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Almost commuting matrices with respect to the rank metric
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Abstract. We show that if A1; A2; : : : ; An are square matrices, each of them is either

unitary or self-adjoint, and they almost commute with respect to the rank metric, then one

can find commuting matrices B1, B2, : : :, Bn that are close to the matrices Ai in the rank

metric.
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1. Introduction

Recently there has been a considerable amount of research devoted to the follow-

ing family of questions: suppose that square matrices A and B fulfil some relation

“approximately”. Can we then perturb A and B so that the resulting matrices A0

and B 0 actually fulfil the relation in question? Let us make it more precise by

reviewing some historical and more recent examples.

We start with the most famous one. Paul Halmos [12] posed the following

problem, known since as the Halmos problem. Let ı > 0, and suppose that A and

B are self-adjoint matrices of norm 1. Can we find " > 0 such that if the operator

norm of AB �BA is at most " then there exist self-adjoint matrices A0 and B 0 such

that A0B 0 D B 0A0 and such that the operator norms of A0 � A and of B 0 � B are

at most ı?

An affirmative answer to this question was given by Huaxin Lin [15] (see

also [9] and [13]). On the other hand, Voiculescu proved that for integers d > 7

there exist d � d unitary matrices Ud , Vd such that
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� kUd Vd � Vd Ud k D j1 � e2�i=d j, and

� for any pair Ad ; Bd of commuting d � d matrices we have

kUd � Ad k C kVd � Bd k >

q
2 � j1 � e2�i=d j � 1:

In other words, in the original Halmos problem, if we replace the assumption

that A and B are self-adjoint with the assumption that A and B are unitary, then

the answer is negative, even if we do not demand that the nearby commuting

matrices A0 and B 0 should be unitary. Furthermore, counterexamples were found

by Davidson [6] if we ask about three or more almost commuting self-adjoint

matrices.

A similar question had previously been asked by Rosenthal [19], where the

“closeness” and “almost commutativity” of the matrices were defined using the

normalised Hilbert-Schmidt norm in place of the operator norm. Affirmative

answers to this version of the Halmos Problem were given for arbitrarily large

finite families of normal operators by various authors [11], [8], and [10].

More recently the analogous question was studied in [2] for permutations and

the Hamming distance. Arzhantseva and Paunescu showed the following result,

which was a direct motivation for the investigations presented in this article. For

every ı > 0 there exists " > 0 such that if A and B are permutations such that

the normalised Hamming distance between AB and BA is at most " then we can

find permutations A0 and B 0 such that A0B 0 D B 0A0 and the normalised Hamming

distances between A and A0, as well as B and B 0, are both bounded by ı. The

corresponding result is true also for an arbitrary finite number of permutations.

In this paper we study the analogous question for the rank metric. We refer

to [3] and the references therein for the background and motivation for studying

rank metric, and here we only state the definitions. The set of natural numbers is

N WD ¹0; 1; : : :º and we let NC WD ¹1; 2 : : :º. For d 2 NC let Mat.d/ be the set of

all d � d square matrices with complex coefficients. Finally, for A 2 Mat.d/ we

let rank.A/ WD dimC.im.A//
d

. This norm defines a metric on Mat.d/ in a usual way,

i.e. drank.A; B/ WD rank.A � B/.

Our main aim in this note is to show the following theorem.

Theorem 1. For every " > 0 and n 2 NC there exists ı > 0 such that for

all d 2 NC we have the following. If A1; A2; : : : An 2 Mat.d/ are matrices,

each of them is either unitary or self-adjoint, and for all 1 6 i; j 6 n we have

rank.AiAj �Aj Ai/ 6 ı, then there exist commuting matrices B1; B2; : : : ; Bn such

that for every 1 6 i 6 n we have rank.Ai � Bi/ 6 ".

A more general statement will be presented in Theorem 6.
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Remark 2. It is natural to ask whether the matrices B1; : : : ; Bn can be taken to

be “of the same type” as the matrices A1; : : : ; An, e.g. whether we can demand,

say, the matrix B1 to be unitary, provided that A1 is unitary. We do not know the

answer to this question.

We think that Theorem 1 likely stays true when A1; : : : ; An are allowed to be

arbitrary normal invertible matrices. On the other hand, it would be interesting

to find a counterexample when A1; : : : ; An are allowed to be arbitrary invertible

matrices.

Becker, Lubotzky and Thom [4] generalised the results from [2] to the context

of finitely presented polycyclic groups, and showed that there are signi-ficant

obstacles to generalise it further. We are able to prove some analogous results

in the context of the rank metric. Let us make it precise now.

Let � be a finitely presented group with presentation

h1; : : : ; g jP1.1; : : : ; g/; : : : ; Pr.1; : : : ; g/i;

where Pi are non-commutative monomials in g variables (we allow negative

exponents here). .

For a k � k matrix B we denote with bB the operator on the vector space C
˚N

which acts as B on the first k basis vectors and is 0 otherwise.

We say that � is stable with respect to the rank metric if for every ı > 0 there

exists " > 0 such that the following holds. For all d 2 Nwe have that if A1; : : : ; Ag

are unitary d � d matrices with rank.Pi.A1; : : : ; Ag/ � Idd / 6 ı, then there exist

k 2 N and invertible k � k matrices B1; : : : ; Bg with dim.im.cAi � bBi // 6 " � d

and such that Pi .B1; : : : ; Bg/ D Idk for all i D 1; : : : ; r .

Remarks 3. (1) Originally, we have not worked with cAi but rather with Ai in the

definition above. We thank Narutaka Ozawa for pointing out that it is more natural

to take cAi .

(2) It is not hard to check (and we use it implicitly in the discussion above)

that the property of being stable with respect to the rank metric does not depend

on the choice of a finite presentation of the group �.

(3) Theorem 1 implies that the groups Zk , where k D 1; 2; : : :, are stable with

respect to the rank metric. We remark that there exist other natural notions of

being stable with respect to the rank metric: for example, we could demand the

matrices Bi to be unitary, or we could remove the assumption that the matrices

Ai are unitary. Thus, to avoid confusion, it might be useful to talk about, say,

.A;B/-stability, where A D ..A1; d1/; .A2; d2/; : : :/ is a sequence of monoids

with metrics, and B D .B1;B2; : : :/ is a sequence of groups such that Bi � Ai .

We refrain from doing this in this paper as all our results are about the stability

with respect to the rank metric, as defined above.
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Perhaps the most interesting question which we cannot tackle at present is

inspired by the results of [4]: are polycyclic groups stable with respect to the rank

metric? However, by using some of the ideas from [4] we can show the following

result.

Let p be a prime number. Recall that Abels’ group Ap (see [1]) is the group

of 4-by-4 matrices of the form

0
BB@

1 � � �

pm � �

pn �

1

1
CCA ;

where m; n 2 Z, and where the stars are arbitrary elements of the ring Z
�

1
p

�
of

rational numbers which can be written with a power of p as the denominator.

Theorem 4. For any prime number p the Abels’ group Ap is not stable with

respect to the rank metric.

Remarks 5. (1) It is not difficult to show that if a finitely presented amenable

group is stable with respect to the rank metric then it is residually linear. Thus,

mimicking the question posed in [2], one could ask whether every finitely pre-

sented linear amenable group is stable with respect to the rank metric. Since

Abels’ group is a solvable group of step 3 which is finitely presented and linear,

Theorem 4 gives a negative answer to this question.

(2) Our proof of Theorem 4 is based on an argument from [4] used to show

that the Abels’ groups are not stable with respect to the Hamming distance. In fact,

Theorem 4 is a generalisation of that particular result from [4]. We will present

the proof of Theorem 4 in Section 5. It is very self-contained and can also serve a

minor role as an alternative exposition of one of the results of [4] (the advantage of

our proof of Theorem 4 compared with the exposition in [4] is somewhat smaller

definitional overheads).

Acknowledgment. We would like to thank the referees for a very careful reading

of this paper, and numerous helpful suggestions and corrections.

2. The strategy of the proof and the general statement of Theorem 1

Let us very informally discuss the strategy of the proof of Theorem 1. For

simplicity let us assume that we are given two d � d matrices A and B which

are almost commuting with respect to the rank metric.

First, we need to find a large subspace W � C
d and a decomposition W DLN

iD1 Bi , such that each space Bi has the following two properties:
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(1) there exists Ri 2 N, an ideal ai � CŒX; Y �, and a linear embedding

'i W Bi ! CŒX; Y �=ai whose image consists of all elements of degree at

most Ri , and

(2) “Bi is almost invariant for the actions of A and B .”

Most of Section 4 is devoted to finding such W , culminating in Lemma 25.

This allows us to replace the original A and B with direct sums of multiplication

operators in commutative algebras, restricted to “balls in the algebras,” i.e. to

subspaces of polynomials with degree bounded by Ri .

The reduction of the proof of Theorem 6 to finding such W is described in

Lemma 17.

The property that A and B are either self-adjoint or unitary is used in two ways.

The first use is controlling the nilpotent elements in the resulting commutative

algebras. This is done in Lemma 23. While controlling the nilpotent elements

greatly simplifies the proof, the authors believe it is not essential.

The second, more crucial, use is making sure that the subspace W is large.

Informally speaking, the assumption that A and B are either self-adjoint or unitary

allows us to argue that if W is small, then we can add some extra subspaces Bi in

the orthogonal complement of W (see Lemma 24). The argument is very similar

to the “Ornstein–Weiss trick” (see [18]), and the assumption on A and B allows

us to replace “disjointedness” with “orthogonality”.

After finding W we still need to consider the operators of multiplication by X

and Y in CŒX; Y �=ai restricted to polynomials of degree bounded by Ri . These

two restrictions clearly almost commute, and we need to perturb them with small

rank operators to obtain commuting operators.

In order to be able to carry out the Ornstein–Weiss trick in our setting, we

make use of the effective Nullstellensatz (encapsulated in Theorem 9) and the

Macaulay theorem on growth in graded algebras (encapsulated in Corollary 13).

The final commutative algebra tool which we use is the standard Nullstellensatz

(Proposition 14).

The effective Nullstellensatz (i) allows us to argue that the embeddings 'i exist,

i.e. reduce “the local situation to the commutative algebra,” and (ii) together with

the assumption that A and B are either unitary or self-adjoint, it allows us to

control the nilpotent elements in the resulting commutative algebras CŒX; Y �=ai .

It is used in Lemma 23.

The Macaulay theorem (i) allows us to argue that the complement of W is

small, and (ii) it allows us to argue that the commuting perturbations of multipli-

cation operators in commutative algebras which we find, are indeed small rank

perturbations. It is used in Lemmas 20 and 24.

Definitions and the general statement. Elements of Mat.d/ will be called d -

matrices. Tuples of d -matrices will be called d -matrix tuples, and will be denoted

with curly letters, e.g. A D .A1; : : : ; An/ and M D .M1; : : : ; Mn/.
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For a 2 NC, the symbol Œa� denotes the set ¹1; 2; : : : ; aº, and we let Œ0� denote

the empty set. We say that a matrix tuple A D .A1; : : : ; An/ is commuting if for

all i; j 2 Œn� we have AiAj � Aj Ai D 0. More generally, for " > 0 we say that A

is "-commuting if

max
i;j 2Œn�

rank.AiAj � Aj Ai / 6 ":

If d 2 NC and A D .A1; : : : ; An/, B D .B1; : : : ; Bn/ are two d -matrix tuples,

then we let

drank.A;B/ WD max
i2Œn�

rank.Ai � Bi /:

Given a matrix A, we denote the adjoint of A by A�. We say that a d -matrix

tuple M D .M1; : : : ; Mn/ is �-closed if for every i 2 Œn� there exists j 2 Œn� such

that M �
i D Mj .

Our general result is as follows.

Theorem 6. For every " > 0 and n 2 NC there exists ı > 0 such that if

A D .A1; : : : ; An/

is a �-closed ı-commuting matrix tuple then we can find a commuting matrix tuple

B with

drank.A;B/ 6 ":

Let us argue how to deduce Theorem 1 from Theorem 6. First, we note

that if we replace the expression a �-closed ı-commuting matrix tuple in the

statement of Theorem 6 by a ı-commuting matrix tuple such that each of the

matrices A1; : : : ; An is either self-adjoint or unitary then we obtain the statement

of Theorem 1.

But if .A1; : : : ; An/ is any matrix tuple, then .A1; : : : ; An; A�
1; : : : ; A�

n/ is a
�-closed matrix tuple. As such, in order to deduce Theorem 1 from Theorem 6 it

is enough to prove the following proposition.

Proposition 7. For every n 2 NC, every ı > 0 and every d 2 NC, we have that if

.A1; : : : ; An/ is a ı-commuting d -matrix tuple and each of the matrices A1; : : : ; An

is either unitary or self-adjoint, then the d -matrix tuple .A1; : : : ; An; A�
1; : : : ; A�

n/

is ı-commuting as well.

Proof. Using induction, it is enough to show that if A is a d -matrix and B

is either a unitary or a self-adjoint d -matrix with rank.A; B/ 6 ı then also

rank.A; B�/ 6 ı.

If B is self-adjoint then there is nothing to prove. If B is unitary then we will

use the fact that B� D B�1. We let

W WD ker.AB � BA/;
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and by assumption we have dim.W / > 1 � ı. For v 2 B.W / we can write

v D B.w/ for some w 2 W , hence we obtain that

B�1A.v/ D B�1AB.w/ D B�1BA.w/ D A.w/:

On the other hand we can write

AB�1.v/ D AB�1B.w/ D A.w/:

This shows that B.W / � ker.AB�1 � B�1A/, finishing the proof because

dim.B.W // D dim.W / > 1 � ı: �

Remark 8. With a little bit more effort we could also deal with matrix tuples

whose all elements are normal matrices with spectrum contained in the union of

the real line and the unit circle.

For the rest of the paper we fix a positive natural number n. From now on all

matrix tuples will have length n.

3. Commutative algebra preliminaries

Let C be the field of complex numbers. The ring CŒX1; : : : ; Xn� will be denoted

by CŒX�. Recall that an ideal a � CŒX� is radical if for all m 2 NC and f 2 CŒX�

we have that f m 2 a implies f 2 a. By Hilbert’s Nullstellensatz we have that

a D
T

m, where the intersection is over all maximal ideals which contain a.

Given an arbitrary ideal a we denote by rad.a/ the radical of a, i.e. the radical

ideal defined as rad.a/ WD ¹f 2 CŒX�W there exists m 2 ZC with f m 2 aº.

The next theorem follows from the effective Nullstellensatz of Grete Her-

mann [14] and the Rabinowitsch trick (see e.g. [5, Theorem 1 and the corollary

afterwards]).

Theorem 9. There exists an increasing function KWN ! N such that we have the

following properties. Let f; f1; : : : ; fk 2 CŒX� be polynomials of degree at most

R, and let a be the ideal generated by f1; : : : ; fk.

(1) If f 2 a then there exist h1; : : : ; hk 2 CŒX� such that

h1f1 C � � � C hkfk D f

and deg.hifi / 6 K.R/.

(2) If f 2 rad.a/ then we can find m 2 N and g1; : : : ; gk 2 CŒX� such that

g1f1 C � � � C gkfk D f m

and deg.gifi / 6 K.R/.
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�

In the applications of this theorem we will implicitly use that K.R/ > R.

For the next proposition we need to recall some definitions. A standard graded

C-algebra is a C-algebra A together with a family of vector spaces Ai , i 2 N, such

that

(1) A0 D C, A D ˚i2NAi ,

(2) A is generated as a C-algebra by finitely many elements of A1,

(3) for all i; j 2 N we have AiAj � AiCj .

A filtration on a C-algebra A is an ascending family F0 � F1 � � � � of linear

subspaces of A such that

(1) F0 D C, A D
S

i2N Fi ,

(2) for all i; j 2 N we have Fi Fj � FiCj .

Given an algebra A with a filtration Fi , i 2 N, we can associate to it a graded

algebra gr.A/ as follows. As aC-vector space we let gr.A/ WD F0˚
L

i>0 Fi =Fi�1.

We define the multiplication on gr.A/ first on the elements of the form a C Fi and

b C Fj , where i; j > 0, a 2 FiC1, b 2 Fj C1, by the formula .a C Fi / � .b C Fj / WD

abCFiCj C1. In general we extend this multiplication to all of gr.A/ byC-linearity.

Remark 10. The reason why gr.A/ is not always a standard graded algebra is that

it may happen not to be generated by the elements of F1=F0. This may be the case

even if A is generated by finitely many elements of F1 as a C-algebra.

For example, let A WD CŒX1�, let F0 D C, let F1 be the vector space of

polynomials of degree at most 1, and finally for i > 2 let Fi be the vector space of

polynomials of degree at most 2i �1. In this case we have .X1 CF0/2 D X2
1 CF1,

and therefore .X1 C F0/3 D X3
1 C F2, i.e. .X1 C F0/3 is equal to 0 in gr.A/.

In fact, it is not difficult to construct examples where gr.A/ fails to be finitely-

generated, even when A is generated by finitely many elements of F1.

We say that Fi is a standard filtration on A if the associated graded algebra

gr.A/ is standard.

The following is a consequence of Macaulay’s theorem [16]. We will use the

exposition from [7, Section 5].

Proposition 11. Let A be aC-algebra with a standard filtration Fi . Then for every

i > 0 we have

dimC.Fi=Fi�1/ <
dimC.F1/

i
dimC.Fi�1/:

Proof. For a natural number k and a real number x we let
�

x
k

�
denote the number

1
kŠ

� x.x � 1/ � � � � � .x � k C 1/.
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Let us fix i > 0. After applying [7, Theorem 5.10] to the standard graded

algebra gr.A/ we obtain the following. Let x be the unique real number such that

x > i � 1 and

dimC.Fi�1/ D

�
x

i � 1

�
:

Then we have that

dimC.Fi / 6

�
x C 1

i

�
:

In particular, we also obtain that

dim.Fi /

dim.Fi�1/
6

�
xC1

i

�
�

x
i�1

� D
x C 1

i
: (1)

On the other hand, we have dim.F1/ D
�
dim.F1/

1

�
, and the function X 7!

�
X
k

�
is

increasing for X > k�1 (see [7, Lemma 5.6]). Thus if we apply [7, Theorem 5.10]

i � 2 times starting with dim.F1/ D
�
dim.F1/

1

�
, then we obtain

dimC.Fi�1/ 6

�
dim.F1/ C i � 2

i � 1

�
;

implying that x < dim.F1/ C i � 1. Together with (1), this shows that

dim.Fi /

dim.Fi�1/
<

i C dim.F1/

i
;

so the proposition follows since

dim.Fi / D dim.Fi=Fi�1/ C dim.Fi�1/: �

Definition 12. Given an ideal a � CŒX�, we introduce a standard filtration F a

i ,

i 2 N, on CŒX�=a by defining F a

i to be the space of all those elements of CŒX�=a

which can be written as f C a with deg.f / 6 i .

Applying Proposition 11 to the filtration F a

i , we obtain the following Corollary.

Corollary 13. Let a � CŒX� be an ideal. Then for any i > 0 we have

dimC.F a

i =F a

i�1/ 6
n

i
dimC.F a

i�1/:

We now proceed to derive some properties of multiplication operators re-

stricted to the spaces F a

i , i 2 N. We start with a simple consequence of Hilbert’s

Nullstellensatz. When for some k 2 NC we consider the space Ck as a C-algebra,

it is meant to be with the pointwise multiplication.
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Proposition 14. Let a � CŒX� be an ideal and let V � CŒX� be a finite

dimensionalC-linear subspace with the property that V \rad.a/ D ¹0º. Then there

exists a surjective algebra homomorphism � WCŒX� ! C
dim.V / which is injective

on V and such that a � ker.�/.

Proof. We prove by induction on dim.V / the following statement: there exist

distinct maximal ideals m1; : : : ;mdim.V / such that for all i we have rad.a/ � mi

and

V \ m1 \ � � � \ mdim.V / D ¹0º:

For the case dim.V / D 1 let us first choose a non-zero element v 2 V . Now

since v … rad.a/ and rad.a/ is equal to an intersection of maximal ideals, we can

find a maximal ideal m1 such that rad.a/ � m1 and v … m1.

Let us therefore assume that we know the inductive statement when

dim.V / D k for some k and let us fix V such that dim.V / D k C1. Let W � V be

a k-dimensional subspace. By the inductive assumption we can find m1; : : : ;mk

such that W \ m1 \ � � � \ mk D ¹0º. Thus the intersection V \ m1 \ � � � \ mk is

at most one-dimensional. It cannot be zero-dimensional because the composition

V ,! CŒX� ! CŒX�=.m1 \ � � � \ mk/ has a non-trivial kernel, since the Chinese

remainder theorem implies that the right-hand side is isomorphic to C
k.

Thus the intersection V \m1\� � �\mk is one-dimensional. Let v be a non-zero

element of V \m1\� � �\mk . Since v … rad.a/ and rad.a/ is equal to an intersection

of maximal ideals, we can find a maximal ideal mkC1 such that rad.a/ � mkC1

and v … mkC1. Thus V \ m1 \ � � � \ mk \ mkC1 D ¹0º, finishing the proof of the

inductive claim.

Now we can define � as being the quotient map CŒX� ! CŒX�=.m1 \ � � � \

\mdim.V //. This finishes the proof. �

Definition 15. Given an ideal a � CŒX� we denote by �a

i WCŒX�=a ! CŒX�=a the

linear map defined by �a

i .f / D Xi � f .

Corollary 16. Let a � CŒX� be an ideal and let R 2 N be such that

F a

R \ .rad.a/=a/ D ¹0 C aº:

Then there exist simultaneously diagonalisable linear maps

M1; : : : ; MnW F a

R �! F a

R

such that for v 2 F a

R�1 and all i D 1; : : : ; n we have Mi .v/ D �a

i .v/.

Proof. Let d WD dim.F a

R/, and let f1; : : : ; fd 2 CŒX� be such that fi Ca is a basis

of F a

R. Let V � CŒX� be the linear span of the elements fi . Let us observe that

V \ rad.a/ D ¹0º. Indeed, if f 2 V \ rad.a/ then f C a 2 F a

R \ rad.a/=a and so

by assumption we see that f 2 a.
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Hence by the previous proposition we can find a surjective algebra homomor-

phism

� WCŒX�=a �! C
d

such that � is injective on F a

R. Let � WCd ! F a

R be the unique linear isomorphism

such that for v 2 F a

R we have �.�.v// D v. Since � is surjective, it follows that

for all v 2 C
d we have �.�.v// D v.

For v 2 F a

R let us define

Mi .v/ WD �.�.Xi � v//:

If v 2 F a

R�1 then Xi � v 2 F a

R and so Mi .v/ D �.�.Xi � v/ D Xi � v D �a

i .v/.

Thus in order to finish the proof we only need to check that the maps Mi are

simultaneously diagonalisable.

Let e1; : : : ; ed be the standard basis of Cd . In particular �.e1/; : : : ; �.ed / is a

basis of F a

R, and we claim that for every i 2 ¹1; : : : ; nº we have that the vectors

�.ej /, j D 1; : : : ; d , are eigenvectors for Mi . Indeed, first we note that for every

i and j we have that �.Xi / � ej is a multiple of ej , and so we can define numbers

�ij 2 C by the formula

�.Xi / � ej D �ij ej :

Now we can write

Mi .�.ej // D �.�.Xi � �.ej /// D �.�.Xi/ � �.�.ej ///

D �.�.Xi / � ej / D �.�ij ej / D �ij �.ej /;

finishing the proof. �

4. Proof of Theorem 6

We will first prove several lemmas. The first lemma, informally speaking, allows

us to deduce Theorem 6 provided that we can construct large subspaces by “grow-

ing balls around points”. To make it precise we state a few definitions.

Given two positive natural numbers a; b we let Map.a; b/ be the set of all maps

from Œa� to Œb�, and furthermore we let Map
6

.a; b/ WD
Sa

iD0 Map.i; b/.

Let W be a C-vector space and let M D .M1; : : : ; Mn/ be a tuple of endomor-

phisms of W . Given R 2 N and ˛ 2 Map.R; n/ we let

M˛ WD M˛.1/ � � � M˛.R/:

Note that the unique element of Map.0; n/ is the empty set. Our convention is that

M; is the identity map.

Given w 2 W we let BM.w; R/ to be the linear span of the vectors M˛.w/,

where ˛ 2 Map
6

.R; n/. We will call BM.w; R/ the R-ballspace for M with
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root w. If M is clear from the context, then we denote BM.w; R/ simply with

B.w; R/.

Recall from Definition 15 that given an ideal a � CŒX� and i 2 Œn�, we denote

by �a

i WCŒX�=a ! CŒX�=a the linear map defined by �a

i .f C a/ D .Xi � f / C a.

Note that the R-ballspace for .�a

1; : : : ; �a

n/ with root 1 C a 2 CŒX�=a is equal

to F a

R.

In general we will say that BM.w; R/ is regular if there exists an ideal a �

CŒX� and a linear isomorphism 'W BM.w; R/ ! F a

R such that the following two

conditions hold.

(1) For every v 2 BM.w; R � 1/ and i 2 Œn� we have that '.v/ 2 F a

R�1 and

'.Mi .v// D �a

i .'.v//.

(2) If for some f 2 CŒX� and m 2 NC we have f C a 2 F a

R and f m 2 a then

f 2 a. In other words we have F a

R \ .rad.a/=a/ D ¹0 C aº.

Let d 2 N and let .M1; : : : ; Mn/ be a d -matrix tuple. Given R 2 N

and a subspace W � C
d we say that W is an R-multi-ballspace if there exist

w1; : : : ; wk 2 W and natural numbers R1; : : : ; Rk with Rj > R such that

(1) the ballspaces B.wj ; Rj / are regular, and

(2) W is equal to the direct sum
Lk

j D1 B.wj ; Rj /.

The roots of such W are the points ¹w1; : : : ; wkº.

If all elements of a matrix tuple A can be diagonalised simultaneously, then

A will be called simultaneously diagonalisable. Clearly, if A is a simultaneously

diagonalisable tuple then it is also a commuting tuple.

Lemma 17. For every " > 0 there exists R 2 N and ı > 0 such that the following

holds. Suppose that d 2 N, let M be a d -matrix tuple, and let W � C
d be an

R-multi-ballspace with dim.W / > .1 � ı/ � d .

Then there exists a simultaneously diagonalisable d -matrix tuple A such that

drank.M;A/ 6 ":

Proof. Let R be such that n
R

< "
2

and let ı be such that ı < "
2
. Let M D

.M1; : : : ; Mn/ be the d -matrix tuple, let w1; : : : wk 2 C
d and let R1; : : : ; Rk 2 N

be such that Ri > R and such that the ballspaces B.wj ; Rj / are regular and

W D
Lk

j D1 B.wj ; Rj /.

We need to find a simultaneously diagonalisable tuple A D .A1; : : : ; An/ such

that drank.M;A/ 6 ".

For every j D 1; : : : ; k, let 'j W B.wj ; Rj / ! F
aj

Rj
be the linear isomorphism

witnessing the regularity of the ballspace B.wj ; Rj /.

By Corollary 16, for every j D 1; : : : ; k we can find maps Mij W F
aj

Rj
! F

aj

Rj
,

where i D 1; : : : ; n, such that the maps M1j ; : : : ; Mnj pairwise commute, are
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simultaneously diagonalisable, and for v 2 B.wj ; Rj � 1/ we have Mi .v/ D

'�1
j � Mij � 'j .v/.

Let us fix a projection � WCd !
Lk

j D1 B.wj ; Rj /, and for i D 1; : : : ; n let

Ai WD
� M

j

'�1
j � Mij � 'j

�
� �:

It is clear that the maps A1; : : : ; An are simultaneously diagonalisable. Also

for every v 2
Lk

j D1 B.wj ; Rj � 1/ we have Ai.v/ D Mi .v/, so

drank.M;A/ 6
1

d

�
dim.ker.�// C

kX

j D1

.dim.B.wj ; Rj // � dim.B.wj ; Rj � 1///
�
:

Since the ballspaces B.wj ; Rj / are regular, by Proposition 11 we have

dim.B.wj ; Rj // � dim.B.wj ; Rj � 1// 6
n

Rj

� dim.B.wj ; Rj � 1//

6
n

R
� dim.B.wj ; Rj //:

Hence we see that

kX

j D1

.dim.B.wj ; Rj // � dim.B.wj ; Rj � 1/// 6
n

R

kX

j D1

dim.B.wj ; Rj // <
"

2
� d:

Thus altogether we have

drank.M;A/ <
"

2
C ı 6 ";

finishing the proof. �

Given r; d 2 N, a d -matrix tuple M D .M1; : : : ; Mn/, and v 2 Cd , we say that

M is r-commutative on v if for any i 6 r , any ˛ 2 Map.i; n/ and any permutation

� W Œi � ! Œi � we have

M˛.v/ D M˛ı� .v/:

If W � C
d then we say that M is r-commutative on W if for every v 2 W we

have that M is r-commutative on v.

Lemma 18. For every R 2 N and " > 0 there exists � > 0 such that if d 2 N and

M is an �-commuting d -matrix tuple, then there exists a subspace W � C
d such

that M is R-commutative on W and dim.W / > d.1 � "/.
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Proof. For k 2 N we let Bij.k/ be the set of all bijections of the set Œk�. Let us

prove by induction on R that for every " > 0 there exists � > 0 such that if d 2 N

and M is an �-commuting d -matrix tuple, then

dim
� \

˛2Map.R;n/
�2Bij.R/

ker.M˛ � M˛ı� /
�

> d.1 � "/:

When R D 2, we can set � WD "
n2 . Indeed, if M is an �-commuting tuple then

by definition for i; j 2 Œn� we have dim.ker.ŒMi ; Mj �// > .1 � �/d . And so we

have

dim
� \

i;j 2Œn�

ker.ŒMi ; Mj �/
�

> .1 � n2�/d D .1 � "/d:

Thus let us assume that we have shown the inductive statement for some R

and let us prove it for R C 1. Let us fix " > 0 and let � be given by the inductive

assumption for "
nC1

. Thus given an �-commuting tuple M we obtain a subspace

W � C
d such that dim.W / > d

�
1 � "

nC1

�
and M is R-commutative on W , i.e. for

any w 2 W , any ˛ 2 Map.k; n/ with k 6 R and any permutation � W Œk� ! Œk� we

have

M˛.w/ D M˛ı� .w/:

Let us define V WD W \
Tn

iD1 M �1
i .W /. Clearly dim.V / > d.1 � "/.

Now let ˇ 2 Map.R C 1; n/, let � W ŒR C 1� ! ŒR C 1� be a permutation, and

let v 2 V . Let i 2 Œn� be such that for some 2 6 j1 6 R C 1 we have ˇ.j1/ D i

and for some 2 6 j2 6 R C 1 we have ˇ.�.j2// D i . We can find such i because

R C 1 > 3.

Since in particular v 2 W , we can find  2 Map.R; n/ and a permutation

�W ŒR� ! ŒR� such that

Mˇ .v/ D M � Mi .v/

and

Mˇı� .v/ D Mı� � Mi .v/:

Since Mi .v/ 2 W , we have

Mı� � Mi .v/ D M � Mi .v/;

which finishes the proof. �

Definition 19. If r 2 N, " > 0, and A and B are subspaces of Cd , then we say

that .A; B/ is an .r; "/-pair for the d -tuple M D .M1; M2; : : : ; Mn/ if

(1) A � B and dim.B=A/ 6 " � d , and

(2) for every ˛ 2 Map
6

.r; n/ and v 2 A we have M˛.v/ 2 B .
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Lemma 20. Let " > 0, let r; R; d 2 Nwith n 6 r < R, and letM D .M1; : : : ; Mn/

be a �-closed d -matrix tuple. Let .A1; B1/ be an .R; "/-pair and let W DLk
j D1 B.wj ; Rj / be an R-multi-ballspace for M contained in B1. Furthermore

let us assume that the ballspaces B.wj ; Rj C r/ are regular for all j . Finally, let

B2 be the orthogonal complement of W in B1.

Then there exists a subspace A2 � A1\B2 such that .A2; B2/ is an
�
r; "C n

R
2r

�
-

pair.

Proof. Let V � C
d be the space spanned by the ballspaces B.wj ; Rj C r/,

j D 1; : : : ; k. Let V ? � C
d be the space orthogonal to V and let A2 D A1 \ V ?.

Let us show that dim.B2=A2/ 6 d
�
"C n

R
2r

�
. By basic linear algebra, it is easy

to check that dim.B2=A2/ is bounded from above by

dim.B1=A1/ C dim.V / � dim.W /: (2)

We can bound (2) by

dim.B1=A1/ C

kX

j D1

.dim.B.wj ; Rj C r// � dim.B.wj ; Rj ///:

By Corollary 13, the quantity above is at most

" � d C

kX

j D1

dim.B.wj ; Rj //
��

1 C
n

R

�r

� 1
�

6 " � d C d �
n

R
� 2r ;

where we use the inequality .1 C x/r 6 1 C .2r � 1/x, valid for x 2 Œ0; 1� and

r > 1. Therefore we obtain that dim.B2=A2/ 6 d." C n
R

2r/.

Thus to finish the proof we only need to show that for x 2 A2 and ˛ 2

Map.q; n/ with q 6 r < R we have M˛.x/ 2 B2. In other words, we need to

show that if x 2 A1 is orthogonal to B.wj ; Rj C r/ then M˛.x/ is orthogonal to

B.wj ; Rj /.

Indeed, let w 2 B.wj ; Rj /. Since M is �-closed, M�
˛.w/ 2 B.wj ; Rj C r/ and

hence

hM˛.x/; wi D hx;M�
˛.w/i D 0;

finishing the proof. �

Let ChY1; : : : ; Yni be the ring of polynomials in n non-commuting variables,

and let � WChY1; : : : ; Yni ! CŒX� be the algebra homomorphism such that �.Yi/ D

Xi . Let cWCŒX� ! ChY1; : : : ; Yni be the unique C-linear map such that for any

˛ 2 Map.d; n/ with ˛.1/ 6 ˛.2/ 6 : : : 6 ˛.d/ we have

c ı �.Y˛.1/ : : : Y˛.d// D Y˛.1/ : : : Y˛.d/:
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In other words, the map c allows us to treat commutative polynomials as

non-commutative ones, by fixing an order on the variables. Given a matrix

tuple M D .M1; : : : ; Mn/ and f 2 CŒX�, we define f .M/ to be the matrix

c.f /.M1; : : : ; Mn/.

Let us define a �-operation on ChY1; : : : Yni in the following way. For any

˛ 2 Map.d; n/ and a 2 C we define

.a � Y˛.1/ � � � � � Y˛.d//
� WD Na � Y˛.d/ � � � � � Y˛.1/;

and we extend this definition to arbitrary elements of ChY1; : : : ; Yni by linearity.

For f 2 CŒX� we define f �.M/ WD .c.f /�/.M1; : : : ; Mn/. The following

simple observation will be used without reference.

Lemma 21. For any matrix tuple M and any f 2 CŒX� we have that the matrices

f .M/ and f �.M�/ are adjoint to each other. �

We will also need the following lemma.

Lemma 22. Let f 2 CŒX� and let k 2 N. Let M be a �-closed d -matrix tuple

and let x 2 C
d be such that M is .2k deg.f //-commutative at x. Then

Œf �.M�/f .M/�k.x/ D Œf �.M�/�kŒf .M/�k.x/

Proof. For f 2 CŒX� let us define Nf to be the polynomial which arises from f

by conjugating the coefficients. Then the left-hand side is equal to

Œ Nf .M�/f .M/�k.x/;

and the right-hand side is equal to

Œ Nf .M�/�k Œf .M/�k.x/:

These two expressions are clearly equal if M is .2k deg.f //-commutative at x.

�

Recall that K.R/ is a function defined in Theorem 9.

Lemma 23. Let d 2 NC and letM D .M1; : : : ; Mn/ be a �-closed d -matrix tuple.

Let R > 0 and let v 2 C
d be such that M is .2K.R//-commutative at v. Then the

ballspace B.v; R/ is regular.

Proof. Given ˛ 2 Map.q; n/, we define X˛ 2 CŒX� to be the monomial

X˛ WD X˛.1/ : : : X˛.q/:
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Let P � CŒX� be defined as follows. We let f 2 P if and only if deg.f / 6 R

and f .M/.v/ D 0. Let a be the ideal generated by P . Let us define a map

'W B.v; R/ ! CŒX�=a as follows:

'.M˛.v// WD X˛ C a:

Let us check that ' is well-defined. For this let us assume that

X

˛2Map
6

.R;n/

s˛M˛.v/ D
X

˛2Map
6

.R;n/

t˛M˛.v/;

where s˛; t˛ 2 C. But then

X

˛2Map
6

.R;n/

.s˛ � t˛/M˛.v/ D 0;

and therefore
P

˛2Map
6

.R;n/.s˛ � t˛/X˛ 2 P . In particular we get that

X

˛2Map
6

.R;n/

s˛X˛ C a D
X

˛2Map
6

.R;n/

t˛X˛ C a;

which shows that ' is well-defined.

Now let us see that ' is injective. Indeed suppose that

'
� X

˛

s˛M˛.v/
�

D 0;

where ˛ runs through the elements of Map
6

.R; n/, and s˛ 2 C. ThenP
˛ s˛X˛ 2 a, and so we can find fi 2 P and hi 2 CŒX� with deg.hifi / 6 K.R/

such that
kX

iD1

hifi D
X

˛

s˛X˛:

But since M is K.R/-commutative at v, we have

kX

iD1

hi .M/fi .M/.v/ D
X

˛

s˛M˛.v/:

The left-hand side is equal to 0 since fi 2 P , and so we see thatP
˛ s˛M˛.v/ D 0. This finishes the proof of injectivity of '.

Since clearly the image of ' is equal to F a

R, it remains to prove that

F a

R \ .rad.a/=a/ D ¹0 C aº:
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By Theorem 9, if f 2 CŒX� is such that deg.f / 6 R and f 2 rad.a/ then we

can find m 2 N, elements fi 2 P and gi 2 CŒX� with deg.gifi / 6 K.R/, such

that

f m D

kX

iD1

gifi ;

Since M is K.R/-commutative at v, we have

0 D

kX

iD1

gi .M/fi .M/.v/ D f .M/m.v/;

and so by 2K.R/-commutativity, and since R 6 K.R/, we also have

0 D f .M/m.v/ D f �.M�/mf .M/m.v/ D .f �.M�/f .M//m.v/:

In particular we can define t to be the smallest positive integer such that

.f �.M�/f .M//t .v/ D 0:

We will show t D 1. By way of contradiction, let us consider two cases: first

let us assume that t is even and equal to 2l for some l > 1.

By Lemma 22, we have

0 D f �.M�/2lf .M/2l .v/ D .f �.M�/f .M//2l .v/: (3)

Therefore, we also have

0 D h.f �.M�/f .M//2l .v/; vi

D h.f �.M�/f .M//l .v/; .f �.M�/f .M//l.v/i:

This shows that .f �.M�/f .M//l .v/ D 0, which contradicts the minimality of t .

In the second case, let us assume that t is odd and equal to 2l C 1 for

some l > 1. We proceed in a similar fashion. By Lemma 22 we have that

.f �.M�/f .M//2lC1.v/ D 0. Hence, we also have

0 D h.f �.M�/f .M//2lC1.v/; f �.M�/f .M/.v/i

D h.f �.M�/f .M//lC1.v/; .f �.M�/f .M//lC1.v/i;

and since l C 1 < t , we obtain a contradiction exactly as in the first case.

Thus all in all we have showed that f �.M�/f .M/.v/ D 0. Since f �.M�/ and

f .M/ are adjoint to each other, we also have that f .M/.v/ D 0. This shows that

f 2 P , and hence f 2 a, which finishes the proof. �
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Lemma 24. Let R 2 N, d 2 N, let M be a �-closed d -matrix tuple, let A � C
d ,

and let us assume that M is 2K.2R/-commutative on A. Then there exist k 2 N

and w1; : : : ; wk 2 A such that the R-ballspaces BM.wi ; R/ are regular, pairwise

orthogonal, and we have that

kX

iD1

dim.BM.wi ; R// >
1

en
� dim.A/; (4)

where e D 2:71 : : : :

Proof. Note that by Lemma 23 all R-ballspaces with roots in A are regular. Let

us consider the subset Q of A˚N which consists of those tuples .w1; : : : ; wk/ such

that the ballspaces BM.w1; R/; : : : ; BM.wk; R/ are pairwise orthogonal to each

other.

Let .w1; : : : ; wk/ 2 Q be a tuple for which the number

kX

iD1

dim.BM.wi ; R//

is maximal. By Lemma 23, it is enough to show that
Pk

iD1 dim.BM.wi ; R// >
1

en � dim.A/. Consider the vector space V spanned by the ballspaces BM.wi ; 2R/.

By Lemma 23, the ballspaces BM.wi ; 2R/ are regular, and so by Corollary 13 we

have that

dim.BM.wi ; 2R// 6

6

�
1 C

n

2R

��
1 C

n

2R � 1

�
: : :

�
1 C

n

R C 1

�
dim.BM.wi ; R//;

which easily implies that

dim.BM.wi ; 2R// 6 en dim.BM.wi ; R//:

This shows that

dim.V / 6 en dim
� kM

iD1

BM.wi ; R/
�
: (5)

Let us observe that if x 2 A is orthogonal to V then BM.x; R/ is orthogonal to

the space
Lk

iD1 BM.wi ; R/. Indeed, since M is �-closed, for any ˛ 2 Map
6

.R; n/

and any w 2 BM.wi ; R/ we have that M�
˛.w/ 2 BM.wi ; 2R/. It follows that

hM˛.x/; wi D hx;M�
˛.w/i D 0:

But by the maximality of .w1; : : : ; wk/, the above shows that there are no

points in A orthogonal to V , so in fact we have A � V . In particular, we have
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dim.V / > dim.A/, and hence by (5) we have

dim.A/ 6 en dim
� kM

iD1

BM.wi ; R/
�
;

finishing the proof. �

The final lemma which we need for the proof of Theorem 6 is an “Ornstein–

Weiss type” lemma.

Lemma 25. For every ı > 0 and r 2 N there exists � > 0 such that if d 2 N,

andM is an �-commuting �-closed d -matrix tuple, then there exists an r-multiball

W � C
d for M, such that dim.W / > .1 � ı/ � d .

Proof. Let us fix ı > 0 and r 2 N. Let us first fix a positive integer k such that

k.1� 1
en /k < ı

4
, and then let us choose " 2 .0; min. ı

4
; ı

2k
; 1

en // and natural numbers

r0 > r1 > � � � > rk D r such that for i D 0; : : : ; k � 1 we have

" C
n

ri

2riC1 <
�
1 �

1

en

�k

:

By Lemma 18, we can fix � to be such that if M is �-commuting then there

exists a subspace S � C
d such that dim.S/ > .1 � "/d and M is 2K.2.r0 C r1//-

commutative on S .

Let Nd WD .1 � "/d . We will prove by induction on i the following statement:

for every i D 1; : : : ; k there exists g.i/ 2 N, roots w1; : : : ; wg.i/ 2 S and radii

R1; : : : ; Rg.i/ with ri 6 Rj 6 r0 for all j D 1; : : : ; g.i/, such that the balls

BM.wj ; Rj / are pairwise orthogonal and

g.i/X

j D1

dim.BM.wj ; Rj // > Nd
�
1 � i

�
1 �

1

en

�i�
� d �

iı

2k
:

This will be enough to finish the proof because for i D k the right hand side above

is equal to

.1 � "/d
�
1 � k

�
1 �

1

en

�k�
� d

ı

2
>

�
1 �

ı

4

��
1 �

ı

4

�
� d �

ı

2
d > .1 � ı/ � d

For i D 1 the inductive claim is implied by Lemma 24. Suppose that the

inductive claim holds for some i 2 ¹1; : : : ; k � 1º and let us prove it for i C 1.

Let Wi D ˚
g.i/
j D1BM.wj ; Rj / and let W ?

i be the orthogonal complement of

Wi in C
d . Since M is 2K.2.r0 C riC1//-commutative on S , we have that all the

ballspaces

BM.wj ; Rj C riC1/
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are regular, and so we can apply Lemma 20 for the .ri ; "/-pair .S;Cd / and the

ri -multiballspace Wi .

As a result we obtain a subspace Si � S \ W ?
i such that .Si ; W ?

i / is an�
riC1; " C n

ri
2riC1

�
-pair.

Now, by Lemma 24 we obtain g.i C 1/ 2 N and roots wg.i/C1; wg.i/C2; : : : ;

wg.iC1/ 2 Si , such that the ballspaces BM.wg.i/Cs; riC1/, s D 1; : : : ; g.i C 1/ �

g.i/, are regular, pairwise orthogonal, and

g.iC1/�g.i/X

sD1

dim.BM.wg.i/Cs; riC1// >
1

en
dim.Si/:

Since .Si ; W ?
i / is an .riC1; " C n

ri
2riC1/-pair, we have

dim.Si/ > dim.W ?
i / � d

�
" C

n

ri

2riC1

�

and so

g.iC1/�g.i/X

sD1

dim.BM.wg.i/Cs; riC1// >
1

en
dim.W ?

i / �
d

�
1 � 1

en

�k

en

>
1

en
dim.W ?

i / � Nd
�
1 �

1

en

�iC1

:

Therefore we have also

g.iC1/X

j D1

dim.BM.wj ; Rj // > dim.Wi / C
1

en
dim.W ?

i / � Nd
�
1 �

1

en

�iC1

D d � dim.W ?
i / C

1

en
dim.W ?

i / � Nd
�
1 �

1

en

�iC1

> Nd
�
1 �

�
1 �

1

en

�iC1�
�

�
1 �

1

en

�
dim.W ?

i /:

By the inductive assumption, we have dim.W ?
i / 6 Nd � i.1 � 1

en /i C d � i ı
2k

C "d ,

so altogether we have

g.iC1/X

j D1

dim.BM.wj ; Rj // > Nd
�
1�

�
1�

1

en

�iC1�
� Nd � i

�
1�

1

en

�iC1

�d
�
i

ı

2k
C"

�

D Nd
�
1 � .i C 1/

�
1 �

1

en

�iC1�
� d

�
i

ı

2k
C "

�

> Nd
�
1 � .i C 1/

�
1 �

1

en

�iC1�
� d

�
i

ı

2k
C

ı

2k

�
;

which is the inductive statement we wanted to show. Hence the lemma follows.

�
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We have now everything in place to prove Theorem 6.

Proof of Theorem 6. Let us fix " > 0. By Lemma 17, we can fix R 2 N and � > 0

such that if A is a d -matrix tuple for some d 2 N, and W � C
d is an R-multi-

ballspace for A with dim.W / > .1��/d , then we can find a commuting d -matrix

tuple B such that

drank.A;B/ 6 ":

However by Lemma 25, we can find ı > 0 such that if d 2 N and A is a
�-closed ı-commuting tuple then there exists an R-multi-ballspace W � C

d for

A such that

dim.W / > .1 � �/d:

This finishes the proof. �

5. Abels’ group is not stable with respect to the rank metric

We finish the article with the following proof.

Proof of Theorem 4. The centre Z.Ap/ of Ap is the group of matrices of the form

0
BB@

1 0 0 �

1 0 0

1 0

1

1
CCA ;

isomorphic to ZŒ 1
p

�. Consider the central subgroup H of the elements of the form

0
BB@

1 0 0 x

1 0 0

1 0

1

1
CCA ;

where x 2 Z.

Let � be the quotient group Ap=H and let � W Ap ! � be the quotient map. Let

1; : : : ; g be generators of Ap and let P1; : : : ; Pr be noncommutative monomials

(possibly with negative exponents) such that

h1; : : : ; g jP1.1; : : : ; g/; : : : ; Pr.1; : : : ; g/i;

is a presentation of Ap, and let H be such that for all i we have that Pi has length

at most H . Let F1; F2; � � � � � be a sequence of Følner sets in �. Let S � � be

the set of those elements which can be represented as words of length at most H

in the elements �.1/; : : : ; �.g/ and their inverses. For i 2 NC let int.Fi / be the

subset of those f 2 Fi such that for all s 2 S we have sf 2 Fi .
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For i 2 NC and j D 1; : : : ; g let A
j
i be a permutation of Fi which is equal

to �.j / on int.Fi / (there is in general no unique such permutation). In what

follows we will think of A
j
i as permutation matrices – in particular they are unitary

matrices.

Since Fi is a Følner sequence, we have, for any k 2 ¹1; : : : ; rº that

rank.Pk.A1
i ; : : : ; A

g
i / � IdjFi j/ ���!

i!1
0;

since the left-hand side is bounded from above by 1 �
j int Fi j

jFi j
.

By way of contradiction, let us assume that Ap is stable with respect to the rank

metric. It follows that we can find g sequences of invertible matrices B1
i ; : : : ; B

g
i

with
1

jFi j
dim.im.cAi � bBi // ���!

i!1
0

and such that Pi .B1; : : : ; Bg/ D 1 for all i D 1; : : : ; r . In particular for each

i D 1; 2; : : : we get a representation �i W Ap ! GL.ni ;C/ for suitable ni 2 N.

Now let t be a generator of H . Since t is a central element, we have that each

eigenspace of �i .t / is preserved under the action of Ap. Let Vi � C
ni be the

eigenspace of �i .t / corresponding to the eigenvalue 1, i.e. the set of all v 2 C
ni

such that �i .t /.v/ D v. Note that dim.Vi /
ni

���!
i!1

1

We have representations N�i of Ap=H on all the spaces Vi . Now let K � Z.Ap/

be the subgroup of Z.Ap/ of elements of the form n
p

, where n 2 Z, and let xK

be the image of K in Z.Ap/=H . Since xK is finite, we may assume that i is big

enough so that rank. N�i ./ � 1/ >
1
2

for all  2 xK n ¹eº.

But for every element � 2 Z.Ap/nH there exists n 2 NC such that �n 2 KnH .

It follows that for every � 2 Z.Ap/ n H we have that �i .�/ does not act as the

identity on Vi . This shows that N�i is injective on Z.Ap/=H .

But � is finitely-generated, and hence N�i .�/ is a finitely-generated linear

group, which by Malcev’s theorem [17] shows that � is residually finite. But the

abelian group Z.Ap/=H � � is not residually finite (see [4] for a short argument),

which is a contradiction. This finishes the proof. �
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