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Fluctuations of ergodic averages for amenable group actions

Uri Gabor1

Abstract. We show that for any countable amenable group action, along certain Følner se-

quences (those that have for any c > 1 a two-sided c-tempered tail), one has a universal esti-

mate for the number of fluctuations in the ergodic averages of L1 functions. This estimate

gives exponential decay in the number of fluctuations. Any two-sided Følner sequence can

be thinned out to satisfy the above property. In particular, any countable amenable group

admits such a sequence. This extends results of S. Kalikow and B. Weiss [1] for Zd actions

and of N. Moriakov [3] for actions of groups with polynomial growth.
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1. Introduction

A real-valued sequence is said to fluctuate N times across a gap .˛; ˇ/, if there

are integers n1 < n2 < � � � < n2N such that for odd i , ani
� ˛, and for even i ,

ani
� ˇ. Let .X; �; B; .Tg/g2G/ be a measure-preserving action of a countable

amenable group G, and fix some (left) Følner sequence .Fn/ in G. For any N; we

define the set DN by

DN D D.Fn/;f;˛;ˇ;N D ¹xW Anf .x/ fluctuates across .˛; ˇ/ at least N timesº

where Anf D 1
jFnj

P

g2Fn
f ı Tg denotes the sequence of ergodic averages of

a function f on X along .Fn/. In [1] it was shown that for G D Z
d and

Fn D Œ�n; n�d , the following holds:

Theorem 1.1. For any 0 < ˛ < ˇ, there are constants 0 < c0 < 1 and c1 > 0,

such that for every m.p.s. .X; B; �; ¹Tgºg2G/ and every measurable f � 0, one

has

�.DN / � c1cN
0 for all N:

1 Supported by ERC grant 306494 and ISF grant 1702/17.
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In [3] this result was extended to measure-preserving actions of groups of poly-

nomial growth, where the fixed Følner sequence is taken to be balls of increasing

radii, that is, Fn D Sn where S is a finite symmetric set of generators which

contains the unit.

The aim of this paper is to extend these results to general actions of amenable

groups. In this context, the notion of temperedness is of importance: a sequence

.Fn/ is left c-tempered if, for all n,
ˇ

ˇ

ˇ

[

i<n

F �1
i Fn

ˇ

ˇ

ˇ
� cjFnj;

right c-tempered if, for all n,
ˇ

ˇ

ˇ

[

i<n

FnF �1
i

ˇ

ˇ

ˇ � cjFnj;

and c-bi-tempered if it is both left and right c-tempered. In this paper, a sequence

that for any c > 1 has some tail which is c-bi-tempered, will be called strongly

tempered. Notice that any two-sided Følner sequence can be thinned out to be

strongly tempered.

The class of tempered Følner sequences is the most general class of sequences

that are known to satisfy the pointwise ergodic theorem [2, 5]. That is, the

averages along any (left) tempered Følner sequence of any integrable function

converges a.e. Consequently, if the fixed Følner sequence .Fn/ is tempered, then

for any ˛ < ˇ and any integrable function f , the measure of DN D D.Fn/;f;˛;ˇ;N

decreases to zero as N ! 1. Thus, along such sequences, one might hope to

have some control over the rate of �.DN /, as in Theorem 1.1:

Question. Does every amenable group have a Følner sequence that satisfies (in

some sense) Theorem 1.1? Can one find for any Følner sequence a subsequence

with this property?

Our main result is the following theorem and its corollary, which says that one

can successfully bound the rate of decrease of �.DN / in any amenable group,

provided that f is bounded and that the averages are taken along strongly tempered

Følner sequences.

Theorem 1.2. For any ˛ < ˇ and S > 0, there exist � > 0 and 0 <

c0 < 1, such that for any .1 C �/-bi-tempered Følner sequence .Fn/, any m.p.s.

.X; �; B; .Tg/g2G/ and any f 2 L1
� .X/ with kf k1 � S , one has

�.DN / � c1cN
0 for all N

for some c1 > 0 which depends only on the sequence .Fn/ (and neither on the

m.p.s. nor on the function f ).
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If .Fn/ is strongly tempered, then for any gap .˛; ˇ/ � R and any S > 0, some

tail of the sequence, say .Fn/n>n0
, satisfies the hypothesis of Theorem 1.2, while

the first n0 elements of .Fn/ attribute at most O.n0/ fluctuations. Thus, enlarging

c1 depending on that n0, we get:

Corollary 1.3. Let .FN / be a strongly tempered Følner sequence. For any ˛ < ˇ

and S > 0, there exist 0 < c0 < 1 and c1 > 0, such that for any m.p.s.

.X; �; B; .Tg/g2G/ and any f 2 L1
� .X/ with kf k1 � S , one has

�.DN / � c1cN
0 for all N:

As the proof of Theorem 1.2 indicates, the bi-temperedness condition could

be slightly relaxed and was chosen for the clarity of presentation. Also, the

dependency of c1 on the sequence .Fn/ could be replaced by restricting the

theorem to sequences with some certain properties. For example, assuming e 2 F1

would be enough for determining c1, regardless of what .Fn/ is.

In contrast to Theorem 1.2, we show that the temperedness property (with

any fixed c > 1) alone, isn’t enough to bound the rate of decrease of �.DN / for

any given gap .˛; ˇ/. More precisely, we show that in any measure-preserving

Z-action .X; �; B; ¹T nºn2Z/ one has the following:

Theorem 1.4. Let .X; B; �; ¹T nºn2Z/ be an m.p.s. and let !.n/ & 0 be any

sequence that decreases to 0. For any � > 0, there are some ˛ < ˇ, a bounded

function 0 � f � 1 and a .1 C �/-tempered Følner sequence .Fn/, for which

�.D.Fn/;f;˛;ˇ;N / > !.N / for all but finitely many N .

Although this shows that the requirement for .Fn/ to have a left .1 C �/-tem-

pered tail for any � is essential for Corollary 1.3 to take place, it is not clear whether

the other requirements are. More generally, the following question remains open:

Question 1.5. Does every left Følner sequence in a countable amenable group G

have a subsequence which satisfies the conclusion of Corollary 1.3?

Acknowledgement. This paper is part of the author’s Ph.D. thesis, conducted

under the guidance of Professor Michael Hochman, whom I would like to thank

for suggesting to me the problem studied in this paper, and for all his support and

advice.

2. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. Towards this end, we need a few

definitions and lemmas.
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Definition 2.1. Given 0 < � < 1, we say that a sequence .Fn/ is �-good if the

following two conditions hold:

(i) for any n,
ˇ

ˇ

S

i<n F �1
i FnnFn

ˇ

ˇ � �jFnj;
(ii) for any i < n and f 2 Fi , jFnnFnf j < �jFnj.

Proposition 2.2. Let 0 < � < �0 < 1. For any .1 C �/-bi-tempered two-sided

Følner sequence .Fn/, there is some n0 such that .Fn/n�n0
is �0-good.

Proof. Pick some g0 2 F1. Since the sequence is (left) Følner, there is some n1

such that for all n � n1,

jg�1
0 Fn \ Fnj > .1 � �0 C �/jFnj

By the (left) temperedness property of .Fn/, we have
ˇ

ˇ

ˇ

[

n1�i<n

F �1
i FnnFn

ˇ

ˇ

ˇ �
ˇ

ˇ

ˇ

[

1�i<n

F �1
i Fn

ˇ

ˇ

ˇ �
ˇ

ˇ

ˇ

[

1�i<n

F �1
i Fn \ Fn

ˇ

ˇ

ˇ

< .1 C �/jFnj � .1 � �0 C �/jFnj
D �0jFnj

and (i) of Definition 2.1 takes place for the sequence .Fn/n�n1
. The same proof

applies from the right, thus we get some n2 such that for any n � n2

ˇ

ˇ

ˇ

[

n2�i<n

FnF �1
i nFn

ˇ

ˇ

ˇ � �0jFnj

but now, for any i < n and f 2 Fi ,

jFnnFnf j D jFnf �1nFnj �
ˇ

ˇ

ˇ

[

n2�i<n

FnF �1
i nFn

ˇ

ˇ

ˇ � �0jFnj

which is (ii) of Definition 2.1 for the sequence .Fn/n�n2
. Take n0 D max¹n1; n2º.

�

The following theorem is a version of Theorem 1.2 for �-good Følner se-

quences, from which we will deduce Theorem 1.2:

Theorem 2.3. For any ˛ < ˇ and S > 0, there exist � > 0, 0 < c0 < 1

and c1 > 0, such that for any �-good (left) Følner sequence .Fn/, any m.p.s.

.X; �; B; .Tg/g2G/ and any f 2 L1
� .X/ with kf k1 � S , one has

�.DN / � c1cN
0 for all N:

We remark that as opposed to Theorem 1.2, here the constant c0 doesn’t depend

on .Fn/.
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Once Theorem 2.3 is valid, the proof of Theorem 1.2 is immediate:

Proof of Theorem 1.2. For Œ˛; ˇ� and S > 0, let �0 be the value for which any

�0-good Følner sequence satisfies the conclusion of Theorem 2.3 with c0
0 and c0

1.

Take 0 < � < �0, then by Proposition 2.2, for any .1 C �/-bi-tempered two-sided

Følner sequence .Fn/, there is some n0, such that .Fn/n�n0
is �0-good, and thus

for any m.p.s. .X; �; B; .Tg/g2G/, any f 2 L1
� .X/ with kf k1 � S and any N ,

�.D.Fn/n�1;N / � �.D.Fn/n�n0
;N �n0

/ � c0
1c

0N �n0

0

thus for c0 D c0
0, c1 D c0c

0�n0

0 the conclusion follows. �

Thus it remains to prove Theorem 2.3, which will be our task for the rest of

this section.

Definition 2.4. Given � > 0, a collection .Fj /L
j D1 of finite subsets of G is said to

be �-disjoint if there are pairwise disjoint sets Ej � Fj such that jEj j � .1��/jFj j
for all 1 � j � L.

We record here a version of the �-disjointification lemma [5, Lemma 9.2],

which will be used again and again:

Lemma 2.5 (�-disjointification lemma). Let F1; : : : ; FL be a sequence of finite

subsets of a group G which is 2-tempered, let C � G be finite, and suppose that

C1; : : : ; CL are disjoint subsets of C . For any 0 < � � 1
2
, there are subsets

Dj � Cj , such that

(i) the collection ¹Fj d W d 2 Dj ; 1 � j � Lº is �-disjoint;

(ii)
ˇ

ˇ

SL
j D1 Fj Dj

ˇ

ˇ � �
5
jC j.

The following proposition, which is analogous to the effective Vitali covering

argument of Kalikow and Weiss [1], will be used as a key step throughout the

proof of Theorem 2.3.

Proposition 2.6. For any � > 0, once � > 0 is small enough and q 2 N is large

enough, the following holds for any �-good Følner sequence .Fn/.

Let C � G be a finite subset, and suppose that for each c 2 C there is

associated a subsequence of .Fnc/ of length q:

Fn1.c/c; : : : ; Fnq.c/c; n1.c/ < � � � < nq.c/:

Then there exists an �-disjoint collection ¹Fn.d/dºd2D where D � C and n.d/ 2
¹n1.d/; : : : ; nq.d/º, which satisfies at least one of the following properties:
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(1) either
ˇ

ˇ

S

d2D Fn.d/d
ˇ

ˇ � 2jC j,
(2) or

ˇ

ˇ

S

d2D Fn.d/d \ C
ˇ

ˇ � .1 � �/jC j.

As it can be seen from the proof below, for .Fn/ to satisfy the conclusion, one

can assume that .Fn/ is a Følner sequence that merely admits property (i) of being

�-good (Definition 2.1).

Proof. Define

C D ¹.c; ni.c//W c 2 C; 1 � i � qº
let m D max¹nW there exists c 2 G such that .c; n/ 2 Cº, and consider the m-

section of C :

Cm D ¹cW .c; m/ 2 Cº
Assuming � � 1, the �-disjointification lemma guarantees there is a subset

Dm � Cm, such that

(a) the collection ¹Fmdºd2Dm
is �-disjoint, and

(b) jFmDmj � �
5
jCmj.

Let 1 � k � m�1, and suppose we have already defined subsets .Dm�i /
k�1
iD0 of C .

Denote

Wm�kC1 D C n
m

[

nDm�kC1

[

i<n

F �1
i FnDn (1)

Cm�k D ¹c 2 Wm�kC1W .c; m � k/ 2 Cº (2)

and use again the �-disjointification lemma to take some Dm�k � Cm�k so that

(a)0 the collection ¹Fm�kdºd2Dm�k
is �-disjoint, and

(b)0 jFm�kDm�k j � �
5
jCm�k j.

The restriction Cm�k � Wm�kC1 (2) together with (1) guarantees that

m
[

nDm�kC1

FnDn \ Fm�kDm�k D ;:

We end up (after m steps) with a pairwise disjoint subsets D1 � C1; : : : ;

Dm � Cm where
Fm

nD1 Cn � ¹nº � C , and such that each ¹Fndºd2Dn
is

��disjoint, the unions
S

d2Dn
Fnd D FnDn are disjoint to each other and are

of size jFnDnj � �
5
jCnj. Let D D

Fm
nD1 Dn � ¹nº. We claim that the collection

¹Fndº.d;n/2D satisfies the conclusion of the lemma. We just pointed out that it

is indeed an �-disjoint collection. Suppose it doesn’t satisfy property (2) of the

conclusion, that is,
ˇ

ˇ

ˇ
C n

m
[

kD1

FkDk

ˇ

ˇ

ˇ
� �jC j: (3)
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We distinguish between two cases:

I. One has

2�
ˇ

ˇ

ˇ

m
[

kD1

FkDk

ˇ

ˇ

ˇ
� 1

2

ˇ

ˇ

ˇ
C n

m
[

kD1

FkDk

ˇ

ˇ

ˇ

then, together with (3) one gets

ˇ

ˇ

ˇ

m
[

kD1

FkDk

ˇ

ˇ

ˇ
� 1

4�

ˇ

ˇ

ˇ
C n

m
[

kD1

FkDk

ˇ

ˇ

ˇ
� �

4�
jC j

and for small enough � (� � �
8
), the last inequality gives property (1) in the

conclusion, so we’re done.

II. For the other case,

2�
ˇ

ˇ

ˇ

m
[

kD1

FkDk

ˇ

ˇ

ˇ
<

1

2

ˇ

ˇ

ˇ
C n

m
[

kD1

FkDk

ˇ

ˇ

ˇ
(4)

we bound from below the size of W2 D C n
Sm

nD2

S

i<n F �1
i FnDn:

jW2j �
ˇ

ˇ

ˇC n
m

[

kD1

FkDk

ˇ

ˇ

ˇ �
ˇ

ˇ

ˇ

[

.d;n/2D

[

i<n

F �1
i FndnFnd

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇC n
m

[

kD1

FkDk

ˇ

ˇ

ˇ � �
X

.d;n/2D

jFnd j

�
ˇ

ˇ

ˇC n
m

[

kD1

FkDk

ˇ

ˇ

ˇ � �

1 � �

ˇ

ˇ

ˇ

m
[

kD1

FkDk

ˇ

ˇ

ˇ

� 1

2

ˇ

ˇ

ˇC n
m

[

kD1

FkDk

ˇ

ˇ

ˇ

(the second inequality follows from property (i) of Definition 2.1, the third by

the �-disjointness of the collection, and the last one by (4), together with the

assumption � � 1
2
). Any element in W2 appears as the left coordinate of q different



1048 U. Gabor

elements in
Sm

kD1 Ck � ¹kº, thus,

ˇ

ˇ

ˇ

[

.d;n/2D

Fnd
ˇ

ˇ

ˇ D
m

X

kD1

jFkDk j

� �

5

m
X

kD1

jCk j

D �

5

ˇ

ˇ

ˇ

m
[

kD1

Ck � ¹kº
ˇ

ˇ

ˇ

� �

5
qjW2j

� �

10
q
ˇ

ˇ

ˇ
C n

m
[

kD1

FkDk

ˇ

ˇ

ˇ

� �2

10
qjC j

assuming q � 20
�2 , the lemma is proved. �

Proof of Theorem 2.3. For any x 2 X , the number of fluctuations of Anf .x/

across .˛; ˇ/ is equal to the number of fluctuations of AnŒf C kf k1�.x/ across

.˛ C kf k1; ˇ C kf k1/. Consequently, for any N ,

D.Fn/;f;˛;ˇ;N D D.Fn/;f Ckf k1;˛Ckf k1;ˇCkf k1;N :

Notice that kf C kf k1k1 � 2kf k1, and besides trivial cases, one has 0 <

˛ C kf k1. Hence, for any S > 0 and ˛ < ˇ, any estimate of �.DN /, where

DN is defined with respect to any nonnegative function 0 � f � 2S and the gap

Œ˛ C S; ˇ C S� � .0; 1/, is an estimate of �.DN /, where DN is defined with

respect to any function kf k1 � S and the gap Œ˛; ˇ� � R. Thus from now on, we

shall assume 0 � f � S and 0 < ˛ < ˇ.

Write DN;M D ¹xW .Anf .x//M
nD1 fluctuates across .˛; ˇ/ at least N timesº. Fix

x 2 X , M 2 N, and let � � G be a set which is sufficiently invariant with respect

to
SM

nD1 Fn, so that the set

B D
°

g 2 �W
M
[

nD1

Fng � �
±

has size close to j�j. We will give an upper bound to the relative density jC j
j�j

,

where

C D Cx;M D ¹c 2 B W cx 2 DN;M º:
This upper bound won’t depend on x or M , and thus by the transference principle,

it will give an upper bound for �.DN /, as it is shown at the end of the proof.



Fluctuations of ergodic averages for amenable group actions 1049

Take

ı D min
°1

2

�ˇ

˛
� 1

�

;
1

2

±

;

and choose 1
4

> � > 0 small enough so that the following three inequalities hold:

.ˇ � 4�S/.1 � �/

˛
� 1 C ı > 1; (5)

.1 � �/.1 C ı/ � .1 C ı=2/; (6)

.1 � �/ � .1 C ı=2/�1: (7)

Take q 2 N and 0 < � � �=2 so that the conclusion of Lemma 2.6 will take place

with �=2.

The first step is to replace C with a union of �-disjoint collections of size not

much less than jC j, where for each set in the collection, the average of f at x

on it is above ˇ. For that, use the first group of q fluctuations to find for each

c 2 C an increasing sequence n1.c/ < � � � < nq.c/ such that Ani .c/f .cx/ � ˇ

for each 1 � i � q. Then, by applying Proposition 2.6, one takes an �-disjoint

collection .Fnc/.c;n/2B1
, where its union C1 D

S

.c;n/2B1
Fnc is in � and of size

jC1j � .1 � �/jC j. The next step will be done recursively
��

N
2q

˘

� 1
�

times, thus

we introduce it in a more general form:

Lemma 2.7. Let f; .Fn/; C; ˛; ˇ; ı; �; N and q be as above. Let Nk � N � 2q,

and suppose that Bk � C � N is a collection of tuples such that

(i) for each .c; n/ 2 Bk the average Anf .cx/ is one of cx’s first Nk upcrossings

to above ˇ;

(ii) the collection .Fnc/.c;n/2Bk
is �-disjoint.

Then there exists a collection BkC1 � C � N of tuples such that

(i) for each .c; n/ 2 BkC1, the average Anf .cx/ is one of cx’s first Nk C 2q

upcrossings to above ˇ;

(ii) the collection .Fnc/.c;n/2BkC1
is �-disjoint;

(iii)
ˇ

ˇ

S

.c;n/2BkC1
Fncj � .1 C ı=2/j

S

.c;n/2Bk
Fnc

ˇ

ˇ.

Proof of Lemma 2.7. Denote Ck D
S

.c;n/2Bk
Fnc. To each g 2 Ck we will

associate a subsequence of .Fng/ of length q, in order to apply Lemma 2.6 to

the set Ck . For any g 2 Ck , choose some c D c.g/ so that .c; n/ 2 Bk for some

n and g 2 Fnc. Associate to g the indices of the next q downcrossings to below

˛ of c, n < n1.c/ < � � � < nq.c/. By Proposition 2.6, there is an �=2-disjoint

collection .Fng/.g;n/2B
0
k

, with union C 0
k

D
S

.g;n/2B
0
k

Fng � � that satisfies one

of the two options in the conclusion of Proposition 2.6. Next, we define another

index set B
00
k

to be

B
00
k D ¹.c; n/W there exists .g; n/ 2 B

0
k such that c.g/ D cº
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and the union of its associated collection

C 00
k D

[

.c;n/2B
00
k

Fnc:

For any .c; n/ 2 B
00
k
, let .g; n/ 2 B

0
k

be such that c.g/ D c. Then, .Fn/ being

�-good, by (ii) of Definition 2.1,

jFng4Fnc.g/j < �jFnj � �=2jFnj:

That, together with .Fng/.g;n/2B
0
k

being �=2-disjoint, implies that

.Fnc/.c;n/2B
00
k

is �-disjoint (8)

and that

jC 00
k \ C 0

k j �
X

.g;n/2B
0
k

..1 � �=2/jFngj � jFngnFnc.g/j/

� .1 � �/
X

.g;n/2B
0
k

jFngj

� .1 � �/jC 0
kj:

(9)

This relation together with C 0
k

being as in the conclusion of Proposition 2.6,

gives one of the following two options:

1. either jC 0
k
j � 2jCk j, in which case (9) implies that

jC 00
k j � 2.1 � �/jCk j; (10)

2. or jC 0
k
j < 2jCk j, butkC 0

k
\ Ckj � .1 � �=2/jCk j, which implies

jC 00
k \ Ck j � jC 0

k \ Ck j � jC 0
knC 00

k j
� .1 � �=2/jCk j � �jC 0

k j
� .1 � �=2/jCk j � 2�jCk j
> .1 � 3�/jCk j:

(11)

In both cases one can conclude that jC 00
k

j � .1 C ı/jCkj. For the first case (10),

� < 1
4

and ı � 1
2

gives

2.1 � �/ � 1:5 � 1 C ı:

For the second case (11), this can be observed by the next calculation.
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By (8), there are pairwise disjoint sets E 00
.n;c/

� Fnc (for each .n; c/ 2 B
00
k
),

with jE 00
.n;c/

j � .1 � �/jFncj. Thus

X

g2C 00
k

f .gx/ �
X

.c;n/2B
00
k

X

g2Fnc

f .gx/

�
�

X

B
00
k

jFncj
�

˛

� 1

1 � �

�

X

B
00
k

jE 00
.n;c/j

�

˛

� 1

1 � �
jC 00

k j˛:

On the other hand, the collection .Fnc/.c;n/2Bk
is �=2-disjoint, and so, there are

pairwise disjoint sets E.n;c/ � Fnc (for each .n; c/ 2 Bk), with jE.n;c/j �
.1 � �=2/jFncj. Thus

X

g2Ck

f .gx/ �
X

.c;n/2Bk

X

g2E.n;c/

f .gx/

D
X

Bk

�

X

Fnc

f .gx/ �
X

FncnE.n;c/

f .gx/
�

�
X

Bk

jFncj
�

ˇ � �

2
S

�

� jCk j
�

ˇ � �

2
S

�

if jC 00
k

\ Ckj � .1 � 3�/jCkj as in (11), then

jCk j
�

ˇ � �

2
S

�

�
X

g2Ck

f .gx/

� jCkj3�S C
X

g2C 00
k

f .gx/

� jCkj3�S C 1

1 � �
jC 00

k j˛:

Thus, with our choice of � with respect to ı (5), we get that

jC 00
k j � .1 C ı/jCkj:

In the same manner we constructed B
00
k
, we use the next q upcrossings to above

ˇ to construct a collection BkC1 such that .Fnc/BkC1
is an �-disjoint collection
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of upcrossings, with union CkC1 D
S

BkC1
Fng in � that satisfies one of the two

options in the conclusion of Proposition 2.6. In particular, we have

jCkC1j � .1 � �/jC 00
k j

� .1 � �/.1 C ı/jCkj
� .1 C ı=2/jCkj

(the last inequality follows from the assumption .1 � �/.1 C ı/ � .1 C ı=2/), and

Lemma 2.7 is proved. 4

Back to the proof of Theorem 2.3, from Lemma 2.7 it follows that there exist

finite subsets of �; C1; : : : ; Cb N
2q

c such that

j�j � jCb N
2q

cj � .1 C ı=2/b N
2q

c�1jC1j

� .1 C ı=2/b N
2q

c�1.1 � �/jC j

� .1 C ı=2/
N
2q

�3jC j

(the last inequality follows partially from the assumption .1 � �/ � .1 C ı=2/�1).

Since

�.DN;M / D 1

j�j

Z

X

g2�

1DN;M
.gx/d�.x/ �

Z jCx;M j
j�j d�.x/ C

�

1 � jBj
j�j

�

;

where
�

1 � jBj
j�j

�

can be made arbitrarily small (by taking � to be arbitrarily

invariant), one have

�.DN;M / �
Z jCx;M j

j�j d�.x/ � .1 C ı=2/�. N
2q

�3/

Thus the claim of the theorem takes place with c0 D .1 C ı=2/� 1
2q ; c1 D

.1 C ı=2/3. �

3. Proof of Theorem 1.4

Proof of Theorem 1.4. Let � > 0. We first construct finite sequences of subsets

of Z, which have good fluctuation and invariance properties, and then concatenate

such sequences to get the whole sequence .Fn/ in question. Fix l; N 2 N, and let

�l WN0 ! ¹0; 1º be the indicator function

�l D 1.2lN0CŒ0;l�1�/
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(here N0 D N [ ¹0º.) We define a sequence of subsets .An/2N
nD1 D .A

l;N
n /2N

nD1,

recursively,

AnC1 D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Œ0;
2

�
Mn� [

�

.2lN0 C Œ0; l � 1�/ \
h

0;
2 C �

�
Mn

i�

if n C 1 is odd,

h

0;
2

�
Mn

i

[
�

.2lN0 C Œl; 2l � 1�/ \
h

0;
2 C �

�
Mn � 2l C 1

i�

n C 1 is even,

where M0 D l2, and Mn D max.An/ for n > 0. This sequence has the following

properties.

(a) .An/2N
nD1 is .1 C �/-tempered: for any n,

An �
n�1
[

iD0

Ai � An � Œ0; Mn�1� � Œ�Mn�1; Mn�

thus

ˇ

ˇ

ˇAn �
n�1
[

iD0

Ai

ˇ

ˇ

ˇ � Mn C Mn�1 � 2 C �

�
Mn�1 C Mn�1 � .1 C �/jAnj:

(b) An is .Œ�
p

l ;
p

l�; 2=
p

l/-invariant for all n; that is, for any b 2 Œ�
p

l ;
p

l�,

one has j.bCAn/4Anj
jAnj

� 2=
p

l . This follows immediately from the fact that An is a

union of segments, the first one of size at least l2, and all but the last one of size

at least l .

(c) Assuming l large enough, there are some 0 < ˛ < ˇ such that for any

0 � i � l=4, and any k, averaging �l.z C 2lk C i/ as a function of z along An, the

sequence of averages fluctuates across the gap .˛; ˇ/ N times. Averaging along

An of odd n gives

1

jAnj
X

z2An

�l.z C 2lk C i/ D j.2lN0 C Œ0; l � 1� � i/ \ Anj
jAnj

� 1

jAnj �
h

l �
�

2
�

Mn�1

2l
� 1

�

C 3

4
l �

�Mn�1

2l
� 1

�i

�
�

1
�

C 3
8

�

Mn�1 � 2l
�

2
�

C 1
2

�

Mn�1 C l

� 1

2
C �

4.4 C �/
� 4

l
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while for even n,

1

jAnj
X

z2An

�l .z C 2lk C i/ � 1

jAnj �
h

l �
�

2
�

Mn�1

2l
C 1

�

C 1

4
l �

�Mn�1

2l
C 1

�i

�
�

1
�

C 1
8

�

Mn�1 C 2l
�

2
�

C 1
2

�

Mn�1 � l

� 1

2
� �

4.4 C �/
C 4

l

(for the error summand 4
l
, we used Mn�1 � M0 D l2 and assumed l � 4.) Taking

l large enough, one gets that the claim above takes place with ˛ D 1
2

� �
5.4C�/

and

ˇ D 1
2

C �
5.4C�/

.

Now construct the whole sequence as follows. Take l0 > 100 and also large

enough so that property (c) takes place, and then define .lm/1
mD1 recursively by

the rule

lkC1 D max.A
lm;2lm

2lm
/:

We define .Fn/ to be the concatenation of the sequences ¹.Alm;2lm
n /

2lm

nD1º1
mD0.

Using properties (a) and (b) above together with the definition of .lm/1
mD1, one

can observe that this sequence is a .1 C �/-tempered Følner sequence.

Recall that for a given function f on a m.p.s. .X; B; �; ¹Tgºg2G/, a gap

.˛; ˇ/ � R, a sequence .Fn/ of subsets of G, and N; M 2 N, we write

DN D ¹xW ¹Anf .x/º1
nD1 fluctuates across .˛; ˇ/ at least N timesº;

DN;M D ¹xW ¹Anf .x/ºM
nD1 fluctuates across .˛; ˇ/ at least N timesº;

where the sequence .Fn/, the function f and the gap .˛; ˇ/ are understood from

the context. At some places we shall write D
f
N and D

f
N;M to specify the function

f for which the sets refer to.

We will construct the function in question by applying iteratively infinitely

many times the following lemma:

Lemma 3.1. Let f W X ! Œ0; 1�. For any � > 0, 1 > ı > 0, and n0; N 0; N 00 2 N,

there exists a measurable function Of W X ! Œ0; 1� such that the following holds:

(i) �.D
Of

N 00/ > 1
10

ı;

(ii) �..f .T ix//L�1
iD0 ¤ . Of .T ix//L�1

iD0 / � ı, where L WD max
�

Sn0

nD1 Fn

�

;

(iii) for all N � N 0, �.D
Of

N / � min
®

�.D
f
N;n0/ � �; 1

10

¯

.

Proof. We will assume without loss of generality that � is small enough so that

� < min
®

ı
100

; 1 � ı
¯

. Take an m 2 N that satisfies lm � N 00. Let B � X be a
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base for a Rokhlin tower of height h and total measure > 1 � �=4, where h is large

enough to satisfy

h >
.L C max A

lm;2lm

2lm
/

�=4
: (12)

and also large enough to guarantee that

�
�

x 2 B W 1

h

h�1
X

iD0

1
D

f

N;n0
.T ix/ > �.D

f
N;n0/��=4 for all N � N 0

�

> .1��=4/�.B/

(13)

in words, for all N � N 0, for at least 1 � �=4 of the x’s in B , their orbit along

the tower spends more than �.D
f
N;n0/ � �=4 of the time in the set D

f
N;n0 (For the

validity of such a requirement, see for example [4, Theorem 7.13]).

Take B 0 � B of measure �.B 0/ D 0:99ı=h (this can be achieved because

1 � � > ı), and define Of to be

Of .x/ D
´

�lm
.i/ x 2 T iB 0; 0 � i � h � 1;

f .x/ x 2 Xn
Sh�1

iD0 T iB 0:

The validity of property (c) above for .A
lm;2lm
n /

2lm

nD1 and thus for .Fn/, together with

the definition of Of as �lm
on the tower above B 0, implies that for any 0 � i � lm=4

and any k � 0 such that 2klm C i < h � max A
lm;2lm

lm
, one has

T 2klmCiB 0 � D
Of

lm
� D

Of
N 00 :

The density of these levels in the tower is at least

� lm

4
� 1

�

�
� h

2lm
� 1

�

=h >
1

8
� lm

h
� 1

lm

and since lm � l0 > 100 and lm

h
� max A

lm;2lm
lm

h
� �=4 < 1

100
, the last expression is

at least 1
9
. Thus

�.D
Of

N 00/ � 1

9
�

�

h�L
[

nD0

T nB 0
�

D 1

9
.0:99ı/ >

1

10
ı (14)

which gives property (i) of the conclusion.

To see why property (ii) of the conclusion holds, notice that

h�L
[

nD0

T n.BnB 0/ � ¹xW .f .T ix//L�1
iD0 D . Of .T ix//L�1

iD0 º; (15)
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thus

�..f .T ix//L�1
iD0 D . Of .T i x//L�1

iD0 / � 1 � �=4 � L�.B/ � h�.B 0/

> 1 � �=4 � �=4 � 0:99ı

> 1 � ı:

Finally, by (15) we have for all N

h�L
[

nD0

T n.BnB 0/ \ D
f
N;n0 � D

Of
N;n0

and by (13) and (12), we have for all N � N 0,

�
�

h�L
[

nD0

T n.BnB 0/ \ D
f
N;n0

�

� �.D
f
N;n0/�

�

h�L
[

nD0

T n.BnB 0/
�

� 3

4
�:

This, together with the first inequality in (14) gives for all N � N 0

�.D
Of

N / � �
�

h�L
[

nD0

T n.BnB 0/ \ D
Of

N

�

C �
�

h�L
[

nD0

T nB 0 \ D
Of

N

�

� �.D
f
N;n0/�

�

h�L
[

nD0

T n.BnB 0/
�

� 3

4
� C 1

9
�

�

h�L
[

nD0

T nB 0
�

� min
°

�.D
f
N;n0/;

1

9

±

�
�

h�L
[

nD0

T nB
�

� 3

4
�

� min
°

�.D
f
N;n0/;

1

9

±

� �

� min
°

�.D
f
N;n0/ � �;

1

10

±

which gives property (iii) of the conclusion. 4

Let !.n/ & 0 be any sequence which decreases to 0. Define .Nk/1
kD1

by

Nk D min
°

N W !.N / <
1

10
2�k�1

±

:

We will construct a function f which satisfies for all k

�.D
f
Nk

/ � 1

10
2�k

and by monotonicity of �.D
f
N / and !.N /, for any Nk � N < NkC1, k � 1,

�.D
f
N / � �.D

f
NkC1

/ � 1

10
2�k�1 > !.Nk/ � !.N /

and the conclusion of Theorem 1.4 follows.
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Take f0 � 0, and define inductively .fk/1
kD0

. Given fk�1, assume that there

exists nk�1 such that

�.D
fk�1

Ni ;nk�1
/ >

1

10
2�i for all 1 � i � k � 1: (16)

Take � > 0 small enough so that for all i � k � 1,

�.D
fk�1

Ni ;nk�1
/ � � >

1

10
2�i

and apply Lemma 3.1 with f WD fk�1,N 0 D Nk�1, N 00 D Nk , n0 D nk�1,

ı D 2�k while letting fk be the resulting function Of . This fk satisfies the

hypothesis (16) in the inductive step: by property (iii) of the lemma, for all

i � k � 1,

�.D
fk

Ni
/ � min

°

�.D
fk�1

Ni ;nk�1
/ � �;

1

10

±

>
1

10
2�i (17)

and by property (i) of the lemma,

�.D
fk

Nk
/ >

1

10
2�k : (18)

Since �.D
fk

N;n/
n!1����! �.D

fk

N /, there exists large enough nk such that (17) and (18)

will be satisfied with D
fk

N;nk
in place of D

fk

N . Thus the hypothesis (16) of the

induction step is indeed satisfied with k in place of k � 1.

We end up with a sequence .fk/1
kD0

together with a sequence .nk/ which we

can assume to be increasing. By property (ii) of the lemma, .fk/ converges a.e. to

some limit, call it f . For each k, let

Lk WD max
�

nk
[

nD1

Fn

�

then again by property (ii) of the lemma, f satisfies

�..fk.T nx//
Lk�1
nD0 ¤ .f .T nx//

Lk�1
nD0 /

�
X

i�k

�..fi.T
nx//

Lk�1
nD0 ¤ .fiC1.T nx//

Lk�1
nD0 /

�
X

i�k

�..fi.T
nx//

Li �1
nD0 ¤ .fiC1.T nx//

Li �1
nD0 /

�
X

i�k

2�i

D 2�kC1
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(in the second inequality we used the assumption that ni � ni�1 for all i). Thus

for any i ,

�.D
f
Ni

/ � �.D
f
Ni ;nk

/

� �.D
fk

Ni ;nk
/ � 2�kC1

>
1

10
2�i � 2�kC1

taking k ! 1 gives

�.D
f
Ni

/ � 1

10
2�i

and the proof of Theorem 1.4 is complete. �
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