core for an action of G < C.G/ on a DM.G/. The

parity of si with respect to the core Y is the parity of si acting on the right cosets

of �1.Y /, where �1.Y / is the finite index subgroup of C.G/ generated by G and

the reflections in the hyperplanes bounding Y .
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We will modify the construction of the tail in order to make each si act as an

even permutation (or we will make at least one of si acts as an odd permutation).

Suppose g:v0 is in the tail. If the edge between g:v0 and gs:v0 is in the tail,

then g:v0 and gs:v0 map to distinct vertices in �1 n X , hence �1g ¤ �1gs.

If gs:v0 is not in the tail, then the hyperplane dual to this edge bounds Y

and the reflection in this hyperplane belongs to �1. Therefore �1 D �1gsg�1

or equivalently �1g D �1gs.

More precisely, suppose H acts with core Y and Y 0 is the core resulting from

deletion of H0; : : : ; Hk, and the label of Hi is si . Moreover assume H0 \ Y 0 is a

single edge.

Then the parity of s1 with respect to Y 0 is the sum of the parity of s1 with

respect to Y and the number of edges labelled s1 in H �
0 \ Y 0. So we can

control the parity of s1 by changing the number of edges with label s1 in the tail.

Suppose that the conditions of Jordan’s theorem are satisfied with a margin M

(i.e. the conditions are satisfied even if s3 moves jH n Y j C M elements). Taking

M D .jGj � 2/.2d C 1/ C 16, where d is the diameter of Gc will be sufficient.

First let us show that we can deal with parity of all generators other than s1

and s2.

Lemma 5.2. For any i 2 I n ¹1; 2º, if the tail of Y is a path with labels

s1; s2; : : : s1; s2; s1 of length at least 2dGc .v1; vi/ C 1 starting at vertex V , then

there exists a core Y 0 such that in the associated action the parity of si changed

and the parities of no sj changed for j 2 I n¹1; 2; iº. Moreover, jH nY j D jH nY 0j
and Y 0 contains a tail of the same length as Y and the labels of these two paths

are the same with the exception of a subpath labelled s1; s2; : : : ; s1; s2; s1 of length

2dGc .v1; vi/ C 1.

s1 s1 s1

s2 s2 s2

s2s2s2

s1s1

s3 s3 s3s4 s4

s5 s5 s5

s5 s5 s5 s5 s5

s3 s3

s4s4

s4

s4s4

s4s4 s4s4

Figure 6. Sketch of the situation in Lemma 5.2, where � is a cycle of length 5 and i D 5.

Here we’ve drawn the hyperplanes. The cube complex would be the dual picture. The lower

five squares are the old tail and the upper four squares form the end of the new tail.

Proof. Say v1 D vi0 ; vi1; : : : vid D vi is a path in Gc of the shortest length. Let Y 0

be a subcomplex built using deletions of hyperplanes si0 ; si1 ; : : : sid ; sid�1
; : : : ; si0 ;

s2; s1; : : : s1 starting at v.
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Compared to Y , the tail of this complex contains two more edges labelled sji

for 0 < j < d . It also contains an extra edge labelled sid D si , so the parity of si

changed and the parity of other generators sj remains the same for j ¤ 1; 2; i . �

Now let’s change the parity of a generator that appears in the tail.

Lemma 5.3. If the tail of Y contains a path with labels s1; s2; : : : ; s1; s2; s1 of

length at least 7, then there exists a core Y 0 such that in the associated action only

the parity of s1 changed. Moreover, jH n Y j D jH n Y 0j and Y 0 is built from the

same complex as Y using a sequence of deletions, whose labels agree with that

of Y with the exception of 5 deletions. (We allow a deletion to be replaced by no

deletion.)

v1 v2

v3 s2 s1 s2 s2 s3

s2s3

Figure 7. A sketch of the subgraph of G spanned by v1; v2 and v3, the segment of the old tail

and the new square which replaces this segment in the case 1 of the proof of Lemma 5.3.

Proof. (1) Suppose there exists distinct s3 and s4 which commute mutually but

neither of which commutes with s1. Then instead of the deletion of the hyper-

planes labelled s2; s1; s2, delete the hyperplanes labelled s3; s4. This creates a

square. Continue building the tail starting from one of the vertices of the square

using the deletions of the hyperplanes with the same labels as before. The new

tail contains two fewer s2 labels, two more of s3 and two more of s4 and one fewer

s1 (or the same number of s2 and two more s3, if s2 D s4 etc.). Hence only the

parity of s1 changed.

To be precise, we need to take the path labelled s2; s1; s2 which is a subpath

of a path labelled s1; s2; s1; s2; s1 in the tail, as otherwise deleting a hyperplane

labelled s3 could introduce more than just a side of a square. Similarly for the

other cases in this proof.

(2) Suppose there is some s3 commuting with s1, but not s2. Then instead

of the deletion of the hyperplanes labelled s1; s2; s1; s2; s1, delete the hyperplanes

labelled s1; s3 and then delete the hyperplanes labelled s2 at two of the vertices

of the square. This creates a square with two spurs. Continue building the tail

starting from the remaining vertex of the square. The new tail contains the same

number of s2 labels, two more of s3 and one fewer s1. Hence only the parity of s1

changed.
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(3) Lastly, if neither of the above cases holds, then G consists of v1, isolated

vertices I , vertices S1 at distance 1 from v1 and vertices S2 at distance 2 from v1.

Moreover, there exists a vertex adjacent to v1 as the graph is non-discrete. Every

vertex adjacent to v1 is adjacent to v2, so v2 2 S2.

The induced graph on vertices of S2 is discrete because every edge inter-

sects S1. Take any u 2 S1. Consider a path from u to v1 in Gc . Somewhere

along this path we go from a vertex, which is connected to both v1 and v2 to

a vertex which is connected to neither. Therefore there are s3 and s4 such that

s3 commutes with s1 and s2 and s4 does not commute with any of s1; s2 and s3.

Now instead of the deletion of the hyperplanes labelled s1; s2; s1; s2; s1 delete the

hyperplanes labelled s4; s1; s3; s4. This creates a square with labels s1; s3; s1; s3.

Continue building the tail. We have one fewer s1, two fewer s2 and two more of

each s3 and s4.

Let Y 0 be the new subcomplex. By construction jH n Y j D jH n Y 0j and the

sequences of labels of deleted hyperplanes for the two complexes differ at no more

than 5 places. �

Using Lemmas 5.2 and 5.3, we can now modify segments of the tail to make

the parity of all elements even. This completes the proof of the main theorem.
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