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Locally Roelcke precompact Polish groups
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Abstract. A Polish group is locally Roelcke precompact if there is a neighborhood of the

identity element that is totally bounded in the Roelcke (or lower) group uniformity. These

form a subclass of the locally bounded groups, while generalizing the Roelcke precompact

and locally compact Polish groups.

We characterize these groups in terms of their geometric structure as those locally

bounded groups whose coarsely bounded sets are all Roelcke precompact, and in terms

of their uniform structure as those groups whose completions in the Roelcke uniformity

are locally compact. We also assess the conditions under which this locally compact space

carries the structure of a semi-topological semigroup.
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1. Introduction

The investigation undertaken in the present note sits at the nexus of two active

areas of research into the structure of topological groups. The first of these is the

topological dynamics of those groups—such as the full symmetric group on N,

the unitary group of `2, or the automorphism group of the measure algebra of a

standard Lebesgue space—that, while not necessarily compact or locally compact,

are totally bounded in the Roelcke uniformity. This feature and the connection it

engenders between such groups themselves and those spaces upon which they act

have been studied extensively, for example in [24, 25, 26, 8, 22, 17, 3, 11, 2].

The second follows the discovery of C. Rosendal that topological groups carry an

intrinsic large-scale geometry. An early theory of this structure can be found in

the preprints [19, 18], which have been collected into and elaborated upon in [20],

and has also been explored in the papers [12, 27, 4, 9].

So a natural question goes, what does the study of the coarse geometry of

topological groups have to say about these Roelcke precompact groups? The first

answer is nothing. All Roelcke precompact groups are coarsely bounded, and

therefore have trivial coarse geometry. A second answer is subject of this paper:

many of the features of the Roelcke precompact groups can be seen in a wider class

https://creativecommons.org/licenses/by/4.0/
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of groups, one that contains both the Roelcke precompact and the locally compact

groups, and for these groups those features are also reflected in their large-scale

geometry.

A Polish group is locally Roelcke precompact if some open set is totally

bounded in the Roelcke uniformity. All Roelcke precompact and all locally com-

pact Polish groups are locally Roelcke precompact. So too are the isometry groups

of certain unbounded ultrahomogeneous metric spaces that behave locally like

those with Roelcke precompact isometry groups. More specifically, we designate

a metric property that occurs in certain known ultrahomogeneous metric spaces

with Roelcke precompact isometry groups and in Theorem 7 we show that any

separable, complete and ultrahomogeneous (or even approximately ultrahomoge-

neous) metric space with this property has a locally Roelcke precompact isometry

group. This includes the isometry group of the Urysohn space and the automor-

phism groups of metrically homogeneous graphs.

The central result of this paper characterizes such groups in terms of both their

uniform structure and their coarse geometry.

Theorem (below as Theorems 14 and 16). Suppose G is a Polish group and X is

its completion in the Roelcke uniformity. The following are equivalent:

� G is locally Roelcke precompact;

� G is locally bounded, and every coarsely bounded subset of G is a Roelcke

precompact set;

� X is locally compact.

Moreover, if X is obtained as the metric completion of a metric, d^, compatible

with the Roelcke uniformity and computed from a coarsely proper left-invariant

metric, then the extension of d^ is a proper metric on X .

The paper is outlined as follows. In Section 2 we recall the necessary back-

ground material on the four canonical uniform structures on a topological group

and on the coarse geometry of topological groups. In Section 3 we introduce the

main definitions of this paper, while Section 4 is devoted to examples of locally

Roelcke precompact groups. Section 5 considers the properties of the Roelcke

precompact subsets of a group. Here it is seen that for locally Roelcke precom-

pact groups, such sets are closed under taking products. This is the key fact needed

for the material of Section 6, where we prove the central result above. Finally, in

Section 7 we consider when multiplication on G can be extended to a separately

continuous operation on its Roelcke completion. We see in Theorem 21 that this

occurs precisely when every continuous function on G that is uniformly contin-

uous with respect to the Roelcke uniformity and that vanishes off of the ideal of

Roelcke precompact subsets is weakly almost periodic.
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2. Bases and metrics for the four canonical uniformities

and coarse structures

Let us recall here some facts about the canonical uniformities on a topological

group and of the coarse structures determined by the ideal of coarsely bounded

sets. Most information in this section is found in [15, 14, 25, 17, 3, 13, 20]. We also

note some facts about bases and metrics for these coarse structures that are dual

to the related results about uniformities, and are immediate, but not mentioned

elsewhere. This will be used to describe the structure of the Roelcke completion

of a locally Roelcke precompact Polish group in Section 6.

2.1. The four uniformities on a group determined by a compatible topology.

The left uniformity of a topological group is generated by the entourages ¹.f; g/ 2
G2 j f 2 gV º as V varies over the neighborhoods of 1G in G. That these

sets indeed form a basis for this uniformity follows from the compatibility of the

topology with the group operations: that the identity neighborhoods are closed

under inverses (V a neighborhood implies V �1 a neighborhood) and square roots

(V a neighborhood implies W 2 � V for some neighborhood W ). The right

uniformity similarly has a basis of entourages of the form ¹.f; g/ 2 G2 j f 2 Vgº.
One uniform structure on a set is said to be finer than those it contains—as a

family of subsets of G2—and coarser than those that contain it, and this partial

order of containment determines a lattice structure. The join of the left and right

uniformities, called the two-sided uniformity, is generated by sets of the form

¹.f; g/ 2 G2 j f 2 .gV \ Vg/º. This is the coarsest uniform structure finer than

both the left and right uniformities. The meet of the two (the finest uniformity

coarser than both), called the Roelcke uniformity, is generated by sets of the form

¹.f; g/ 2 G2 j f 2 VgV º. That in each case above the generating sets form

bases for their respective uniformities follows again from the compatibility of the

topology and the group operations. Moreover, the topology determined by each

of the four uniformities agrees with the original topology on G.

In the case where the topology of G is metrizable, each one of the above uni-

form structures has a countable base and is therefore also metrizable. Specifically,

G has a left-invariant metric, d , and all left-invariant metrics induce the left uni-

form structure. Fixing such a d , compatible metrics for the right, two-sided, and

Roelcke uniformities can be computed as d.f �1; g�1/, d.f; g/Cd.f �1; g�1/, and

infh2G max¹d.f; h/; d.h�1; g�1/º, respectively. As the groups considered in what
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follows are all Polish, they are—in particular—metrizable, and so uniform notions

(like completion or total boundedness) can be substituted with the corresponding

metric notions if one prefers, and we will utilize this whenever it simplifies the

exposition.

2.2. The four coarse structures on a group determined by a compatible ideal.

The situation for coarse structures on a group G is entirely dual to the above.

Suppose a group, G, is equipped with an ideal—viewed as the bounded subsets

of the group—compatible with the group operations in the sense that if A and

B are bounded, then so are A�1 and the product, AB . Then the entourages of

the diagonal given by left translation ¹.f; g/ 2 G2 j f 2 gAº generate a coarse

structure on G whose bounded sets are the original ideal, and because the ideal

and the group operations are compatible, these generating sets are a basis [13].

The key insight of [20] is in identifying a canonical, compatible ideal of

bounded sets possessed by every topological group.

Definition (Rosendal [20]). A subset, A, of a topological group, G, is coarsely

bounded if it is assigned finite diameter by every continuous left-invariant pseu-

dometric on G.

These coarsely bounded sets and their associated coarse structure, the left-

coarse structure, both possess equivalent and natural intrinsic definitions, and

have a nascent theory directly generalizing the geometric group theory of count-

able discrete (or more generally, locally compact) groups with coarse structure

determined by the ideal of finite (respectively, compact) sets.

Akin to the situation for uniform structures, a coarse structure is the bounded

coarse structure associated to some metric if and only if it has a countable basis.

Therefore, the left-coarse structure on a group G is metrizable (and therefore by

some left-invariant metric) if and only if there is a countable, cofinal family of

coarsely bounded sets. In a Polish group, the Baire category theorem then implies

that there is a coarsely bounded identity neighborhood, and hence a Z-chain of

coarsely bounded open sets whose union is G and whose intersection is ¹1Gº.
Applying the metrization theorems to the corresponding chain of entourages

results in a left-invariant metric, compatible with the topology of G, whose

bounded sets are precisely the coarsely bounded sets [20, Theorem 2.28]. Such

groups are called locally bounded, and such a metric, compatible with both the

left uniformity and the left-coarse structure, is called coarsely proper.

Now the right-coarse structure can be defined analogously, generated by en-

tourages of the form ¹.f; g/ 2 G2 j f 2 Agº and compatible with the right-

invariant metric d.f �1; g�1/ if d is a left-invariant coarsely proper metric. Some

attention is paid to this structure in [20, Chapter 3, Section 4], and particular to

those groups, dual to the SIN groups, for which the left- and right-coarse struc-

tures coincide. As with the uniform structures, the coarse structures on a set also
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form a lattice under containment, where one is considered finer than the another

if it is contained in it [6]. Let us here use the convention that the lattice order

is reverse containment. Then in direct analogy to the situation with the uniform

structures, the join of the left- and right-coarse structure the coarsest coarse struc-

ture finer than both, while the meet is the finest coarse structure coarser than both.

We collect here several facts about these coarse structures that are immediate, but

have not appeared elsewhere.

Proposition 1. The join of the left- and right-coarse structures has as a basis

the sets of the form ¹.f; g/ 2 G2 j f 2 .gA \ Ag/º as A varies over the coarsely

bounded sets, while the meet has the sets ¹.f; g/ 2 G2 j f 2 AgAº as a basis. The

bounded sets in all four coarse structures coincide with the coarsely bounded sets.

Moreover, if dL is a compatible, left-invariant, coarsely proper metric on G, then

d_.f; g/ D dL.f; g/ C dL.f �1; g�1/ induces the two-sided ( join) uniformity and

the join-coarse structure, while d^.f; g/ D infh2G max¹dL.f; h/; dL.h�1; g�1/º
induces the Roelcke (meet) uniformity and the meet-coarse structure.

Proof. Let EL and ER denote the left- and right-coarse structures, respectively,

and for A � G, let

EL
A D ¹.f; g/ 2 G2 j f 2 gAº;

ER
A D ¹.f; g/ 2 G2 j f 2 Agº;

E_
A D ¹.f; g/ 2 G2 j f 2 .gA \ Ag/º;

E^
A D ¹.f; g/ 2 G2 j f 2 AgAº:

The join, E_; is EL _ ER D EL \ ER (see, e.g., [6], recalling our convention of

reversing the lattice order). Therefore E 2 E_ if and only if there are coarsely

bounded A; B � G with E � EL
A \ ER

B , that is, for all .f; g/ 2 E, f 2 gA \ Bg.

Then f 2 g.A [ B/ \ .A [ B/g, so .f; g/ 2 E_
A[B . Meanwhile, a quick

calculation shows that �G D E_
1G

, E_
A [ E_

B � E_
A[B , .E_

A /�1 D E_
A�1 , and

E_
A ı E_

B � E_
AB[BA. So the sets E_

A form a basis for E_ as A ranges over the

coarsely bounded sets.

The meet, E^ D EL ^ ER is generated by sets of the form

EL
A ı ER

B ı EL
A ı ER

B ı � � � ı EL
A ı ER

B :

First note that .f; g/ 2 EL
A ı ER

B if and only if f 2 hA and h 2 Bg for some

h 2 G, if and only if f 2 BgA. Therefore, if F D ¹.f; g/ 2 G2 j f 2 BmgAmº,
then .f; g/ 2 F ı EL

A ı ER
B if and only if there is h 2 G so that f 2 BmhAm

and h 2 BgA if and only if f 2 BmC1gAmC1. So by induction, a composition

with n blocks of EL
A ıER

B is contained in E^
An[Bn . Another calculation shows that

�G D E^
1G

, E^
A [ E^

B � E^
A[B , .E^

A /�1 D E^
A�1 , and E^

A ı E^
B � E^

AB[BA. So

the sets E^
A form a basis for E_.
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The sections above g 2 G in the entourage corresponding to A in each of the

four coarse structures are gA, Ag, .gA \ Ag/ and AgA, and the coarsely bounded

sets are an ideal closed under products, so the bounded sets in each coarse structure

coincide with the coarsely bounded sets.

If dL is a compatible, left-invariant, coarsely proper metric, and A a coarsely

bounded set, let r 2 R be such that A � BdL
.1G ; r/. Then if .f; g/ 2 E_

A ,

then f 2 gA, so dL.f; g/ < r and f 2 Ag, so dL.f �1; g�1/ < r . Therefore

d_.f; g/ < 2r . On the other hand d_.f; g/ < r implies .f; g/ 2 E_
BdL

.1G ;r/
.

Similarly, if .f; g/ 2 E_
A , there are a; b 2 A so that f D agb, Then f 2 agA and

ag 2 Ag, so

d^.f; g/ D inf
h2G

max¹dL.f; h/; dL.h�1; g�1/º

6 max¹dL.f; ag/; dL..ag/�1; g�1/º < r:

And if d^.f; g/ < r there is h 2 G so that dL.f; h/ < r and dL.h�1; g�1/, so then

f 2 h.BdL
.1G ; r// and h 2 .BdL

.1G ; r//g, so f 2 .BdL
.1G ; r//g.BdL

.1G ; r//.

That the above metrics are compatible with the two-sided and Roelcke unifor-

mities is well-known. �

Note that the above proof goes through just as well when the coarsely bounded

sets are replaced by any other ideal that contains all the singletons and is stable

under inverses and products. Or, in a closer analogy to the correspondence

between group topologies and group uniformities, a single ideal of bounded sets

can be replaced with an assignment g 7! Ag of ideals to points. (This generalizes

1-metric spaces, where some points may be at infinite distance from each other.)

3. Roelcke precompact sets

Here we consider another ideal in a Polish group, that of the Roelcke precompact

sets. This ideal need not be compatible in the sense of the previous section, though

we will see later that it will be in several important circumstances.

Definition 2. A subset, A � G, of a Polish group is Roelcke precompact if for

every neighborhood, V � G, of the identity there is a finite set F � G so that

A � VF V .

Remark. Every Polish group has a countable basis at the identity of symmetric

open neighborhoods. Therefore, the above definition is equivalent to one where

the V ranges only over a family of neighborhoods containing such a basis.

There is another seemingly stronger, but in fact equivalent, formulation of

Definition 2.
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Proposition 3. The above Definition 2 is equivalent to one that requires F to be

a subset of A.

Proof. Suppose V is a neighborhood of 1G . Let W be a symmetric neighborhood

of 1G with W 2 � V and F 0 � G with A � WF 0W . Let F 00 D ¹f 2 F 0 j
A \ Wf W ¤ ;º, and observe that A � WF 00W . For each f 2 F 00, choose an

af 2 A and vf ; wf 2 W so that af D vf f wf . Then set F D ¹af 2 A j f 2 F 00º.
Thus, if b 2 A, there is an f 2 F 00 so that

b 2 Wf W D W v�1
f af w�1

f W � W 2F W 2 � VF V: �;

Thus, Definition 2 says precisely that A is a precompact set in G with respect

to the Roelcke uniformity, i.e., that its closure in the completion of G is compact

[15, Proposition 9.4].

In a Polish group, G, a subset A � G is coarsely bounded if and only if

for every identity neighborhood, V , there is a finite F � G and n 2 N so

that A � .F V /n, see [20]. Therefore every Roelcke precompact set is coarsely

bounded. Recall that a group is locally bounded when there is a coarsely bounded

identity neighborhood, and coarsely bounded (as a group) if every subset is

coarsely bounded. So the following definitions describe classes of groups that

may be considered as special cases of these:

Definition 4. A Polish group, G, is locally Roelcke precompact if there is an open

Roelcke precompact subset U � G.

Definition 5. A Polish group, G, is Roelcke precompact if G is a Roelcke pre-

compact subset of itself.

Note. Definition 5 coincides with the established usage of the term. Take care that

a subgroup, H < G, may be a Roelcke precompact subset of G without being a

Roelcke precompact group itself. On the other hand, a Roelcke precompact group

is a Roelcke precompact subset of any group in which it is continuously embedded.

4. Examples of locally Roelcke precompact Polish groups

Clearly, every Roelcke precompact group is locally Roelcke precompact. More-

over, every compact subset A � G is Roelcke precompact (cover A with the open

sets VgV for g 2 A and take a finite subcover), and so every locally compact group

is locally Roelcke precompact.

We can also describe the countable homogeneous structures, M, for which

Aut.M/ is locally Roelcke precompact. Recall that in such a group, the stabilizers,

Stab. Na/, are clopen subgroups and form a basis at the identity. If V D Stab. Na/,

then for f; g 2 Aut.M/, f 2 VgV if and only if tp. Na; f Na/ D tp. Na; g Na/. This is
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because f 2 VgV if and only if f vg�1 2 V for some v 2 V , that is, if some

element of Aut.M/ fixes Na and moves g Na to f Na. The homogeneity of M simply

allows this to be translated into the language of types.

Thus, Aut.M/ is Roelcke precompact if and only if for every n-type, p, there

are only finitely-many 2n-types that project to p in the first and last n variables.

From there we see two possibilities: in the first case M has finitely-many 1-types,

hence the above constrains it to have finitely many n-types for all n, Aut.M/

acts oligomorphically, and the theory of M is !-categorical by the Engeler–

Ryll–Nardzewski–Svenonius theorem. In the second case M has infinitely many

n-types for each n by virtue of having infinitely many 1-types. The automorphism

groups of such structures are the inverse limits of oligomorphic groups by [22],

and are referred to as pro-oligomorphic in [2], who observe that they are still

the automorphism groups of !-categorical structures, but in a language with

infinitely-many sorts.

Then the locally Roelcke precompact groups arise when this phenomenon is

localized to the stabilizer of a finite tuple. That is, for countable homogeneousM,

Aut.M/ is locally Roelcke precompact if and only if there is a finite subset B � M

so that for all Na 2 M n there are Nc1; : : : ; Nck ˆ tp. Na=B/ so that for all Nd ˆ tp. Na=B/,

tp.ad=B/ D tp.aci=B/

for some i 6 k. Or equivalently, if the conditions in the previous paragraph apply

to the expansion of M by some finite tuple.

Much of this also transfers to the language of continuous model theory, where

counterparts to many statements from classical model theory hold, and for which

the automorphism groups of separable structures are exactly the Polish groups.

However, we next see that certain types of metric spaces (without any additional

structure) already provide a wealth of examples of locally Roelcke precompact

groups, and describes the Roelcke precompact subsets in such groups. The next

definition should be viewed as analogous to the above condition on types.

Definition 6. A metric space, .X; d/ is pair-propinquitous if for every finite metric

space, A, and every " > 0 there is a ı > 0 so that if i1; i2; j1; j2 are isometric

embeddings A ,! X with

jd.i1.a/; i2.b// � d.j1.a/; j2.b//j < ı for every a; b 2 A;

then there are isometric embeddings j 0
1; j 0

2W A ,! X satisfying, for all a; b 2 A,

d.j1.a/; j2.b// D d.j 0
1.a/; j 0

2.b//;

d.i1.a/; j 0
1.a// < ";

d.i2.a/; j 0
2.a// < ":

The isometry group of the Urysohn sphere, U1, was shown to be Roel-

cke precompact in [26] and [16] and both proofs, despite their differing ap-

proaches, involve verifying that U1 possesses a stronger property: for every
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n 2 N and every " > 0 there is a ı > 0 so that whenever any two enumerated

n-point subsets, b1; : : : ; bn and c1; : : : ; cn in U1 agree on distances up to ı (i.e.,

maxi;j 6n jd.bi ; bj / � d.ci ; cj /j < ı) there is an isometric copy of one, c0
1; : : : ; c0

n,

pointwise within " of the other (maxi6n d.bi ; c0
i / < "). Maybe this property should

be called propinquity, but regardless, the definition here weakens it by requiring

a particular ı not to work for all metric spaces of a given size, but only those

comprised of a pair of isometric copies of a fixed finite subset.

Recall that a metric space, .X; d/, is ultrahomogeneous if every isometry be-

tween finite subsets extends to an isometry of X and approximately ultrahomo-

geneous if, for every " > 0 and every isometry, f , between finite subsets, there

is a global isometry that agrees with f up to ". Clearly every ultrahomogeneous

metric space is approximately ultrahomogeneous. If A �fin X and r > 0,

VA;r D ¹a 2 A j d.a; f .a// < rº

is a symmetric, open neighborhood of idX in Iso.X/, and such sets form an identity

basis.

Theorem 7. Suppose .X; d/ is a separable, complete, pair-propinquitous, ap-

proximately ultrahomogeneous metric space. Then for every x 2 X and r 2 R
C,

Vx;r is a Roelcke precompact subset of Iso.X/. In particular, Iso.X/ is locally

Roelcke precompact.

Proof. Let W be an open neighborhood of Iso.X/. By shrinking W , we may

assume that W D V¹y0;:::;ynº;", where y0 D x and " 6 r . Let ı be the value given

by pair-propinquity with respect to the finite metric space A D ¹y0; : : : ; ynº and

the value "
2
.

Observe that for any isometry h 2 Vx;r and any i; j 6 n,

d.yk ; h.yl// 6 d.yk ; x/ C d.x; h.x// C d.h.x/; h.yl// < r C 2 diam.A/:

LetP be a partition of the interval Œ0; rC2 diam.A/� into finitely-many subintervals

of length less than ı. For each sW ¹0; : : : ; nº2 ! P, fix fs 2 Iso.X/ satisfying

d.yk ; fs.yl // 2 s.k; l/ for all k; l 6 n, if one exists, and let F be the set of

these isometries. Note that F ¤ ;, as idX satisfies the conditions of fsid
for

sidW ¹0; : : : ; nº2 ! P, where sid.k; l/ is the unique interval containing d.yk ; yl/.

Then for any g 2 Vx;r , if sg W ¹0; : : : ; nº2 ! P satisfies d.yk ; g.yl // 2 sg .k; l/

for all k; l 6 n, then the values d.yk ; g.yl // and d.yk ; fsg
.yl // lie in the same

piece, sg .k; l/, of the partition, P, and so
ˇ

ˇd.yk ; g.yl// � d.yk ; fsg
.yl //

ˇ

ˇ < ı.

Thus, by pair-propinquity there is an isometric copy of A [ fsg
ŒA� located point-

by-point within "
2

of A [ gŒA� and by approximate ultrahomogeneity, there is a

global isometry, ug , that agrees with this partial isometry on A [ fsg
ŒA� with

error at most "
2
. Thus, for all k 6 n, d.g.yk/; ugfsg

.yk// < "
2

C "
2

D " and so

d.f �1
sg

u�1
g g.yk/; yk/ D d.g.yk/; ugfsg

.yk// < " and f �1
sg

u�1
g g 2 W .
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Moreover, for all k 6 n, d.yk ; ug.yk// < "
2
, and so ug 2 VA; "

2
� W . So as

f �1
sg

u�1
g g 2 W , g 2 ugfsg

W � Wfsg
W � WF W . So Vx;r � WF W and as W

was arbitrary, Vx;r is a Roelcke precompact subset of Iso.X/. �

Note that if an ultrahomogeneous .X; d/ has finite diameter, then Iso.X/ D
Vx;r for any x and sufficiently large r , and so if the other conditions of Theorem 7

are met, then Iso.X/ is Roelcke precompact. Many well-known examples of Roel-

cke precompact groups can then be seen as instances of this theorem, for example

Iso.U1/ as already mentioned, as well as S1 ([15], viewed as the isometry group

of a countable set with the discrete metric) Aut.R/ (the random graph, as a metric

space with the graph metric), and U.`2
R

.N// ([24], viewed as the isometry group

of the unit sphere of `2
R

.N/).

This also furnishes a number of examples of locally Roelcke precompact

groups that are not Roelcke precompact. For example, the isometry group, Iso.U/,

of the Urysohn space, the (affine) isometry group of `2
R

.N/, and Aut.T1/, the au-

tomorphism group of the (unrooted) countably-regular tree. For this last example,

note that T1 is automatically pair-propinquitous by virtue of having a uniformly

discrete set of possible distances. So the same applies to the automorphism group

of any metrically homogeneous graph—a graph that is ultrahomogeneous when

viewed as a metric space with the graph metric.

As most familiar examples of ultrahomogeneous metric spaces are enumerated

in the examples above, it is worth observing that pair-propinquity is not a redun-

dant condition. As the next example shows, there are ultrahomogeneous metric

spaces lacking this property, and whose isometry groups are indeed not locally

Roelcke precompact.

Example 8. Let S � R be S D N [
®

1 C 1
n

ˇ

ˇ n > 3
¯

. Observe that 3 points with

an assignment of distances from S satisfy the triangle inequality if and only if the

same is true when the values of the form 1 C 1
n

are replaced with value 1. Then as

the set N satisfies the 4-values condition of [5], so does S , and so by [21] there is

a countable ultrahomogeneous metric space, US , for which S D ¹d.x; y/ j x; y 2
US º and containing a copy of every finite metric space whose distances come

from S . The space US fails to have pair-propinquity as witnessed by A D ¹xº
(any singleton) and " D 1

2
. For any ı > 0, let n > 1

ı
and by universality find

embeddings with d.i1.x/; i2.x// D 1 and d.j1.x/; j2.x// D 1 C 1
n
. For any

y; z 2 US , d.y; z/ < 1
2

implies y D z, so there can be no j 0
1 and j 0

2 satisfying the

conditions of Definition 6.

Let G D Iso.US/; then G is not locally Roelcke precompact. For if U � G

is an identity neighborhood, then U contains an open neighborhood of the form

VA;", and so contains the stabilizer, VA, of A. Fix K 2 N sufficiently large (at least

twice diam.A/) and let y 2 US be a point for which d.a; y/ D K for all a 2 A.

Now consider the open neighborhood W D Vy; 1
2

(D Stab.y/, as S contains no

positive values less than 1). Observe that if g 2 Wf W , there are u; v 2 W with
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g D uf v and so d.y; g.y// D d.y; uf v.y// D d.u�1.y/; f v.y// D d.y; f .y//,

as u�1 and v are isometries fixing y. For any finite F � G, there is an M � 3 so

that d.y; f .y// ¤ 1 C 1
M

for any f 2 F . By universality and ultrahomogeneity

of US , there is a z so that d.z; a/ D K for all a 2 A and d.y; z/ D 1 C 1
M

. Then

by ultrahomogeneity again there is a g 2 G fixing A and sending y 7! z. So as

g 2 U since it fixes A, but d.y; g.y// D d.y; z/ D 1 C 1
M

, so g … WF W . So

U ª WF W , and since F was an arbitrary finite subset of G, U is not Roelcke

precompact.

5. The ideal of Roelcke precompact sets

Lemma 9. The family of Roelcke precompact subsets of G is closed under taking

subsets, inverses, finite unions, and left and right translations.

Proof. Suppose A and B are Roelcke precompact subsets of G and that V is a

neighborhood of the identity.

� If C � A, then there is an F �fin G so that A � VF V , and consequently

C � VF V .

� There is a finite F with A � V �1F V �1, and so A�1 � VF �1V .

� Let FA and FB be finite sets with A � VFAV and B � VFBV . Then

A [ B � V.FA [ FB/V .

� Suppose g 2 G and W D V \ g�1Vg \ gVg�1. If F �fin G is such that

A � WF W , then

gA � gWF W � gg�1VgF W D V.gF /W � V.gF /V

and

Ag � WF Wg � WFgVg�1g D W.Fg/V � V.Fg/V: �

For A; B � G let AB D ¹gh 2 G j g 2 A and h 2 Bº. In the next example,

we observe that AB needn’t be Roelcke precompact even when both A and B are.

Example 10. Let G D ZN Ì S1 be the semidirect product given by the action

of S1 that permutes the coordinates of elements of Z
N. As S1 is a Roelcke

precompact group (in the sense of Definition 5) [15, Example 9.4], the subgroup

A D ¹1ZNº�S1 is a Roelcke precompact subset of G (in the sense of Definition 2).

Letting g D ..1; 2; 3; : : : /; 1S1
/, the coset gA is also Roelcke precompact by

Lemma 9.
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However, A.gA/ is not: note that for every m 2 N, it contains an element of

the form .x; 1S1
/ where x1 D m, specifically hmghm where hm D .1ZN; .1 m//

is the pair whose first coordinate is 1ZN and whose second coordinate is the

permutation that exchanges 1 and m. But if V D ¹.x; �/ 2 G j x1 D 0 and �.1/ D
1º, then AgA ª VF V for any finite F , as

¹m 2 N j 9.y; �/ 2 VF V y1 D mº D ¹m 2 N j 9.y; �/ 2 F y1 D mº:

An interesting feature of the group in the above example is that it is coarsely

bounded. In fact, for every identity neighborhood, V , there is an f 2 G so

that G D Vf Vf �1V . To see this note that the group G can be viewed as

the automorphism group G D Aut.M/, where M D
�

F

n2N Z; S
�

consists of

countably-many copies of Z equipped with a function for successor. Then Th.M/

is !-stable and M is saturated, implying that G is coarsely bounded, but moreover

the relation on finite subsets, where A ĵ B holds when no element of A is in the

same copy of Z as an element of B , is an orbital independence relation, and so

the coarse boundedness of G takes the above form [20, Chapter 6]. In particular,

G is locally bounded, and the ideals of Roelcke precompact sets and of coarsely

bounded sets do not coincide.

However, in some circumstances, the ideal of Roelcke precompact sets will be

stable under products.

Proposition 11. If G is Weil complete, the product of two Roelcke precompact

subsets of G is Roelcke precompact.

Proof. By [15, Theorem 11.4], if G is Weil complete (i.e., complete in the left

uniformity) then it is also complete in the Roelcke uniformity. Thus, every Roelcke

precompact subset is, in fact, compact and the product of two compact subsets is

a compact subset. �

Proposition 12. If G is locally Roelcke precompact, the product of two Roelcke

precompact subsets of G is Roelcke precompact.

Proof. Fix an open, Roelcke precompact subset U , which we may assume con-

tains 1G by Lemma 9. Now suppose that A and B are also Roelcke precompact

subsets of G, and that V is an identity neighborhood in G. We will produce a

finite F � G with AB � VF V .

Choose an open neighborhood of the identity, W , satisfying W 2 � V \ U . So

there are finite EA and EB so that A � WEAW and B � WEBW . Recall from

Lemma 9 that the collection of Roelcke precompact subsets of G is hereditary and

closed under left/right translations and finite unions. Thus, W 2 � U is Roelcke

precompact, as are W 2EB D
S

f 2EB
W 2f and EAW 2EB D

S

f 2EA
f W 2EB .
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So there is a finite F � G with EAW 2EB � WF W . Therefore,

AB � .WEAW /.WEBW / D W.EAW 2EB/W

� W.WF W /W D W 2F W 2 � VF V: �

This fact will be key in characterizing locally Roelcke precompact groups

below.

6. Equivalent characterizations of locally Roelcke precompact Polish groups

In this section, we let G denote an arbitrary Polish group, and X its completion

in the Roelcke uniformity. Equivalently, X is the uniform structure associated to

the metric completion of .G; d^/, where d^ is computed from any left-invariant

metric, dL, as d^.f; g/ D infh2G max¹dL.f; h/; dL.h�1; g�1/º. Since a subset of

G is Roelcke precompact if and only if its closure in the Roelcke completion of G

is compact and, specifically, G is a Roelcke precompact group if and only if X is

compact, one may then wonder if the completion of a locally Roelcke precompact

group must be locally compact.

Let us first observe that this is not an immediate parsing of definitions as it is for

Roelcke precompact groups. One definition says that every x 2 X has a compact

neighborhood, while the other says this is true of every x in the comeagre subset

G � X . And there are certainly instances of non-locally compact spaces with

comeagre locally compact subsets, for instance ¹�ek 2 `2
R

.N/ j k 2 N and � 2
Œ0; 1�º becomes locally compact when E0 is removed. And though X has a lot more

homogeneity than that example—as multiplication extends to an action G Õ X

with comeagre orbit G � X—it is not a matter of taking a compact neighborhood

of an element of G and pushing it around by this action, as the next example shows.

Example 13. Let G D Aut.T1/, which is locally Roelcke precompact by The-

orem 7. Fix any elements a; b 2 T1. If V D Stab.a; b/, then as noted in Sec-

tion 4, f 2 VgV if and only if .a; b; ga; gb/ ˆ tp.a; b; fa; f b/, and therefore

d.a; f b/ D d.a; gb/ in the graph metric on T1. So every Roelcke–Cauchy

sequence, .fn/n2N, eventually decides a value for d.a; fnb/ and the function

�W G 7! N taking g 7! d.a; gb/ is uniformly continuous with respect to the

Roelcke uniformity on G and the discrete uniformity on N and therefore extends

to a continuous function �W X ! N.

So if K is any compact subset of X , K sees only finitely many values in the

above function, say R D max �ŒK� C 1. Fix any enumeration p0; p1; p2; : : :

of T1, and for each n 2 N let fn 2 G be an automorphism satisfying

d.pi ; fnpj / D d.pi ; p0/C R C d.p0; pj / for all i; j 6 n. To find such a sequence

of maps, fix two points, q and r in T1 at distance R from each other. Removing

the vertices along the path between q and r partitions the remaining space into
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countably many subtrees, each isometric to T1; let Tq and Tr be the ones con-

taining q and r , respectively, and let hWT1 ! Tq and kWT1 ! Tr be isometries

with h.p0/ D q and k.p0/ D r . By the homogeneity of T1, there are, for each

n 2 N, automorphisms hn and kn of T1 that agree with h and k on ¹p0; : : : ; pnº.
Then .fn/n2N D .h�1

n kn/n2N is Roelcke-Cauchy, and y D limn fn 2 X has the

following property: for any g 2 G,

�.g � y/ D lim
n

d.g�1a; fnb/ > R:

Therefore, G � y \ K D ;, or equivalently y \ G � K D ;. So for any compact set

in X (and so also for any open set with compact closure) there is an element of X

that does not lie in any translate.

However, we will indeed show that the Roelcke completion of a locally Roelcke

precompact group is locally compact. As it turns out, the example above is

characteristic of groups that do not have bounded geometry. Specifically, it is

shown in [20, Chapter 5] that in the action G Õ X of a locally Roelcke precompact

group on its Roelcke completion that extends left multiplication, there is a compact

set whose G-saturation is X if and only if G has bounded geometry. He then

obtains a characterization of bounded geometry for all Polish groups in terms of

certain types of actions on locally compact spaces. This is done by embedding

such a group into Iso.U/ and analyzing the action of G on a closed, invariant

subspace of the completion of Iso.U/, which is locally compact by Theorem 16

below.

Our first characterization of the locally Roelcke precompact Polish groups is

geometric, identifying them among the locally bounded ones. Recall that every

Roelcke precompact subset of a Polish group is coarsely bounded, and so these

groups must, in particular, be locally bounded. In general, a Polish group may

contain coarsely bounded subsets that are not Roelcke precompact, for example

the group, ZN Ì S1, of Example 10. However, the locally Roelcke precompact

Polish groups are precisely the locally bounded ones in which these two ideals

coincide.

Theorem 14. A Polish group, G, is locally Roelcke precompact if and only if it is

locally bounded and every coarsely bounded subset is Roelcke precompact.

Proof. ((H) As G is locally bounded, there is a coarsely-bounded neighborhood,

U . And as every coarsely bounded set is Roelcke precompact, so too is U .

(H)) Let U be a Roelcke precompact neighborhood. Then U is, in particular,

coarsely bounded, and so G is locally bounded. If A � G is any coarsely bounded

set, there is a finite F and a bound k 2 N so that A � .F U /k. By Lemma 9, the

Roelcke precompact subsets are closed under finite unions and left translations.

Thus, F U D
S

f 2F f U is Roelcke precompact. Then by Proposition 12, .F U /k

is Roelcke precompact, and again by Lemma 9, so too is A. �
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In particular, if a Polish group is coarsely bounded but not Roelcke precompact,

then it also fails to be locally Roelcke precompact.

Corollary 15. A Polish group is Roelcke precompact if and only if it is coarsely

bounded and locally Roelcke precompact.

Proof. If G is locally Roelcke precompact and coarsely bounded, then by Theo-

rem 14, every coarsely bounded set—in particular, G itself—is Roelcke precom-

pact. �

Since a locally Roelcke precompact Polish group, G, is locally bounded, it

admits a compatible, left-invariant, coarsely proper metric, dL. Specifically, such

a metric dL induces both the left uniformity and the left-coarse structure, and

therefore it is also compatible with the topology of G and assigns finite diameter to

a subset if and only if that subset is coarsely bounded. Fix such a metric, and form

the associated metric d^.f; g/ D infh2G max¹dL.f; h/; dL.h�1; g�1/º. Then by

Proposition 1, d^ is compatible with the Roelcke uniformity and the meet-coarse

structure. Therefore

� the metric, d^, is compatible with the topology on G,

� the metric completion, .X; d^/, of .G; d^/ is the Roelcke completion of G,

and

� the metric d^ assigns finite diameter to a subset of G if and only if it is

coarsely bounded.

Though they always agree about which sets are bounded, in general the spaces

.G; dL/ and .G; d^/ are not coarsely equivalent. For example, .Aut.T1/; d^/

is coarsely equivalent to its completion, which by the following theorem is a

proper metric space. But by Rosendal’s characterization of groups with bounded

geometry, .Aut.T1/; dL/ cannot be coarsely equivalent to such a space.

Recall that a metric on a locally compact space is proper if it satisfies the

Heine–Borel theorem—that is, if closed, bounded subsets of the space are com-

pact. Now we see that the locally Roelcke precompact Polish groups are precisely

those for which the completion in the Roelcke uniformity is locally compact.

Theorem 16. A Polish group, G, is locally Roelcke precompact if and only if its

completion, X , in the Roelcke uniformity is locally compact. In this case, if dL is

a compatible, left-invariant, coarsely-proper metric for G, then the extension of

d^ to X is a proper metric.

Proof. If X is locally compact, the element 1G 2 G � X has a compact

neighborhood, K � X , and so K \ G is a Roelcke precompact neighborhood

of 1G in G.

Conversely, we suppose G is locally Roelcke precompact and that d^ is com-

puted from a compatible, left-invariant, coarsely proper metric, dL, as described
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above. Now suppose A is a closed, bounded subset of .X; d^/. Then A � B D
B.X;d^/.h; r/ for some h 2 G � X and r > 0. Then B \ G D B.G;d^/.h; r/ is

a coarsely bounded subset of G, and so is Roelcke precompact by Theorem 14.

Thus, the closure in X , xB D B \ G, is compact, while A is a closed subset of xB
and so also compact. So .X; d^/ is a proper metric space, and in particular X is

locally compact. �

One consequence of the above is a restriction on properties of locally Roel-

cke precompact groups. Recall that G is Weil complete if it is complete in the

left uniformity. For Polish groups this is equivalent to the existence of a com-

plete, left-invariant metric, and so these groups are also called CLI (“complete

left invariant”). For example, any solvable Polish group is Weil complete [10,

Corollary 3.7], as is any locally compact Polish group. These latter groups are the

only Weil complete locally Roelcke precompact Polish groups.

Corollary 17. A Polish group is locally compact if and only if it is Weil complete

and locally Roelcke precompact.

Proof. Every locally compact Polish group is complete in the left uniformity. And

in general, every compact set is Roelcke precompact, so every locally compact

Polish group is also locally Roelcke precompact.

Conversely, if G is Weil complete and Polish, then G is also complete in the

Roelcke uniformity [15, Proposition 11.4] and thus G coincides with its Roelcke

completion, and so is locally compact by Theorem 16. �

6.1. Closure properties

Theorem 18. Suppose G is Polish and H is an open subgroup of G. Then G is

locally Roelcke precompact if and only if H is.

Proof. Suppose U � G is an open Roelcke precompact identity neighborhood.

By Lemma 9, W D U \ H is a Roelcke precompact set in G. If V � H is open

in H , then it is also open in G. So there is a finite F � W (recall Proposition 3)

with W � VF V . Thus, W is Roelcke precompact as a subset of H .

Conversely, suppose U � H is an open Roelcke precompact neighborhood

in H . Then U is also open in G. Moreover, if V � G is an open identity

neighborhood, there is a finite subset F � H with U � .V \ H/F.V \ H/ �
VF V . �

Note that this is not true in general for a closed subgroup of a Polish group. For

example, both Homeo.Œ0; 1�N/ and Iso.U1/ are universal Polish groups [23, 26],

thus each has a topologically isomorphic copy of the other embedded as a closed

subgroup. However, Iso.U1/ is a Roelcke precompact group [26, 16], while

Homeo.Œ0; 1�N/ is coarsely bounded but not Roelcke precompact [16, 17], so

cannot be locally Roelcke precompact by Corollary 15.
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Theorem 19. If G is Polish locally Roelcke precompact and N is a closed normal

subgroup, then the quotient group, G=N , is locally Roelcke precompact.

Proof. Let � W G ! G=N be the (continuous, open) quotient map. Suppose

U � G is an open Roelcke precompact identity neighborhood. Then �ŒU � is

open in G=N , and if V is open in G=N , there is a finite F � G such that

U � ��1ŒV �F��1ŒV �, and so

�ŒU � � �Œ��1ŒV �F��1ŒV �� D .���1ŒV �/.�ŒF �/.���1ŒV �/ D V�ŒF �V: �

7. Semigroup operations extending multiplication

The results of this section are inspired by those of Section 5 of [3], that for G the

(necessarily Roelcke precompact and Polish) automorphism group of a separably-

categorical metric structure, every Roelcke uniformly continuous function on G

is weakly almost periodic if and only if the theory of the structure is stable. It was

pointed out to the author by C. Rosendal that this is equivalent to multiplication

on G extending to a separately continuous semigroup operation its Roelcke com-

pletion. This can be seen directly, much in the manner of the proof of Theorem 21

below, or abstractly—for Roelcke precompact groups, the Roelcke completion co-

incides with the compactification associated to the Roelcke uniformly continuous

functions and factors onto the compactification associated to the weakly almost

periodic functions, which is the universal semi-topological semigroup compacti-

fication of G. Therefore, the Roelcke completion and WAP-compactification co-

incides when the corresponding function algebras do. The authors of [3] also offer

a model theoretic interpretation of this semigroup structure.

In general [15, Chapter 10], for X the Roelcke completion of G, there is a

maximal subset M � X�X that supports a jointly continuous operation extending

multiplication G � G ! X . There are natural embeddings of the left and right

completions, yGL and yGR, of G into X making all diagrams commute, which

satisfy
yGL � yGL; yGR � yGR; yGR � X; X � yGL � M:

Thus, multiplication on G extends to the above sets, giving yGL and yGR the

structure of topological semigroups, with jointly continuous actions yGR Õ X and

X Ô yGL. However, multiplication extends to a jointly continuous operation on all

of X � X if and only if the Roelcke completion of G coincides with the two-sided

completion; in the setting of Polish groups this occurs if and only if G D X , or

equivalently if G is Weil complete, which for locally Roelcke precompact groups

means that G is locally compact by Corollary 17.

So the best that can be hoped for in a general locally Roelcke precompact

group is the structure of a semi-topological semigroup (i.e., where multiplication

is separately continuous). The methods of [3] completely describe this for Roelcke
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precompact Polish groups. Here we investigate the corresponding situation for the

locally Roelcke precompact ones. We first see that in such situations, the operation

can be further extended to the one-point compactification of X .

Proposition 20. Suppose G is locally Roelcke precompact but not Roelcke pre-

compact, that X is its Roelcke completion and X� is the one-point compactification

of X . If multiplication in G extends to a separately continuous semigroup opera-

tion on X then it further extends to a separately continuous semigroup operation

on X� with 1 defined to be a zero element.

Proof. The resulting structure on X� is always a semigroup; checking that the

extended multiplication is separately continuous amounts to checking that this

is still true at 1, that is, for every s 2 X and compact K � X , the sets

¹x 2 X j sx 2 Kº and ¹x 2 X j xs 2 Kº are compact [1, Example 1.3.3(d)]. By

Theorem 16 there is a sufficiently large d^-ball, B , around 1G in G whose closure

in X contains K. Let A be any open Roelcke precompact set in G whose closure

in X contains s in the interior, e.g. a d^-ball of radius 2 around any element of

G of distance less than 1 from s. Suppose sx 2 K. Pick a sequence .gn/n from

G with gn ! s. By separate continuity, gnx ! sx. So there is N 2 N so that

gN 2 A and gN x 2 int. xB/ � X . Letting .hm/m be a sequence in B tending to

gN x, by separate continuity

x D g�1
N gN x D g�1

N lim
m

hm D lim
m

g�1
N hm 2 A�1B:

Since A and B are Roelcke precompact in G so is A�1B by Proposition 12, and

as x was arbitrary, ¹x 2 X j sx 2 Kº is a subset of the compact set A�1B .

Being the preimage of K under the map x 7! sx, it is also closed, and therefore

compact. �

Note that there is a clear converse to this result. In the above proposition, the

zero element, 1, of X� is removable in the sense that ab D 1 if and only if

a D 1 or b D 1. And clearly if S is any semigroup with such an element, 0,

then the subset S n ¹0º is a sub-semigroup. So multiplication in G extends to a

semi-topological semigroup operation on X if and only if it extends to a semi-

topological semigroup operation on X� with a removable zero at 1.

Recall that a function is uniformly continuous with respect to the Roelcke

uniformity if and only if it is uniformly continuous in both the left- and right-

uniformities. Let C 0
0.G/ denote those functions on G that vanish off of the ideal

of Roelcke precompact sets:

C 0
0.G/ D ¹f j for all " > 0; ¹g 2 G j jf .g/j > "º

is a Roelcke precompact subset of Gº:

The idea here is that the Roelcke uniformly continuous functions in C 0
0.G/ are

precisely the restrictions of those in C0.X/.
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Theorem 21. Let G be a locally Roelcke precompact Polish group. The group

multiplication in G extends to a separately continuous semigroup operation on the

Roelcke completion, X , if and only if every Roelcke uniformly continuous function

in C 0
0.G/ is weakly almost periodic.

Proof. As mentioned above, this follows from [3] for Roelcke precompact groups.

And every locally compact Polish group is its own Roelcke completion, while

in that case every function in C 0
0.G/ D C0.G/ is weakly almost periodic [1,

Corollary 4.2.13]. So assume that G is not in either of those classes.

Suppose multiplication extends to a separately continuous semigroup opera-

tion on X and let f be a Roelcke uniformly continuous function in C 0
0.G/. Then

by Proposition 20, multiplication extends further to the one point compactifica-

tion, X�. As f is Roelcke uniformly continuous on G, it extends to a uniformly

continuous function on X and since for all " > 0 the set ¹x 2 X j jf .x/j > "º is

open, its closure is equal to the closure of ¹g 2 G j jf .g/j > "º, and so is com-

pact. Therefore f 2 C0.X/, and so extends to continuous function on X�. Being a

compact semitopological semigroup, every continuous function on X� is weakly

almost periodic and, moreover, the restriction of every weakly almost periodic

function on X� is a weakly almost periodic function on G (see [1, Corollary 4.2.9

and Theorem 4.2.10]), so f W G ! C is weakly almost periodic.

Conversely, suppose that every Roelcke uniformly continuous function tending

to 0 off the ideal of Roelcke precompact subsets is weakly almost periodic. Recall

that left (resp. right) multiplication on G extends to a jointly continuous left (resp.

right) action on X , and suppose x; y 2 X and .gn/; .hm/ are sequences in G with

gn ! x and hm ! y. Then, both sequences are d^-bounded, and therefore there

are d^-balls A and B around 1G of sufficient radius so that all terms gnhm, gny

and xhm lie in the interior of the compact set AB � X . Then for any nonprincipal

ultrafilters U;V on N, the limits

lim
n!U

gny; lim
m!V

xhm; lim
n!U

lim
m!V

gnhm; lim
m!V

lim
n!U

gnhm

all exist, and moreover by continuity of the actions,

lim
n!U

gny D lim
n!U

gn. lim
m!V

hm/ D lim
n!U

lim
m!V

gnhm

and likewise limm!V xhm D limm!V limn!U gnhm. The above is true for any

locally Roelcke precompact Polish G, but under the above weak almost periodicity

assumption, we also see that limn!U limm!V gnhm D limm!V limn!U gnhm for

all x; y; .gn/; .hm/;U and V as above. For suppose a; b 2 X with

a D lim
n!U

lim
m!V

gnhm ¤ lim
m!V

lim
n!U

gnhm D b

and let f W G ! C be the uniformly continuous function, f .g/ D d^.a; b/ �
min¹d^.a; b/; d^.a; g/º, (where the distances are computed in X , though note that
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the unique extension to a uniformly continuous function on X is given by the same

formula). Then jf .g/j > 0 if and only if g is in the trace in G of the ball around

a of radius d^.a; b/, so f 2 C 0
0.G/.

So f is Roelcke uniformly continuous and in C 0
0.G/, yet

lim
n!U

lim
m!V

f .gnhm/ D f . lim
n!U

lim
m!V

gnhm/ D f .a/ ¤ f .b/ D

D f . lim
m!V

lim
n!U

gnhm/ D lim
m!V

lim
n!U

f .gnhm/

and so f is not weakly almost periodic, a contradiction.

Thus, for every gn ! x and hm ! y and nonprincipal U and V, the values

limn!U limm!V gnhm and limm!V limn!U gnhm agree. But in fact, this is then

also independent of both the choice of sequences and of ultrafilters. For if also

g0
n ! x and U0 is some nonprincipal ultrafilter on N,

lim
m!V

lim
n!U

gnhm D lim
m!V

xhm D lim
m!V

lim
n!U0

g0
nhm

and likewise

lim
n!U

lim
m!V

gnhm D lim
n!U

lim
m!V0

gnh0
m

for any other hm ! y and V
0.

Therefore we may define an operation X � X ! X , where x � y is the

common value of limn!U limm!V gnhm for any appropriate .gn/; .hm/;U and V.

If gn ! x, hm ! y and ki ! z then

.x � y/ � z D lim
i!W

. lim
n!U

gny/ki D lim
i!W

lim
n!U

.gny/ki D lim
i!W

lim
n!U

gn.yki /

D lim
n!U

lim
i!W

gn.yki / D lim
n!U

gn. lim
i!W

yki / D x � .y � z/

and so X with this operation is a semigroup. The constant sequences show that this

operation extends multiplication in G, and to see that multiplication is separately

continuous, note that a function, f W X ! X , on the complete metric space .X; d^/

is continuous if and only if for every x 2 X and .gn/ � G with gn ! x,

f .gn/ ! f .x/, and that the latter occurs if and only if limn!U f .gn/ D f .x/ for

every nonprincipal ultrafilter, U. Then apply these observations to the functions

x 7! xy and x 7! yx. �

Note however that unlike the situation for Roelcke precompact Polish groups,

where the Roelcke compactification coincides with the WAP compactification for

such groups supporting a separately continuous extension of multiplication, we do

not obtain a description of the WAP compactification in this setting. For example,

as a consequence of [7, Corollary 2.2], the WAP compactification of a locally

compact Polish SIN group must have cardinality 22@0 .
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