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Divergence of finitely presented groups
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Abstract. We construct families of finitely presented groups exhibiting new divergence
behavior; we obtain divergence functions of the form r˛ for a dense set of exponents
˛ 2 Œ2; 1/ and rn log.r/ for integers n � 2. The same construction also yields examples
of finitely presented groups which contain Morse elements that are not contracting.
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1. Introduction

In classical geometry, one can distinguish between spherical, euclidean, and hy-
perbolic spaces by measuring the rates at which geodesics diverge apart. In [16],
Gersten defined divergence as a quasi-isometry invariant of geodesic metric spaces
and of finitely generated groups. Roughly speaking, divergence measures the dis-
tance distortion of the complement of an open ball of radius r . Gersten used di-
vergence to classify certain 3-manifold groups up to quasi-isometry (see [15]).
The concept of divergence has also been studied by Macura [20, 21], Behr-
stock [7], Duchin and Rafi [14], Ol’shanskii, Osin, and Sapir [22], Druțu, Mozes
and Sapir [13], Behrstock and Charney [4], Behrstock and Druțu [5], Sisto [25],
Levcovitz [18], Gruber and Sisto [17], and others.

It is known that the divergence of finitely presented groups can be polynomial
of arbitrary degree or exponential (see [21, 20, 5, 25, 12]). There are examples
of groups whose divergence function is not a polynomial or exponential function
(see [22, 17]) but these groups are not finitely presented.

As an application of our Main Theorem, we obtain families of finitely pre-
sented groups with diverse non-polynomial and non-exponential divergence func-
tions.

Corollary 2.10. There exist finitely presented groups whose divergence is equiv-

alent to r˛ for a dense set of exponents ˛ 2 Œ2; 1/ and to rn log.r/ for integers

n � 2.

https://creativecommons.org/licenses/by/4.0/
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There are a number of geometric notions which are closely related to diver-
gence. These include the concepts of (geometric) thickness, geodesic divergence,
Morse elements, and contracting elements. Our Main Theorem has consequences
for all of these notions, which we describe briefly below.

In [6] there is a definition of a metric space being thick of order n, and the
corresponding definition of a group being (geometrically) thick of order n. If
a group is geometrically thick of order n, then its divergence is bounded above
by rnC1. The following corollary provides a negative answer to Question 1.2 of [5]
which asked if every thick group of order n has divergence equal to rnC1.

Corollary 2.11. For each integer n � 2 there exists infinitely many finitely
presented groups each of which is thick of order n and whose divergence lies
strictly between rn and rnC1.

One can focus on the divergence of a particular bi-infinite geodesic in a metric
space. This leads to the notion of geodesic divergence (and the upper and lower
geodesic divergence variants). Lower geodesic divergence was used in [11, 3] to
characterize the important concepts of Morse geodesics and Morse elements in
groups. We note that when the geodesic is periodic, the upper and lower versions
of geodesic divergence agree.

In [27], the second author constructed a collection of Morse geodesics whose
divergence is equivalent to rs for arbitrary s 2 Œ2; 1/. However, the geodesics
in [27] are not periodic. As a second application of the Main Theorem, we
construct a collection of periodic geodesics with diverse non-polynomial and non-
exponential divergence functions.

Corollary 2.12. There exist finitely presented groups containing an infinite peri-

odic geodesic whose divergence is equivalent to r˛ for a dense set of exponents

˛ 2 Œ1; 1/ and to rn log.r/ for integers n � 1.

In [1], Abbott, Behrstock, and Durham defined the concepts of contracting

quasi-geodesics and contracting elements in a group. Contracting elements are
known to be Morse, and all previously known examples of Morse elements in
finitely presented groups are contracting. Another application of our Main Theo-
rem is the fact that Morse elements in finitely presented groups need not be con-
tracting.

Corollary 2.13. There exist finitely presented groups containing Morse elements

which are not contracting.
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2. Definitions and statement of the main results

Convention 2.1. Let M be the collection of all functions from positive reals
to positive reals. Let f and g be arbitrary elements of M. We say that f is
dominated by g, denoted f � g, if there are positive constants A; B; C such that
f .x/ � g.Ax/ C Bx for all x > C . We say that f is equivalent to g, denoted
f � g, if f � q and g � f .

Let ¹ı�º and ¹ı0
�º be two families of functions of M, indexed over � 2 .0; 1�.

The family ¹ı�º is dominated by the family ¹ı0
�º, denoted ¹ı�º � ¹ı0

�º, if there
exists constant L 2 .0; 1� such that ıL� � ı0

� for all � 2 .0; 1�. We say ¹ı�º is
equivalent to ¹ı0

�º, denoted ¹ı�º � ¹ı0
�º, if ¹ı�º � ¹ı0

�º and ¹ı0
�º � ¹ı�º. If f is a

function in M, the family ¹ı�º is equivalent to f if there is b 2 .0; 1� such that ı�

is equivalent to f for each � 2 .0; b�.

We now recall Gersten’s definition of divergence from [16]. Let X be a
geodesic space and x0 one point in X . Let dr;x0

be the induced length metric
on the complement of the open ball with radius r about x0. If the point x0 is clear
from context, we will use the notation dr instead of dr;x0

.

Definition 2.2 (group divergence). Let X be a geodesic space with a fixed point
x0. For each � 2 .0; 1� we define a function ı�W .0; 1/ ! .0; 1/ as follows. For
each r > 0, let ı�.r/ D sup d�r.x1; x2/ where the supremum is taken over all x1

and x2 on the sphere S.x0; r/ such that d�r.x1; x2/ < 1. The family of functions
¹ı�º is the divergence of X .

Using Convention 2.1 the divergence of X does not depend on the choice of
x0 and it is a quasi-isometry invariant (see [16]). The divergence of a finitely
generated group G, denoted DivG , is the divergence of the Cayley graph �.G; S/

for some (any) finite generating set S .

We now recall the definition of quasi-geodesic divergence and undistorted
cyclic subgroup divergence.

Definition 2.3 (quasi-geodesic divergence). Let X be a geodesic space and
˛W .�1; 1/ ! X be an .L; C /-bi-infinite quasi-geodesic. The divergence of ˛

in X is the function Div˛W .0; 1/ ! .0; 1/ defined as follows. Let r > 0 be an
arbitrary number. If there is no path outside the open ball B.˛.0/; r=L � C / con-
necting ˛.�r/ and ˛.r/, we define Div˛.r/ D 1. Otherwise, we define Div˛.r/ to
be the infimum over the lengths of all paths outside the open ball B.˛.0/; r=L�C /

connecting ˛.�r/ and ˛.r/.

Definition 2.4 (cyclic subgroup divergence). Let G be a finitely generated group
and hci be an undistorted, infinite cyclic subgroup of G. Let S be a finite
generating set of G that contains c. Since hci is undistorted, every bi-infinite
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path with edges labeled by c is a quasi-geodesic in the Cayley graph �.G; S/. The
divergence of the cyclic subgroup hci in G, denoted DivG

hci, is defined to be the
divergence of such a bi-infinite quasi-geodesic.

Using Convention 2.1 the divergence of the cyclic subgroup hci in G does not
depend on the choice of finite generating set S . We leave the proof of this fact as
an exercise for the reader.

We now review the concept of Morse (contracting) quasi-geodesics and Morse
(contracting) elements in a finitely generated group.

Definition 2.5 (Morse quasi-geodesic). Let X be a geodesic space. A bi-infinite
quasi-geodesic ˛ in X is Morse in X if for every K � 1; C � 0 there is some
M D M.K; C / such that every .K; C /-quasi–geodesic with endpoints on ˛ is
contained in the M -neighborhood of ˛.

Definition 2.6 (contracting quasi-geodesic). Let X be a geodesic space. A bi-
infinite quasi-geodesic ˛ in X is contracting in X if there exist a map �˛W X ! ˛

and constants 0 < A < 1 and D � 1 satisfying:

(1) �˛ is .D; D/-coarsely Lipschitz, i.e.,

d.�˛.x1/; �˛.x2// � Dd.x1; x2/ C D for all x1; x2 2 X I

(2) for any y 2 ˛, d.y; �˛.y// � D;

(3) for all x 2 X , if we set R D Ad.x; ˛/, then diam.�˛.BR.x/// � D.

Definition 2.7 (Morse element and Contracting element). Let G be a finitely
generated group and g an infinite order element in G. Let S be a finite generating
set of G that contains g. Let ˛ be a path in the Cayley graph �.G; S/ with edges
labeled by g. The element g in G is Morse (resp. contracting) if the path ˛ is a
Morse (resp. contracting) quasi-geodesic.

It is not hard to see that the notions of Morse quasi-geodesic and contracting
quasi-geodesic are quasi-isometry invariants. In particular, the concepts of Morse
elements and contracting elements in a finitely generated group do not depend on
the choice of finite generating set S .

We now define the concept of extrinsic distance function of an infinite cyclic
subgroup. This concept is a key ingredient in the Main Theorem.

Definition 2.8 (extrinsic distance function). Let G be a finitely generated group
with a finite generating set S and let g 2 G be an element of infinite order. The
extrinsic distance function of the infinite cyclic subgroup hgi is defined as follows

ıg;S .n/ D jgnjS :

We can view this as a function .0; 1/ ! .0; 1/ by precomposing with the greatest
integer function bxc.
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Definition 2.9 (coarse Lipschitz equivalence of functions). We say the function
ıg;S .n/ is coarse Lipschitz equivalent to a function f W .0; 1/ ! .0; 1/ if there is
a positive constant K such that for each positive integer n we have

1

K
f .n/ � K � ıg;S .n/ � Kf .n/ C K:

It is straightforward to verify that if ıg;S.n/ is coarse Lipschitz equivalent to a
function f W .0; 1/ ! .0; 1/, then ıg;T .n/ is also coarse Lipschitz equivalent to
f for another finite generating set T of G.

We now state the Main Theorem in this paper.

Main Theorem. Let H be a finitely presented group with finite generating set T

containing a proper infinite cyclic subgroup hci whose extrinsic distance function

n 7�! jcnjT

is coarse Lipschitz equivalent to a non-decreasing function f .

For each integer m � 1 there are finitely presented one-ended groups

G1 D .H �hcDa0a�1
1

i Z
2/ � Z

where Z
2 D ha0; a1 j a0a1 D a1a0i and

Gm D hGm�1; amja�1
m a0am D am�1i

for m � 2, with the following properties. The subgroup hami is undistorted and

the following table holds:

m DivGm

hami
DivGm

2 rf .r/ r2

� 3 rm�1f .r/ rm�1f .r/

The proof of the divergence of each group Gm for m � 3 is obtained from
Proposition 4.3 and Corollary 4.17 while the proof of the divergence of the group
G2 is obtained from Proposition 4.4 and Corollary 4.19. We also prove each group

Gm is one-ended in Proposition 4.5. In order to talk about DivGm

hami
we need to know

that each cyclic subgroup hami in Gm is undistorted; this is proved by Lemma 3.3.
More precisely, for each m � 2 we choose a finite generating set Sm of the group
Gm such that the bi-infinite paths ˛m in the Cayley graph �.Gm; Sm/ with edges
labeled by am are geodesic. Then we prove the divergence of ˛m is equivalent to
rm�1f .r/ in Proposition 5.1. Thus, divergence of cyclic subgroup hami in Gm is
equivalent to rm�1f .r/.
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We note that although the divergence of the bi-infinite geodesic ˛2 in the
Cayley graph �.G2; S2/ is equivalent to rf .r/, this is not the divergence of the
ambient group G2. In fact, we can always find from the construction of G2 another
bi-infinite geodesic in �.G2; S2/ with quadratic divergence (see Proposition 4.18)
and Proposition 4.4 also shows that the divergence of G2 is dominated above by a
quadratic function.

The corollaries below provide four important applications of the Main Theo-
rem.

Corollary 2.10. There exist finitely presented groups whose divergence is equiv-

alent to r˛ for a dense set of exponents ˛ 2 Œ2; 1/ and to rn log.r/ for integers

n � 2.

Proof. First we establish the r˛ divergence functions. Given integers p > q � 2,
let H be a snowflake group with defining Perron-Frobenius matrix the 1-by-1
matrix .q/ and scaling factor p and let c be a generator of an edge group in the
snowflake construction of [8]. Then by [8], Proposition 4.5, the extrinsic length
function of the hci subgroup of H is equivalent to f .r/ D r logp.q/. The Main
Theorem implies that for m � 3, the finitely presented group Gm has divergence
equivalent to rm�1Clogp.q/. Taking ˛ D m � 1 C logp.q/ gives the first result.

For the functions rn log.r/, choose H in the proof of the Main Theorem to be
the Baumslag-Solitar group hc; t j tct�1 D c2i. By [10] for example, the extrinsic
distance function of hci in H is coarse Lipschitz equivalent to the function log.r/.
The Main Theorem implies that the finitely presented groups Gm for m � 3

have divergence equivalent to rm�1 log.r/. Taking n D m � 1 yields the second
result. �

Corollary 2.11. For each integer n � 2 there exists infinitely many finitely

presented groups each of which is thick of order n whose divergence lies strictly

between rn and rnC1.

Proof. For each integer m � 3 and integers p > q � 2, the groups Gm defined in
the first paragraph of the proof of Corollary 2.10 above are thick of order m � 1

(proof given in the next paragraph) and have divergence rm�1Clogp.q/. Setting
n D m � 1 yields the result.

In order to establish thickness of the Gm, first note that each group G1 is thick
of order zero (also known as unconstricted) because it is a direct product (see
example 1 following Definition 3.4 of [6]). By induction on m and the recursive
construction of the Gm, it follows from Definition 7.1 of [6] that the groups Gm

are thick of order at most m � 1. If Gm were thick of order less than m � 1,
Corollary 4.17 of [5] would imply that they have divergence at most rm�1. Since
the groups Gm have divergence strictly greater than rm�1, we conclude that they
are thick of order exactly m � 1. �
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Corollary 2.12. There exist finitely presented groups containing an infinite peri-

odic geodesic whose divergence is equivalent to r˛ for a dense set of exponents

˛ 2 Œ1; 1/ and to rn log.r/ for integers n � 1.

Proof. The Main Theorem implies that for each m � 2 the divergence of an
infinite periodic geodesic ˇ with edges labeled by am in group Gm is equivalent
to the function rm�1f .r/. Given integers p > q � 2, let H be the finitely
presented group and let hci be the subgroup of H with the extrinsic length function
equivalent to f .r/ D r logp.q/ as in the proof of Corollary 2.10 above. Then, the
divergence of ˇ is equivalent to rm�1Clogp.q/. Taking ˛ D m � 1 C logp.q/ gives
the first result.

Similarly, let H be the finitely presented group and let hci be the subgroup of
H with the extrinsic length function equivalent to f .r/ D log.r/ as in the proof
of Corollary 2.10 above. Then, the divergence of ˇ is equivalent to rm�1 log.r/.
Taking n D m � 1 yields the second result. �

Corollary 2.13. There exist finitely presented groups containing Morse elements

which are not contracting.

Proof. By Corollary 2.12 there are finitely presented groups G2 and undistorted
infinite cyclic subgroups ha2i whose divergence functions are equivalent to r˛ for
a dense set of ˛ 2 .1; 2/ or to r log.r/. By Theorem 1.3 in [3] the group element
g is Morse. If g is a contracting element, we can prove the divergence of the
cyclic subgroup hgi is at least quadratic by using an analogous argument as in the
proof of Theorem 2.14 in [11]. (We provide a proof of this fact for the reader’s
convenience in Proposition 5.3). This is a contradiction. Therefore, g is not a
contracting element. �

Remark 2.14. We refer the reader to the work of Ol’shanskii-Sapir [23] for more
examples of extrinsic distance functions of cyclic subgroups of finitely presented
groups. These will furnish new variants of Corollaries 2.10, 2.11, 2.12, and 2.13
above.

Remark 2.15. One can ask about the behavior of higher dimensional divergence
functions of groups with appropriate finiteness conditions. There are a number of
interesting ways of generalizing the examples and constructions in this paper to
approach analogous questions about higher dimensional divergence.

3. Algebraic and geometric properties of the groups Gm

We fix generating sets Sm for the groups Gm in the Main Theorem.
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Definition 3.1 (generating sets Sm). The group G1 is defined in the Main Theorem
as an amalgam

G1 D .H �hcDa0a�1
1

i Z
2/ � Z

where H has finite generating set T and the free abelian group Z
2 is generated

by a0 and a1. We may assume T contains the infinite order element c. Let b be
a generator for the Z factor. Then S1 D T [ ¹a0; a1; bº is a finite generating set
for G1.

For each integer m � 2 the groups Gm are defined recursively by

Gm D hGm�1; am j a�1
m a0am D am�1i

and so have recursively defined finite generating sets Sm D Sm�1 [ ¹amº.

The following lemma will be used repeatedly to prove the group divergence by
induction in the Main Theorem.

Lemma 3.2. Let m � 2 be an integer. Then the inclusion map

i W �.Gm�1; Sm�1/ ,�! �.Gm; Sm/

is an isometric embedding.

Proof. The group Gm is an isometric HNN extension in the sense of [9], with base
group Gm�1 and edge groups ha0i and ham�1i. The homomorphism Gm�1 ! Z

taking all the aj (0 � j � m � 1) to a generator of Z and all other generators
of Gm�1 to the identity shows that each haj i is a retract of Gm�1 and so are
isometrically embedded subgroups. By Lemma 2.2(2) in [9] (taking G D H D

Gm�1) the inclusion Gm�1 ,! Gm is an isometric embedding. �

The following two lemmas will be used to define the concepts of k-corner (see
Definition 4.8 and Definition 4.9) which appear in the proof of the lower bound
of group divergence in the Main Theorem.

Lemma 3.3. Let 0 � i < j � m be integers such that j � 2. Let p; q be arbitrary

integers. Then ja
p
i a

q
j jSm

D jpj C jqj.

Proof. There is a group homomorphism ‰W Gj ! Z
2 taking aj to the generator

.0; 1/, taking each ai to the generator .1; 0/ for 0 � i � j � 1, and taking each
element in Sj �¹a0; a1; : : : ; aj º to the identity .0; 0/. Therefore, ‰.a

p
i a

q
j / D .p; q/.

This implies that
ja

p
i a

q
j jSj

� j‰.a
p
i a

q
j /j D jpj C jqj:

Since ai and aj are also elements in the finite generating set Sj , we have

ja
p
i a

q
j jSj

D jpj C jqj:

Also, the inclusion map i W �.Gj ; Sj / ,! �.Gm; Sm/ is an isometric embedding
by Lemma 3.2. Therefore, ja

p
i a

q
j jSm

D ja
p
j a

q
j jSj

D jpj C jqj. �
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Lemma 3.4. Let 0 � i < j < k � m be integers. Let p; q; n be arbitrary integers

such that a
p
i D a

q
j an

k
in Gm. Then p D q D n D 0.

Proof. We first prove that n D 0. In fact, there is a group homomorphism
ˆW Gk ! Z taking ak to 1 and each generators in Sk � ¹akº to 0. Therefore,
ˆ.a

p
i / D 0 and ˆ.a

q
j an

k
/ D n which imply that n D 0. Thus, a

p
i D a

q
j which

implies that p D q D 0 by Lemma 3.3. �

Let f be a coarse Lipschitz representative for the extrinsic length function of
the subgroup hci in H . This means that there exists a constant C � 1 such that

1

C
f .n/ � C � jcnjT � Cf .n/ C C

for each positive integer n. In order to simplify the algebra in several proofs in
this paper, we will choose the coarse Lipschitz representative f of jcnjT so that it
satisfies the following two conditions:

� there exists a constant C1 � 1 such that f .n/ � jcnjT � C1f .n/ C C1 for
each positive integer n, and

� f .x/ � x for all x 2 .0; 1/.

The following lemma establishes inequalities which will be used in the proofs
of the upper and lower bounds on the divergence in the Main Theorem.

Lemma 3.5. Let H be as in the Main Theorem and let c 2 H have extrinsic length

function satisfying

f .k/ � jckjT � C1f .k/ C C1

for some function f . Then, for all pairs of integers n; m,

(1) dS1
.an

0 ; an
1/ � C1f .jnj/ C C1 and there is a geodesic in the Cayley graph

�.G1; S1/ which connects an
0 and an

1 and lies outside the open ball B.e; jnj/;

(2) jam
0 an

1 jS1
� f .jnj/.

Proof. We first claim that for each integer n and each group element h 2 H we
have jan

0hjS1
� jnj and jan

1hjS1
� jnj. In fact, there is a group homomorphsim

ˆW G1 ! Z that maps each element in S1 � ¹a0; a1º to 0 and maps both a0, a1

to 1. Therefore, jˆ.g/j � jgjS1
. Also, ˆ.an

0h/ D ˆ.an
1h/ D n. This implies that

jan
0hjS1

� jnj and jan
1hjS1

� jnj.
We first prove Statement (1). It is straightforward to see that there is a group

homomorphism ‰W G1 ! H that maps a0 to c, maps a1 to e, maps b to e and maps
each element in T to itself. Therefore, for each g in G1 we have j‰.g/jT � jgjS1

.
Also, ‰.cn/ D cn. Then, jcnjT � jcnjS1

. On the other hand, jcnjS1
� jcnjT

because T is a subset of S1. Therefore, jcnjT D jcnjS1
. Since cn D a�n

1 an
0 and

jcnjT � C1f .jnj/ C C1, we have dS1
.an

0 ; an
1/ � C1f .jnj/ C C1.
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Let 0 be a geodesic in the Cayley graph �.H; T / � �.G1; S1/ connecting
e and cn. Since jcnjT D jcnjS1

, the path 0 is also a geodesic in �.G1; S1/.
Therefore,  D an

10 is a geodesic in �.G1; S1/ connecting an
1 and an

0 . Each
vertex in  has the form an

1h for some h 2 H and such a vertex lies outside the
open ball B.e; jnj/ by paragraph one above. Therefore,  lies outside the open ball
B.e; jnj/.

We now prove Statement (2). It is straightforward to see that there is a group
homomorphism ‰0W G1 ! H that maps a0 to e, maps a1 to c�1, maps b to
e and maps each element in T to itself. Therefore, for each g in G1 we have
j‰0.g/jT � jgjS1

. Also, ‰0.am
0 an

1/ D c�n. Therefore, jam
0 an

1 jS1
� j‰0.am

0 an
1/jT D

jc�njT � f .jnj/. �

We now discuss some geometric properties of the group G1 and these proper-
ties will be used in the proof of the Main Theorem.

Lemma 3.6. Let ¹ı�º be the divergence of the Cayley graph �.G1; S1/. Then there

is a constant C2 � 1 such that ı1.r/ � C2r C C2 for each r � 0.

Proof. The linear upper bound on divergence in this case follows from the direct
product structure of G1 and the fact that Z has extendable geodesics. We give a
proof of this fact for completeness below. The proof is similar to that of Lemma 7.2
of [2].

Assume that G and H are infinite, finitely generated groups and that the Cayley
graph of H has extendable geodesics. If ¹ı�º is the divergence of the Cayley graph
of the group G � H , then there is a constant C2 � 1 such that ı1.r/ � C2r C C2

for each r � 0.
Given two elements .g1; h1/ and .g2; h2/ on the n-sphere centered at the

identity in the Cayley graph of G � H , we show how to connect them by a linear
length path that avoids the open n-ball centered at the identity in the Cayley graph
of G � H . To this end, we extend the geodesic Œ1; h1� to a geodesic Œ1; h1k1�

with endpoint on the n-sphere centered at the identity in the Cayley graph of H .
Likewise we extend the geodesic Œ1; h2� to a geodesic Œ1; h2k2� with endpoint on
the n-sphere centered at the identity in the Cayley graph of H . Pick a point g0 on
the n-sphere centered at the identity in the Cayley graph of G.

The following concatenation of paths avoids the n-ball centered at the identity
in the Cayley graph of G � H and has length at most 8n. The arrows indicate
geodesic paths in the Cayley graph of G �H which are geodesic in one factor and
constant paths in the other factor:

.g1; h1/
�n

�! .g1; h1k1/
�2n
�! .g0; h1k1/

�2n
�! .g0; h2k2/

�2n
�! .g2; h2k2/

�n
�! .g2; h2/: �

The following lemma is a direct result of Lemma 3.6 and it will be used for
the proof of the upper bound of the group divergence in the Main Theorem.
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Lemma 3.7. There is a constant C3 > 0 such that for each non-zero integer n we

have the following holds:

(1) there is a path in �.G1; S1/ which connects a�n
0 and an

0 , lies outside the open

ball B.e; jnj/, and has length at most C3jnj C C3;

(2) for each group element s 2 S1 [ S�1
1 there is a path in �.G1; S1/ which

connects a2n
0 and sa2n

0 , lies outside the open ball B.e; jnj/, and has length at

most C3jnj C C3.

Proof. Statement (1) follows directly from Lemma 3.6 with C3 � C2. State-
ment (2) also follows directly from Lemma 3.6 with C3 D C2 C 2 since the paths
based at e and labeled by a2n

0 and sa2n
0 intersect S.e; jnj/. �

4. The divergence of Gm

4.1. The upper bound. The following two lemmas will be used in the proof of
the upper bound of the group divergence in the Main theorem (see Proposition 4.3
and Proposition 4.4). Note that Lemma 4.1 is a variation of Lemma 5.5 in [19].
We include its proof here for the convenience of the reader.

Lemma 4.1. Let X be a geodesic space and x0 be a point in X . Let r be a positive

number and let x be a point on the sphere S.x0; r/. Let ˛1 and ˛2 be two rays with

the same initial point x such that ˛1 [ ˛2 is a bi-infinite geodesic. Then either ˛1

or ˛2 has an empty intersection with the open ball B.x0; r=2/.

Proof. Assume by the way of contradiction that both rays ˛1 and ˛2 have non-
empty intersection with the open ball B.x0; r=2/. Thus, there is u 2 ˛1 and v 2 ˛2

such that d.x0; u/ < r=2 and d.x0; v/ < r=2. Since d.x0; x/ D r , then by the
triangle inequality we have d.x; u/ > r=2 and d.x; v/ > r=2. Also, ˛1 [ ˛2 is a
bi-infinite geodesic. Therefore, we have

d.u; v/ D d.u; x/ C d.x; v/ > r=2 C r=2 > r:

By the triangle inequality again, we have

d.u; v/ � d.u; x0/ C d.x0; v/ < r=2 C r=2 < r

which is a contradiction. Therefore, at least one of ˛1 and ˛2 has an empty
intersection with the open ball B.x;r=2/.

Note that this can be interpreted as a type of quasi-convexity result; namely, it
states that the r=2-ball is “r=2-quasi-convex.” �

Lemma 4.2. For each integer m � 2 there are constants Mm and Nm such that

the following two statements hold:
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.Pm/ for each non-zero integers n and r such that jnj D r and � 2 ¹�1; C1º

there is a path in �.Gm; Sm/ which connects a2n
0 and a�

ma2n
0 , lies outside

the open ball B.e; r/, and has length at most Mmrm�2.f .Mmr/ C 1/;

.Qm/ for each non-zero integers n1, n2 and r such that jn1j D jn2j D r there is a

path in �.Gm; Sm/ which connects a
n1

0 and a
n2
m , lies outside the open ball

B.e; r/, and has length at most Nmrm�1.f .Nmr/ C 1/.

Proof. We prove the above lemma by induction on m using the following strategy.
We first prove Statement P2. Then we prove the implication .Pm/ ) .Qm/ for
each m � 2. Finally, we prove the implication .Qm/ ) .PmC1/ for each m � 2.

For Statement .P2/ we only prove it for the case of � D �1 and the proof for
the case of � D 1 is almost identical. Let C1 be the constant in Lemma 3.5. By
Lemma 3.2 and Lemma 3.5 there is a path ˛ in �.G2; S2/ which connects a2n

0

and a2n
1 , lies outside the open ball B.e; r/, and has length at most C1f .2r/ C C1.

Since a�
2a2n

0 D a�1
2 a2n

0 D a2n
1 a�1

2 , we can connect a2n
1 and a�

2a2n
0 by an edge f

labeled by a2 and this edge lies outside the open ball B.e; r/. Therefore, ˛ [ f

is a path in �.G2; S2/ which connects a2n
0 and a�

2a2n
0 , lies outside the open ball

B.e; r/, and has length at most C1f .2r/ C C1 C 1. Therefore, Statement P2 is
proved by choosing an appropriate constant M2 � max¹C1 C 1; 2º.

We now prove the implication .Pm/ ) .Qm/ for each m � 2. We only
prove Statement .Qm/ for the case n2 > 0 and the proof for the case n2 < 0

is almost identical. We first connect a
n1

0 and a
4n1

0 by a path �0 labeled by the

word a
3n1

0 . By Lemma 3.3, the path ˛1 lies outside the open ball B.e; r/ and has
the length exactly 3r . By Statement .Pm/ there is a path �1 in �.Gm; Sm/ which
connects a

4n1

0 and ama
4n1

0 , lies outside the open ball B.e; 2r/, and has length at
most Mm.2r/m�2.f .2Mmr/ C 1/.

For each 1 � i � n2 let �i D ai�1
m �1. Then each �i is a path in the

Cayley graph �.Gm; Sm/ which connects ai�1
m a

4n1

0 and ai
ma

4n1

0 , lies outside the
open ball B.ai�1

m ; 2r/, and has length at most Mm.2r/m�2.f .2Mmr/ C 1/. Since
dSm

.e; ai�1
m / D i �1 < n2 D r , each path �i lies outside the open ball B.e; r/. Let

�n2C1 be the path connecting a
n2
m a

4n1

0 and a
n2
m labeled by a

�4n1

0 . Then �n2C1 has

length exactly 4r and each vertex in �n2C1 has the form a
n2
m a

j
0 for 0 � j � 4n1.

By Lemma 3.3 we have ja
n2
m a

j
0 jSm

D n2 C j � r . Therefore, �n2C1 lies outside
the open ball B.e; r/. Let � D �0 [ �1 [ �2 [ � � �[ �n2

[ �n2C1. Then � is a path in
�.Gm; Sm/ which connects a

n1

0 and a
n2
m , lies outside the open ball B.e; r/, and has

length at most rŒMm.2r/m�2.f .2Mmr/ C 1/� C 7r . Therefore, Statement .Qm/ is
proved by choosing an appropriate constant Nm � max¹2m�2Mm; 2Mmº C 7.

We now prove the implication .Qm/ ) .PmC1/ for each m � 2. For Statement
.PmC1/ we only prove it for the case of � D �1 and the proof for the case of
� D 1 is almost identical. By Lemma 3.2 and Statement .Qm/ there is a path ˛ in
�.GmC1; SmC1/ which connects a2n

0 and a2n
m , lies outside the open ball B.e; r/,

and has length at most Nm.2r/m�1.f .2Nmr/C 1/. Since a�
mC1a2n

0 D a�1
mC1a2n

0 D



Divergence of finitely presented groups 1343

a2n
m a�1

mC1, we can connect a2n
m and a�

mC1a2n
0 by an edge f labeled by amC1 which

lies outside the open ball B.e; r/. Therefore, ˛ [ f is a path in �.GmC1; SmC1/

which connects a2n
0 and a�

mC1a2n
0 , lies outside the open ball B.e; r/, and has length

at most Nm.2r/m�1.f .2Nmr/ C 1/ C 1. Therefore, Statement .PmC1/ is proved
by choosing an appropriate constant MmC1 � 2m�1Nm C 1. �

We are now ready to prove the upper bound of the divergence of the group
Gm for m � 3. The proof of the next two propositions follow the same strategy.
Here is the geometric intuition behind this strategy. The basic idea is to connect
an arbitrary point x on the sphere S.e; r/ to one of the points ar

0 or a�r
0 by a path

lying outside the ball B.e; r=2/ with desired control on its overall length. This is
achieved as follows.

� Consider the bi-infinite geodesic path through the point x with edges labeled
by a0. Because this path is a geodesic, Lemma 4.1 implies that the two rays
emanating from x cannot both penetrate B.e; r=2/. Suppose that the positive
a0-ray emanating from x does not penetrate B.e; r=2/.

� Construct a “comb” by attaching a path (“tooth”) labeled a4r
0 at each vertex

along a geodesic from e to x. We argue that it is possible to connect the
endpoints of successive teeth of this comb by paths which avoid B.e; r/ and
which have controlled total length. The upper bounds on these lengths come
from Lemma 4.2 and Lemma 3.7.

In the proof of Proposition 4.3 we have to consider all the stable letters a3; : : : ; am.
The proof of Proposition 4.4 is easier since we only are dealing with a single
generator a2 which lies outside of a group with linear divergence.

Proposition 4.3. Let m � 3 be an integer. Let ¹ı�º be the divergence of the Cayley

graph �.Gm; Sm/. Then there is a constant Am such that for each � 2 .0; 1=2� we

have

ı�.r/ � Amrm�1.f .Amr/ C 1/ for each r � 1:

In particular, ı�.r/ � rm�1f .r/ for each � 2 .0; 1=2�,

Proof. We can assume that r is an integer. Let C3 be the constant in Lemma 3.7.
Then there is a path which connects a�r

0 and ar
0, lies outside the open ball B.e; r/,

and has length at most C3r C C3. It suffices to show there is a constant Bm

depending only on m such that for each point x on the sphere S.e; r/ we can either
connect x to ar

0 or connect x to a�r
0 by a path outside the open ball B.e; r=2/ with

the length at most Bmrm�1.f .Bmr/ C 1/. Now the proposition follows choosing
a suitable constant Am � 2Bm C 2C3.

Now we establish the Bmrm�1.f .Bmr/ C 1/ bound. Let ˛ be a bi-infinite
geodesic which contains x and has edges labeled by a0. Then ˛ is the union of two
rays ˛1 and ˛2 that share the initial point x. Assume that ˛1 traces each edge of ˛

in the positive direction and ˛2 traces each edge of ˛ in the negative direction. By
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Lemma 4.1, either ˛1 or ˛2 (say ˛1) lies outside the open ball B.e; r=2/. We now
construct a path � which connects x and ar

0, lies outside the open ball B.e; r=2/,
and has the length at most Bmrm�1.f .Bmr/ C 1/. We note that we can use an
analogous argument to construct a similar path connecting x and a�r

0 in the case
˛2 lies outside the open ball B.e; r=2/.

Constructing the comb and connecting endpoints of successive teeth. First, we
connect ar

0 and a4r
0 by the geodesic �0 labeled by a3r

0 . Then �0 lies outside the
open ball B.e; r/ and has length exactly 3r . Since jxjSm

D r , we can write
x D s1s2 � � � sr�1sr where si 2 Sm [ S�1

m . Let Rm be a constant which is greater
than four times of the constant C3 in Lemma 3.7 and greater than 4m times of
each constant Mi for 2 � i � m in Lemma 4.2. By Lemma 3.2, Lemma 3.7, and
Lemma 4.2 we can connect a4r

0 and s1a4r
0 by a path �1 which lies outside the open

ball B.e; 2r/ and has length at most Rmrm�2.f .Rmr/ C 1/.
Similarly for 2 � i � r we can connect .s1s2 � � � si�1/a4r

0 and .s1s2 � � � si /a
4r
0 by

a path �i which lies outside the open ball B.s1s2 � � � si�1; 2r/ and has length at most
Rmrm�2.f .Rmr/C1/. Finally, we connect xa4r

0 and x using the subsegment �rC1

of ˛1. Then �rC1 lies outside the open ball B.e; r=2/ and has length exactly 4r .
Let � D �0 [ �1 [ �2 [ � � � [ �r [ �rC1. Then � is a path which connects ar

0

and x, lies outside the open ball B.e; r=2/, and has length at most

Rmrm�1.f .Rmr/ C 1/ C 7r:

Since f is a non-decreasing function, the length of � is bounded above by
Bmrm�1.f .Bmr/ C 1/ by some appropriate choice of Bm � Rm C 7. �

The following proposition gives the quadratic upper bound for the divergence
of the group G2. The proof of this proposition proceeds exactly as the proof of
Proposition 4.3 and we leave it to the reader. The main difference is that we
only need the upper bounds on lengths on paths avoiding B.e; 2r/ which connect
a4r

0 with a2a4r
0 from statement .P2/ in Lemma 4.2. This bounds path lengths by

M2f .M2r/ C M2, and since f .r/ is sub-linear, we can replace this bound by a
linear function of r . The other length estimates are on paths avoiding B.e; 2r/

which connect a4r
0 with sa4r

0 for s a generator of G1 and these are also linear.

Proposition 4.4. Let ¹ı�º be the divergence of the Cayley graph �.G2; S2/. Then

there is a constant A such that for each � 2 .0; 1=2� we have

ı�.r/ � Ar2 C Ar for each r sufficiently large:

In particular, ı�.r/ � r2 for each � 2 .0; 1=2�,

We end this subsection by proving each group Gm in the Main Theorem is
one-ended.
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Proposition 4.5. Let m � 1 be an integer. Then the group Gm is one-ended.

Proof. G1 is one-ended because it is a direct product of two infinite groups. For
m � 2 note that (by retracting along geodesic rays based at e) it is sufficient
to prove that any two points on the sphere S.e; r/ can be connected by a path
avoiding B.e; r=2/ for large integers r . In the proof of Proposition 4.3 and
Proposition 4.4 we construct paths which avoid B.e; r=2/ and which connect an
arbitrary x 2 S.e; r/ to one of ar

0 or a�r
0 , and we can connect ar

0 to a�r
0 by a path

outside of B.e; r=2/ in the a0a1-plane. Therefore, the group Gm is one-ended. �

4.2. The lower bound

4.2.1. Lower bound strategy. In this section, we prove the lower bound for the
group divergence of Gm. In order to estimate divergence, we give lower bound
estimates for the lengths of open r-ball avoidant paths connecting two points on
the r-sphere. These lower bound estimates are obtained by cutting these paths
into pieces using am-hyperplanes (or am-corridors) and estimating the lengths of
these pieces. We use a 2-dimensional geometric model Xm for Gm to introduce
the hyperplanes and to make the lower bound estimates.

The lower bound for the divergence of Gm is obtained by considering the diver-
gence of the corner .˛; ˇ/e based at the identity e in Xm, where the geodesic ray ˛

has edges labeled by a0 and the geodesic ray ˇ has edges labeled by am. Proposi-
tion 4.16 shows that the length of an open r-ball avoidant path connecting ˛.r/ to
ˇ.r/ in Xm has length which dominates the function rm�1f .r/. The main part of
the proof of Proposition 4.16 is done by induction on the degree of the polynomial
portion of the estimate rm�1f .r/. The induction step is treated in detail (and in
more generality) in Proposition 4.14. In order to prove Proposition 4.14 we will
need to introduce the notions of a .0; k/-ray and of a k-corner. These are defined
below. Some of these definitions (hyperplane, k-corner, and r-avoidant path over
a k-corner) are modeled on the work of Macura [21].

4.2.2. Lower bound details. Let Y1 be the standard presentation 2-complex for
the group G1 with the finite generating set S1. For each m � 2 we construct
a presentation 2-complex for the group Gm by induction on m. Let Cm be the
Euclidean unit square with the torus orientation. We label two opposite directed
edges by am and identify them to obtain a cylinder Um. The remaining two edges of
Cm map to loops in Um, and we label them am�1 and a0 respectively. We glue the
cylinder Um to Ym�1 by the identification map which is the orientation preserving
isometry prescribed by the labeling of the edges. Then the resulting complex Ym

is a graph of spaces with one vertex space Ym�1 and one edge space S1.
Let Xm D zYm be the universal cover of Ym. We consider the 1-skeleton of Xm

as the Cayley graph �.Gm; Sm/. For 1 � i � m�1 the preimage of Yi in Xm D zYm

consists of infinitely many disjoint isometrically embedded copies of Xi D zYi . For
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each m � 2 we let sm be the line segment in Cm connecting the midpoints of the
opposite edges labeled am. We also denote by sm the image of sm in Um, as well as
its image in Ym after the gluing. Each component H of the preimage of sm � Ym

in Xm D zYm is isometric to the real line and separates Xm. Therefore, we call
H a hyperplane in Xm. Moreover, each hyperplane H is contained in a single
component ostar.H/ of the preimage of Int.Um/ � Ym in Xm D zYm. We note that
Um is a cylinder. Therefore, the closure star.H/ of ostar.H/ is isometric to a flat
strip.

The following definitions will be used many times in the proof of the lower
bound of our group divergence.

Definition 4.6 (k-rays and .0; k/-rays). Let m � 1 be an integer. A geodesic ray
˛ in the complex Xm is a k-ray for 0 � k � m if all edges of ˛ are labeled by ak.
A geodesic ray ˇ in the complex Xm is a .0; k/-ray for 2 � k � m if one of the
following holds:

(1) ˇ is a 0-ray;

(2) ˇ is a concatenation of �1�2, where �1 is a non-degenerate segment with
edges labeled by a0 and �2 is a k-ray.

Note that we do not assume that edges of each k-ray or edges of each .0; k/-ray
are oriented away from the base point.

Remark 4.7. Note that we only define .0; k/-ray for k � 2. The notion of a
.0; 1/-ray does not make sense, because

jar
0a�r

1 jSm
� f .r/

and f .r/ may be smaller than 2r . In particular, the path labeled by ar
0a�r

1 is not
a geodesic. Therefore, the definition of 1-corner given below is more restricted
than the definition of k-corner for k � 2.

Definition 4.8 (1-corner). Let ˛ be a 0-ray and let ˇ be a 1-ray in the complex
Xm such that they share the same initial point x. Then .˛; ˇ/x is called a 1-corner

at x.

We define k-corners for k � 2 as follows.

Definition 4.9 (k-corner for k � 2). Let 2 � k � m be integers. Let ˛ be a
.0; k/-ray and let ˇ be a k-ray in the complex Xm such that they share the same
initial point x. Then .˛; ˇ/x is called a k-corner at x.

The following definition recalls Macura’s notion of detour paths over corners
in [21].
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Definition 4.10 (an r-avoidant path over k-corner). Let 1 � k � m be integers
and let .˛; ˇ/x be a k-corner in Xm. For each r > 0 the path outside the open ball
B.x; r/ in Xm connecting a vertex of ˛ to a vertex of ˇ is called an r-avoidant

path over the k-corner .˛; ˇ/x in Xm.

The following lemma and its corollary study some basic facts about k-corners
for k � 2 and avoidant paths over them.

Lemma 4.11. Let k � 2 be an integer. Let ˛ be a .0; k/-ray and let ˇ be a k-ray

in the complex Xk such that they share the same initial point x. Assume that there

is a hyperplane in Xk that is dual to edges labeled by ak in ˛ and ˇ. Then H only

intersects the first edge of ˇ.

Proof. Let i be the smallest positive integer such that the hyperplane Hi dual to
the i th edge of ˇ intersects ˛. We observe that if i � 2, the hyperplane Hi�1 dual
to the .i � 1/th edge of ˇ must intersect Hi which is a contradiction. Therefore,
i must be equal to 1. Assume that some hyperplane Hj dual to the j th edge of ˇ

for j � 2 intersects ˛. Then the hyperplane H2 dual to the second edge of ˇ must
intersect ˛. We note that for i D 1; 2 each star.Hi/ � ostar.Hi/ consists of two
bi-infinite geodesics: one has edges labeled by a0 and the other has edges labeled
by ak�1. Therefore, we have a loop based at the endpoint other than x of the first
edge of ˇ which is labeled by an

k�1
a

p

k
am

0 for m ¤ 0 and n ¤ 0. This contradicts
to Lemma 3.4 and therefore the lemma is proved. �

Corollary 4.12. Let 2 � k � m be an integers. Let  be an r-avoidant path over

a k-corner .˛; ˇ/x in Xm. Then the length of  is at least r � 1 (therefore, at least

f .r/ � 1/.

Proof. We assume that ˛ is a .0; k/-ray, ˇ is a k-ray and  connects a vertex u in
˛ to a vertex v in ˇ. It suffices to prove that dSm

.u; v/ � r �1. By Lemma 3.2, we
have dSm

.u; v/ D dSk
.u; v/. Therefore, we only need to show dSk

.u; v/ � r � 1

and this inequality is a direct result of Lemma 4.11. �

The following lemma provides a technique to modify an avoidant path over a
k-corner to obtain another avoidant path over the same k-corner with the length
bounded above by the length of the original avoidant path multiplied by a fixed
constant. This technique will be used in the proof of Proposition 4.14.

Lemma 4.13. Let m be a positive integer. Let ˛ be a geodesic segment labeled by

a0 with endpoints x and y. Let z be a vertex in the complex Xm and assume that

r D min¹dSm
.x; z/; dSm

.y; z/º is positive. Then we can connect x and y by a path

ˇ with edges labeled by a0 and b such that ˇ lies outside the open ball B.z; r=2/

and `.ˇ/ � 11`.˛/.
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Proof. If ˛ lies outside the open ball B.z; r=2/, then we let ˇ D ˛. We now
assume that ˛ has non-empty intersection with B.z; r=2/. Let u be a vertex in
˛ \ B.z; r=2/. We note that the endpoints x and y of ˛ lie outside the open ball
B.z; r/. Therefore,

`.˛/ D dSm
.x; y/ D dSm

.x; u/ C dSm
.u; y/

� .dSm
.x; z/ � dSm

.u; z// C .dSm
.y; z/ � dSm

.u; z//

� .r � r=2/ C .r � r=2/ � r:

Since ˛ is a geodesic segment with edges labeled by a0, it is a subsegment
of a bi-infinite geodesic  with edges also labeled by a0. By Lemma 4.1 we can
choose two vertices x1 and y1 on  such that the following hold.

(1) The point x lies between two points u and x1 on  . The subsegment ˇ1 of
 connecting x and x1 lies outside the open ball B.z; r=2/ and its length is
exactly 2r .

(2) The point y lies between two points u and y1 on  . The subsegment ˇ2 of
 connecting y and y1 lies outside the open ball B.z; r=2/ and its length is
exactly 2r .

Since x lies between u and x1 on the bi-infinite geodesic  , we have dSm
.u; x1/ �

dSm
.x; x1/ D 2r . Therefore, dSm

.z; x1/ � dSm
.u; x1/ � dSm

.u; z/ � 3r=2.
Similarly, we also have dSm

.z; y1/ � 3r=2.

Let x2 D x1br and y2 D y1br . Let ˇ3 be the geodesic connecting x1 and x2

with edges labeled by b. Similarly, let ˇ4 be the geodesic connecting y1 and y2

with edges labeled by b. Then the lengths of both geodesics ˇ3 and ˇ4 are exactly
r . Since dSm

.x1; z/ � 3r=2 and dSm
.y1; z/ � 3r=2, both geodesics ˇ3 and ˇ4 lies

outside the open ball B.z; r=2/.

Since b commutes with a0, we can connect x2 and y2 by a geodesic ˇ5 with
edges labeled by a0 and `.ˇ5/ D dSm

.x2; y2/ D dSm
.x1; y1/. This implies that

`.ˇ5/ D dSm
.x1; y1/ D dSm

.x1; x/ C dSm
.x; y/ C dSm

.y; y1/

D 2r C `.˛/ C 2r D `.˛/ C 4r:

We now claim that ˇ5 lies outside the open ball B.z; r=2/. By the construction, we
observe that each point v in ˇ5 has distance at least r from u. Since dSm

.u; z/ <

r=2, we have

dSm
.v; z/ � dSm

.v; u/ � dSm
.u; z/ � r � r=2 � r=2:

In other words, ˇ5 lies outside the open ball B.z; r=2/ and we proved the claim.

Let ˇ D ˇ1 [ ˇ3 [ ˇ5 [ ˇ4 [ ˇ2. Then ˇ connects two points x and y, all
edges of ˇ are labeled by a0 and b, and ˇ lies outside the open ball B.z; r=2/. We
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note that the length of ˛ is at least r . Therefore,

`.ˇ/ D `.ˇ1/ C `.ˇ3/ C `.ˇ5/ C `.ˇ4/ C `.ˇ2/

D 2r C r C .`.˛/ C 4r/ C r C 2r

D `.˛/ C 10r � 11`.˛/: �

The following proposition is the most technical part of this section. Roughly
speaking, the following proposition shows the connection between the length
of an avoidant path over a k-corner and the length of an avoidant path over a
.k C 1/-corner.

Proposition 4.14. Let d � 2 be an integer and gW .0; 1/ ! .0; 1/ be a function.

Assume that for all m � d all r-avoidant paths over an m-corner in XmC1 have

length at least g.r/ for r sufficiently large. Then for all n � d C 1 all r-avoidant

paths over an n-corner in the complex XnC1 have length at least .r=180/g.r=4/

for r sufficiently large.

Proof. Let n � d C 1 and let  be an r-avoidant path over an n-corner .˛; ˇ/x

in the complex XnC1, where ˛ is a .0; n/-ray and ˇ is an n-ray. We can assume 

is the r-avoidant path with the minimal length over all n-corners in the complex
XnC1. In particular,  \˛ is consists of a vertex u and  \ˇ is consists of a vertex
v in Xn. We can also assume that x is the identity e. Therefore, the vertex u has
the form as

0at
n for some integers s ¤ 0 and t such that jsj C jt j � r . Similarly, the

vertex v has the form a
p
n for some integer p such that jpj � r . We only prove for

the case p > 0 and the proof for p < 0 is almost identical.
Since the endpoints of  both lie in Xn � XnC1, the path  is the concatenation

�1�1�2�2 � � � �`�`�`C1

satisfying the following conditions.

(1) Each �i intersects Xn only at its endpoints xi and yi . Here we consider
x1 D u and y`C1 D v. We also assume that xi is also an endpoint of �i�1 for
i � 2 and yi is an endpoint of �i for i � `;

(2) Each �i lies completely in the 1-skeleton of Xn.

We also observe that x�1
i yi is a group element in the cyclic subgroup hani or

in the cyclic subgroup ha0i for each i . If x�1
i yi is a group element in the cyclic

subgroup hani, then we replace �i by a geodesic � 0
i labeled by an. We note that

� 0
i in this case may have non-empty intersection with the open ball B.e; r=2/. If

x�1
i yi is a group element in the cyclic subgroup ha0i, then by Lemma 4.13 we

can replace �i a path � 0
i with edges labeled by a0 and b such that � 0

i lies outside
the open ball B.e; r=2/ and `.� 0

i / � 11 dSn
.xi ; yi / � 11`.�i /. The new path

 0 D � 0
1�1� 0

2�2 � � � � 0
`
�`� 0

`C1
lies completely in the 1-skeleton of Xn, shares two

endpoints u and v with  , and `. 0/ � 11`./. We call each subsegment � 0
i of
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 0 labeled by an (resp. labeled by a0 and b) a short-cut segment of type 1 (resp.
type 2).

We claim that  0 does not intersect ˇ at any point other than v. In fact, assume
by the way of contradiction that  0 intersects ˇ at some point other than v. Then
some short-cut segment � 0

i of type 1 must contain an edge of ˇ. Therefore, the
endpoint xi of � 0

i has the form a
q
n for some jqj � r . Therefore, the subpath � of

 connecting u and xi is also an r-avoidant path over an n-corner in the complex
XnC1. Also, j�j < j j which contradicts to the choice of  .

For each positive integer j we call ej the j th edge of ˇ. We know that all edges
ej are labeled by an. Let Hj be the hyperplane of the complex Xn that corresponds
to the edge ej . We now consider r=8 � j � r=4. Assume that r � 16. Then j � 2.
Therefore by Lemma 4.11 each hyperplane Hj must intersect  0. Let mj be the
point in the intersection Hj \  0 such that the subpath of  0 connecting mj and v

does not intersect Hj at point other than mj . Then mj is an interior point of an
edge fj labeled by an in  0. Since  0 does not intersect ˇ at any point other than v,
two edges ej and fj are distinct.

Let ǰ be the path in star.Hj / � ostar.Hj / that connects the terminal a
j
n of the

edge ej to some endpoint v0
j of the edge fj . Then ǰ is a part of an .n�1/-ray. If fj

is not an edge of a short-cut segment of  0, then we let vj D v0
j . Otherwise, fj is

an edge in some short-cut segment � 0

j̀
of type 1 of  0. In this case, we let vj be the

endpoint y
j̀

of � 0

j̀
. Let j̨ be the path in star.Hj C1/ � ostar.Hj C1/ that connects

the initial endpoint a
j
n of the edge ej C1 to some endpoint u0

j C1 of the edge fj C1.
Then j̨ is a part of an 0-ray. If fj C1 is not an edge of a short-cut segment of  0,
then we let uj C1 D u0

j C1. Otherwise, fj C1 is an edge in some � 0

j̀ C1
. In this case,

we let uj C1 be the endpoint x
j̀ C1

of � 0

j̀ C1
.

We see that . j̨ ; ǰ /
a

j
n

is a part of an .n � 1/-corner at a
j
n (see Figure 1). Let

 0
j be the subpath of  0 that connects v0

j and u0
j C1. Let  00

j be the subpath of  0 that
connects vj and uj C1. Let j be the subpath of  that connects vj and uj C1. Then
by the construction of  0 we have

`. 00
j / � 11`.j /:

Also,  0
j D �1 [  00

j [ �2, where �1 (resp. �2) is the (possibly degenerate)
subsegment of  0

j connecting v0
j and vj (resp. u0

j C1 and uj C1). Therefore,

`. 00
j / D `. 0

j / � .`.�1/ C `.�2//:

Since �1 and �2 are subpaths of short-cut segments of type 1 which are also
geodesics, we have

`.�1/ D d.v0
j ; vj / and `.�2/ D d.u0

j C1; uj C1/:

This implies that

`. 0
j / � .d.v0

j ; vj / C d.u0
j C1; uj C1// � 11`.j /:
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a
j
n

ǰ
j̨

u0
j C1

uj C1

v0
j

vj

ˇ

˛

`.j /

`.j C1/

Figure 1. . j̨ ; ǰ /
a

j
n

is a part of a .n � 1/-corner at a
j
n .

Therefore,
d.v0

j ; vj / C `.j / C d.u0
j C1; uj C1/ � `. 0

j /=11:

We note that each short-cut segment � 0 of type 2 of  0 lies outside the open
ball B.e; r=2/ by the construction. Therefore, � 0 also lies outside each open ball

B.a
j
n; r=4/ for r=8 � j � r=4. We now consider the case of type 1 short-cut

segments � 0 and we have two cases:

Case 1. For each short-cut segment � 0 of type 1 of  0 such that � 0 \  0
j ¤ ¿

the intersection � 0 \  0
j lies outside the open ball B.a

j
n; r=4/. Then,  0

j is an
.r=4/-avoidant path over the .n � 1/-corner containing . j̨ ; ǰ /

a
j
n

in Xn. Also,

n � 1 � d . Therefore, `. 0
j / � g.r=4/ for r sufficiently large by the induction

hypothesis. This implies that

d.v0
j ; vj / C `.j / C d.u0

j C1; uj C1/ � g.r=4/=11:

Case 2. We now assume that there is a short-cut segment � 0 of type 1 of  0 such

that � 0 \ 0
j ¤ ¿ and it intersects the open ball B.a

j
n; r=4// (see Figure 2). We will

prove that some subsegment of j is an .r=4/-avoidant path over an n-corner in

XnC1. Let f be an edge of � 0 \  0
j that lies inside the open ball B.a

j
n; .r=4/ C 1//.

Then f is labeled by an. Let H be the hyperplane in Xn that is dual the edge f .
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a
j
n

r=4

an

a
0

w

w0

Qw

f

f 0

uj C1

vj

Qv

Figure 2. Some short-cut segment of � 0
j

intersect the open ball B.a
j
n ; r=4/ and the subseg-

ment � of j that connects Qv and Qw is an .r=4/-avoidant path over an n-corner in XnC1.

Then H must intersect  0
j . Let x be the point in the intersection H \  0

j . Then x

is an interior point of an edge f 0 labeled by an in  0
j . Let ˛0 be the path labeled

by a0 in star.H/ � ostar.H/ that connect a vertex w of f to a vertex w0 of f 0. If
f 0 is not an edge in short-cut segment of  0, then w0 is a vertex of  . In this case,
we let Qw D w0 and Q̨ D ˛0. In the case f 0 is an edge in short-cut segment of � 00

of  0, we let Qw is an endpoint of � 00 that belongs to  0
j , let ˛00 be the subsegment � 00

connecting w0 and Qw, and let Q̨ D ˛0 [ ˛00. Therefore, Q̨ is a part of an .0; n/-ray.
Let Qv be the endpoint of � 0 that belongs to j and let Q̌ is a subsegment of � 0 that

connects w and Qv. Then Q̌ is a part of an n-ray and . Q̨ ; Q̌/w is a part of an n-corner.
Let � be the subsegment of j that connects Qv and Qw. We note that � lies outside

the open ball B.e; r/ in XnC1 and therefore it lies outside the open ball B.a
j
n; 3r=4/

in XnC1. Also, d.a
j
n ; w/ < r=4 C 1 � r=2 if we assume that r > 4. Therefore,

� lies outside the open ball B.w; r=4/. Thus, � is an .r=4/-avoidant path over an
n-corner in XnC1. Also, n � d C 1 > d . Therefore,

`.j / � `.�/ � g.r=4/:

Overall, we always have

d.v0
j ; vj / C `.j / C d.u0

j C1; uj C1/ � g.r=4/=11:

Therefore,

`./ �
X

r=8�j �r=4

.d.v0
j ; vj / C `.j / C d.u0

j C1; uj C1//

�
� r

16

��g.r=4/

11

�

�
r

180
g.r=4/: �
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In the following, Lemma 4.15 and Proposition 4.16 provide lower bounds on
the lengths of avoidant paths over k-corners. We note that Proposition 4.16 will
be used for the proof of the lower bound of the divergence of the group Gm for
m � 3.

Lemma 4.15. Let k � 1 be an integer. Then all r-avoidant paths over an k-corner

in XkC1 have length at least f .r/ � 1 for r sufficiently large.

Proof. The proof of the above lemma follows from Corollary 4.12 for the case
k � 2 and follows from Lemma 3.2 and Statement (2) in Lemma 3.5 for the case
k D 1. �

Proposition 4.16. For each integer d � 1 there is a positive number nd and a

.d � 1/-degree polynomial pd with a positive leading coefficient such that the

following holds. Let k � d be integers and let .˛; ˇ/x be a k-corner. Let  be an

r-avoidant path over the k-corner .˛; ˇ/x in the complex Xk . Then the length of

 is at least pd .r/f .r=nd / for r sufficiently large.

Proof. We first prove the following claim. For each integer d � 1 there is a
positive number nd and a .d � 1/-degree polynomial pd with a positive leading
coefficient such that the following holds. Let k � d be integers and let .˛; ˇ/x be
a k-corner. Let  be an r-avoidant path over the k-corner .˛; ˇ/x in the complex
XkC1. Then the length of  is at least pd .r/f .r=nd / for r sufficiently large.

The above claim can be proved by induction on d . In fact, the claim is true for
the base case d D 1 due to Lemma 4.15 and the fact that f .r/ � 1 � f .r/=2 for
r sufficiently large. Then Proposition 4.14 establishes the inductive step and the
above claim is proved. By Lemma 3.2, we observe that if  is an r-avoidant path
over a k-corner in the complex Xk � XkC1 then  is also an r-avoidant path over
the same k-corner in the complex XkC1. Therefore, the proposition follows from
the above claim. �

We now prove the lower bound for the divergence of the groups Gm for m � 3.

Corollary 4.17. Let m � 3 be an integer. Let ¹ı�º be the divergence of the Cayley

graph �.Gm; Sm/. Then rm�1f .r/ � ı�.r/ for each � 2 .0; 1=2�.

Proof. Let nm be the positive number and pm be the .m�1/-degree polynomial in
Proposition 4.16. We will prove that ı�.r=�/ � pm.r/f .r=nm/ for r sufficiently
large. Let ˛ be a 0-ray and let ˇ be a m-ray such that they share the initial
point at the identity e. Then .˛; ˇ/e is an m-corner. Let  be an arbitrary path
which connects ˛.r=�/ and ˇ.r=�/ and lies outside the open ball B.e; r/. Then by
Proposition 4.16, the length of the path  is bounded below by pm.r/f .r=nm/ for
r sufficiently large. This implies that ı�.r=�/ � pm.r/f .r=nm/ for r sufficiently
large. Therefore, rm�1f .r/ � ı�.r/ for each � 2 .0; 1�. �
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Before we prove the quadratic lower bound for the divergence of the group G2

we need the following proposition.

Proposition 4.18. Let n be an arbitrary integer greater than 16 and s be a

generator of G2 in H � hci. Let  be a path with endpoints .a2s/�n and .a2s/n

which avoids the open ball B.e; n/. Then the length of  is at least n2=16.

Proof. For each 0 � i � n=8 let ei be an edge labeled by a2 with endpoints .a2s/i

and .a2s/ia2. Then the hyperplane Hi of the complex X2 that corresponds to ei

intersects  . Let ui be the point in this intersection such that the subpath of 

connecting ui and .a2s/n does not intersect Hi at point other than ui . Then ui is
the midpoint of an edge fi of  .

Let ˛i be the path in star.Hi/ � ostar.Hi/ that connects .a2s/i to an endpoint
of fi . Therefore, ˛i is labeled by a0 and the endpoint vi of ˛i in  has the form
.a2s/ia

mi

0 . Since j.a2s/i jS2
� 2i � n=2 and .a2s/i a

mi

0 lies outside the open ball
B.e; n/, then jmi j � n � n=2 � n=2. Let ˇi be the path in star.Hi / � ostar.Hi/

that connects .a2s/ia2 to an endpoint of fi . Therefore, ˇi is labeled by a1 and the
endpoint wi of ˇi in  has the form .a2s/ia2a

ni

1 . Since j.a2s/i a2jS2
� 2i C 1 �

n=2 and .a2s/i a2a
ni

1 lies outside the open ball B.e; n/, then jni j � n�n=2 � n=2.
For each 1 � i � n=8 let i be the subpath of  that connects wi�1 and vi .

Therefore, the length of i is at least dS2
.wi�1; vi/. Also,

dS2
.wi�1; vi/ D jw�1

i�1vi jS2
D ja

�ni�1

1 sa
mi

0 jS2

and the length of the element a
�ni�1

1 sa
mi

0 is jni�1j C jmi j C 1. We see this as
follows

dG2
.1; a

�ni�1

1 sa
mi

0 / D dG1
.1; a

�ni�1

1 sa
mi

0 /

D dH�hciZ
2.1; a

�ni�1

1 sa
mi

0 /

� dZ2.1; a
�ni�1

1 hci/ C dH .hci; shci/ C dZ2.hci; a
mi

0 /

D jni�1j C 1 C jmi j:

The first two equalities hold because the subgroup inclusions are isometric em-
beddings with the respective generating sets. The inequality holds from Bass-
Serre theory (of free products with amalgamation). For the last equality, we have
dH .hci; shci/ D 1 because s 62 hci. The remaining parts are easily seen by killing
c D a0a�1

1 in Z
2 to get Z generated by a0 D a1.

Therefore,

`.i / � jni�1j C jmi j C 1 � n=2 C n=2 C 1 � n:

This implies that

`./ �
X

1�i�n=8

`.i / � n2=16: �
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We now prove the quadratic lower bound for the divergence of the group G2.

Corollary 4.19. Let ¹ı�º be the divergence of the Cayley graph �.G2; S2/. Then

r2 � ı�.r/ for each � 2 .0; 1=2�.

Proof. We will prove that ı�.r=�/ � r2=256 � 2r=� for r sufficiently large. Let
s be a generator of G2 in H � hci. Let ˛ be bi-infinite geodesic containing the
identity element e with edges labeled by a2 and s alternately. Let x and y be the
two points in the intersection ˛ \ S.e; r=�). We assume that the subsegment of ˛

from e to x traces each edge of ˛ in the positive direction and the subsegment of
˛ from e to y traces each edge of ˛ in the negative direction. Let ˇ be an arbitrary
path with endpoints x and y that lies outside the ball B.e; r/. Let n be the largest
integer such that n � r=2. Therefore, n � r=2 � 1 � r=4 for r sufficiently large.
Let ˛1 be a subsegment of ˛ that connects .a2s/n to x. Therefore, ˛1 lies outside
the open ball B.e; n/ and has the length bounded above by r=�. Similarly, let ˛2 be
a subsegment of ˛ that connects .a2s/�n to y. Therefore, ˛2 lies outside the open
ball B.e; n/ and has the length bounded above by r=�. Let  D ˛1 [ˇ [˛2. Then,
 is a path with endpoints .a2s/�n and .a2s/n which avoids the open ball B.e; n/.
Therefore, the length of  is at least n2=16 by Proposition 4.18. Therefore,

`.ˇ/ � `./ � 2r=� � n2=16 � 2r=� � r2=256 � 2r=�:

Thus, ı�.r=�/ � r2=256 � 2r=� for r sufficiently large. This implies that r2 �

ı�.r/. �

5. Geodesic divergence

Proposition 5.1 establishes the geodesic divergence statements in the Main Theo-

rem; namely, that DivGm

hami
is equivalent to rm�1f .r/. In Proposition 5.3 we prove

that the divergence of a contracting quasi-geodesic is at least quadratic. The latter
result can be found implicitly in the literature (for example, it can be deduced by
combining techniques of Lemma 6.5 of [26] and Proposition 3.5 of [24]), but we
provide a detailed proof here for completeness.

Proposition 5.1. Let m � 2 be an integer. Let ˛m be a bi-infinite geodesic in the

Cayley graph �.Gm; Sm/ with edges labeled by am. Then the divergence of ˛m is

equivalent to the function rm�1f .r/.

Proof. Without loss of generality we can assume that ˛m.0/ D e and ˛m.1/ D am.
Let ˇW Œ0; 1/ ! �.Gm; Sm/ be a 0-ray with ˇ.0/ D e. By Lemma 4.2 there is a
number M > 0 such that the following hold. Let r > 0 be an arbitrary number.
There are a path 1 outside the open ball B.˛m.0/; r/ connecting ˛m.�r/ and ˇ.r/
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and a path 2 outside the open ball B.˛m.0/; r/ connecting ˛m.r/ and ˇ.r/ such
that the lengths of 1 and 2 are both bounded above by Mrm�1.f .Mr/ C 1/.
Therefore, the path  D 1 [ 2 lies outside the open ball B.˛m.0/; r/, connects
˛m.�r/ and ˛m.r/, and has length at most 2Mrm�1.f .Mr/ C 1/. This implies
that Div˛m

.r/ � 2Mrm�1.f .Mr/ C 1/.
We now prove a lower bound for Div˛m

. Let nm be the constant and pm be
the .m � 1/-degree polynomial in Proposition 4.16. Let  0 be an arbitrary path
outside the open ball B.˛m.0/; r/ connecting ˛m.�r/ and ˛m.r/. Let e1 be the
edge of ˛m with endpoints e and am. Then the hyperplane H of the complex Xm

corresponding to e1 must intersect  0. Therefore, there is a 0-ray ˇ1 with initial
point at e that intersects  0 at some vertex v. This implies that the subpath 1 of  0

connecting ˛m.r/ and v is an r-avoidant path over the m-corner .˛mjŒ0;1/; ˇ1/e.
By Proposition 4.16 for r sufficiently large we have

`. 0/ � `.1/ � pm.r/f .r=nm/:

This implies that Div˛m
.r/ � pm.r/f .r=nm/ for r sufficiently large. Therefore,

the divergence of ˛m is equivalent to the function rm�1f .r/. �

We now give the proof for the fact the divergence of a contracting quasi-
geodesic is at least quadratic. First we need the following lemma.

Lemma 5.2. Let ˛W .�1; 1/ ! X be an .L; C /-quasi-geodesic in a geodesic

space X and let D � 1 be a constant. For all r > 4L3.C C 1/ C 4LC and all

paths  lying outside the open ball B.˛.0/; r=L � C / and connecting ˛.�r/ and

˛.r/, there exist points x and y in  with the following properties:

(1) d.x; ˛/ D d.y; ˛/ D s and d.x; y/ � 6Ds, and

(2) the subsegment of  connecting x and y lies outside the open s-neighborhood

of ˛,

where s D r=Œ.8L3 C 4L/.6D C 4/�.

Proof. We first claim that  does not lie in the .2s/-neighborhood of ˛. We
assume by the way of contradiction that  lies in the .2s/-neighborhood of ˛.
Let ˛.�r/ D x0; x1; : : : ; xn D ˛.r/ be points  such that d.xi�1; xi/ < 1 for each
i 2 ¹1; 2; : : : ; nº. For each i 2 ¹1; 2; : : : ; n � 1º we let ti in .�1; 1/ such that
d.xi ; ˛.ti// < 2s. We also let t0 D �r and tn D r . For each i 2 ¹1; 2; : : : ; nº we
let Ii be the interval in .�1; 1/ with endpoints ti�1 and ti . Then we observe that
Œ�r; r� �

S

Ii . Therefore, 0 2 Ip for some p 2 ¹1; 2; : : : ; nº.
We remind the reader that the endpoints of Ip are tp�1 and tp. By the choice

of tp�1 and tp and the triangle inequality, we have

d.˛.tp�1/; ˛.tp// � d.˛.tp�1/; xp�1/ C d.xp�1; xp/ C d.xp; ˛.tp//

< 2s C 1 C 2s � 4s C 1:
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Since ˛ is an .L; C /-quasi-geodesic, we have jtp � tp�1j < L.4s C 1 C C /. Also,
0 lies between tp�1 and tp. Therefore, jtp � 0j < L.4s C 1 C C /. This implies that

d.xp ; ˛.0// � d.xp ; ˛.tp// C d.˛.tp/; ˛.0//

< 2s C Ljtp � 0j C C

� 2s C L2.4s C 1 C C / C C

� .4L2 C 2/s C L2.C C 1/ C C

�
r

2L
C

� r

2L
� C

�

�
r

L
� C

that contradicts to the fact  lies out side the open ball B.˛.0/; r=L � C /. There-
fore,  does not lie in the .2s/-neighborhood of ˛.

Now we let ˛.�r/ D y0; y1; : : : ; ym D ˛.r/ be points  such that the following
hold:

(1) d.yi ; ˛/ D s for each i 2 ¹1; 2; : : : ; m � 1º;

(2) for each i 2 ¹1; 2; : : : ; mº either the subpath i of  connecting yi�1 and yi

lies completely outside the open s-neighborhood of ˛ or all the points in i

excepts its endpoints yi�1 and yi lies inside the open s-neighborhood of ˛.

We let si in .�1; 1/ such that d.yi ; ˛.si// < 2s for i 2 ¹1; 2; : : : ; m � 1º. We
let s0 D �r and sm D r . For each i 2 ¹1; 2; : : : ; mº we let Ji be the interval with
endpoints si�1 and si . Then we observe that Œ�r; r� �

S

Ji . Then 0 2 Jq for some
q 2 ¹1; 2; : : : ; mº.

We remind the reader that the endpoints of Jp are sq�1 and sq . If the all
points of the subsegment q of  excepts yq�1 and yq lie in open s-neighborhood
of ˛, then we can obtain a contradiction by using a similar argument as above.
Therefore, the subsegment q of  must lie outside the open s-neighborhood of ˛.

We observe that

d.˛.sq/; ˛.0// � d.yq ; ˛.0// � d.yq ; ˛.sq//

�
� r

L
� C

�

� 2s

�
r

L
�

r

4L
�

r

4L

�
r

2L
:

Therefore,

jsq � 0j �
r

2L2
�

C

L
�

r

4L2
:
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Similarly, jsq�1 � 0j � r=.4L2/. Since 0 lies between sq�1 and sq , we have
jsq � sq�1j � r=.2L2/. So,

d.yp; yp�1/ � d.˛.sp/; ˛.sp�1// � d.˛.sp/; yp/ � d.˛.sp�1/; yp�1/

�
� 1

L
jsq � sq�1j � C

�

� 2s � 2s

�
r

2L3
� C � 4s

�
r

4L3
� 4s

� .6D C 4/s � 4s

� 6Ds:

This implies that x D yq�1 and y D yq are the desired points on  . �

We now prove the fact the divergence of a contracting quasi-geodesic is at least
quadratic in the following proposition.

Proposition 5.3. Let ˛W .�1; 1/ ! X be an .L; C /-quasi-geodesic in a geodesic

space X . Assume that ˛ is also an .A; D/-contracting quasi-geodesic. Then the

divergence of ˛ is at least quadratic.

Proof. Since ˛ is an .A; D/-contracting quasi-geodesic, there exist a map

�˛W X �! ˛

satisfying:

(1) �˛ is .D; D/-coarsely Lipschitz;

(2) for any y 2 ˛, d.y; �˛.y// � D;

(3) for all x 2 X , if we set R D Ad.x; ˛/, then diam.�˛.BR.x/// � D.

We first show that for all x 2 X ,

d.x; �˛.x// � 2Dd.x; ˛/ C 4D:

Let y 2 ˛ such that d.x; y/ � d.x; ˛/ C 1. Then from the definition of
.A; D/-contracting we have

d.x; �˛.x// �d.x; y/ C d.y; �˛.y// C d.�˛.y/; �˛.x//

�d.x; ˛/ C 1 C D C Dd.x; y/ C D

�d.x; ˛/ C 1 C D C D.d.x; ˛/ C 1/ C D

�.D C 1/d.x; ˛/ C 3D C 1

�2Dd.x; ˛/ C 4D:
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We now prove that

Div˛.r/ �
� A

4.8L3 C 4L/2.6D C 4/2

�

r2

for each r > 4L3.C C 1/ C 4LC C 8.8L3 C 4L/.6D C 4/. Let

s D
r

.8L3 C 4L/.6D C 4/

and let  be a path outside the open ball B.˛.0/; r=L � C /. Then by Lemma 5.2
we can find two points x and y in  with the following properties:

(1) d.x; ˛/ D d.y; ˛/ D s and d.x; y/ � 6Ds;

(2) T the subsegment � of  connecting x and y lies outside the open s-neigh-
borhood of ˛.

Therefore,

d.�˛.x/; �˛.y// � d.x; y/ � d.x; �˛.x// � d.y; �˛.y///

� 6Ds � .2Dd.x; ˛/ C 4D/ � .2Dd.y; ˛/ C 4D/

� 6Ds � 2.2Ds C 4D/

� 2Ds � 8D � Ds:

Let R D As, let x D x0; x1; x2; : : : ; xn D y be points in �, and let �i be
the subsegment of � connecting xi�1 and xi for i 2 ¹1; 2 : : : ; xnº such that
R=4 � `.�i / � R=2 and `.�/ D

Pn
iD1 `.�i /. This implies

`.�/ D

n
X

iD1

`.�i / �
nR

4
:

Since �˛ is an .A; D/-contracting map and d.xi�1; xi/ < Ad.xi�1; ˛/, we have
d.�˛.xi�1/; �˛.xi // � D for each 1 � i � n. Thus

d.�˛.x/; �˛.y// �

n
X

iD1

d.�˛.xi�1/; �˛.xi // � nD:

Since d.�˛.x/; �˛.y// � Ds, we have n � s. Therefore,

`.�/ �
nR

4
�

sR

4
�

As2

4
�

Ar2

4.8L3 C 4L/2.6D C 4/2
:

This implies that

Div˛.r/ �
� A

4.8L3 C 4L/2.6D C 4/2

�

r2

for each r > 4L3.C C 1/ C 4LC C 8.8L3 C 4L/.6D C 4/. Thus, the divergence
of ˛ is at least quadratic. �
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