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Abstract. We give a bijection between the isolated circular orders of the group G D
PSL.2;Z/ � .Z=2Z/ � .Z=3Z/ and the equivalence classes of Markov systems associated

to G. As applications, we present examples of isolated circular orders of the group G.
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1. Introduction

Throughout this paper, G always stands for the group .Z=2Z/ � .Z=3Z/. Our

purpose is to give a bijection between the isolated circular orders of the group G

and the symbolic dynamics associated with G, called Markov systems. We also

use this bijection to construct examples of isolated circular orders ofG. The paper

is divided into four parts. In Part I, we introduce the necessary prerequisites, we

define the Markov systems ofG, and we state the main theorem. Part II is devoted

to the proof of one half of the main theorem and Part III of the other half. In

Part IV, some examples of isolated circular orders are given. In [4], it is proved

that the space LO.B3/ of the left orders (left invariant total orders) of the braid

group B3 of three strings and the space CO.G/ of the circular orders of G are

homeomorphic. This provides examples of isolated left orders of B3.

Part I

We introduce the necessary prerequisites in Sections 2–4, we define the Markov

systems associated with G, and we state the main result (Theorem 1) in Section 5.

2. Circular orders

In this section, we provide some preliminary facts about circular orders. Let H

be an arbitrary countable group.

1 The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 25400096.
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Definition 2.1. A map cWH 3 ! ¹0; 1;�1º is called a circular order of H if it

satisfies the following conditions:

(1) c.g1; g2; g3/ D 0 if and only if gi D gj for some i ¤ j ;

(2) for any g1; g2; g3; g4 2 H ,

c.g2; g3; g4/ � c.g1; g3; g4/C c.g1; g2; g4/ � c.g1; g2; g3/ D 0I

(3) for any g1; g2; g3; g4 2 H ,

c.g4g1; g4g2; g4g3/ D c.g1; g2; g3/:

Definition 2.2. Given a finite set F of H , a configuration of F is an equivalence

class of injections �WF ! S1, where two injections � and �0 are equivalent if there

is an orientation-preserving homeomorphism h of S1 such that �0 D h�.

Given a circular order c of H , the configuration of the set ¹g1; g2; g3º of

three points is determined by the rule that .g1; g2; g3/ is ordered anticlockwise

if c.g1; g2; g3/ D 1, and clockwise if c.g1; g2; g3/ D �1. By condition (2) of

Definition 2.1, this is independent of the enumeration of the set. But (2) says

more: an easy induction shows the following.

Proposition 2.3. A circular order ofH determines the configuration of any finite

subset F of H .

Denote by CO.H/ the set of all the circular orders. CO.H/ is a closed subset

of the set of maps from H 3 to ¹0;˙1º, and therefore it is equipped with a totally

disconnected compact metrizable topology. A circular order is isolated if it is an

isolated point of CO.H/. If c 2 CO.H/ is isolated, then there is a finite subset

S of H such that any circular order which gives the same configuration of S as c

is c, and vice versa. Such a set S is called a determining set of c.

For an automorphism � and c 2 CO.H/, we define ��c 2 CO.H/ by

.��c/.g1; g2; g3/ D c.��1g1; �
�1g2; �

�1g3/:

The order ��c is called an automorphic image of c. An automorphic image of an

isolated circular order is isolated. We also say that c and ��c belong to the same

automorphism class.

Given c 2 CO.H/, we define an action of H on S1 as follows. Fix an enu-

meration of H , H D ¹gi W i 2 Nº such that g1 D e, and a base point x0 2 S1.

Define an embedding �WH ! S1 inductively as follows. First, set �.g1/ D x0 and

�.g2/ D x0 C 1=2. If � is defined on ¹g1; : : : ; gnº, then there is a connected com-

ponent of S1 n ¹�.g1/; : : : ; �.gn/º where the point gnC1 is embedded, by virtue of

Proposition 2.3. Let �.gnC1/ be the midpoint of that interval. The left translation
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of H yields an action ofH on �.H/ which is shown to extend to a continuous ac-

tion on Cl.�.H//. Extend it further to an action on S1 by requiring that the action

on the gaps1 is linear. The action so obtained is called the dynamical realization

of c based at x0.

Definition 2.4. An action � of the groupH on S1 is tight at x0 2 S1 if it satisfies

the following two conditions:

� � free at x0, i.e., the stabilizer of x0 is trivial;

� if J is a gap of the orbit closure Cl.�.H/x0/, then @J is contained in the orbit

�.H/x0.

We have three lemmas whose proofs are easy and omitted. (Lemma 2.5 is a

consequence of the midpoint construction. In fact, it is used in the construction of

the dynamical realization, where we extend the H -action from the orbit of x0 to

the orbit closure.)

Lemma 2.5. The dynamical realization is tight at the base point x0.

Lemma 2.6. Two dynamical realizations obtained via different enumerations of

H are mutually conjugate by an orientation- and base-point-preserving homeo-

morphism of S1.

Lemma 2.7. An action � ofH on S1 which is tight at x0 is topologically conjugate

to the dynamical realization of a circular order c based at x0 by an orientation-

and base-point-preserving homeomorphism.

Henceforth, any action � as in the last lemma is referred to as a dynamical

realization of c.

3. Preliminaries on G

We study some properties of the group

G D h˛; ˇW ˛2 D ˇ3 D ei:

As is well known, G is isomorphic to PSL.2;Z/, by an isomorphism � such that

�.˛/ D
�
0 �1
1 0

�
; �.ˇ/ D

�
1 1

�1 0

�
:

See Figure 1 for the action of PSL.2;Z/ on the Poincaré upper half plane H.

1 A gap of a closed subset K of S1 means a connected component of S1 n K.
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1 ! i
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P

Figure 1. The open disk bounded by the circle is the Poincaré upper half plane H.

The element �.˛/ is the 1=2-rotation around i , and �.ˇ/ the 1=3-rotation around ! D
.�1 C

p
�3/=2. The region P bounded by the ideal triangle 401! is a fundamental

domain of PSL.2;Z/.

Proposition 3.1. (1) Any element of G n ¹eº is of order 2, 3, or1. Any element

of order 2 is conjugate to ˛, and any element of order 3 is conjugate either to ˇ

or to ˇ�1.

(2) Any torsion free subgroup ofG is isomorphic to a free group, either finitely

generated or not.

(3) The commutator subgroup is a free group freely generated by ˛ˇ˛ˇ�1 and

˛ˇ�1˛ˇ.

(4) Any automorphism of G is the conjugation by an element of PGL.2;Z/

when we identify G with PSL.2;Z/ by �. In other words, the outer automorphism

group of G is isomorphic to Z=2Z, generated by the involution �0 defined by

�0.˛/ D ˛ and �0.ˇ/ D ˇ�1.

Proof. (1) and (2) are well known, and can be obtained easily by considering the

action on H. (3) can be shown, for example, by an induction on word length of

elements in ŒG; G�, using the fact that the total exponents of ˛ (resp. ˇ) in the word

is even (resp. a multiple of 3). To show (4), notice that any automorphism � of G

sends ˇ to an element which is conjugate either to ˇ or to ˇ�1. We only need to

verify that � is an inner automorphism in the former case. By composing with an

appropriate inner automorphism, if necessary, we may assume that �.˛/ D ˛. Let

x be a fixed point of �.�.ˇ// inH. Since �.ˇ/ is a conjugate 
ˇ
�1, x is a translate

of ! in Figure 1 by an element �.
/ 2 PSL.2;Z/. All such points x, except !

and �.˛/.!/, satisfy d.x; i/ > d.!; i/, where d is the Poincaré distance, in which

case �.˛/ and �.�.ˇ// generate a covolume infinite Fuchsian group. Since � is
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an automorphism, we have either x D ! or �.˛/!. Accordingly, �.ˇ/ D ˇ or

�.ˇ/ D ˛ˇ˛, In either case, � is an inner automorphism. �

Question. Does the equality .�0/�.c/ D �c hold? Is that true at least for isolated

orders c? This is true for all the examples constructed in Sections 13 and 14.

4. Isolated circular orders of G

Let c be an isolated circular order of G and � a dynamical realization of c based

at x0 2 S1.

Proposition 4.1. (1) There is a unique minimal set M of the action � homeomor-

phic to a Cantor set. Moreover x0 62M.

(2) Let I be a gap of M which contains x0. Then all the gaps of M are a

translate of I by the action �. The stabilizer2 GI of I is infinite cyclic.

Proof. It is known by [3] Corollary 1.3 that a dynamical realization � of an iso-

lated circular order cannot be minimal (for any countable group). Assume, for

sake of contradiction, that � admits a finite minimal set of cardinality n. Consid-

ering the action of G on the minimal set, one obtains a surjective homomorphism

�WG ! Z=nZ. Since G=ŒG;G� is isomorphic to Z=6Z, n is either 1, 2, 3, or 6.

The circular order c of G induces a left order � on Ker.�/ by considering the ac-

tion of �jKer.�/ on the gap containing x0. In particular, Ker.�/must be torsion free.

This eliminates the cases n D 1; 2; 3. To eliminate the case n D 6, we claim that

the induced left order � on Ker.�/ must be isolated. Any left order �0 on Ker.�/

together with the cyclic order on Z=6Z defines a cyclic order c0 of G by the lex-

icographic construction. Moreover, the map �0 7! c0 is injective and continuous.

Since c is isolated, � must be isolated, showing the claim. But if n D 6, then

Ker.�/ D ŒG; G� is a free group on 2 generators, and does not admit an isolated

left order [2]. This shows that the minimal set cannot be a finite set. It must be a

Cantor set. The uniqueness of a Cantor minimal set M is easy and well known.

If x0 2 M, the two boundary points of a gap of M D Cl.�.G/x0/ cannot be

from one orbit of the action, contradicting the tightness of the action � at x0. This

shows that x0 62M.

The same argument shows that there are no gaps of M which are not a translate

of I . Such gaps might be gaps of Cl.�.G/x0/.

Finally, let us show that GI is infinite cyclic. First, GI is nontrivial. Assume,

for sake of contradiction, that it is trivial and consider an interval delimited by

x0 and a point y 2 M � Cl.�.G/x0/. Then y cannot be a translate of x0, again

contradicting the tightness. If GI is not infinite cyclic, GI is a free group on more

2 GI D ¹g 2 GW �.g/I D I º.
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than one generator, which does not admit an isolated left order ([2]). As before,

the lexicographic construction gives a contradiction. �

The subgroup GI in the last proposition is called the linear subgroup of the

isolated circular order of c, and is denoted by Lc . For an automorphism � of G,

we haveL��c D �.Lc/. For a fixed isolated circular order c, consider the minimal

word length of a generator of �.Lc/ where � ranges over all the automorphisms

of G. This length is an even number, say 2k.

Definition 4.2. The number k is called the degree of the isolated circular order c,

and is denoted by deg.c/.

Clearly the degree is an automorphism-class function and it is an odd number

(see Section 14).

5. Markov systems

Definition 5.1. A Markov system M D .a; b; Œa�; Œb�; Œb�1�/ consists of an orien-

tation-preserving involution a, a homeomorphism b of S1 of period 3, and three

subsets Œa�; Œb�; Œb�1� of S1 which satisfy conditions (A)–(E) below.

(A) The sets Œa�, Œb�, and Œb�1�, are disjoint, each set consisting of k closed

intervals for some k2N. The number k is called multiplicity of the systemM.

A connected component of Œa� (resp. Œb� and Œb�1�) is called an a-interval (resp.

b- and b�1-interval). Denote X D Œa�[ Œb� [ Œb�1�.

(B) Two a-intervals are not adjacent in X . Likewise for b- and b�1-intervals.

A gap of X between an a-interval and a b˙1-interval is called a principal gap.

A gap between a b-interval and a b�1-interval is called a complementary gap.

A maximal interval which consists of b˙1-intervals and complementary gaps is

called a b-block. Any b-interval is contained in a unique b-block. The a-intervals

and the b-blocks are alternating in S1 and there are just k b-blocks. The union

of all b-blocks is denoted by ŒŒb��. Let us continue the conditions, which are

reminiscent of the action of ˛ and ˇ on (the first letter of ) the words representing

elements of G.

(C) aŒa� D ŒŒb��.

This implies aŒŒb�� D Œa� and hence aŒb˙1� � Œa�.

(D) bŒa� D Œb�, bŒb� D Œb�1�.
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This implies bŒb�1� D Œa�, since b3 D id, and b�1Œa� D Œb�1�, b�1Œb�1� D Œb�,
and b�1Œb� D Œa�.

A principal gap J is always mapped to a principal gap by a, and exactly one of

b and b�1 maps J to a principal gap, the other to a complementary gap. Therefore,

the principal gaps consist of several cycles. Our last condition is the following.

(E) The principal gaps are formed of one cycle.

Definition 5.2. Given two Markov systems M D .a; b; Œa�; Œb�; Œb�1�/ and M
0 D

.a0; b0; Œa0�; Œb0�; Œ.b0/�1�/, M0 is a semiconjugate image of M if there is a monotone

continuous map f WS1 ! S1 of degree one such that fa D a0f , f b D b0f ,

f Œa� D Œa0�, f Œb� D Œb0�, and f Œb�1� D Œ.b0/�1�. M and M
0 are equivalent if they

are related by the equivalence relation generated by the semiconjugate image.

Our main result is the following.

Theorem 1. There is a bijection between the isolated circular orders of G and

the equivalence classes of the Markov systems.

We would like to emphasize that this is not a true classification theorem of

isolated circular orders: it is too difficult to classify Markov systems. What we

can do so far is to present examples of Markov systems, as in Part IV.

Part II

We construct the Markov partitions associated to isolated circular orders, thereby

showing one half of Theorem 1. The result of Part II is summarized as Theo-

rem 6.1.

6. Further properties of isolated circular orders of G

This section is devoted to the preparation of the basic facts needed for the proof

of the following theorem. Let � be a dynamical realization of an arbitrary isolated

circular order of G, based at x0, and M be the minimal set of the action �.

Theorem 6.1. There is a Markov partition .a; b; Œa�; Œb�; Œb�1�/ such that a D �.˛/
and b D �.ˇ/.

We denote G D �.G/. The group G is isomorphic to G (since � is free at x0)

and is generated by a and b.
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Definition 6.2. A word of letters a; b˙1 is admissible if it is reduced and contains

no consecutive identical letters.

Any element g 2 Gn¹idº is expressed uniquely by an admissible word denoted

by W.g/, whose length is denoted by kgk. The first letter of W.g/ is called the

prefix of g and is denoted by pre.g/. We put pre.id/ D ; for completeness. If

W.g/ D t1t2 � � � tr and W.g0/ D ti tiC1 � � � tr for some 2 � i � r , then g0 is

called a larva of g. The group G acts freely at the base point x0 and all the above

terminologies about G are carried over to the orbit Gx0. If x D gx0 and x0 D g0x0

for some g; g0 2 G n ¹idº, the word W.x/ is, by definition, the word W.g/; the

length kxk is kgk; the prefix pre.x/ is pre.g/; and x0 is a larva of x if g0 is a larva

of g.

Choose a Riemannian metric on S1 in such a way that the involution a is an

isometry. The distance of two points x; y 2 S1 is denoted by jx � yj. The length

of an interval J is denoted by jJ j. As a corollary of Proposition 4.1, we get the

following.

Corollary 6.3. There is �1 > 0 such that if a closed interval J satisfies jJ j < �1

and x0 2 J , then J \Gx0 D ¹x0º.

Proof. Choose �1 smaller than the distance of x0 to the neighbouring points

in Gx0. �

Lemma 6.4. There are finitely many gaps I1; : : : ; Ir of the minimal set M with

the following properties.

(1) For any gap J ¤ Ii , the prefixes of all the points of Gx0 \ J are the same.

(2) For J D Ii , there is an enumeration of points of Gx0 \ J ,

Gx0 \ J D ¹: : : ; x�2; x�1; x0; x1; x2 : : :º;

in the anti-clockwise order of S1 such that pre.xn/ is the same for all n < 0

and that pre.xn/ is the same for all n > 0.

Proof. Denote by I the gap of M containing x0 as before and by GI the stabilizer

of I by the action �. Given an arbitrary gap J of M, choose g 2 G such that

J D gI and that kgk is the smallest among such g. Let h be a generator of �.GI /.

Then the word W.g/ cannot have W.h/ or W.h�1/ as larvae. This implies that if

kgk � khk, then W.g/ is not completely cancelled out in the word W.ghn/. In

particular, pre.ghn/ is the same for any n 2 Z, showing (1). In the remaining case

kgk < khk, pre.ghn/ is the same for any n > 0 and pre.gh�n/ is the same for any

n > 0, finishing the proof of (2). �

Corollary 6.5. There exists �2 > 0 such that if a closed interval J satisfies

jJ j < �2 and if there are points x1; x2 2 J \ Gx0 such that pre.x1/ ¤ pre.x2/,

then Int.J / \M ¤ ;.
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Proof. Choose �2 > 0 smaller than the distance of x0 and x˙1 for each of the

intervals I1; : : : ; Ir in Lemma 6.4. �

For t 2 ¹a; b˙1º, let Gt be the set of those elements g 2 G n ¹idº such that the

last letter of W.g/ is t .

Lemma 6.6. We have an inclusion M � Cl.Gtx0/ nGtx0 for each t 2 ¹a; b˙1º.

Proof. It suffices to show that the closed set X D Cl.Gtx0/ n Gtx0 is invariant

by G, since M is the unique minimal set. Given x 2 X , there is a sequence ¹gnº
in Gt such that gnx0 ! x and kgnk ! 1. For any f 2 G, we have fgn 2 Gt if

n is sufficiently large, showing that f x D limn!1 fgnx0 2 X . �

Definition 6.7. An action  WG ! HomeoC.S
1/ is �-close to the dynamical

realization � if k .˛/ � �.˛/k0 < � and k .ˇ˙1/ � �.ˇ˙1/k0 < �, where

 .g/ � �.g/ is a map from the abelian group S1 to S1, and k�k0 denotes the

supremum norm.

Lemma 6.8. There is �3 > 0with the following property: if WG ! HomeoC.S
1/

is �3-close to �, then  is free at x0 and the circular order ofG determined by the

orbit  .G/x0 � S1 is the same as c.

Proof. Let S � G be a finite-determining set of c. One can choose �3 > 0 so that

if  is �3-near to �, then the circular order of  .S/x0 is the same as �.S/x0 and

additionally  .˛/ and  .ˇ/ is not the identity. Assume the isotropy group H of

 at x0 is nontrivial. Then H is torsion free, since any torsion element 
 of G

is conjugate to ˛ or ˇ˙1 and  .
/ is fixed point free by the additional condition

of �3. Therefore,H is a free group (Proposition 3.1) and admits a left order � and

its reciprocal ��. On the other hand, the quotient G=H admits a left G-invariant

circular order c0 determined by the orbit  .G/x0. Now,˙� and c0 determines two

distinct circular orders by the lexicographic constructions. This is contrary to the

definition of the determining set S . We have shown that  is free at x0. The rest

of the assertion follows again by the definition of the determining set. �

7. Continuity of W.x/

We show that the assignmentGx0 3 x 7! W.x/ is continuous in some weak sense.

The argument here follows closely the proof of [3, Proposition 4.7], but we need

an elaboration since the group G is not a free group treated in [3].

Two letters from the set ¹a; b˙1º are congruent if either they are the same or

one is b and the other is b�1. Choose � so that 0 < � < min¹�1; �2; �3; 1=2º, where

�1; �2; �3 are the constants defined in the last section.
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Proposition 7.1. If x; y 2 Gx0 satisfy jx � yj < �, then pre.x/ and pre.y/ are

congruent.

This section is devoted to the proof of the above proposition by reduction ad

absurdum. We assume the following conditions and we shall deduce a contradic-

tion at the end of the section.

There is a closed interval J with the following properties:

]1. jJ j < �;
]2. @J D ¹x1; x2º � Gx0 and pre.x1/ and pre.x2/ are not congruent.

By Corollary 6.3, (]1) and (]2) imply

]3. x0 62 J .

An interval which satisfies (]1)–(]3) is called a ]-interval.

Lemma 7.2. There is a ]-intervalJ such that no larva of a point in @J is contained

in J .

Proof. Let J D Œx; y� be a ]-interval that minimizes N.J / D kxk C kyk. Then,

x has no larva congruent to x and contained in J . Likewise for y. If there are

no larvae of x and y contained in J at all, we are done. So, assume one of them,

say x, has a larva (necessarily not congruent to x) contained in J . Choose the

larva z of x in J which is the nearest to x. Then the interval J 0 D Œx; z� is a

]-interval. Moreover, there are no larvae of x other than z contained in J 0.

Now, since z is a larva of x, both x and z belong to the same Gtx0 for some

t 2 ¹a; b˙º. Choose s 2 ¹a; b˙1º n ¹tº. By Corollary 6.5 and Lemma 6.6,

Gsx0 \ J 0 is nonempty since J 0 is a ]-interval. Choose a point u of minimal

length from Gsx0 \ J 0. If pre.u/ is congruent to pre.x/, then choose the interval

Œu; z�; otherwise, choose Œx; u�. �

Finally, let us show that Lemma 7.2 leads to a contradiction. Let J in

Lemma 7.2 be such that J D Œx; y� and pre.x/ D a and pre.y/ D b˙1. Choose an

open interval U � J such that jU j < � and that all the larvae of both x and y, as

well as x0, are not contained in U . Let h be a homeomorphism of S1 supported

on U such that h sends x to the opposite side of y in U , and define an action  

of G by setting  .˛/ D h�.˛/h�1 and  .ˇ/ D �.ˇ/. Notice that  .˛/ D �.˛/

except on U t �.˛/U . (U and �.˛/U are disjoint since � < 1=2 and �.˛/ is an

isometry.) By Lemma 6.8, the cyclic order of G obtained by the orbit  .G/x0

must be the same as c, i.e, the one obtained from Gx0. However, by induction on

the length of f and g,

. .f /x0;  .g/x0; x0/ D .hx; y; x0/ and .�.f /x0; �.g/x0; x0/ D .x; y; x0/:

A contradiction. This completes the proof of Proposition 7.1.
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8. Continuity of W.x/-continued

Let W1 be the set of infinite words of letters a; b˙1, and ; with the following

properties:

(1) there are no consecutive appearances of a, b, and b�1;

(2) b�1 does not follow b˙1;

(3) all the letters after ; are ;.
With abuse of notation, we denote by W.g/ 2 W1 a finite word followed by

a sequence of ;. Thus, for example, W.id/ D ;;; � � � , and W.ab/ D ab ;; � � � .
For n > 0, the initial subword of length n of W.g/ is denoted by Wn.g/. We

also define W.x/ and Wn.x/ for a point x D gx0 2 Gx0 by W.x/ D W.g/ and

Wn.x/ D Wn.g/, respectively. As a consequence of Proposition 7.1, we get:

Proposition 8.1. For any n > 0, there exists �.n/ > 0 such that if two points

x; y 2 Gx0 satisfy jx � yj < �.n/, then Wn.x/ D Wn.y/.

Proof. For any � > 0, define ı.�/ 2 .0; �/ so that if jx � yj < ı.�/, then

jb˙1x�b˙1yj < �. (Recall that a is an isometry.) Then for �1 D ı.�/, jx�yj < �1

impliesW1.x/ D W1.y/. For if not, we may assumeW1.x/ D b andW1.y/ D b�1,

since �1 < �. But then W1.bx/ D b�1 and W1.by/ D a or ;, contrary to the

assumption jbx � byj < �.
For general n, define

�.n/ D
n‚ …„ ƒ

ı.ı.� � � ı//.�/:

An induction on n shows the proposition. �

9. Construction of Markov systems

Given x 2M, choose a point xi 2 Gx0 from the �.i/=2-neighbourhood of x. Then

Wi .xi / is independent of the choice of xi . Moreover, Wi .xi / D Wi .xj / if i < j .

Thus, the sequence ¹Wi .xi /º stabilizes.

Definition 9.1. For any x 2M, define a wordW.x/ 2W1 as the limit ofWi .xi /.

Also, define Wn.x/ to be the initial subword of length n of W.x/.

Notice that W.x/ is a word of letters a and b˙1: ; never shows up.

Definition 9.2. For an admissible word w of length n of letters a, b˙1 , we define

the subset Œw� of S1 to be the union of the points x 2M such thatWn.x/ D w and

the gaps .x; y/ of M such that Wn.x/ D Wn.y/ D w.
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Lemma 9.3. (1) For any finite admissible word w, Œw� is a finite union of closed

disjoint intervals.

(2) If v ¤ w are reduced words of the same length, then Œv�\ Œw� D ;.
(3) aŒab˙1� D Œb˙1�.

(4) bŒa� D Œb�, bŒb� D Œb�1�, and bŒb�1� D Œa�.
(5) The cardinalities of the components of Œa�, Œb�, and Œb�1� are the same.

Proof. (1) is a consequence of Proposition 8.1. (2)–(4) are clear from the defini-

tions. (5) follows from (4). �

Proof of Theorem 6.1. Define M D .a; b; Œa�; Œb; Œb�1��/. It is obvious that M

satisfies conditions (A)–(D). (E) also follows basically from the transitivity of gaps

by the dynamical realization (Proposition 4.1 (2)). �

Part III

We define two properties (*) and (**), and show that any Markov system is

equivalent to one satisfying both (*) and (**). Next, to any Markov partition

satisfying both (*) and (**) we assign an isolated circular order, thereby showing

the other half of Theorem 1. The result is summarized as Theorem 12.1.

10. Fundamental properties of Markov systems and modifications

Let M D .a; b; Œa�; Œb�; Œb�1�/ be an arbitrary Markov system. Recall that the map

a sends a principal gap J to a principal gap, and either one of b or b�1 sends J to

a principal gap, the other to a complementary gap. By condition (E), the principal

gaps Ii , I
0
i and the complementary gaps I 00

i (i 2 Z=kZ) are dynamically related

as in (10.1) below, where bi is either b or b�1. The gaps I 000
i are gaps between

components of Œab� and Œab�1� to be defined later.

I1 I 0
1 I2 I 0

2 � � � I 0
k

IkC1 D I1

I 00
1 I 00

2

I 000
1 I 000

2

 !b1  !a

 !

b1

 !b2  !a

 !

b2

 !bk  !a

 !

b1

 !a

 !

b2

 !a

(10.1)
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In this section, we study fundamental properties of Markov systems. Besides,

we show that any Markov system can be modified in its equivalence class to

another one with good properties. First of all, consider the following property

concerning diagram (10.1).

(*) The map3 f1 D abk � � �ab1 which leaves I1 invariant admits no fixed point in

the open interval I1, and for any z 2 I1, lim
n!1

f n
1 .z/! x, where x is a point

in @J \ Œa�.
Our first modification result is the following.

Lemma 10.1. Any Markov system is equivalent to a Markov system satisfying (*).

Proof. In the admissible word f1 D abk � � �ab1, the last map a (first in the

word) is a transposition of I 0
k

and I1. If we change the map a by the conjugation

by a homeomorphism supported in I1 and leave b unchanged, then the new maps

still satisfy all the requirement for Markov systems. Since the modification is free,

one gets (*). �

We introduce basic terminologies and notations.

Definition 10.2. For subsets P andQ consisting of finite disjoint closed intervals

of S1, the inclusion P � Q is called precise if any boundary point of Q is

contained in P .

The inclusion Œb�[Œb�1� � ŒŒb�� is precise. The composite of precise inclusions

is precise.

Definition 10.3. For the Markov system M D .a; b; Œa�; Œb�; Œb�1�/, denote by

G D G.M/ the subgroup of HomeoC.S
1/ generated by a and b.

By word, we always mean a word of letters a; b˙1. Any map of G n ¹idº is

expressed uniquely as an admissible word, as can be shown by (4) and (7) of the

next lemma.

Definition 10.4. For a admissible word w D vt , where t is the last letter of w, we

define Œw� D vŒt �.

Lemma 10.5. (1) For an admissible word wv, we have wŒv� D Œwv�.
(2) If wv, v�1u and wu are admissible, then wvŒv�1u� D Œwu�.
(3) If wa is admissible, then Œwa� D Œw�.
(4) If wv is admissible, then Œwv� � Œw�.

3 In f1 D abk � � � ab1, b1 is the first map.
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(5) For an admissible word w, Œw� consists of k disjoint closed intervals.

(6) The inclusion Œwb� [ Œwb�1� � Œw� is precise for an admissible word w

which ends at a.

(7) If w and w0 are distinct admissible words of the same length, then Œw� and

Œw0� are disjoint.

Proof. (1) is obtained by an easy induction on the length of v.

For (2),

wvŒv�1u� D wvv�1Œu� D wŒu� D Œwu�:

For (3), if w D vb˙1, then

Œwa� D vb˙1Œa� D vŒb˙1� D Œvb˙1� D Œw�:

For (4), notice that if w D ua and v D b˙1, then

Œwv� D uaŒb˙1� � uŒa� D Œw�:

Together with (3), this implies Œwv� � Œw� if kvk D 1. The general case follows

by an induction on kvk.
For (5), if w D vt , where t is the last letter of v, Œvt � D vŒt �, Œt � consists of

disjoint k intervals and v is a homeomorphism.

For (6), since the inclusion Œb� [ Œb�1� � ŒŒb�� is precise, if we write w D va,

then the inclusion

Œwb�[ Œwb�1� D w.Œb�[ Œb�1�/ � wŒŒb�� D vaŒŒb�� D vŒa� D Œw�

is precise.

(7) follows from an induction of word length. �

For an infinite admissible word
x
w D t1t2 � � � , define Œ

x
w� D

T
i Œt1 � � � ti �. It is a

nonempty set consisting of k closed intervals, some possibly degenerate to points.

We have vŒ
x
w� D Œv

x
w� for any finite admissible word v and any infinite admissible

word
x
w.

Definition 10.6. Define X1 D
T

f 2G f
�1X for X D Œa�[ Œb�[ Œb�1�.

The set X1 is closed and G-invariant. The following lemma says that it is

nonempty.

Lemma 10.7. We have X1 D
S

x
w Œx
w�, where

x
w runs over all the infinite admis-

sible words.
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Proof. The inclusion � is easy: for any f 2 G, we have f Œ
x
w� D Œf

x
w� � X ,

showing Œ
x
w� � f �1X . Let us show �. For any x 2 X1, define t1 2 ¹a; b˙1º by

the condition x 2 Œt1�, then t2 by t�1
1 .x/ 2 Œt2�, t3 by t�1

2 t�1
1 .x/ 2 Œt3� : : : : The

word
x
w D t1t2 � � � we obtained is admissible and x 2 Œ

x
w�. �

For any x 2 X1, define �W .x/ D
x
w if x 2 Œ

x
w�. The inclusion X1 � X

is “precise” in the sense that any boundary point of X is contained in X1. This

stems from Lemma 10.5 (6) and Lemma 10.7. Therefore a gap ofX is a gap ofX1.

Lemma 10.8. The gaps of X1 form one orbit of the G-action.

Proof. Any gap of X1 other than principal or complementary gaps is a gap

contained in Œw� between components of Œwb� and Œwb�1� for some admissible

word w ending at a, and hence is the image by w of a complementary gap. �

Lemma 10.9. The set X1 admits no isolated component.

Proof. The proof is by contradiction. Let C be an isolated component contained

in Œ
x
w�. Let

x
w D t1t2t3 � � � and, for each m 2 N, let Cm be the component of

Œt1 � � � tm� containingC . We claim that the decreasing sequenceC1 � C2 � � � � # C
stabilizes, i.e., that there ism0 such thatCm0Ci D Cm0

for any i 2 N. Assume not.

For any neighbourhood U of C , some Cm is contained in U . But if the sequence

does not stabilize, there is a component of Œ
x
w� distinct from C contained in Cm

and hence in U . This shows that C is not isolated. The contradiction shows the

claim. Now, the interval t�1
m0�1 � � � t�1

1 C is at the same time a component of X and

of X1,

It is no loss of generality to assume that C itself is a component of both X and

X1. Let C.1/ D C and C.i/ D t�1
i�1 � � � t�1

1 C for any i > 1. Then C.i/ is also a

component of both X and X1. Since X has only finitely many components, the

sequence ¹C.i/º is eventually periodic.

Without loosing generality, one may assume that C.1/ is in a periodic cycle:

C.nC 1/ D C.1/ and n such smallest. Notice that the intertwining arrows of the

cycle are t�1
i WC.i/! C.i C 1/ and that C.i/ is a ti -interval. In particular,

(1) if C.i/ is an a-interval, then t�1
i D a.

Let J.i/ be the gap of X right to C.i/. J.i/ is also a gap of X1, either principal

or complementary. It forms a cycle with the same arrows t�1
i W J.i/ ! J.i C 1/

as the arrows t�1
i WC.i/! C.i C 1/ of the cycle ¹C.i/º. The cycle, consisting of

principal and complementary gaps, is contained in the first and second lines of

diagram (10.1). But, since there is no consecutive b or b�1 in the arrows of the

cycle, it is either the cycle in the first line or its reciprocal. In particular, n D 2k

and all the J.i/’s are principal.

Now, any a-interval appears in the cycle ¹C.i/º, since its right gap is principal

and any principal gap appears in the cycle ¹J.i/º. By (1), if C.i/ is an a-interval,
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then it is mapped by a to a b˙1- interval C.i C 1/. That is, any a-interval must be

mapped by a to a b˙1-interval. But there are k a-intervals and 2k b˙1-intervals,

and some a-interval must be mapped by a to a nontrivial b-block containing more

than one b˙1-interval. A contradiction. �

We consider the following property and the second modification.

(**) IntX1 D ;.

Lemma 10.10. Any Markov system is equivalent to a system with properties (*)

and (**).

Proof. This is done by an anti-Denjoy modification: one collapses each compo-

nent Œ
x
w� of X1 to a point, and define new maps a and b of the collapsed S1.

The modification does not collapse Œa�- or Œb˙1�-intervals to points, thanks to

Lemma 10.9, and does not spoil property (**). �

11. Circular order determined by Markov systems

In this section, we shall show that any Markov system with (*) and (**) is a

dynamical realization of some circular order, i.e., that the associated action is

tight at some point. This is done by showing that the setX1 is a minimal set with

good properties.

Definition 11.1. For an admissible word v of even length, .v/ denotes the infinite

admissible word which repeats v.

Lemma 11.2. The boundary point x 2 @I1 \ Œa� satisfies �W .x/ D .abk � � �ab1/

and the other boundary point y satisfies �W .y/ D .b�1
1 a � � � b�1

k
a/.

Proof. Since x is fixed by f1, we have an equality of infinite words

abk � � �ab1
�W .x/ D �W .x/;

where the left-hand side is before reducing. If there is no cancellation in the left-

hand side, we get �W .x/ D .abk � � �ab1/. If abk � � �ab1 is completely canceled out,

we get �W .x/ D .b�1
1 a � � � b�1

k
a/. Otherwise, there is an intermediate cancellation,

the left-hand side begins at a, and the right-hand side begins at b�1
1 . We thus ob-

tained either �W .x/ D .abk � � �ab1/ or �W .x/ D .b�1
1 a � � � b�1

k
a/. A like statement

holds for �W .y/. But, since x 2 Œa�, then �W .x/ D .abk � � �ab1/, and, since I1 is a

principal gap, then �W .y/ D .b�1
1 a � � � b�1

k
a/. �
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Lemma 11.3. The stabilizer GI1
of I1 is infinite cyclic generated by f1.

Proof. Assume h ¤ id stabilizes I1. One may assume that h admits neither f1

nor f �1
1 as an initial subword, by replacing h with a shorter word if necessary.

Since hx D x for x in the previous lemma, we have an equality of infinite words

h.abk � � �ab1/ D .abk � � �ab1/: (11.1)

If there is an intermediate cancellation in the left-hand side, then h begins and

ends at a. But then, since hy D y, we have another equality

h.b�1
1 a � � � b�1

k a/ D .b�1
1 a � � � b�1

k a/; (11.2)

where the left-hand side begins at a and the right-hand side at b�1
1 , leading to a

contradiction.

Consider the case where there is no cancellation at all in the left had side

of (11.1). Then either h is f1 or its initial subword of length 2`, ` < k. In

the latter case, the word .abk � � �ab1/ is periodic of period 2` and 2k, hence

of period 2.k; `/. This shows that h D ab` � � �ab1. But then in the diagram

(10.1) the principal gap I`C1 must be equal to I1. A contradiction. In the

remaining case, where w is cancelled out in the left-hand side of (11.1), there

is no cancellation in the left-hand side of (11.2), and one can show that h D f �1
1

by a like argument. �

Lemma 11.4. For any Markov system with (**), X1 is a minimal set of G.

Proof. First of all, notice that X1 is a Cantor set by Lemma 10.9 and (**).

This, together with Lemma 10.8, shows that the orbit of a boundary point of a

gap is dense in X1. Assume there is a minimal set Y properly contained in X1.

Then any boundary point of a gap of X1 cannot be contained in Y . Therefore,

any gap K of Y contains infinitely many gaps Ji of X1. Since each Ji belongs

to the orbit of I1, it is left invariant by a map represented in an admissible word

as hi D vifiv
�1
i , where fi is a cyclic permutation of f1. Since all the hi leaves

a boundary point z of K invariant, we get vifiv
�1
i

�W .z/ D �W .z/. By the same

argument as the proof of Lemma 11.2, �W .z/ D vi .fi / or �W .z/ D vi .f
�1

i / for

any i . This contradicts the uniqueness of �W .z/: the admissibility of the word

vifiv
�1
i implies that vi contains neither fi nor f �1

i as the terminal subword. �

Definition 11.5. Given a Markov systemM D .a; b; Œa�; Œb�; ŒŒb��/, define a homo-

morphism �MWG ! HomeoC.S
1/ by �M.˛/ D a and �M.ˇ/ D b.

We have �M.G/ D G.

Lemma 11.6. For any Markov system M satisfying (*) and (**), �M is a dynam-

ical realization of a circular order, denoted by cM, based at some point x0 2 I1.



1438 S. Matsumoto

Proof. By Lemma 2.7, we only need to show that �M is tight at x0. Clearly �M is

free at x0 by (*). To show the other condition, notice that X1 is a Cantor minimal

set and that any gap of X1 is a translate of I1. Now, choose an arbitrary gap J

of Cl.�M.G/x0/ for x0 2 I1. If one endpoint of J belongs to the orbit �M.G/x0,

so does the other endpoint. On the other hand, there is no gap of Cl.�M.G/x0/

whose endpoints belong to the minimal set X1. �

12. Isolation

The following theorem is the goal of Part II.

Theorem 12.1. For any Markov system M satisfying (*) and (**), the circular

order cM given by Lemma 11.6 is isolated. Moreover, deg.cM/ is equal to the

multiplicity of M.

The statement about the degree (Definition 4.2) is obvious. The rest of this

section is devoted to the proof of the isolation of cM, by a ping-pong argument.

Let

Y D Œab� [ Œab�1� [ Œb� [ Œb�1�;

h1 D abab�1; h2 D ab�1ab;

�.h1/D Œab�; �.h2/D Œab�1�;

�.h�1
1 /D Œb�; �.h�1

2 /D Œb�1�:

Notice that the “address” of �.h˙1
i / is just the first two letters of h˙1

i , since

Œb˙1� D Œb˙1a�.

Lemma 12.2. For i D 1; 2, we have a precise inclusion

hi .Y ��.h�1
i // � �.hi /

and

h�1
i .Y ��.hi // � �.h�1

i /:

Proof. For example, the first inclusion for i D 1 follows from a sequence of

precise inclusions,

abab�1.Œa� [ Œb�1�/ D aba.Œb�1�[ Œb�/ D ab.Œab�1� [ Œab�/ � ab.Œa�/ D Œab�:

The other inclusions are similar. �
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The ping-pong property on Y is not sufficient to prove the isolation of cM.

Lemma 12.3. There are open neighbourhoods N˙
i of �.h˙1

i / such that

(1) the closures Cl.N˙
i / are mutually disjoint, and

(2) hi.S
1 � N�

i / � N
C
i , or equivalently, h�1

i .S1 �NC
i / � N�

i , i D 1; 2.

Proof. We assume that the point x in @I1 \ Œa� is the right endpoint of I1. Thus,

the map f1 D abk � � �ab1 is an increasing homeomorphism of I1. One can choose

two points in all the principal gaps Ii and I 0
i in (10.1) which satisfy the relations

in Figure 2, where the thin lines indicate the correspondences by the intertwining

maps.

I1 I 0
i

I2 I 0
k 1

Ik I 0
k

I1

Figure 2. The right side of the intervals are drawn upward.

This is possible simply because the first return map is increasing.

Then choose three points in I 00
i and I 000

i as the images of the previous points.

See Figure 3. All these points are called distinguished points.

I1 I 0
i

I2 I 0
k 1

Ik I 0
k

I 000
1

I 00
1

I 000
k

I 00
k

I1

Figure 3
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Define the neighbourhood N˙
i of�.h˙1

i / by expanding each component until

it reaches the first distinguished point. Condition (1) of the lemma is satisfied.

Let us check if (2) is satisfied. First of all, we only consider the right gap

J of each component of �.h�1
i / and check if J n N�

i is mapped by h˙1
i into

h˙1
i .J /\ N˙

i .

We do not need to consider the left gaps, since the statement for them follows

automatically. We can see this by Figure 4. Our strategy is the following. We

choose any gap J 2 ¹Ii ; I
0
i ; I

00
i ; I

000
i º from diagram (10.1). We consider the left

endpoint @�J and calculate to which class (Œab�, Œab�1�, Œb� or Œb�1�) it belongs.

It tells us which one of �.h˙1
i / the left neighbour of J is, and thus which one

of the maps h˙1
i we should check. We explain it concretely with an example

J D I1. Recall that the left endpoint y of I1 satisfies �W .y/ D .b�1
1 a � � � b�1

k
a/

and it belongs to Œb�1
1 � D �.b�1

1 ab1a/. Therefore, the map we should check is

ab�1
1 ab1. For any gap J , we calculate its left endpoint and the corresponding

map. The actual proof is divided into four cases.

1

i
/N

i

N ˙
i

J h˙1

i
.J /

˙1

i
/

p

q

Figure 4. The arrows are h˙1

i
. We shall check if p is mapped above q. If this is true, then

the inverse h�1

i
maps q below p.

Case 1. J D Ii . Since

�W .@�Ii / D abi�1 � � �ab1
�W .y/

D abi�1 � � �ab1.b
�1
1 a � � � b�1

k a/ D b�1
i ab�1

iC1 � � � ;

we have @�Ii 2 Œb�1
i � D �.b�1

i abia/ and the map in concern is h D ab�1
i abi .

According as biC1 D b�1
i or biC1 D bi , h is either of the following composites:

Ii I 0
i IiC1 I 0

iC1 IiC2

I 00
iC1 I 000

iC1

 !bi  !a  !
biC1

 

!
b�1

iC1

 !a

 !a

In any case, h satisfies the required property. See Figure 5.
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p

q

q0

Figure 5. h maps p above q or q0.

Case 2. J D I 0

i
. Since �W .@�I

0
i / D bi

�W .@�Ii / D ab�1
iC1 � � � , we have @�I

0
i 2

�.ab�1
iC1abiC1/ and the map in concern is b�1

iC1abiC1a. This case is analogous to

Case 1, and is omitted. The point is that the map b�1
iC1abiC1a defined on I 0

i also

goes from left to right in (10.1).

Case 3. J D I 00

i
. Since �W .@�I

00
i / D b�1

i
�W .@�Ii / D bi � � � , we have @�I

00
i 2

�.biab
�1
i a/ and the map in concern is abiab

�1
i .

It is either of the following composites:

I 0
i IiC1 I 0

iC1 IiC2

I 00
i I 00

iC1 I 000
iC1

 !a  !
biC1

 

!
b�1

iC1

 !a

 !
b�1

i  !a

See Figure 6. In the bottom composite, the point p is mapped exactly to q0. In this

case, we enlarge the neighbourhood of �.biab
�1
i a/ slightly so as to contain the

point p. Then its complement in J is mapped above q0.

Case 4. J D I 000

i
. Since �W .@�I

000
i / D a �W .@�I

000
i / D abi � � � , we have @�I

000
i 2

�.abiab
�1
i / and the map in concern is biab

�1
i a. This case is similar to Case 3

and is omitted. �

For the proof of Theorem 12.1, we need [3, Proposition 3.3]. The statement

below is adapted for our purpose, and we shall give a complete proof in the

appendix.
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q

q0

p

I 00
i

b 1

i

iab 1

i
a/

Figure 6. p is mapped above q, but exactly to q0.

Proposition 12.4. Let � be a dynamical realization of a circular order c based

at x0. Given any neighbourhood U of � in Hom.G;HomeoC.S
1//, there is a

neighbourhood V of c in CO.G/ such that any order in V has a dynamical

realization based at x0 contained in U .

We also need the following proposition whose proof is again contained in the

appendix.

Proposition 12.5. The space Hom.G;HomeoC.S
1// is locally pathwise con-

nected. In fact, more can be said: any neighbourhood of any point contains a

pathwise-connected neighbourhood.

Proof of Theorem 12.1. Recall that �M is a dynamical realization of the circular

order cM given by Lemma 11.6 based at a point x0 2 I1. One can choose x0 in

Int.S1 n [N˙
i /, where N˙

i is from Lemma 12.3. Choose a pathwise connected

neighbourhood U of �M in Hom.G;HomeoC.S
1// such that any action  2 U

satisfies

hi . /.S
1 nN�

i / � NC
i

(and equivalently hi . /
�1.S1 n NC

i / � N�
i ), where h1. / D  .˛ˇ˛ˇ�1/ and

h2. / D  .˛ˇ�1˛ˇ/.

The ping-pong lemma (Klein’s criterion) asserts that the subgroup ŒG; G�

generated by ˛ˇ˛ˇ�1 and ˛ˇ�1˛ˇ acts freely at x0 by any  2 U . We claim

that G itself acts freely at x0 by  . In fact, if H is the stabilizer at x0, then

H \ ŒG; G� D ¹eº. That is, the canonical projection G ! G=ŒG;G� Š Z=6Z is

injective on H , and hence H , if nontrivial, contains an element 
 of finite order.

But 
 is conjugate either to ˛ or to ˇ˙1, and therefore  .
/ is fixed point free.

A contradiction shows the claim.
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Now, let V be a neighbourhood of cM in CO.G/ such that a dynamical real-

ization  of an arbitrary order c0 of V belongs to U . Then there is a path  t ,

0 � t � 1, joining �M and  contained in U . Since all the  t act freely at x0, the

circular orders of G obtained from the orbit  t .G/x0 are all the same, indepen-

dent of t . (Recall that CO.G/ is totally disconnected.) This shows c0 D cM. The

proof of Theorem 12.1 is now complete. �

Proof of Theorem 1. We have constructed a map from the set of the isolated cir-

cular orders to the set of the equivalence classes of the Markov systems in Part II,

and a map in the reverse direction in Part III. It is clear from the constructions that

one is the inverse of the other. �

Part IV

We present some examples of isolated circular orders of G.

13. Primary examples

We revisit isolated circular orders of G constructed in [4].

Standard example. Here is a Markov system M1 with multiplicity 1. Just place

intervals Œa�; Œb�; Œb�1� in the anti-clockwise order on S1. Clearly, there are an

involution a ofS1 which interchanges Œa� and ŒŒb�� and a period-3 homeomorphism

b which circulates Œa�, Œb�, and Œb�1�. Transitivity of gaps is also clear. Thus we

obtain an isolated circular order c1 D cM1
. If the placement of Œa�; Œb�; Œb�1�

is clockwise, we get another order c0. But this is in the same automorphism

class of c1: c0 D .�0/�c1 for �0 in Proposition 3.1 (4). By the homeomorphism

CO.G/ � LO.B3/, c1 corresponds to the Dubrovina–Dubrovin order [1].

Finite lifts of the standard example. Let �1 be a dynamical realization of the

previous example c1. We shall construct more examples starting with finite lifts

of �1. For k > 1, let pkWS1 ! S1 be the k-fold covering map. A G-action �k

on S1 is called a k-fold lift of �1 if it satisfies pk�k.g/ D �1.g/ for any g 2 G.

Then the rotation numbers satisfy k rot.�k.g// D rot.�1.g//. This shows that a

lift of an involution is an involution if and only if k is odd. Likewise, a lift of a

3-periodic map is 3-periodic if and only if k is coprime to 3. Therefore, a k-fold

lift �k of �1 exists if and only if k � ˙1 (6): moreover it is unique if it exists. The

map �k.ˇ/ is 3-periodic and has rotation number˙1=3 according as k � ˙1 (6),

since .6`˙ 1/ � .�=3/ � 1=3 (1) implies � D ˙1.
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We shall show that the lift �k is associated with a Markov system Mk for

k D 6`C 1. The case k D 6`� 1 is similar and is left to the reader. Let Œa�i , Œb�i ,

and Œb�1�i (i 2 Z=kZ) be the lifts of Œa�, Œb�, and Œb�1� of the previous example

M1 by pk, ordered anticlockwise in S1 as

: : : ; Œa�i ; Œb�i ; Œb�1�i ; Œa�iC1; : : : : (13.1)

The maps a, b of the system Mk must be �k.˛/ and �k.ˇ/. The sequence (13.1)

has 3k D 18`C3 terms, and b, being the lift of �1.ˇ/, maps each term to the term

6`C 1 right to it. Therefore we have

bŒa�i D Œb�iC2`; bŒb�i D Œb�1�iC2`; bŒb�1�i D Œa�iC2`C1: (13.2)

The sequence (13.1) is contracted into a sequence

: : : ; Œa�i ; ŒŒb��i ; Œa�iC1; ŒŒb��iC1; : : :

of 12`C 2 terms. The map a sends each term to the term 6`C 1 right to it. That

is,

aŒa�i D ŒŒb��iC3`; aŒŒb��i D Œa�iC3`C1: (13.3)

In order to check (E), we shall classify all principal gaps into two families Ji ’s

and J 0
i ’s (i 2 Z=.6`C 1/Z) by the following ordering:

: : : ; Œa�i ; Ji ; Œb�i ; Œb�1�i ; J 0
i ; Œa�iC1; : : : :

By (13.2) and (13.3), we get

b.J 0
i / D JiC2`C1 (13.4)

and

ab.J 0
i / D J 0

iC5`C1: (13.5)

Now, (13.5) shows that the group generated by ab acts transitively on the fam-

ily J 0
i ’s, since .6`C 1; 5`C 1/ D 1, and (13.4) shows that any Ji from the other

family is mapped by b�1 to an element of this family. This shows (E).

The circular order defined by Mk is denoted by ck . Each of them is from a

distinct automorphism class, since deg.ck/ D k.

14. Further example

Notice that the deg.c/ of any isolated circular order c is odd, since the involution a

transposes Œa� and ŒŒb��. According to our calculation, there are no new examples

of isolated circular orders up to degree � 7. But there is one in degree 9, which

we shall present below.
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This example is not well ordered as the previous one and it is no use to give an

index to each component. Any component of Œa� is denoted by the same letter
N
a.

Likewise, we use the notations
N
b and

N
b�1. Also a component of ŒŒb�� is denoted

by Œ
N
b�. Consider the following ordering of 27 intervals in S1 which is grouped

into three:

N
a
N
b�1

N
a
N
b�1

N
a
N
b�1

N
b
N
a
N
b�1W
N
b
N
a
N
b
N
a
N
b
N
a
N
b�1

N
b
N
aW
N
b�1

N
b
N
b�1

N
b
N
b�1

N
b
N
a
N
b�1

N
b: (14.1)

Define a period-3 homeomorphism b of S1 by permuting the three groups cycli-

cally to the right. Notice that b so defined satisfies b
N
a D

N
b, b
N
b D

N
b�1, and

b
N
b�1 D

N
a. The sequence (14.1) is contracted to

N
a Œ
N
b�
N
a Œ
N
b�
N
a Œ
N
b�
N
a Œ
N
b�
N
aW Œ
N
b�
N
a Œ
N
b�
N
a Œ
N
b�
N
a Œ
N
b�
N
a Œ
N
b� (14.2)

Define an involution a by transposing the groups. The maps a and b satis-

fies (A)–(D). To show (E), indicate the principal gaps by
�

i
j

�
and the comple-

mentary gaps
�

i
�

�
as follows:

N
a

�
1

1

�

N
b�1

�
2

2

�

N
a

�
3

3

�

N
b�1

�
4

4

�

N
a

�
5

5

�

N
b�1

�
6

�

�

N
b

�
7

6

�

N
a

�
8

7

�

N
b�1

�
9

�

�

N
b

�
1

8

�

N
a

�
2

9

�

N
b

�
3

1

�

N
a

�
4

2

�

N
b

�
5

3

�

N
a

�
6

4

�

N
b�1

�
7

�

�

N
b

�
8

5

�

N
a

�
9

6

�

N
b�1

�
1

�

�

N
b

�
2

�

�

N
b�1

�
3

�

�

N
b

�
4

�

�

N
b�1

�
5

�

�

N
b

�
6

7

�

N
a

�
7

8

�

N
b�1

�
8

�

�

N
b

�
9

9

�

Notice that one of maps b˙1 sends
�

i
j

�
to some

�
i
k

�
and the other one to

�
i
�

�
, and

that the map a sends
�

i
j

�
to some

�
k
j

�
. We can find a cycle of principal gaps:

�
1

1

�
a�!

�
3

1

�
b�1

�!
�
3

3

�
a�!

�
5

3

�
b�1

�!
�
5

5

�
a�!

�
8

5

�
b�1

�!
�
8

7

�
a�!

�
6

7

�
b�1

�!
�
6

4

�
a�!

�
4

4

�
b�!

�
4

2

�
a�!

�
2

2

�
b�!

�
2

9

�
a�!

�
9

9

�
b�1

�!
�
9

6

�
a�!

�
7

6

�
b�1

�!
�
7

8

�
a�!

�
1

8

�
b�1

�!

Therefore (E) is also satisfied. This yields an isolated circular order c9 of degree 9.

It is not in the automorphism classes of the previous examples. If we arrange

the intervals in the clockwise order, we obtain another order c0. But again c0 D
.�0/

�c9.

15. Appendix

We shall give proofs of Propositions 12.4 and 12.5. The former holds true for an

arbitrary countable group H .
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Proposition 12.4. Let � be a dynamical realization of a circular order c based

at x0. Given any neighbourhood U of � in Hom.G;HomeoC.S
1//, there is a

neighbourhood V of c in CO.G/ such that any order in V has a dynamical

realization based at x0 contained in U .

Proof. Given a finite set F of H and � > 0, let

U.F; �; �/ D ¹ 2 Hom.H;HomeoC.S
1//W k .g/� �.g/k0 < � for all g 2 F º:

One may replace the given U in the proposition by a smaller neighbourhood

U.F; �; �/. One may also assume that F is symmetric: g 2 F implies g�1 2 F .

Given a finite subset S of H , define a neighbourhood VS .c/ of c in CO.H/ by

VS .c/ D ¹c0 2 CO.H/W c0j.S[¹eº/3 D cj.S[¹eº/3º:

Then any c0 2 VS .c/ admits a dynamical realization  c0;S based at x0 such that

 c0;S .g/x0 D �.g/x0 for any g 2 S . Our aim is first to find a good S and then

to alter  c0;S by a x0-preserving conjugacy to obtain a homomorphism contained

in U.F; �; �/. Choose ı > 0 so that, whenever f 2 F and jx � yj < ı, we have

j�.f /x � �.f /yj < �.

Case 1. �.H/x0 is dense in S1. Choose a finite subset S 0 of H so that X D
�.S 0/x0 is ı=2-dense in S 0 and define S D FS 0[S 0. In this case, there is no need

for the alteration: we shall show that  c0;S 2 U.F; �; �/. In fact, for any x 2 X ,

we have x D  c0;S .g/x0 D �.g/x0 for g 2 S 0. Moreover  c0;S .f /x D �.f /x,

for any x 2 X and f 2 F , because �.f /x D �.fg/x0,  c0;S .f /x D  c0;S .fg/x0

and fg 2 S . Choose any f 2 F and any y 2 S1. Then y belongs to the closure

Cl.J / of some gap J of X . Since X is ı=2-dense, we have jJ j < ı, and hence

j�.f /J j < �. Since both points �.f /y and c0;S .f /y belong to the same interval

�.f /Cl.J / D  c0;S.f /Cl.J /, we have j�.f /y �  c0;S .f /yj < �. Since f 2 F
and y 2 S1 are arbitrary, we obtain  c0;S 2 U.F; �; �/, as is required.

Case 2. �.H/x0 is not dense in S1. Denote by J0 the gap of Cl.�.H/x0/ whose

left endpoint is x0. Define hmin 2 H so that �.hmin/x0 is the right endpoint of J0.

Since � is tight at x0, any gap J of Cl.�.H/x0/ is a translate of J0. Denote by V

the set of the gaps J such that jJ j � ı. Let

S1 D ¹g 2 H W�.g/.J0/ 2 Vº

and let S2 D S1 [ S1hmin. Thus, the endpoints of any interval of V belongs

to �.S2/x0. Add some more elements to S2 to form a finite subset S3 such

that �.S3/x0 is ı=2-dense in Cl.�.H/x0/. Notice that any gap of �.S3/x0 either

belongs to V or is of length< ı. Finally, let S D FS3[S3. We have the following

property by the same argument as in Case 1.
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(1) For any point x 2 �.S3/x0 and f 2 F , we have  c0;S .f /x D �.f /x.

Define a one dimensional simplicial complex K as follows. The vertex set of

K is V. Two vertices J and J 0 are joined by an edge if there is f 2 F such that

�.f /J D J 0. Such f is unique since �.H/ acts simply transitively on the gaps

of Cl.�.H/x0/: �.g/J0 D J0 implies g D e. We label the directed edge from J

to J 0 by f . For a directed edge J
f
! J 0 of K, we have  c0;S .f /.J / D J 0 by (1).

The simple transitivity on the gaps shows the following.

(2) For a directed cycle

J1

f1�! J2

f2�! � � �Jn

fn�! JnC1 D J1;

we have

fn � � �f2f1 D e:

Let us consider h 2 HomeoC.S
1/ supported on the union of the closures of the

intervals in V and leaving the endpoints of the intervals fixed. We claim that there

is h such that for any directed edge J
f
! J 0 of K, h c0;S .f /h

�1 D �.f / on J . To

show this, consider a spanning tree T� of each component K� of K. Define h to be

the identity on a prescribed base vertex J1 of T�. For any directed edge J1

f
! J2

of T� , define h on J2 so that h c0;S .f /h
�1 D �.f / holds on J1. We continue

this process along directed paths in T� issuing at J1 until we define h on all the

vertices of K� . Then for any directed edge J
f! J 0 of T�, h c0;S .f /h

�1 D �.f /
on J (even if the edge is directed toward the base vertex). Also, for an edge of K�

not in T�, we have the same equality thanks to the relation (2). The proof of the

claim is over.

Let us define a homomorphism  by  .g/ D h c0;S .g/h
�1 for any g 2 H .

The homomorphism still satisfies (1) with c0;S replaced by . Let J be any gap

of �.S3/x0 D  .S3/x0 and f any element of F . If either jJ j < ı or j�.f /J j < ı,
then  .f / is �-near to �.f / on J . If not, J

f
! �.f /J is an edge of K, and

 .f / D �.f / on J . This shows  2 U.F; �; �/, as is required. �

Proposition 12.5. The space Hom.G;HomeoC.S
1// is locally pathwise con-

nected. In fact, more can be said: any neighbourhood of any point contains a

pathwise-connected neighbourhood.

Proof. The space in question is homeomorphic to Q2 �Q3, where

Q2 D ¹a 2 HomeoC.S
1/W a2 D idº;

Q3 D ¹b 2 HomeoC.S
1/W b3 D idº:
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Choose a base point x0 2 S1. A map a in Q2 is specified by a point a.x0/ and

an orientation-preserving homeomorphism from Œx0; a.x0/� to Œa.x0/; x0�. So,

Q2 is homeomorphic to .0; 1/ � HomeoC.0; 1/. Likewise, Q3 is homeomorphic

to .0; 1/ � HomeoC.0; 1/ � HomeoC.0; 1/. It suffices to show that the space

HomeoC.0; 1/ satisfies the claimed property. For any neighbourhoodU of a point

f 2 HomeoC.0; 1/, choose � > 0 so that

U.f; �/ D ¹g 2 HomeoC.0; 1/W kg � f k < �º

is contained in U . Then for any g 2 U.f; �/, the path ¹.1 � t /f C tgº0�t�1 is

contained in U.f; �/. �
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