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Abstract. For a compact surface S D Sg;n with 3g C n � 4, we introduce a family

of unitary representations of the mapping class group Mod.S/ based on the space of

measured foliations. For this family of representations, we show that none of them has

almost invariant vectors. As one application, we obtain an inequality concerning the action

of Mod.S/ on the Teichmüller space of S . Moreover, using the same method plus recent

results about weak equivalence, we also give a classification, up to weak equivalence, for

the unitary quasi-representations with respect to geometrical subgroups.
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1. Introduction

Let S D Sg;n be a compact, connected, orientable surface of genus g with n

boundaries, the mapping class group Mod.S/ of S is defined to be the group of

isotopy classes of orientation-preserving homeomorphisms ofS which preserving

each boundary components (without the assumption that it should fix each bound-

ary pointwise). Throughout this paper, .g; n/ is assumed to satisfy 3g C n � 4

and a subsurface of S is allowed to be disconnected.

Given a discrete group G, a unitary representation is a pair .�; V / where V is

a Hilbert space and � WG ! U.V / is a homomorphism from G to the group of

all unitary operators of V , see [4]. Infinite dimensional unitary representations

of mapping class groups Mod.S/ received a lot of attention recently. In [20], the

author considers unitary representations given by the action of Mod.S/ on the

curve complex associated to S . See [3, 2, 12] for more topics in this direction.

The group Mod.S/ acts on the space of measured foliations MF.S/, which

is defined as the set of equivalence classes of measured foliations on S . As the

action are ergodic with respect to generalized Thurston measures� [16, 17, 14, 13]

https://creativecommons.org/licenses/by/4.0/


1400 B. Ma

(see Section 3.1 for a brief description of the measures), one obtains a family of

unitary representations by considering the induced action of Mod.S/ on the space

L2.MF.S/; �/. It is quite easy to see that the family of unitary representations

considered in [20] is a special subfamily. However, unlike representations studied

in [20], Example 3.5 will show that some of representations considered here are

reducible.

Definition 1.1. Let .�; V / be a unitary representation of a discrete group G. The

representation � is said to have almost invariant vectors if for every finite set

K � G and every � > 0, there exists v 2 V such that

max
g2K
k�.g/v � vk < �kvk:

The main result of this paper is about the existence of almost invariant vectors

for the representation �� associated to the action of Mod.S/ on L2.MF.S/; �/.

The existence of such vectors for other representations of mapping class group has

been discussed in [1].

Theorem 1.2 (Theorem 4.1). For a compact surface S D Sg;n with 3g C n � 4
and each generalized Thurston measure �, the associated representation �� of
Mod.S/ does not have almost invariant vectors.

The first direct application of this theorem is the following:

Corollary 1.1 (Corollary 4.1). LetS D Sg;n be a compact surface with 3gCn � 4
and � be a generalized Thurston measure, then

H 1.Mod.S/; ��/ D H 1.Mod.S/; ��/;

where �� is the associated representation of Mod.S/.

For the second application, we will obtain a geometric inequality of indepen-

dent interests concerning the action of Mod.S/ on the Teichmüller space Teich.S/

of S .

Corollary 1.2 (Corollary 4.2). LetS D Sg;n be a compact surface with 3gCn � 4
and 
 be the isotopy class of an essential simple closed curve on S . Then there
exists a finite subset ¹�1; : : : ; �nº of Mod.S/ consisting of pseudo-Anosov mapping
classes and a constant � > 0, such that, for every point X in Teich.S/, we have

max
i2¹1;2;:::;nº

° X

˛2Mod.S/:


e�2`X.˛/.e�
�i
X

.˛/ � 1/2
±
� �

X

˛2Mod.S/:


e�2`X.˛/;

where ��i

X
.˛/ D `X.˛/ � `�i :X.˛/ and `X.˛/ is the geodesic length of ˛.
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For unitary representations associated to discrete measures on the space of

measured foliations, some of them are irreducible and some are reducible. We

will discuss irreducible decompositions (See Proposition 5.1). We will also use

the same method as in the proof of the main theorem, combined with recent

results in [8, 7, 5], to give a classification for a family of quasi-regular unitary

representations, which is a stronger version of Corollary 5.5 in [20]. Recall that,

given two unitary representations .�;H/ and .�;K/ of a discrete group G, � is

weakly contained in � if for every � in H, every finite subset Q of G and � > 0,

there exist �1; : : : ; �n in K such that

max
g2Q

ˇ̌
ˇh�.g/�; �i �

nX

iD1

h�.g/�i ; �ii
ˇ̌
ˇ < �:

If � is weakly contained in � and � is weakly contained in � , then � and� are said

to be weakly equivalent. By Proposition F.1.7 in [4], Definition 1.1 is equivalent

to say that the trivial representation is weakly contained in the representation � .

We then have the following theorem.

Theorem 1.3 (Theorem 5.3). Let S D Sg;n be a compact surface with 3gCn � 4.

Let 
 D
Pk

iD1 
i and ı D
Pl

iD1 ıi , where ¹
iº and ¹ıiº are two collections of
pairwise disjoint, distinct isotopy classes of essential simple closed curves on S .

(1) If at least one of k and l is not 3g � 3 C n, then the associated unitary
representations �
 and �ı are weakly equivalent if and only if 
 and ı are
of the same topological type (that is, there is a mapping class f so that

 D f .ı/).

(2) Suppose S is not S0;4; S1;1; S1;2; S2;0. If k D 3g � 3C n, then �
 is weakly
equivalent to the regular representation �S .

(3) SupposeS is not S0;4; S1;1; S1;2; S2;0. If k ¤ 3g�3Cn, then �
 is not weakly
contained in �S .

This paper is organized as follows. Section 2 is devoted to preliminary for

group cohomology with coefficients in unitary representations. The proof of

the main theorem is given in Section 4. The proof is divided into two general

lemmas: Lemma 4.2 and Lemma 4.5, and concluded by a technical statement,

namely Proposition 3.2, concerning actions of subgroups of mapping class groups

on MF.S/. Section 3 is mainly devoted to this proposition and Section 5 is for

irreducible decompositions and the classification up to weak equivalence.
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2. Cohomology with coefficients in representations

Cohomology and reduced cohomology. For a discrete group G and a unitary

representation .V; �/, one can talk about both cohomology and reduced cohomol-

ogy group of G with coefficients in � . Definitions of cohomology and reduced

cohomology of discrete groups with coefficients in a representation � are stan-

dard, so we refer to [15, 3, 4]. We briefly recall that one defines following vector

spaces for a unitary representation .V; �/:

Z1.G; �/
:
D ¹bWG ! V j b.gh/ D b.g/C �.g/b.h/; for all g; h 2 GºI

B1.G; �/
:
D ¹b 2 Z1.G; �/ j there exists v 2 V; such that for all g 2 G;

b.g/ D �.g/v � vºI

H 1.G; �/
:
DZ1.G; �/=B1.G; �/I

H 1.G; �/
:
DZ1.G; �/=B1.G; �/;

where the closure in the last one is for uniform convergence. The vector space

H 1.G; �/(resp. H 1.G; �/) is the first (resp. reduced) cohomology group with

coefficients in � .

Almost invariant vectors. The following Guichardet’s theorem provides a way

to determine if H 1.G/ D H 1.G/.

Theorem 2.1 ([15]). Let G be a finitely generated discrete group and .V; �/ be a
unitary representation without nonzero invariant vectors. Then the following two
are equivalent:

(1) the associated first reduced cohomology is the same as the first cohomology,
that is, H 1.G; �/ D H 1.G; �/;

(2) the representation � does not have almost invariant vectors.

One observation is that not having almost invariant vectors is closed under

taking limit, more precisely, we have the following lemma.

Lemma 2.2. Let .V; �/ be a unitary representation of G andW be a G-invariant
vector subspace of V such that the closure SW D V . Then � does not have almost
invariant vectors if and only if the representation �jW inW does not have almost
invariant vectors.
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Proof. Suppose that the pair .K; �/, where K is a finite subset of G and � > 0, is

given by the condition that �jW does not have almost invariant vector. Given any

element � 2 V �W , there is a sequence of elements ¹�nº � W such that �n ! �

as n!1. Then, for n large enough,

max
g2K
k�.g/� � �k D max

g2K
k�.g/� � �.g/�n C �.g/�n � �n C �n � �k

� max
g2K
k�.g/�n � �nk � 2max

g2K
k�n � �k � �k�k � ı:

Now ı can be small enough, so

max
g2K
k�.g/� � �k � �k�k;

Which completes the proof of one direction. The opposite direction is obvious.

�

Another easy observation is that, in order to show a representation of group

does not have almost invariant vectors, one only need to pass to a subgroup.

Lemma 2.3. A unitary representation .�; V / of a group G does not have almost
invariant vectors iff there exists a subgroup H of G such that the unitary repre-
sentation .�jH ; V / of H does not have almost invariant vectors.

Amenable groups. A basic strategy in this article is to use the regular repre-

sentation of free group F2 of rank 2, so the following theorem is of fundamental

importance.

Theorem 2.4 ([9]). For the left regular representation � of a finitely generated
discrete group G on `2.G/, � has almost invariant vectors if and only if G is
amenable.

Remark 2.5. Since F2 is not amenable, the left regular representation of F2

on `2.F2/ does not have almost invariant vectors. We will regard `2.F2/ as

`2-functions on vertices of the Cayley graph of F2 with respect to a chosen

generating set, and thus further identify `2.F2/ with the vector space V, where

V D
° X

i

˛igi W
X

i

j˛i j
2 <1; ˛i 2 C; gi 2 F2

±
:

3. Generalized Thurston measures

and dynamics on measured foliation spaces

In this section we will describe the integral theory on the space of measured

foliations and the action of subgroups of mapping class groups on the space
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of measured foliations. A subgroup of Mod.S/ in which all elements except

the identity are pseudo-Anosov mapping classes will be called a pseudo-Anosov
subgroup.

3.1. Measures and L2-theory on MF.S/

3.1. Measures and L2-theory on MF.S/ The space of measured foliations

MF.S/ of a surface S is the set of equivalence classes of transversal measured

(singular) foliations on S . Using train tracks, one can show that MF.S/ has a

piecewise linear integral structure such that Mod.S/ acts on it as automorphisms

(that is, preserves this piecewise linear integral structure), see [22]. Therefore, in

such local PL coordinates, Mod.S/ acts as linear transformations.

A consequence of this PL structure is that MF.S/ can be equipped with a

Mod.S/-invariant measure �Th, called the Thurston measure on MF.S/. More-

over, this measure can be generalized to obtain a family of locally finite, ergodic

Mod.S/-invariant measures �
Œ.R;
/�
Th on MF.S/ for complete pairs .R; 
/, which

will be called generalized Thurston measures. We present a brief summary of the

construction of generalized Thurston measures �
Œ.R;
/�

Th according to [14].

Let 
 D
P

i ci
i ; ci > 0 be a multi-curve on S , that is, 
 is a collection

of isotopy classes of pairwise distinct, pairwise disjoint essential simple closed

curves ¹
iº on S so that each curve has been weighted by ci > 0. After fixing a

hyperbolic structure on S , one can think a multi-curve 
 D
P

i ci
i ; ci > 0 as a

collection of simple closed geodesics ¹e
iº on S with e
i labeled by a positive real

number ci , where e
i is the unique geodesic representative in 
i . We will use 
 to

denote both the formal sum
P

i ci
i and the subset
F e
i of S . Cutting S along 
 ,

one obtains a decomposition into a disjoint union

S � 
 D
G
Ti ;

where ¹Tiº is a collection of subsurfaces of S with boundary smoothly embedded

in S . For

R D
G

Si

with ¹Siº � ¹Tiº, the pair .R; 
/ will be called a complete pair. For a complete

pair .R D
F
Si ; 
/, define

MF.R/ D
Y

i

MF
�.Si/;

where MF
�.Si/ D MF.Si/

S
0Si

in which 0Si
is the zero foliation on Si . The

space MF.R/ can be Mod.R; 
/-embeded on MF.S/ via enlarging boundary

curves (see [11, Exposé 6.6] for enlarging curves). Denote by M.R/ the image
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of this embedding. This set is endowed with the product measure �R D
Q
�i

Th,

where �i
Th is the Thurston measure of Si . Define also

M.R; 
/ D ¹FC 
 WF 2M.R/º �MF.S/:

The inclusion induces a measure on MF.S/, denoted by �
Œ.R;
/�

Th and supported

on the set of Mod.S/-orbits of M.R; 
/, from the product measure �R.

Special cases are when R D ; and 
 is the isotopy class of a non-separating

curve, or when R D S and 
 D ;. The corresponding measure in the case of

R D ; is a discrete measure, denoted by �
 and supported on Mod.S/:
 which

is regarded as a subset of MF.S/, while in the case of 
 D ; it is exactly the

Thurston measure �Th on MF.S/.

The following remarkable theorem indicates that generalized Thurston mea-

sures �
Œ.R;
/�

Th are exactly all locally finite, Mod.S/-invariant, ergodic measures on

MF.S/.

Theorem 3.1 (Hamenstädt [13], Lindenstrauss and Mirzakhani [14]). Any locally
finite Mod.S/-invariant ergodic measure on MF.S/, up to a constant multiple, is
in the form of �Œ.R;
/�

Th , where .R; 
/ is a complete pair.

3.1.2. Associated L2-theory over MF.S/

The case of discrete measures. Recall that when R D ;, �
Œ.R;
/�
Th is the discrete

measure supported on the set Mod.S/:
 , where Mod.S/:
 is regarded as a subset

of MF.S/. We will first deal with the case that 
 is the isotopy class of an essential

simple closed curve on S and denote the measure by �
 .

Let X
 D C0

 .S/ be the subset of vertices of the curve complex consisting of

Mod.S/:
 . By considering the Dirac measure supported onX
 , one can define the

Hilbert space `2.X
 /. It is clear that `2.X
 / is Mod.S/-equivariantly isomorphic

to L2.MF.S/; �
/. On the other hand, let G
 D Mod.S; 
/ D Stab
 .Mod.S//

be the set of all elements in Mod.S/ that fix 
 ; then `2.X
 / can be further

Mod.S/-equivariantly identified with `2.Mod.S/=G
/. These two spaces give

the same unitary representation of Mod.S/, actually we have

Theorem 3.2 (Paris [20]). The infinite dimensional unitary representation of
Mod.S/ given by `2.Mod.S/=G
/ is irreducible.

Remark 3.3. This theorem was proved in a more general setting for 1-multi-

curves on S , that is, 
 D
P
ci
i with ci D 1 for all i .

Thus, in particular, this representation does not have non-zero invariant vec-

tors. Meanwhile, the irreducibility also allows us to describe `2.Mod.S/=G
/

more geometrically.
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The first description of `2.Mod.S/=G
/ is classical. For f 2 `2.X
 /, let

Supp.f / D ¹v 2 X
 W f .v/ ¤ 0º. The function f has compactly support if

the cardinal of Supp.f / is finite. Define the subspace W of `2.X
 / as the set

of elements in `2.X
 / which have compactly support. As X
 is discrete, the

following notation will be used to represent f 2 W : f D
Pn

iD1 ki˛i . Note

that W is Mod.S/-invariant and the closure SW of W in `2.X
 / is then `2.X
 /

itself. This description will be used in the proof of the main theorem in the case

of discrete measures.

The second description of `2.Mod.S/=G
/ needs more explanations. Let

Teich.S/ be the Teichmüller space of S , and for each point X of Teich.S/, define

a function on X
 by

fX.˛/ D e
�`X.˛/; ˛ 2 X
 ;

where `X.˛/ is the length of the unique geodesic in the isotopy class ˛.

Proposition 3.1. The function defined above is actually in `2.X
 /.

Proof. It amounts to say X

˛2X


e�2`X.˛/ <1:

Thus this proposition is a corollary of the result of [6] or [19] about the polynomial

growth of simple closed geodesics. �

Let W 0 be the subspace of `2.X
 / which consisting of finite linear combina-

tions of elements in ¹fXWX 2 Teich.S/º. It is also easy to see that this subspace

is Mod.S/-invariant. Also by irreducibility, the closure W 0 of W 0 is `2.X
 /.

Remark 3.4. The second description gives rise to a parametrization for `2.X
 /

via the Teichmüller space, thus it can be viewed as a reply to Problem 2.5 in [12]

for representations under consideration.

For the case of R D ; and 
 is a general integral multicurve 
 D
P
ki
i with

ki 2 N, Theorem 3.2 is not true in general as shown by the following

Example 3.5. Consider the genus 2 closed surface S , regarded as a quotient

along boundaries of holed sphere with four disjoint open disks deleted. Let


 D 2
1 C 3
2; ı D 
1 C 
2, where 
1 and 
2 are isotopy classes of two distinct

images of boundaries. Obviously, there is a mapping class s that permutes the 
i ’s.

Denote H D Mod.S; 
/ and H 0 D Mod.S; ı/, then we have the exact sequence:

1 �! H �! H 0 �! Z2 �! 1:
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That is, H is a normal subgroup of H 0 of index 2. This exact sequence allows

us to define a self-map of the left cosets ¹fH º as follows. Write H 0 as H
F
sH .

There are two Mod.S/-invariant bijections:

Mod.S/:
  ! ¹Œg� D gH º;

Mod.S/:ı ! ¹Œf � D fH 0º:

As fH 0 D fH
F
f sH , the set ¹gH º can be rewritten as ¹fH; f sH º, this

reformulation induces a well-defined inversion i W fH D Œf � 7! Œf s� D f sH .

A function � on G=H D ¹gH º is called even if for every Œg� 2 G=H ,

�.Œg�/ D �.i.Œg�// and a function ' on G=H is called odd if for every Œg� 2 G=H ,

'.Œg�/ D ��.i.Œg�//.

Define V1 to be the subset of `2.G=H/ consisting of even functions and V2

to be the subset of `2.G=H/ consisting of odd functions. It is easy to see that

such two vector spaces are non-empty, closed and Mod.S/-invariant subspaces of

`2.G=H/.

Remark 3.6. For any discrete measure mentioned above, the associated unitary

representation has no nonzero invariant vectors.

The case of non-discrete measures. For general measures, we mention one

remark.

Remark 3.7. If R is nontrivial, ergodicity of the action shows that the associated

unitary representation has no nonzero invariant vectors.

3.2. Actions of subgroups of Mod.S/ on MF.S/

Train tracks and a construction of pseudo-Anosov mapping classes. For later

use, we first recall some facts about train tracks and a construction of pseudo-

Anosov mapping classes by Thurston. All discussions here are standard and well-

known, we refer to [21], [10], [11, Exposé 13], and [23] for more details.

A train track � in a surface S is an embedded smooth graph with extra condi-

tions on vertices. A train track is called recurrent if it supports a positive transverse

measure, that is, a measure assigns a positive number to every edge. A transversely
recurrent train track is a train track such that every edge has a nontrivial essential

transverse intersection with a simple closed curve. A birecurrent train track is

thus a train track that both recurrent and transversely recurrent. A maximal bire-

current train track is a birecurrent train track that cannot be a proper subtrack of

any other train track. Any measured foliation is carried by a maximal train track.

We only remark here that, for a maximal birecurrent train track � , the set E.�/ of

all positive transverse measures on � is a positive linear submanifolds, that is, a

subset of some Euclidean space defined by a family of linear equations with the
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condition that all parameters are positive. For the torus T , the set MF.T / of linear

measured foliations can be covered by four affine charts E.�i / associated to four

maximal birecurrent train tracks. We fix these four types of train tracks as blocks

and denote them by ¹�1; �2; �3; �4º. See [21, Section 2.6, Figure 2.6.1] for such

four train tracks in the annulus, thus in the torus.

We now sketch a construction of pseudo-Anosov mapping classes given by

Thurston [23]. We only discuss Thurston’s construction for closed surfaces. For

surfaces with boundaries, one can modify the construction without any difficulty.

Let S D Sg.g � 2/ and choose two essential simple closed curves ˛ and ˇ on S

so that all connected components of S � ˛
S
ˇ are open topological disks. For

each intersection point p of ˛ and ˇ, one can assign a rectangle to p so that S has

a flat structure � and, with respect to this flat structure, both Dehn twists T˛ and

Tˇ act as affine transformations (since we have flat structure, we can talk about

affine transformations) with linear parts given by elements in PSL.R/. An element

in the subgroup of Mod.S/ generated by T˛ and Tˇ is pseudo-Anosov if it has a

hyperbolic linear part.

We now mention some facts about the set L.S; �/ of linear measured foliations

on S induced by the flat structure � above. Note that unstable and stable foliations

of pseudo-Anosov mapping classes obtained by Thurstion’s construction are in

L.S; �/ and L.S; �/ is a closed subset of MF.S/. If we arrange all rectangles

mentioned above on the plane such that ˛-sides are horizontal and label the

rectangles from left to right by ¹�1;�2; : : : ;�mº, then a linear measured foliation

F 2 L.S; �/ is given by parallel lines of the plane and a train track � in S carryingF

has the form that the restriction of � in each rectangle �i is one of �i and all such �i

appearing in � are the same. Therefore there are four types of train tracks, denoted

also by ¹�1; �2; �3; �4º, so that L.S; �/ �
S4

iD1E.�i /. A direct computation shows

that linear measured foliations on S induced by this flat structure are determined

by weights on two edges of �i \�1, thus each L.S; �/ \ E.�i / is parameterized

by two free independent parameters.

Lemma 3.8. Let S D Sg;n be a compact surface with 3gC n � 5, then each �i is
birecurrent and the set L.S; �/ of linear measured foliations with respect to a flat
structure � constructed as described above is of null �Th-measure.

Proof. It is obvious that each �i is birecurrent. We divide the proof of the rest into

two cases according to whether �i is maximal or not. If �i is not maximal, then any

measured foliation carried by �i is not maximal [21]. By [14, Lemma 2.3], E.�i /

has null�Th-measure. If �i is maximal, then, as �i is a birecurrent train track,E.�i /

is an open subset of MF.S/ and thus every point in E.�i / should be determined

by weights on 6g� 6C 2n edges of �i . As remarked above that E.�i /\L.S; �/ is

determined by weights on two edges of �i \�1 which can be extended to obtain

6g � 6 C 2n free parameters of E.�i /. That is to say, E.�i / \ L.S; �/ is locally

given by x3 D x4 D � � � D x6g�6C2n D 0 in R
6g�6C2n whose coordinates
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is given by ¹x1; : : : ; x6g�6C2nº. Therefore, E.�i / \ L.S; �/ is a null set. Since

L.S; �/ �
S4

iD1E.�i /, hence L.S; �/ is a null set as well. �

Almost properly discontinuous action. We introduce a concept for a group

action on a Borel space (that is, a topological space endowed with a Radon

measure) which is weaker than usual properly discontinuous action.

Definition 3.9. Let G be a group and .X; �/ be a Borel space. Suppose that G acts

on X by measure-preserving homeomorphisms. We say that G acts on X almost

properly discontinuously if there exists a G-invariant subset K with �.K/ D 0

such that G acts on X �K properly discontinuously.

Example 3.10. Let H � PSL.2;Z/ be a Schottky group, then its limit set

ƒ.H/ � S1 , as a Cantor set, has zero Lebesgue measure, and thus it acts on

¹R2 � .0; 0/º=¹˙1º almost properly discontinuously.

Although the action of Mod.S/ on MF.S/ are ergodic with respect to gener-

alized Thurston measures, the action of subgroups of Mod.S/ on MF.S/ is not

always ergodic. The following proposition allows us to use properties of the “prop-

erly discontinuous” action.

Proposition 3.2. For each complete pair .R; 
/, there exists a rank 2 free pseudo-
Anosov subgroup H of Mod.S/ that acts on MF.S/ almost properly discontinu-
ously with respect to the generalized Thurston measure �Œ.R;
/�

Th .

Any such free group will be called a p-rank 2 free subgroup. The first case

is when R D ; or each component of R is S0;3, then this proposition is obvious

by taking H to be any free pseudo-Anosov subgroup generated by two pseudo-

Anosov mapping classes (this works the same for non-integral multicurves as for

integral multicurves). For other cases, we prove this proposition through two

lemmas.

Lemma 3.11. There exists a p-rank 2 free subgroup H of Mod.S/ that acts on
MF.S/ almost properly discontinuously with respect to the Thurston measure�Th.

Proof. If S D S0;4 or S1;1, then, in both cases, MF.S/ can be identified with

¹R2 � .0; 0/º=¹˙1º and PMF.S/ can be identified with S1. Moreover, there is a

finite index subgroup of Mod.S/ such that the action of this subgroup onPMF.S/

is equivalent to the action of PSL.2;Z/ on S1, see [10, Chapter 15] for the case of

S0;4. By takingH to be any subgroup given in Example 3.10 and considering the

set Y D Pr�1.ƒ.H//, where PrWMF.S/! PMF.S/ is the projection, the action

of H on MF.S/ is thus almost properly discontinuous and �Th.Y / D 0.
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For other S , we deduce this lemma by first passing to PMF.S/ and then using

the result of [18] on limit sets. Let � and  be two independent pseudo-Anosov

mapping classes obtained by Thurston’s constrcution. By the ping-pong lemma,

one can construct a free pseudo-Anosov subgroup H generated by some powers

of � and  . As remarked before that stable and unstable measured foliations of

pseudo-Anosov elements in H are linear measured foliations and L.S; �/ is a

closed subset, therefore, by Lemma 3.8, the limit setƒ.H/ ofH , which is defined

to be the closure of the set of fixed points of non-trivial elements ofH with respect

to the action on PMF.S/, has the property that

�Th.P r
�1.ƒ.H/// D 0:

On the other hand, one can define the zero set Z.ƒ.H//.� PMF.S// of ƒ.H/,

see [18]. By combining with facts (see [18, Proposition 6.1]) that Z.ƒ.H// �

ƒ.H/ consists of no uniquely ergodic foliations and uniquely ergodic foliation has

full �Th-measure, we know that P r�1.Z.ƒ.H/// has null �Th-measure. By [18,

Theorem 7.17], H acts properly discontinuously on PMF.S/ � Z.ƒ.H//, thus

properly discontinuously on MF.S/ � P r�1.Z.ƒ.H///. Hence H acts almost

properly discontinuously on MF.S/. �

For R ¤ S , a complete pair .R; 
/ is called a middle type if R ¤ ; and there

is a connected component¤ S0;3.

Lemma 3.12. For a complete pair .R; 
/ of middle type, there exists a p-rank 2
free subgroupH of Mod.S/ that acts on MF.S/ almost properly discontinuously
with respect to the measure �Œ.R;
/�

Th .

Proof. We will follow the idea of [14, Lemma 3.1] to prove this lemma. Fix any

hyperbolic structure X on S and consider the continuous function `X WMF.S/!

RC extending the geodesic length function. Thus

MF.S/ D lim
L1!0
L2!1

B
L1

L2
.X/;

where

B
L1

L2
.X/ D ¹� 2MF.S/W `X.�/ 2 ŒL1; L2�º

is a compact set and, as pointed out in the proof of [14, Lemma 3.1],

B
L1

L2
.X/ \

� [

g2Mod.S/

g:M.R; 
/
�

is equal to

B
L1

L2
.X/ \

� n[

iD1

gi :M.R; 
/
�
;
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for some finite set ¹g1; : : : ; gnº � Mod.S/. Fix a free pseudo-Anosov subgroup

H of Mod.S/ and take any compact subset

K �
[

g2Mod.S/

g:M.R; 
/:

Taking L1 small enough and L2 large enough, one can assumeK � B
L1

L2
.X/. We

now claim that

j¹h 2 H W h:K \K ¤ ;ºk <1:

Let Z D Mod.S/:
 and `X WZ ! RC. We first claim that there is a finite set

J � Z such that

¹h 2 H W h:K \K ¤ ;º � ¹h 2 H W h:J \ J ¤ ;º:

For every element in K can be written as 
 C � such that `X .
/ is bounded.

If h:K \ K ¤ ;, then h.
/ also has bounded `X -length and all bounds can be

chosen to be uniform on K, say Œa; b�. Since `X is a proper map on Z (that is, the

inverse of compact set is also compact), J D `�1
X .Œa; b�/ is then a finite subset of

Z containing both h.
/ and 
 . So one has

¹h 2 H W h:K \K ¤ ;º � ¹h 2 H W h:J \ J ¤ ;º:

By the discussion of the case R D ;, the set ¹h 2 H W h:J \J ¤ ;º is finite which

implies that the finiteness of j¹h 2 H W h:K \ K ¤ ;ºj. Now taking the measure

zero set to be Y DMF.S/ �
S

g2Mod.S/ g:M.R; 
/ completes the proof. �

H -related cover. Given a group H and a Borel space .X; �/. Suppose that H

acts onX almost properly discontinuously and freely. Examples for such .H;X; �/

are given by Proposition 3.2. By definition of almost properly discontinuous

action, there is a null set Y such that H acts on X � Y properly discontinuously.

For any compact subsetK of X � Y , we will describe a “nice” cover of K. Since

X � Y is the domain of discontinuity of H , for every p in K, there is an open

neighbourhood Up of p in X � Y with finite �-measure such that for all h 2 H ,

one has h:Up \ Up D ;. Thus there is an open cover of K. By compactness of

K, choose a finite sub-cover of this cover. Label the sub-cover by U1; : : : ;Un and

for each i 2 1; : : : ; n, consider Ai D ¹h:Ui jh 2 H º. Starting from i D 1, form a

familyB1 D ¹Xk 2 A1jXk\K ¤ ;º as well asC1 D ¹YkjYk D Xk\K;Xk 2 B1º.

Delete
S

Yk2C1
Xk from K and denote the resulting compact set by K1. Then for

K1, there is a family B2 D ¹Xk 2 A2jXk \ K1 ¤ ;º as well as C2 D ¹YkjYk D

Xk\K1; Xk 2 B2º. Delete
S

Yk2C2
Xk fromK2 and denote the resulting compact

set by K3. Continuing this process, there is a cover of K which can be written in

the following formula:

K �

nG

kD1

G

Yi 2Ck

Yi :



1412 B. Ma

SoK can be covered by finite many pairwise disjoint �-measurable sets (we allow

some of them to be null sets). This will be called an H -related cover of K, since,

for each k, Ck is a family of disjoint sets that lie inside the H -orbit of some set.

4. Nonexistence of almost invariant vectors

Let H.�/ D L2.MF.S/; �/, where � D �
Œ.R;
/�

Th is a generalized Thurston mea-

sure explained in Section 3.1.1, and �� be the associated unitary representation

of Mod.S/. The main result of this section is the following:

Theorem 4.1. For a compact surface S D Sg;n with 3g C n � 4 and each
generalized Thurston measure �, the associated representation �� of Mod.S/

does not have almost invariant vectors.

By using Theorem 2.1, Remark 3.6 and Remark 3.7, we have:

Corollary 4.1. Let S D Sg;n be a compact surface with 3g C n � 4 and �
be a generalized Thurston measure, then H 1.Mod.S/; ��/ D H 1.Mod.S/; ��/,
where �� is the associated representation of Mod.S/.

Proof. By Theorem 2.1, we only need to show that the representation �� has no

nonzero invariant vectors. The corollary is thus concluded by using Remark 3.6

for discrete measures and Remark 3.7 for non-discrete measures. �

Let 
 be the isotopy class of an essential simple closed curve on S , X D

Mod.S/:
 and X be a point in the Teichmüller space Teich.S/ of S . Denoting

�
�i

X
.˛/ D `X.˛/� `�i :X.˛/, where ˛ 2 X , and using the description of `2.X/ via

Teich.S/ in Section 3.1.2, the following inequality is easy to show:

Corollary 4.2. Let S D Sg;n be a compact surface with 3gC n � 4 and 
 be the
isotopy class of an essential simple closed curve on S . Then there exists a finite
subset ¹�1; : : : ; �nº of Mod.S/ consisting of pseudo-Anosov mapping classes and
a constant � > 0, such that, for every point X in Teich.S/,

max
i2¹1;2;:::;nº

° X

˛2Mod.S/:


e�2`X.˛/.e�
�i
X

.˛/ � 1/2
±
� �

X

˛2Mod.S/:


e�2`X.˛/:

We divide the proof of Theorem 4.1 into two lemmas. First we prove a lemma

used for discrete measures.

Lemma 4.2. LetG be a discrete countable group andX be a discrete set equipped
with a G-action. Suppose that there is a rank 2 free subgroup H of G such that
H acts on X freely. Then the unitary representation � D `2.X/ of G associated
to the action of G on X does not have almost invariant vectors.
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Remark 4.3. This lemma is well known, we give an elementary proof here mainly

for heuristic purposes.

Definition 4.4. Let H be a rank 2 free group and X be a space that H acts.

Suppose x 2 X such that the stabilizer StabH .x/ of x is trivial. The image of

H under the orbit map H ! X; h 7! h:x is called the 2-tree based at x (with

respect to .H;X/).

Proof of Lemma 4.2. By Lemma 2.3, we can pass to subgroups. For the action of

the group H on the space X and any point p 2 X , consider the 2-tree based at p

with respect to .H;X/.

LetW be the subspace of `2.X/ consisting of functions with finite support. As

W is G-invariant and dense, by Lemma 2.2, it is enough to show that .�jW ; W /

does not have almost invariant vectors. That is, we have to find .K; �/ with the

property that

max
g2K
k�.g/f � f k2 � �kf k2; for all f 2 W:

SinceH Š F2, as mentioned in Remark 2.5, the left regular representation `2.H/

does not have almost invariant vectors, thus such a pair .K; �/ exists for the regular

representation. Fix such pair .K; �/ for the rest of the proof. Here are two facts.

Facts. 1. For every 2-tree T based at a point, `2.T/ isH -equivariantly isomorphic

to `2.H/.

2. Different 2-trees are disjoint and thus, if the support A1 of f1 2 `
2.X/ and

the support A2 of f2 2 `
2.X/ are located in different 2-trees, then f1 and f2 are

orthogonal.

These two facts imply that we only need to deal with `2-functions onX whose

finite support contained in a single 2-tree. In fact, for every f 2 W , if we

decompose its support Kf as

Kf D

nG

iD1

Kfi
;

where Kfi
lie in different 2-trees and fi is defined to be the restriction of f on

such different 2-trees, then

f D

nX

iD1

fi ;

k�.g/f � f k2 D

nX

iD1

k�.g/fi � fik
2; for all g 2 K:
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Note that K � H is fixed. If the support of fi is contained in a 2-tree Ti , by

Remark 2.5, there exists gi 2 K such that

k�.gi /fi � fik
2 � �kfik

2:

Now for every fi , let gi be an element satisfying the above inequality. If two

2-trees fi ; fj correspond to the same gi D gj , then fi C fj also satisfies that

inequality. As K is finite, denote ]K D m and so f can be further decomposed,

that is, f D f 0
1 C f 0

2 C � � � C f 0
s .s � m/ such that f 0

k
D

P
j fjk ; where

fjk 2 ¹f1; : : : ; fnº and ¹fjkºj correspond to the same gk 2 K. We claim that

there exists gl 2 K such that

k�.gl/f � f k
2 �

�

s
kf k2 �

�

m
kf k2:

Otherwise, since for all gi selected, we have

k�.gi /f � f k
2 � k�.gi/fi � fik

2 � �kfik
2; (4.1)

then

�kf k2 D

mX

iD1

�

m
kf k2 >

mX

iD1

k�.gi/f � f k
2

�

sX

iD1

k�.gi/f � f k
2 �

sX

iD1

�kfik
2 D �kf k2:

The second inequality is the assumption and the last inequality is inequality (4.1).

Thus there exists a pair
�
K; � D �

]K

�
such that

max
g2K
k�.g/f � f k2 � �kf k2; for all f 2 W:

So the proof of the lemma is completed. �

Then we prove a lemma used for non-discrete measures.

Lemma 4.5. Let G be a discrete countable group and .X; �/ be a Borel space.
Suppose that G acts on X by measure-preserving homeomorphisms. If there
exists a rank 2 free subgroup H of G such that H acts on X almost properly
discontinuously and freely, then the unitary representation � D L2.X; �/ of G
associated to the action of G on X does not have almost invariant vectors.

Proof of Lemma 4.5. Also by Lemma 2.3, we can pass to subgroups. Fix a null

subset Y of X such thatH acts on X � Y properly discontinuously. For any point

p 2 X , consider the image of H under the orbit map, given by

h 7�! h:p:



On a family of unitary representations of mapping class groups 1415

Since the stabilizer Stabp.H/ is trivial, this map is injective. This is the 2-tree

based at p with respect to .H;X/. Define W to be the G-invariant subspace of

L2.X; �/ consisting functions f 2 L2.X; �/ that compactly supported on X �Y .

Thus SW D L2.X; �/ as� is a Radon measure. So as before, we only need to prove

the theorem in the case of .W; �jW /. For each f 2 W supported on one H -orbit

of a measurable set U , that is,

Kf �
G

h2H

h:U;

where Kf is the compact support of f and the union is disjoint indexed byH , fix

a point p in U and associate an element Af 2 `
2.T/, where T is the 2-tree based

on p, via

Af .h:p/ D

� Z

h:U

jf j2d�

� 1
2

:

Define

K 0 D ¹g 2 H W g or g�1 2 Kº;

where K is the same finite subset of H as in Lemma 4.2. For f , one has
Z

Kf

j�.g/f � f j2d� D
X

h2H

Z

h:U

j�.g/f � f j2d�

�
X

h2H

ˇ̌
ˇ̌
� Z

h:U

j�.g/f j2d�

� 1
2

�

� Z

h:U

jf j2d�

� 1
2
ˇ̌
ˇ̌
2

D
X

h2H

jA�.g/f .h:p/� Af .h:p/j
2

D
X

h2H

j.�.g�1/Af /.h:p/� Af .h:p/j
2;

where the second inequality is the triangle inequality. By Lemma 4.2,

max
g2K0

k�.g/f � f k2 � max
g2K0

X

h2H

j.�.g/Af /.h:p/� Af .h:p/j
2

D max
g2K0

k�.g/Af � Af k
2

� �kAf k
2

D �0kf k2;

where �0 is a multiple of the constant � in Lemma 4.2, as in this case we have

]K 0 D 2]K. If the compact set Kf is not contained in one H -orbit, one can take

anH -related cover ofKf , then by the orthogonality similar to Fact 2 in Lemma 4.2

and follow the last few lines in the proof of Lemma 4.2, one can also choose the

pair .K 0; �00/, where �00 is a suitable multiple of �0, to complete the proof. �
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Proof of Theorem 4.1. As any pseudo-Anosov subgroup acts freely on MF.S/,

by Lemma 4.2 and Proposition 3.2, the theorem is true for R D ;. When R D S

or R is of middle type, it is concluded by Lemma 4.5 and Proposition 3.2. �

Remark 4.6. The same trick can be used to show that representations of mapping

class groups in the space ofL2-functions on the Teichmüller spaces with respect to

Weil-Petersson volumes also have no almost invariant vectors. As one can show

that such representations do not have non-trivial invariant vectors, we have the

same conclusion about corresponding cohomology groups.

5. Classification of quasi-regular representations up to weak containment

5.1. Irreducible decompositions. As pointed out in Section 3.1.2, for unitary

representations of mapping class groups associated to discrete measures on the

space of measured foliations, both reducible and irreducible ones exist. By exam-

ining Example 3.5 carefully, one sees that, reducible representations have an irre-

ducible decomposition. For any multi-curve 
 D
Pk

iD1 ci
i on S , where ci > 0

for all i , we form Q
 D
Pk

iD1 
i . Recall that ¹
iº is a collection of pairwise dis-

joint isotopy classes of essential simple closed curves on S . As before, denote by

G
 DMod.S; 
/ andG Q
 D Mod.S; Q
/ the corresponding subgroups of Mod.S/.

Hence G
 is a subgroup of G Q
 of finite index.

Proposition 5.1. Let S D Sg;n be a compact surface with 3gC n � 4 and 
; Q
 as
above.

(1) If the index of G
 in G Q
 is one, then the associated representation in
`2.Mod.S/=G
/ of Mod.S/ is irreducible.

(2) If the index of G
 in G Q
 is n > 1, then the associated representation of
Mod.S/ in `2.Mod.S/=G
/ is reducible.

Proof. (1) is obvious, since the representation `2.Mod.S/=G
/ is `2.Mod.S/=G Q
/

which is irreducible by Remark 3.3.

Now assume that ŒG Q
 W G
 � D n > 1. Let X
 D Mod.S/:
 and Y Q
 D

Mod.S/: Q
 , thenX
 is a Mod.S/-equivariant covering space of Y Q
 of degree n. So

every `2-function on Y Q
 defines an `2-function on X
 , and such correspondence

produces a proper closed Mod.S/-invariant subspace of `2.X
 /, which implies

the reducibility. �

5.2. Classification up to weak containment. We first fix some notations. Fix

a hyperbolic structure on S . Denote by 
 D
Pk

iD1 
i and ı D
Pk

iD1 ıi , that is,

multi-curves on S with coefficients all of 1s. Such multi-curves will be called

1-multi-curves. For any 1-multi-curve 
 D
Pk

iD1 
i on S , we will call the
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union of geodesic representatives of 
 a geometric multi-curve and, for any i , the

representative ˛i a geometric component. Denote by G
 .Gı/ the corresponding

subgroup of Mod.S/, and by �
 .�ı/ the associated unitary representation on

`2.Mod.S/=G
/.`
2.Mod.S/=Gı//. Let �S be the regular representation of the

mapping class group Mod.S/ ofS on `2.Mod.S//. We first recall some definitions

which can be found in [20, 4, 5].

Let G be a countable discrete group and H be a subgroup of G, the commen-
surator of H is defined to be

ComG.H/ D ¹g 2 GW gHg
�1 \H has finite index in H and gHg�1º:

A discrete group is said to be C*-simple if every unitary representation, which is

weakly contained in the regular representation of G, is weakly equivalent to the

regular representation. Let 
 and ı be geometric multi-curves, then 
 and ı are of
the same type if there is an element f in Mod.S/ such that f .
/ D ı. We say a

subgroupH ofG has the spectral gap property if the unitary representation `2.X/

associated to the action H Õ X D G=H � ¹H º does not have almost invariant

vectors. In this section, we give a classification for unitary representations of

Mod.S/ associated to discrete measures.

Lemma 5.1. Given a 1-multi-curve 
 on S and let m be the number of its
geometric components.

(1) If m D 3g � 3C n, then G
 is amenable.

(2) If 1 � m < 3g � 3C n, then G
 has the spectral gap property.

Proof. If m D 3g � 3C n, then G
 is virtually abelian, thus it is amenable. For

other cases, asm < 3g�3Cn, one can cut S along geometric components so that

the resulting surface has at least one connected component that admits two pseudo-

Anosov mapping classes generating a rank 2 pseudo-Anosov subgroup. Assume

components admitting pseudo-Anosov mapping classes are labelled as T1; : : : ; Tk,

two pseudo-Anosov mapping classes in each Mod.Ti / and the associated rank 2

pseudo-Anosov subgroup are also denoted by 'i ;  i ; Hi , respectively. Note that

pseudo-Anosov homeomorphisms fix boundaries. Then define two maps ' and  

on S (thus their isotopy classes) by extending ' D
Q

i 'i and  D
Q

i  i . Hence

the subgroupH generated by ' and  is a rank 2 free group. Moreover the action

of H on the set X
 � ¹
º has trivial stabilizers. Otherwise, if an element � in

H fix ı 2 X
 � ¹
º, then by the construction of H , the geometric intersection

number of ı and 
 is nonzero and thus it intersects one of Ti . We cut S along


 so that ı becomes a family of isotopy classes of arcs. Since � fixes ı, up to

some powers of �, it fixes each resulting isotopy class of arcs. But then it can

be shown that, for some i , there is an element in Hi that fixes the isotopy class

of an essential simple closed curve, which contradicts the assumption that Hi is

a pseudo-Anosov subgroup. By Lemma 4.2, we can conclude that G
 has the

spectral gap property. �
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Lemma 5.2 (Theorem A in [5]). Let G be a countable discrete group and H
be a subgroup of G that has the spectral gap property. Let L be a subgroup
of G satisfying ComG.L/ D L, then two unitary representations `2.G=H/ and
`2.G=L/ of G are weakly equivalent if and only if L is conjugate to H .

Theorem 5.3. Let S D Sg;n be a compact surface with 3g C n � 4. Let 
 and ı
be two 1-multi-curves on S with k; l geometric components, respectively.

(1) If at least one of k; l is not 3g � 3C n, then the associated unitary represen-
tations �
 and �ı are weakly equivalent if and only if 
 and ı are of the same
type.

(2) SupposeS is not S0;4; S1;1; S1;2; S2;0. If the number of geometric components
of 
 is 3g � 3 C n, then �
 is weakly equivalent to the regular representa-
tion �S .

(3) SupposeS is not S0;4; S1;1; S1;2; S2;0. If the number of geometric components
of 
 is not 3g � 3C n, then �
 is not weakly contained in �S .

Proof. For any 1-multi-curve 
 on S , ComMod.S/.G
 / D G
 (see [20]). Given

two 1-multi-curves 
 and ı with k; l geometric components, respectively, such

that at least one of k and l is not 3g � 3 C n, then by Lemma 5.1, Lemma 5.2

and the fact that G
 is conjugate to Gı if and only if 
 and ı are of the same type,

we complete the proof for (1). For (2), by [8], if S is not S0;4; S1;1; S1;2; S2;0, the

mapping class group Mod.S/ is C*-simple. By the result of [7] which states that

a discrete group is C*-simple if and only if, for any amenable subgroup M of G,

the quasi-regular representation `2.G=M/ is weakly equivalent to the regular one.

So combine with Lemma 5.1, we complete the proof of (2). The statement (3) is

deduced from (2) and the definition of C*-simplicity. �

Remark 5.4. The “only if” part of (1) is a stronger version of Corollary 5.5 in [20].

Remark 5.5. If S is one of S0;4; S1;1; S1;2; S2;0, it is easy to show that, if the

number of components of 
 is 3g � 3 C n, then �
 is weakly contained in the

regular representation �S . However, for other types of 
 , we don’t know if �


is weakly contained in �S . And we don’t know what can be said about unitary

representations corresponding to non-discrete measures on the space of measured

foliations.
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