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Patterns in sets of positive density in trees and affine buildings
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Abstract. We prove an analogue for homogeneous trees and certain affine buildings of
a result of Bourgain on pinned distances in sets of positive density in Euclidean spaces.
Furthermore, we construct an example of a non-homogeneous tree with positive Hausdorff
dimension, and a subset with positive density thereof, in which not all sufficiently large
(even) distances are realised.
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Introduction

A celebrated result in geometric Ramsey theory due to Furstenberg, Katznelson
and Weiss [9] states that if X is a Lebesgue measurable subset of R2 with positive
upper density, then the setD.X/ D ¹kx�yk j x; y 2 Xº of distances between el-
ements of X contains all sufficiently large real numbers. In [6] Bourgain proved a
remarkable generalisation of the Furstenberg–Katznelson–Weiss theorem, show-
ing that if the measurable set X � R

n has positive upper density, and if † is the
vertex set of an .n� 1/-simplex in R

n, then X contains an isometric copy of each
sufficiently large dilation of †.

Discrete analogues of both the Furstenberg–Katznelson–Weiss and Bourgain
theorems have recently been obtained by Magyar [10, 11]. In [10] it is shown
that if X is a subset of positive upper density in Z

n with n > 4, then the set
D2.X/ D ¹kx � yk2 j x; y 2 Xº contains all large multiples of a fixed integer m,
and in [11] an analogue of Bourgain’s Theorem is proved. Further configurations
in sets of positive density in Z

n have recently been studied in the papers [3, 4].
In this paper we investigate the extent to which certain configurations must

necessarily be present in subsets of positive upper density in homogeneous trees
and affine buildings. In particular, we prove analogues of the Furstenberg–
Katznelson–Weiss and Bourgain theorems in this context.

Let us first discuss the case of trees. Let Tq be the homogeneous tree of
degree q C 1 � 3 with vertex set V , and let o 2 V be a fixed choice of root.

https://creativecommons.org/licenses/by/4.0/
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For x 2 V and n � 0, let Sn.x/ D ¹y 2 V j d.x; y/ D nº, where d.�; �/ is the
graph metric. The (upper) density of a subset X � V , with respect to o, is

d�.X/ D lim sup
n!1

jX \ Sn.o/j
jSn.o/j

:

Let D.X/ D ¹d.x; y/ j x; y 2 Xº be the set of distances between elements of X .
We prove the following analogue of the Furstenberg–Katznelson–Weiss theorem.

Proposition 1. LetX � V with d�.X/ > 0. There exists a constantKDK.X/>0

such that for all t 2 N with t � K there exist vertices x; y 2 X with d.x; y/ D 2t

and d.o; x/ D d.o; y/.

Thus, in particular, if d�.X/ > 0, thenD.X/ contains all sufficiently large even
integers. Note that since Tq is bipartite it is obviously possible for d�.X/ > 0

and D.X/ � 2Z, and so the condition of even distances in the proposition
cannot be removed. Note also that we obtain the “bonus” that x and y are
equidistant to o in Proposition 1. This fact turns out to help with finding more
elaborate configurations in sets of positive density in Tq (see Theorem 1.3 and
Corollary 1.6).

The first main theorem of this paper is the following extension of Proposition 1,
giving a kind of analogue of Bourgain’s Theorem.

Theorem 2. Let X � V with d�.X/ > 0. For each k > 0 there exists
K D K.X; k/ > 0 such that whenever t1; : : : ; tk 2 N with tk � � � � � t2 � t1 � K

there exists a subset ¹v0; v1; : : : ; vkº � X with d.v0; vj / D 2tj for all 1 � j � k

and d.o; v0/ D d.o; v1/ D � � � D d.o; vk/.

Our second main theorem is an extension of Theorem 2 to sets of positive
density in certain affine buildings (see Theorem 3.3 for a precise statement). These
combinatorial/geometric objects play a role for Lie groups over non-archimedean
local fields analogous to the role that the symmetric space plays for a real Lie
group. Homogeneous trees Tq are the simplest types of affine buildings, being
associated to the rank 1 group SL2.F/ with F a local field with residue field Fq

(with q a prime power).
Our proof techniques, for both the case of trees and buildings, are purely

combinatorial, differing significantly from the ergodic theory techniques of [9]
and the harmonic analysis techniques of [6, 10, 11]. This is not a matter of taste,
but rather due to the very different types of symmetries of the patterns sought
after in the two settings. More specifically, the type of patterns investigated in
[6, 9, 10, 11] are invariant under the action of the isometry group of the Euclidean
space R

n, which is an amenable group. The arguments in [9] make direct use of
this fact, while the arguments [6, 10, 11] use it in an indirect way, to ultimately
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reduce the proofs to establishing vanishing of Bessel functions at infinity, which
is classical.

On the other hand, the patterns investigated in this paper are invariant under
the isometry group of Tq (or a higher rank affine building), which is typically
not an amenable group. In particular, the approach of [9] is not applicable here,
since it is not clear why the dynamical system (as described in [9]) attached to
the set of positive density in the tree would admit a probability measure invariant
under the action of the isometry group of Tq . If it did, then similar arguments to
those in [9] could still be made, ultimately reducing the problem to establishing
vanishing at infinity of the (positive definite) spherical functions of the tree, which
is classical. However, this is a rather degenerate situation, and it is not hard to
construct examples of sets with positive density in Tq whose associated dynamical
systems for the isometry group of Tq do not admit invariant probability measures.
Fortunately, our combinatorial approach bypasses this problem entirely.

We conclude this introduction with an outline of the structure of the paper. In
Section 1 we prove Proposition 1 and Theorem 2. In Section 2 we address a related
question asked to us by Itai Benjamini. In particular, we show that if T � Tq is
tree of positive Hausdorff dimension, and if X � T is a subset of positive lower
density (hence also positive upper density), then the analogue of Proposition 1 may
fail. In Section 3 we prove our extension of Theorem 2 for certain affine buildings
(see Theorem 3.3), and we also translate our results to give a corollary on sets of
positive density in simple algebraic groups defined over non-archimedean local
fields (see Corollary 3.13).

We note that Theorem 3.3 (on affine buildings) covers Theorem 2 as the rank 1
case, and Theorem 2 in turn covers Proposition 1 as a special case. Nonetheless we
will provide complete proofs of both Proposition 1 and Theorem 2 in this paper.
We believe that this redundancy is well justified, as the tree case, and in particular
Proposition 1, more clearly illustrates the key combinatorial ideas driving the
proof of Theorem 3.3, yet avoids the technical complications encountered in the
general case. Moreover, our decision to give a complete exposition of the tree case
first makes our results more accessible to readers unacquainted with the theory of
affine buildings.

1. Sets of positive density in homogeneous trees

Let Tq be the homogeneous tree with vertex set V and degree q C 1 � 3, and let
o 2 V be a fixed choice of root. For x 2 V and n � 0 let

Sn.x/ D ¹y 2 V j d.x; y/ D nº;
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where d.�; �/ is the graph metric. We write Sn D Sn.o/. The (upper) density of a
subset X � V , with respect to x 2 V , is

d�.X; x/ D lim sup
n!1

jX \ Sn.x/j
jSn.x/j

:

Let d�.X/ D d�.X; o/. A subset X has positive density if d�.X/ > 0. While the
numerical value of density depends on the choice of root, the property of positive
density is independent of this choice, as shown by the following lemma.

Lemma 1.1. If d�.X; x/ > 0 for some x 2 V , then d�.X; x/ > 0 for all x 2 V .

Proof. It suffices to show that d�.X; y/ > 0 whenever d.x; y/ D 1. For n � 1 we
have Sn.x/ � Sn�1.y/ [ SnC1.y/ and hence

jX \ Sn.x/j
jSn.x/j

� jX \ Sn�1.y/j
jSn.y/j

C jX \ SnC1.y/j
jSn.y/j

� .q C q�1/
� jX \ Sn�1.y/j

jSn�1.y/j
C jX \ SnC1.y/j

jSnC1.y/j

�

:

Thus d�.X; x/ � 2.q C q�1/d�.X; y/: Thus, for arbitrary y 2 V we have
d�.X; y/ � C�d.x;y/d�.X; x/, where C D 2.q C q�1/, and hence the result. �

Remark 1.2. There exist subsets X � V of positive density with inf¹d�.X; x/ j
x 2 V º D 0 and sup¹d�.X; x/ j x 2 V º D 1. For example, if X consists of one
entire “branch” based at o, then d�.X/ D .qC 1/�1 > 0, and choosing sequences
.xn/�0 and .yn/n�0 of vertices with xn ! 1, yn ! 1, xn 2 X , and yn … X , we
have d�.X; xn/ ! 1 andd�.X; yn/ ! 0. This example illustrates that the constant
K appearing in Theorem 2 must depend on the set X , rather than depending only
on d�.X/.

1.1. Proof of Proposition 1. In this section we give a proof of Proposition 1,
illustrating the proof techniques required for Theorem 2 in a simplified setting. If
v 2 V and k 2 N we write C.v; k/ for the “k-children” (or k-descendants) of v.
That is,

C.v; k/ D ¹x 2 V j d.v; x/ D k and d.o; x/ D d.o; v/C kº:

Let C.v/ denote the set of all descendants of v. That is,

C.v/ D
[

k�0

C.v; k/:

For each n � 0 and 0 � t � n the members of An;t D ¹C.v; t/ j v 2 Sn�tº
partition Sn. Let Fn;t denote the �-algebra generated An;t . We call the members
of An;t the atoms of Fn;t .
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Proof of Proposition 1. The argument proceeds as follows.

Claim 1. Suppose that t1 2 N is such that there exist no vertices x; y 2 X with
d.o; x/ D d.o; y/ and d.x; y/ D 2t1. Then, for each v 2 Sn�t (with n > t � t1),
the proportion of Fn;t1�1 atoms contained in C.v; t/ with the property that they
intersect nontrivially with X is at most q�1.

Proof of Claim 1. Let v 2 Sn�t . We decompose C.v; t/ as

C.v; t/ D
G

w2C.v/\Sn�t1

C.w; t1/:

Let w 2 C.v/ \ Sn�t1 . If there exist distinct u1; u2 2 C.w; 1/ such that one has
C.uj ; t1 � 1/ \ X ¤ ; for j D 1; 2, then choosing zj 2 C.uj ; t1 � 1/ \ X (for
j D 1; 2) we have d.o; z1/ D n D d.o; z2/, and d.z1; z2/ D 2t1, a contradiction
(see Figure 1, where the Fn;t1�1 atoms contained in C.v; n/ are drawn as ellipses,
and nontrivial intersection of an atom with X is denoted by shading). Thus, for
each w 2 C.v/\ Sn�t1 there exists at most 1 child u 2 C.w; 1/ with the property
that C.u; t1 � 1/ intersects nontrivially with X (see the elements w0 and u0 in
Figure 1). Hence the claim. 4

n � t1 C 1

n

n � t v

n � t1
w w0

u2u1
u0

�� ��� ��
z2 2 Xz1 2 X

Figure 1. Illustration for Claim 1.

Claim 2. Suppose there are integers 0 < t1 < t2 < � � � < tk such that for
each 1 � j � k there exist no vertices x; y 2 X with d.o; x/ D d.o; y/ and
d.x; y/ D 2tj . Then, for all n > tk, we have

jX \ Snj
jSnj < q�k :

Proof of Claim 2. Let vk 2 Sn�tk . By Claim 1 (with v D vk), the proportion
of atoms of Fn;tk�1 contained in C.vk; tk/ with the property that they intersect
nontrivially with X is at most q�1. However C.vk; tk/ contains precisely q atoms
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of Fn;tk�1, and hence there is at most one Fn;tk�1 atom contained in C.vk; tk/

with the property that it intersects nontrivially with X . Suppose that Ak is such
an atom, illustrated as a dashed ellipse in Figure 2 (for the case k D 2). Let v0

k
be

such that Ak D C.v0/ \ Sn, as illustrated. Then, again by Claim 1 (this time with
v D v0

k
), the proportion of the Fn;tk�1�1 atoms contained in Ak with the property

that they intersect nontrivially with X is at most q�1 (these atoms are displayed as
shaded ellipses in Figure 2). Thus, overall, the proportion of the Fn;tk�1�1 atoms
contained in C.vk; tk/ with the property that they intersect nontrivially with X is
at most q�2. Iterating this process proves the claim. 4

n � t1 C 1

n

n � t2
n � t2 C 1

v0
2

v2

n � t1

A2

Figure 2. Illustration for Claim 2 (with k D 2).

The proposition now follows. For, if there is an unbounded sequence t1 <

t2 < t3 < � � � such that for each j � 1 there are no vertices x; y 2 X with
d.o; x/ D d.o; y/ such that d.x; y/ D 2tj , then for each k > 0 and each n > tk
we have jX \ Snj=jSnj < q�k. It follows that d�.X/ D 0, contradicting positive
density. �

1.2. Proof of Theorem 2. The arguments in the previous section are the core to
the proof of Theorem 2, however the details become more technical in the general
case. We introduce the following notion for the proof. For each k > 0, let Mk

denote the set of strictly monotone increasing sequences of k positive integers.
Let k > 0. Let t D .ti/

k
iD1 2 M

k and let r D .ri/
k
iD1 2 N

k . Then, by a
.k; t; r/-star we mean a set Y of vertices of Tq with a distinguished vertex v0 2 Y
(called the centre of Y ) such that

.1/ if v 2 Y n¹v0º, then d.v0; v/ 2 ¹2t1; : : : ; 2tkº,

.2/ for each 1 � i � k we have j¹v 2 Y j d.v0; v/ D 2tiºj D ri ,

.3/ for all x; y 2 Y we have d.o; x/ D d.o; y/ (that is, Y � Sn for some n > 0).

In particular, note that a .k; t; r/-star has precisely 1C r1 C � � � C rk vertices.
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If Y a .k; t; r/-star, then writing Yi D ¹x 2 Y j d.v0; x/ D 2tiº for i D 1; : : : ; k

and Y0 D ¹v0º, we have Y D Y0 [ Y1 [ � � � [ Yk and d.x; y/ D 2tj for all x 2 Yi

and y 2 Yj whenever 0 � i < j � k. This configuration is illustrated below.

�
v0 Y1 Y2 Y3 Yk

o

n

n � t1

n � t2

n � t3

n � tk

Figure 3. A .k; t; r/-star.

Theorem 2 follows immediately from the following theorem.

Theorem 1.3. Let X � V with d�.X/ > 0. For each k > 0 and each r 2 N
k

there exists a constant K D K.X; k; r/ > 0 such that X contains a .k; t; r/-star
for all t D .ti/

k
iD1 2 M

k with t1 > K.

To prove Theorem 1.3 we argue as in Proposition 1, using the following
lemmas.

Lemma 1.4. Let X � V , k > 0, r 2 N
k , and t 2 M

k . Let r D max¹ri j 1 �
i � kº. If X contains no .k; t; r/-star, then for each v 2 Sn�t with n � t � tk the
proportion of the atoms of Fn;t1�1 contained in C.v; t/with the property that they
intersect X in at least r vertices is at most q�1.

Proof. We introduce the following terminology for the proof. A vertex x 2 Sn�s

(with 0 � s � n) is said to have “type A” if there are at least two children
y1; y2 2 C.x; 1/with the property thatX\C.yj ; s�1/ contains at least r elements
for j D 1; 2, and is said to have “type B” otherwise. Figure 4 illustrates a type A
vertex x (with r � 4, and where elements of X are denoted by �).

We make the following observation. Let 0 < s0 < s < n. If x 2 Sn�s, then

C.x; s/ D
G

y2C.x;1/

C.y; s � 1/; (1.1)

and for each y 2 C.x; 1/ the set C.y; s � 1/ is a union of qs�s0�1 atoms of Fn;s0 .
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n � s C 1

n

n � s x

y1 y2

� � � � � � � �

Figure 4. The vertex x has type A.

In particular, each set C.y; s� 1/, y 2 C.x; 1/, contains the same number of Fn;s0

atoms, and so if x 2 Sn�s has type B , then the proportion of the Fn;s0 atoms of
C.x; s/ containing at least r elements of X is at most q�1.

Returning to the argument, let v 2 Sn�t . Let X be the set of all sequences
.xk ; xk�1; : : : ; x1/ such that xk 2 Sn�tk \C.v/ and xk�j 2 C.xk�j C1/\Sn�tk�j

for j D 1; 2; : : : ; k � 1. Suppose that there exists a sequence .xk ; xk�1; : : : ; x1/ 2
X such that each xj has type A. So, there exist vertices y1; y

0
1 2 C.x1; 1/ with

y1 ¤ y0
1 such that jX \ C.y1; t1 � 1/j � r and jX \ C.y0

1; t1 � 1/j � r . Let
v0 2 C.y1; t1 � 1/ \ X and v1

1; : : : ; v
r
1 be distinct elements of C.y0

1; t1 � 1/ \ X .
For each j D 2; : : : ; k, let yj 2 C.xj ; 1/ denote the unique child of xj on the
geodesic segment joining xk to x1. Since xj has type A there is a second vertex
y0

j ¤ yj in C.xj ; 1/ such that jX \ C.y0
j ; tj � 1/j � r . Let v1

j ; : : : ; v
r
j be distinct

elements of X \ C.y0
j ; tj � 1/. Then, d.v0; v

j
i / D 2ti for each 1 � i � k and

1 � j � r , and so ¹v0º [ ¹vj
i j 1 � i � k; 1 � j � rº forms a .k; t; r1/-star,

where 1 2 N
k is the vector with every entry equal to 1. In particular, X contains

a .k; t; r/-star, a contradiction.
Thus, every .xk ; xk�1; : : : ; x1/ 2 X contains at least one vertex of type B .

Note that, if xj , has type B , then the proportion of Fn;t1�1 atoms of C.xj ; tj /

intersecting X in at least r vertices is at most q�1. Thus, by a depth-first scan
through the natural forest structure on X (with root nodes xk 2 Sn�tk \C.v/), we
can partition the set of Fn;t1�1 atoms in C.v; t/ in such a way that in each part of
the partition the proportion of atoms with the property that they intersect X in at
least r vertices is at most q�1. Thus, the proportion of all Fn;t1�1 atoms of C.v; t/
with this property is at most q�1, and hence the result. �

Lemma 1.5. Let X � V , k > 0, and r 2 N
k . For 1 � j � ` let tj D .ti;j /

k
iD1 2

M
k , and suppose that tk;j < t1;j C1 for each j D 1; : : : ; ` � 1. If X contains no

.k; tj ; r/-stars for each 1 � j � `, then for all n > tk;` we have

jX \ Snj
jSnj < .q�` C rq1�t1;1/;

where r D max¹ri j 1 � i � kº.
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Proof. Lemma 1.4 (applied to the case v D o) implies that the proportion of
Fn;t1;`�1 atoms intersecting X in at least r vertices is at most q�1. Let X` be
such an atom, and let x` be the projection of this atom onto Sn�t1;`C1 (that is,
X` D Sn \ C.x`/). Lemma 1.4, this time applied to the case v D x`, implies
that the proportion of the Fn;t1;`�1�1 atoms contained in X` with the property that
they intersect X in at least r vertices is at most q�1. Hence the proportion of all
Fn;t1;`�1�1 atoms with the property that they intersect X in at least r vertices is at
most q�2. Iterating this process shows that the proportion of all Fn;t1;1�1 atoms
with the property that they intersect X in at least r vertices is at most q�`. Each
atom in the remaining .1�q�`/ proportion of atoms contains at most r�1 elements
of X . Since the total number of Fn;t1;1�1 atoms is .qC1/qn�t1;1 D q1�t1;1jSnj we
have

jX \ Snj < q�`jSnj C .1 � q�`/q1�t1;1r jSnj;

hence the result. �

Proof of Theorem 1.3. Suppose not. Then there exists an integer k > 0 and a
vector r 2 N

k such that for all integers K > 0 there is s D .si .K//
k
iD1 2 M

k with
s1.K/ > K such that X contains no .k; s; r/-star. Let ` > 0 be any integer.
Recursively define integers ti;j , for 1 � i � k and 1 � j � `, by setting
ti;1 D si .`/ for all 1 � i � k and

ti;j D si .ti;j �1/ for 1 � i � k and 2 � j � `:

Let tj D .ti;j /
k
iD1. These sequences satisfy the hypothesis of Lemma 1.5, and

since t1;1 D s1.`/ > ` we have

jX \ Snj
jSnj < q�`.1C rq/

for all sufficiently large n, where r D max¹ri j 1 � i � kº. Thus, d�.X/ �
q�`.1C rq/ for each ` > 0, contradicting positive density. �

1.3. More elaborate configurations. Theorem 1.3 implies that we can find any
star configuration in a dense subset of a tree, provided that all of the distances
to the centre of the star are large enough. It is natural to try to go further and
add edges to the star configuration (hence making a tree T ), and asking if we can
again find such configurations in a dense subset of Tq. Indeed we can, provided
we are just interested in the distances between adjacent vertices of this tree T . For
a precise statement, we need the following definitions.

Let T be a finite rooted tree with vertex set V.T / D ¹0; 1; : : : ; N º, with 0 being
the root. Write E.T / for the set of undirected edges of T . Let wtWE.T / ! Z>0

be a weight function. We consider the weight function as a function on V.T /n¹0º
by setting wt.j / D wt.¹i; j º/ where i 2 V.T / is the unique vertex of T with
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dT .i; j / D 1 and dT .0; i/ D dT .0; j / � 1 (that is, i is the penultimate vertex on
the geodesic from 0 to j ). We say that the weight function wtWE.T / ! Z>0 is
well ordered if wt.j / < wt.k/ whenever dT .0; j / < dT .0; k/, and we say that the
weight function is bounded below by K if min¹wt.j / j j 2 ¹1; 2; : : : ; N ºº � K

Corollary 1.6. LetX be a set of positive density in Tq, and let T be a finite rooted
tree with vertex set V.T / D ¹0; 1; : : : ; N º and root 0. There exists K D K.T;X/

such that for each choice of well-ordered weight function wtWE.T / ! Z>0

on T bounded below by K there exists a subset ¹v0; : : : ; vN º � X such that
d.vi ; vj / D 2wt.j / whenever dT .0; i/ < dT .0; j /, and, moreover,

d.o; v0/ D d.o; v1/ D � � � D d.o; vN /:

Proof. Let t D .ti /
k
iD1 the vector of all distinct edge weights of T , arranged in

increasing order. Let r D .ri /
k
iD1 denote the vector of multiplicities of the edge

weights (that is, the edge weight ti appears ri times in T ). By Theorem 1.3, there
existsK D K.T;X/ such that whenever wtWE.T / ! Z>0 is bounded below byK
there exists a .k; t; r/-star Y contained in X . Let v0 2 Y be the centre of this star,
and let Yi D ¹x 2 Y j d.v0; x/ D 2tiº for i D 1; : : : ; k, and Y0 D ¹v0º. We have
Y D Y0 [ Y1 [ � � � [ Yk and d.x; y/ D 2tj for all x 2 Yi and y 2 Yj whenever
0 � i < j � k (see Figure 3). Thus, the subset Y satisfies the statement of the
corollary. �

The following example illustrates Corollary 1.6.

Example 1.7. The weighting is well ordered if max¹t1; t2º < min¹t3; t4º. Let X
be a set of positive density in Tq. By Corollary 1.6, once t1; t2; t3; t4 are sufficiently
large, one can find ¹v0; v1; v2; v3; v4º � X such that

.1/ d.o; v0/ D d.o; v1/ D d.o; v2/ D d.o; v3/ D d.o; v4/;

.2/ d.v0; v1/ D 2t1, d.v0; v2/ D 2t2, d.v1; v3/ D 2t3,
d.v1; v4/ D 2t4, d.v0; v3/ D 2t3, d.v0; v4/ D 2t4.

The distances d.v1; v2/, d.v2; v3/, d.v2; v4/, and d.v3; v4/ are unknown. (See
Figure 5.)

0

1 2

3 4

t1 t2

t3 t4

Figure 5
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2. Sets of positive density in trees of bounded degree

In this section, let T o
q denote the rooted tree with root o such that every vertex

has precisely q children. Thus, T o
q is the homogeneous tree Tq with one branch

pruned off at the root o. Let T � T o
q be a subtree containing o, and with no

leaves. We will assume that the tree T has positive Hausdorff dimension (by this
we mean that the fractal set K D @T � Œ0; 1� obtained by q-adic expansion along
the infinite geodesics based at o in T has positive Hausdorff dimension; see [2,
Definition 1.2.1] for the definition).

Let Sn.T / D ¹v 2 V.T / j d.o; v/ D nº be the sphere of radius n in T , centred
at o. In this section we will adopt the following notion of density: we say that
X � T has positive lower density if

d�.X/ D lim inf
N !1

1

N

N
X

nD1

jX \ Sn.T /j
jSn.T /j

> 0:

It is clear that if d�.X/ > 0, then d�.X/ > 0 too.
Theorem 1.3 raises the following natural question (we thank Itai Benjamini for

asking us this question). For t 2 N and X � V let

X t D ¹x 2 X j there exists y 2 X with d.x; y/ D tº:

Question. Let T � T o
q be as above. Is it true that if T has positive Hausdorff

dimension, and if X � V.T / has positive lower density d�.X/ > 0, then
there exists a subgroup H of Z such that for sufficiently large t 2 H we have
X \X t ¤ ;? In other words, does there exist k � 1 andK > 0 such that if t � K,
then X \Xkt ¤ ;?

Note that Theorem 1.3 gives an affirmative answer in the case that T D T o
q .

However we will show below (Proposition 2.2) that generally the answer to the
above question is negative.

We first recall some background required for the construction of our counterex-
ample. Let K D ¹n˛ºn2Z be a compact abelian group generated by ˛. The Bohr
subset of the integers associated to an open subset U � K is the subset

B D ¹n 2 Z j n˛ 2 U º � Z:

If in addition the group K is assumed to be connected and the interior of K n U
is non empty, then the set B is called a non-periodic Bohr set. Note that if B is a
non-periodic Bohr set, and if .U � U/C .U � U/ ¤ K, then .B�B/C.B�B/ D
¹n 2 Z j n˛ 2 .U � U/C .U � U/º is also a non-periodic Bohr set.

An example of a non-periodic Bohr set is A D ¹n 2 Z j ¹n
p
2º < �º, where

¹xº denotes the fractional part of x 2 R, and � < 1 (note that here ˛ D e2�i
p

2,
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and the group operation in K is multiplicative). Moreover, if � < 1=4, then
.A � A/C .A � A/ is also a non-periodic Bohr set.

For a subset, Z � Z we denote the density of Z by

d.Z/ D lim
n!1

j¹x 2 Z j 1 � x � nºj
n

provided the limit exists.
The following proposition is well known, however we include a proof for

completeness.

Proposition 2.1. Let .K; ˛/ be a connected Kronecker system (that is, K is a
metrisable connected abelian group generated by ˛ 2 K), let U � K be an open
Jordan measurable set (that is,mK. xU nU/ D 0, wheremK is the Haar probability
measure on K), and let B D ��1.U /, where � W Z ! K is defined by �.n/ D n˛.
Then, for every k � 1 and any m 2 ¹0; 1; 2; : : : ; k � 1º,

d.B \ .mC kZ// D d.B/

k
:

Proof. Let B D ��1.U / and let K 0 D K � Z=kZ. We observe that the element
.˛; g/, where ˛ D �.1Z/ and g is a generator of the additive group Z=kZ,
is a generator of the group K 0. Indeed, any character �K0 of K 0 has the form
�K0 D �K � � , where �K and � are characters of K and Z=kZ, correspondingly.
If �K0.˛; g/ D 1 for a non trivial character �K0 of K 0, then �k

K.˛/ D 1. Using
connectedness ofK the character �k

K is a non trivial character ofK, provided that
�K is non trivial. By Theorem 4.14 in [8], we deduce that �K � 1. Then, we have
�K0.˛; g/ D �.g/ ¤ 1 by non triviality of �K0 . By [8, Theorem 4.14] this implies
unique ergodicity of the dynamical system .K 0; .˛; g//. Finally,

B \ .mC kZ/ D � 0�1.U � ¹mº/;

where � 0 W Z ! K 0 is defined by � 0.n/ D .n˛; n1Z=kZ/. Since U � K is Jordan
measurable,U �¹mº is Jordan measurable, and so the function 1U �¹mº is Riemann
integrable. This implies that

1

N

N
X

nD1

1U �¹mº.n˛; n1Z=kZ/ �!
Z

K0

1U �¹mºdmK0 D mK.U / � 1

k
:

On the other hand, the left hand side converges to d.B \ .m C kZ//. The same
argument, using 1U , shows that mK.U / D d.B/, hence the result. �

Proposition 2.2. There exists a tree T � T o
2 of positive Hausdorff dimension

and a subset X � V.T / of positive lower density d�.X/ > 0, such that, for any
k;K � 1, there exists t � K such that X \Xkt D ;.
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Proof. Let A � Z be a non-periodic Bohr set of density d.A/ such that the set
.A � A/C .A � A/ is again a non-periodic Bohr set. As noted above, an explicit
example is given by A D ¹n 2 Z j ¹n

p
2º < �º, where ¹xº D x� bxc � 0 denotes

the fractional part of x 2 R, and � < 1=4.
Let TA � T o

2 be the tree which has branching at each vertex of level n for
all n 2 A. The Hausdorff dimension of TA is dim.TA/ D d.A/ > 0 (see [2,
Example 1.4.2]). Now choose

X D
[

n2A \N

Sn.TA/:

It is clear that d�.X/ � d.A/, and hence d�.X/ > 0. Moreover, if v; v0 2 X ,
then d.v; v0/ 2 .A � A/ C .A � A/. Let B D .A � A/ C .A � A/. Notice, that
B is defined by a Jordan measurable set (interval in T). By Proposition 2.1 any
non-periodic Bohr setB � Z defined by a Jordan measurable open set U satisfies
the uniformity property along any infinite arithmetic progression: for every k � 1

and any m 2 ¹0; 1; 2; : : : ; k � 1º we have

d.B \ .mC kZ// D d.B/

k
<
1

k
:

However if ¹d.x; y/ j x; y 2 Xº contains all large multiples of k, then one has
d.B \ kZ/ D 1=k. Hence the result. �

3. Sets of positive density in affine buildings

In this section we extend the results of Section 1 to affine buildings of certain
types (note that the tree Tq is an affine building of type zA1). Sections 3.1,
3.2, and 3.3 recall the required background from the theory of affine buildings,
mainly following the setup from [12, 13] (see [1] for a comprehensive reference
to building theory). In Section 3.4 we define sets of positive density, and state
our main theorem on sets of positive density in affine buildings with “uniform
thickness parameter”. Section 3.5 develops the theory of atoms required to give the
proof of the main theorem in Section 3.6. Section 3.7 outlines the modifications
required to remove the uniform thickness assumption with a weaker “regularity”
assumption. The importance of affine buildings stems from their appearance in the
theory of simple algebraic groups over non-archimedean local fields, where they
play an analogous role to the symmetric space for real algebraic groups (see [7];
however in dimensions 1 and 2we note that not all affine buildings are associated to
such a group). Thus, we conclude in Section 3.8 with an application of our results
to sets of positive density in simple algebraic groups over non-archimedean local
fields.
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3.1. Affine Coxeter groups and the Coxeter complex. Recall that a Coxeter
system .W; S/ is a group W generated by a finite set S with relations .st/mst D 1

for all s; t 2 S , where mss D 1 for all s 2 S , and mst D mts 2 Z�2 [ ¹1º for all
s ¤ t (if mst D 1, then it is understood that there is no relation between s and t ).
The length of w 2 W is

`.w/ D min¹k � 0 j w D s1 � � � sk with s1; : : : ; sk 2 Sº;

and an expression w D s1 � � � sk with k minimal (that is, k D `.w/) is called a
reduced expression for w. A Coxeter system .W; S/ is irreducible if S cannot be
partitioned into nonempty sets S1 and S2 with st D t s for all s 2 S1 and t 2 S2,
spherical if jW j < 1, and affine if there exists a normal abelian subgroupQ GW
of finite index.

All irreducible affine Coxeter systems arise in the following concrete way. Let
ˆ be a reduced, irreducible, crystallographic, finite root system in an n-dimen-
sional real inner product space E (see [5, Chapter VI]). The dual root system is
ˆ_ D ¹˛_ j ˛ 2 ˆº, where ˛_ D 2˛=h˛; ˛i. Let ¹˛1; : : : ; ˛nº � ˆ be a choice
of simple roots of ˆ, and let ˆC � ˆ be the associated set of positive roots. The
root system ˆ has a unique highest root ' D m1˛1 C � � � Cmn˛n (the height of a
root ˛ D a1˛1 C � � � C an˛n is a1 C � � � C an).

The Weyl group of ˆ is the finite subgroup W0 of GL.E/ generated by the
orthogonal reflections s˛ in the hyperplanes H˛ D ¹x 2 E j hx; ˛i D 0º for
˛ 2 ˆ. Let si D s˛i

for 1 � i � n, and let S0 D ¹si j 1 � i � nº. Then, .W0; S0/

is an irreducible spherical Coxeter system. Let w0 2 W0 be the longest element of
W0 (the unique element of maximal length).

For each ˛ 2 ˆ and each k 2 Z let H˛;k D ¹x 2 E j hx; ˛i D kº (thus,
the affine hyperplane H˛;k is a translate of the linear hyperplane H˛ D H˛;0).
Let s˛;k 2 Aff.E/ be the affine orthogonal reflection in H˛;k, given by s˛;k.x/ D
x�.hx; ˛i�k/˛_. The affine Weyl group ofˆ is the subgroup of Aff.E/ generated
by the reflections s˛;k with ˛ 2 ˆ and k 2 Z.

Writing s0 D s';1 (with ' the highest root) and S D S0 [ ¹s0º, the pair .W; S/
is a Coxeter system. Moreover,

W D Q ÌW0 where Q D Z˛_
1 C � � � C Z˛_

n Š Z
n is the coroot lattice;

where we identify � 2 Q with the translation t� 2 Aff.E/ given by t�.x/ D xC�.
Thus, .W; S/ is an affine Coxeter system, and all irreducible affine Coxeter systems
arise in this way. In the standard Lie theory nomenclature ˆ has a “type” Xn,
where X 2 ¹A;B; C;D;E; F;Gº, and we say that .W; S/ has “type” zXn, and that
.W; S/ has dimension n.

The fundamental coweights are the dual basis !1; : : : ; !n 2 E to ˛1; : : : ; ˛n,
given by h!i ; j̨ i D ıi;j . The coweight lattice of ˆ is

P D ¹� 2 E j h�; ˛i 2 Z for all ˛ 2 ˆº D Z!1 C � � � C Z!n:
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Note that Q � P (because h˛; ˇ_i 2 Z for all ˛; ˇ 2 ˆ by the crystallographic
condition).

Let

� D 1

2

X

˛2ˆC

˛ and �0 D 1

2

X

˛2ˆC

˛_:

By [5, §VI.1.10] we have �0 D !1 C � � � C !n.
The set of dominant coweights and strongly dominant coweights are, respec-

tively,

PC D Z�0!1 C � � � C Z�0!n

and

PCC D Z>0!1 C � � � C Z>0!n D �0 C PC:

There is a natural partial order on PC given by � � � if and only if ��� 2 PC.
We write � � � if and only if � � � 2 PCC. Thus, � � � if and only if
� � � � �0.

The family of hyperplanes H˛;k , ˛ 2 ˆ, k 2 Z, tessellates E into n-dimen-
sional geometric simplices, called chambers (in the literature these are also called
alcoves). The fundamental chamber is

c0 D ¹x 2 E j hx; ˛i i � 0 for 1 � i � n, and hx; 'i � 1º:

The groupW acts simply transitively on the set of chambers, and we often identify
W with the set of chambers via w $ wc0. The extreme points of the chambers
are vertices, and each chamber has exactly nC1 vertices. The resulting simplicial
complex †.W; S/ is called the Coxeter complex of the affine Coxeter system.

Each vertex x of †.W; S/ can be assigned a type �.x/ 2 ¹0; 1; : : : ; nº as
follows. The fundamental chamber c0 has vertices x0; x1; : : : ; xn, where x0 D 0

and xi D !i=mi for 1 � i � n (with!i andmi as above), and we declare �.xi / D i

for 0 � i � n. This extends uniquely to all vertices of †.W; S/ by requiring that
every chamber has precisely one vertex of each type. The type of a simplex �
is �.�/ D ¹�.x/ j x is a vertex of �º, and the cotype of � is ¹0; 1; : : : ; nºn�.�/.
The action ofW on †.W; S/ is type preserving. Both Q and P are subsets of the
vertex set of†.W; S/. Specifically,Q is the set of all type 0 vertices, and P is the
set of all vertices x with �.x/ 2 ¹0º [ ¹1 � i � n j mi D 1º. Equivalently, P is
the set of vertices x of †.W; S/ whose stabiliser in W is isomorphic to W0.

The root system of type C2 is

ˆ D ˙¹˛1; ˛2; ˛1 C ˛2; 2˛1 C ˛2º;

where ˛1 D e1 � e2 and ˛2 D 2e2. We have ˛_
1 D ˛1 and ˛_

2 D e2, and the dual
root system isˆ_ D ˙¹˛_

1 ; ˛
_
2 ; ˛

_
1 C˛_

2 ; ˛
_
1 C 2˛_

2 º. The fundamental coweights
are !1 D e1 and !2 D 1

2
e1 C 1

2
e2. The coroot lattice Q is the set of � vertices,
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and the coweight lattice P is the union of the � and � vertices. The fundamental
chamber is darkly shaded, and the cone of dominant coweights is lightly shaded.
The vectors � and �0 are shown, and the points x; y are marked for later reference.
(See Figure 6.)
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� � �
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�

�

�
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�
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�
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�

�

�

�

�

�

�

�

˛_
1

˛_
2

!1

!2 �0

�

x

y

Figure 6. The Coxeter complex of type zC2.

3.2. Affine buildings. Let .W; S/ be an affine Coxeter system of dimension n,
as constructed in the previous section. Let� be an affine building of type .W; S/.
Let us briefly expand on this (see [1]). Thus,� is a very special kind of simplicial
complex, whose maximal simplices are called chambers, and all chambers of �
have dimension n. Moreover, � is equipped with a distinguished collection of
sub-simplicial complexes, called apartments, satisfying three axioms:

(B1) all apartments are isomorphic to the Coxeter complex †.W; S/;

(B2) if c; d 2 � are chambers of �, then there exists an apartment A containing
both of them;

(B3) if A;A0 are apartments containing a common chamber, then there exists a
unique simplicial complex isomorphism  WA ! A0 fixing every simplex of
A \ A0.

Thus, one may regard � as being made by “gluing together” many copies of
†.W; S/. Axiom (B2) tells us that when determining the relative position between
two simplices we can make the measurement in an apartment, and the content of
Axiom (B3) is that the measurement we obtain is independent of the particular
apartment chosen.
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We say that � has dimension n, and rank n C 1. Let C denote the set of all
chambers of �. A panel is a codimension 1 simplex � of �. Chambers c; d 2 C

are called adjacent (written c � d ) if c \ d is a panel (note that c 6� c and so �
is not an equivalence relation). Figure 7 illustrates the local picture for the case
n D 2. Here each chamber has 3 vertices, and panels are edges. The 5 chambers
shown all share a common panel, and hence are mutually adjacent. We say that�
has uniform thickness parameter q if the cardinality

q D j¹c 2 C j c � dºj

is finite, and does not depend on the chamber c 2 C (see Figure 7).
We will assume that� has uniform thickness parameter up to Section 3.6. This

serves to streamline the amount of terminology and technical details required (for
example, the non-reduced root systems of type BCn). However in Section 3.7 we
will outline how to remove the uniform thickness assumption, and replace it with
a weaker “regularity” assumption.

Figure 7. The local picture of an affine building (n D 2, q D 4).

Example 3.1. The A1 root system is ˆ D ¹�˛; ˛º in the 1-dimensional space
E D R˛. The Coxeter complex of the associated affine Coxeter system is a
tessellation of R by intervals. It is thus clear from the axioms above that zA1

buildings are simply trees in which every vertex has valency at least 2 (that is, there
are no “leaves”). The chambers are the edges, and the panels are the vertices. In
this case the building is easy to draw, however in higher dimension the “thickness”
of the building is difficult to visualise, and so our pictures are typically of a piece
of an apartment of �, with the branching left to the reader’s imagination.

Fix, once and for all, an apartment A0 of �, and an isomorphism  0WA0 !
†.W; S/, and identify A0 with †.W; S/ via  0. Thus, we regard †.W; S/ � A0

as an apartment of� (the base apartment). We write o D  �1
0 .0/ (the root of�).

The type map � on†.W; S/ extends uniquely to all vertices of� by requiring that
every chamber has precisely one vertex of each type.

For each 0 � i � n we define an adjacency relation �i on chambers of � by
setting c �i d if and only if c \ d is a panel of cotype i (that is, c and d share
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all vertices except for their type i vertices). Then c � d if and only if c �i d for
some 0 � i � n. The relative position ı.c; d/ 2 W between chambers c; d of �
is defined by choosing a path

c D c0 �i1 c1 �i2 � � � �ik ck D d (3.1)

of minimal length joining c to d , and setting ı.c; d/ D si1 � � � sik : The building
axioms ensure that the value of ı.c; d/ 2 W is independent of the particular choice
of minimal path made in (3.1). The numerical distance dist.c; d/ between c and d
is the length of a minimal length gallery from c to d . Thus, dist.c; d/ D `.ı.c; d//.
A sequence of chambers as in (3.1) is called a gallery of type .i1; : : : ; ik/ in the
building theory vernacular. A basic fact is that a gallery of type .i1; : : : ; ik/ joining
c to d has minimal length amongst all galleries joining c to d if and only if
si1 � � � sik is a reduced expression (that is, `.si1 � � � sik / D k).

Let V denote the set of all vertices of �. Let VQ D ¹x 2 V j �.x/ D 0º, and
let

VP D ¹x 2 V j �.x/ 2 �.P /º:
Then, VQ � VP . The elements of VP are called the special vertices of �. For all
affine buildings other than those of type zAn the set VP is a strict subset of V .

3.3. Vector distance and spheres. Henceforth we let .W; S/ be an irreducible
affine Coxeter system of dimension n, and let � be an affine building of type
.W; S/ with uniform thickness parameter 2 � q < 1.

Let x; y 2 VP be special vertices of �. The vector distance d.x; y/ 2 PC

from x to y is defined as follows. Choose an apartment A containing x and y
(using (B2)), and let  W A ! †.W; S/ be a type preserving simplicial complex
isomorphism (using (B1)). Define

d.x; y/ D . .y/ �  .x//C;

where for � 2 P we write �C for the unique element in W0� \ PC. This value
is independent of the choice of apartment A and isomorphism  (using (B3);
see [12, Proposition 5.6]). Somewhat more informally, to compute d.x; y/ one
looks at the vector from x to y (in any apartment containing x and y) and takes
the dominant representative of this vector under the W0-action. For example, if
x; y 2 VP lie in an apartment as illustrated in Figure 6, then d.x; y/ D 2!1 C4!2.

We have ([12, Proposition 5.8])

d.y; x/ D d.x; y/� for all x; y 2 VP ;

where �� D �w0� (with w0 the longest element of W0). We say that � is
of .�1/-type if w0 acts on E by �1. Thus, � has .�1/-type if and only if
d.y; x/ D d.x; y/ for all x; y 2 VP . By direct examination of root systems,
the irreducible .�1/-type affine buildings are those of types zA1, zBn (n � 2), zCn
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(n � 2), zDn (n � 4 even), zE7, zE8, zF4, and zG2. In other words, the affine buildings
that are not of .�1/-type are those of types zAn (n � 2), zDn (n � 4 odd), and zE6.

For � 2 PC and x 2 VP the sphere of radius � and centre x is

S�.x/ D ¹y 2 VP j d.x; y/ D �º:

We write S� D S�.o/. The cardinality jS�.x/j does not depend on x 2 VP . In
fact, by [13, Proposition 1.5] we have

jS�.x/j D W0.q
�1/

W0�.q�1/
qh�;2�i; (3.2)

where W0� D ¹w 2 W0 j w� D �º and for finite subsets U � W we write
U.q�1/ D

P

u2U q
�`.u/.

Corollary 3.2. Suppose that � 2 PCC and that � � �. Then,

jS�j D jS�jqh���;2�i:

Proof. If �; � 2 PCC, then W0� D W0� D ¹1º, and the result follows from (3.2).
�

3.4. Sets of positive density. Recall that .W; S/ is an irreducible affine Coxeter
system of dimension n, and � is an affine building of type .W; S/ with uniform
thickness parameter 2 � q < 1.

The (upper) density of a subset X � VP is

d�.X/ D lim sup
�!1

jX \ S�j
jS�j D lim

�!1

�

sup
���

jX \ S�j
jS�j

�

; (3.3)

where the limit is taken with each h�; j̨ i tending to 1. We note that (3.3) is well
defined, because writing a� D jX \ S�j=jS�j and b� D sup¹a� j � � �º we have
that b� � b� whenever � � �. Writing

N
� D min¹h�; j̨ i j 1 � j � nº�0

and
N� D max¹h�; j̨ i j 1 � j � nº�0;

we have
N
� � � � N� and so b N� � b� � b

N
� for all � 2 PC. Since limm!1 bm�0 D L

exists (by monotone convergence) we have b� ! L whenever � ! 1 with each
h�; j̨ i ! 1. Moreover, as in the tree case, the property of having positive
density is easily seen to be independent of the choice of root vertex o (however
the numerical value of d�.X/ depends on the choice of root).

Recall that we write � � � if and only if � � � 2 PCC. For each k > 0 let

M
k D ¹.�1; �2; : : : ; �k/ 2 P k j 0 � �1 � �2 � � � � � �kº:
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Let � D .�i/
k
iD1 2 M

k and let r D .ri /
k
iD1 2 N

k . Then, by a .k;�; r/-star we
mean a set Y of special vertices of � with a distinguished vertex v0 2 Y (called
the centre of Y ) such that

.1/ if v 2 Y n¹v0º, then d.v0; v/ 2 ¹2�1; : : : ; 2�kº,

.2/ for each 1 � i � k we have j¹v 2 Y j d.v0; v/ D 2�iºj D ri ,

.3/ for all x; y 2 Y we have d.o; x/ D d.o; y/ (that is, Y � S� for some
� 2 PC).

The main theorem of this section is the following analogue of Theorem 1.3.

Theorem 3.3. Suppose that � has .�1/-type. Let X � VP with d�.X/ > 0. For
each k > 0 and each r 2 N

k there exists a constantK D K.X; k; r/ > 0 such that
X contains a .k;�; r/-star for all sequences � D .�i /

k
iD1 2 M

k with �1 � K�0.

For example, in the simplest case when k D 1, Theorem 3.3 immediately gives
the following analogue of Proposition 1.

Corollary 3.4. Suppose that � has .�1/-type. Let X � VP with d�.X/ > 0.
There exists a constant K D K.X/ such that for all � 2 PC with � � K�0 there
exist vertices x; y 2 X with d.x; y/ D 2� and d.o; x/ D d.o; y/.

Before proving Theorem 3.3 we define projection maps and atoms in affine
buildings (Section 3.5), and prove a series of preliminary results (Section 3.6).

3.5. Projections and atoms. By [13, Corollary B.3], if �; � 2 PC with � � �,
and if y 2 S� , then there is a unique vertex x 2 S� such that d.x; y/ D � � �.
This allows us to define projection maps: If � � � let

��;�WS� �! S�;

where ��;�.y/ is the unique vertex x 2 S� with d.x; y/ D � ��. Now, if x 2 S�

and � 2 PC, then the set of “�-children” (or �-descendants) of x is the setC.x; �/
of those y 2 S�C� that project back to x. That is,

C.x; �/ D ¹y 2 S�C� j ��C�;�.y/ D xº
D ¹y 2 VP j d.x; y/ D � and d.o; y/ D �C �º:

We write C.x/ D
S

�2P C C.x; �/ for the set of all descendants of x.
In the case that d.o; x/ D � 2 PCC and � 2 PCC we decompose C.x; �/

further, as follows. First we note that if z; z0 2 VP are any special vertices with
d.z; z0/ 2 PCC, then there is a unique chamber c.z; z0/ such that every gallery
z 2 c0 � c1 � � � � � ck 3 z0 of minimal length subject to z 2 c0 and z0 2 ck starts
with c0 D c.z; z0/, as illustrated in Figure 8.
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c.z; z0/

z0

z

�

�
Figure 8. The chamber c.z; z0/.

Let cx D c.x; o/, and let O.x/ denote the set of all chambers c of � with x 2 c

such that dist.cx ; c/ D `.w0/. These are the chambers “opposite” cx in the
“residue” of x. More precisely, the residue of x is defined to be the set of all
chambers c 2 C such that x 2 c. This residue inherits the structure of a spherical
building with Coxeter group W0, and chambers c; c0 of this building are opposite
if ı.c; c0/ D w0 (equivalently, dist.c; c0/ D `.w0/). We have jO.x/j D q`.w0/.
Then, for each c 2 O.x/ define

C.x; c; �/ D ¹y 2 C.x; �/ j c.x; y/ D cº: (3.4)

This situation is illustrated in Figure 9 for zC2 buildings, where d.o; x/ D � D
!1C2!2 and � D 2!1C2!2 (cf. Figure 6, and note the convention, like in the tree,
of drawing the building falling “downwards” from o). The grey shaded region is
determined by o and x. There are then q4 choices for the chamber c 2 O.x/ in the
position shown. Then, for each such c, the set C.x; c; �/ contains q10 vertices (to
make this count, choose a minimal length path from c to position y, and at each
step there is thickness q; see also Lemma 3.5(2) below). In the 1-dimensional case
of trees (that is, ˆ D A1 and � 2 N), the shaded region is just the geodesic Œo; x�
joining vertices o and x, and the chambers c are just the q edges incident with x
and not contained in Œo; x�. Thus, C.x; c; �/ D C.y; �� 1/ in the tree case, where
the edge c has vertices x; y (see (1.1)).

c

cx

cy

o

x

y

�

�

�
Figure 9. Decomposing into atoms.



1288 M. Björklund, A. Fish, and J. Parkinson

Lemma 3.5. Let �; � 2 PCC, and write � D �C �. The members of

A�;� D ¹C.x; c; �/ j x 2 S� and c 2 O.x/º

form a partition of the sphere S�. Moreover, we have

(1) jA�;�j D jS�jq`.w0/, and

(2) jC.x; c; �/j D qh�;2�i�`.w0/, independent of� 2 PCC, x 2 S�, and c 2 O.x/.

Proof. If y 2 S� and x 2 S�, then y 2 C.x; �/ if and only if x D ��;�.y/. Thus,
we have a disjoint union S� D

S

x2S�
C.x; �/. Moreover, if y 2 C.x; �/ with

x 2 S�, then c.x; y/ 2 O.x/ (to see this, note that since x D ��;�.y/ the three
vertices o; x; y lie in a common apartment, and hence are configured as in Figure 9,
and in this figure c.x; y/ D c). Then y 2 C.x; c; �/ if and only if c.x; y/ D c,
giving the disjoint union C.x; �/ D

S

c2O.x/ C.x; c; �/.

Since jO.x/j D q`.w0/ for all x 2 S�, it is then clear that jA�;�j D jS�jq`.w0/,
and hence (1). To prove (2) we note that if y 2 C.x; c; �/, then dist.cx ; cy/ is
equal to the number of hyperplanes of †.W; S/ separating the chambers c0 and
t�c0. There are jˆCj parallelism classes of hyperplanes, and for ˛ 2 ˆC the
number of hyperplanes parallel to H˛ separating c0 and t�c0 is h�; ˛i. Thus,

dist.cx ; cy/ D
X

˛2ˆC

h�; ˛i D h�; 2�i;

where we use the fact that 2� D
P

˛2ˆC ˛ (see [5, §VI.1.10]). Thus, dist.c; cy/ D
dist.cx ; cy/� dist.cx ; c/ D h�; 2�i � `.w0/, and hence the result (see Figure 9 for
illustration). �

Let �; � 2 PCC and write � D �C�. Let F�;� denote the �-algebra generated
by A�;�. The members of the set A�;� are called the atoms of F�;�.

3.6. Proof of Theorem 3.3

Lemma 3.6. Let z 2 VP , and suppose that x1; x2 2 VP satisfy ( for j D 1; 2):

.1/ d.z; xj / 2 PCC,

.2/ dist.c1; c2/ D `.w0/ where cj D c.z; xj /.

Then, d.x1; x2/ D d.x1; z/C d.z; x2/.

Proof. We will only sketch the proof. For j D 1; 2, the convex hull conv¹z; xj º
is intersection of all apartments containing both z and xj . Equivalently, since
d.z; xj / 2 PCC, the convex hull conv¹z; xj º is the union of all chambers of �
lying on a minimal length gallery from cj D c.z; xj / to c0

j D c.xj ; z/. These
convex hulls are shaded in Figure 10.
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c1

c2

c0
1

x2

z

x1

c0
2

�

�

�

Figure 10. Illustration for Lemma 3.6

Since dist.c1; c2/ D `.w0/ the affine geometry of the Coxeter complex (cf. [1,
§11.5]) implies that if 1 is a minimal length gallery joining c0

1 to c1, and 2 is a
minimal length gallery joining c1 to c2, and 3 is a minimal length gallery joining
c2 to c0

2, then the concatenation  D 1 � 2 � 3 is a minimal length gallery joining
c0

1 to c0
2 (see Figure 10). It follows that all chambers shown in Figure 10 lie in the

convex hull of x1 and x2, and hence they lie in a common apartment. It is then
clear that d.x1; x2/ D d.x1; z/C d.z; x2/. �

For z 2 VP , let �.z/ denote the set of all chambers c of � with z 2 c. Note
that the maximum numerical distance between chambers c; c0 2 �.z/ is `.w0/

(see Figure 10).

Lemma 3.7. Let x 2 VP . Suppose that c1; c2 2 �.x/ with dist.c1; c2/ D `.w0/.
Then,

j¹c 2 �.x/ j dist.c1; c/ D dist.c2; c/ D `.w0/ºj � �q`.w0/;

where � D .1 � q�1/`.w0/.

Proof. Without loss of generality we may assume that �.x/ D 0. Then, the fact
that dist.c1; c2/ D `.w0/ implies that ı.c1; c2/ D w0 is the unique longest element
ofW0. In fact,�.x/ is a spherical building of type .W0; S0/, and thus the following
property holds (see [1, §5.3 and §5.7]): If c; c0 2 �.x/ with dist.c; c0/ D `.w0/,
then for each 1 � i � n there is a unique chamber pi .c; c

0/ 2 �.x/ with
c �i pi .c; c

0/ and dist.c0; pi .c; c
0// D `.w0/�1. For all other chambers d 2 �.x/

with c �i d we have dist.c0; d / D `.w0/.
Let w0 D si1 � � � siN be a reduced expression. Using the above property, there

are q�1 chambers d1 2 �.x/with d1 �i1 c1 and d1 ¤ pi1.c1; c2/, and all of these
chambers satisfy dist.c2; d1/ D `.w0/. For each of these chambers d1 there are
q� 1 chambers d2 with d2 �i2 d1 and d2 ¤ pi2.d1; c2/, and all of these chambers
satisfy dist.c2; d2/ D `.w0/. Continuing in this way we construct .q � 1/`.w0/

distinct galleries
c1 �i1 d1 �i2 d2 �i3 � � � �iN dN
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with dist.c2; dj / D `.w0/ for 1 � j � N . The end chambers dN of these
galleries are all distinct (this follows, for example, from [12, Proposition 2.1]),
and moreover dist.c1; dN / D `.w0/ by construction. Hence the result. �

We now provide analogues of Lemmas 1.4 and 1.5. Let � D .1� q�1/`.w0/, as
in Lemma 3.7.

Lemma 3.8. Suppose that � has .�1/-type. Let X � VP , k > 0, r 2 N
k , and

� 2 M
k . Let r D max¹ri j 1 � i � kº. If X contains no .k;�; r/-star then for

each v 2 S��� with � � � � �k the proportion of the atoms ofF�;�1
, contained in

C.v; �/with the property that they intersectX in at least r vertices is at most 1��.

Proof. We introduce the following terminology for the proof. A vertex x 2 S���

(with 0 � � � �) is said to have “type A” if there are distinct chambers
c0; c1 : : : ; c` 2 O.x/, where ` D .1 � �/q`.w0/, with the property that X \
C.x; cj ; �/ contains at least r elements for j D 1; : : : ; `, and is said to have “type
B” otherwise. The key observation is that if x has type A, then there exist distinct
vertices v0; v

1
1; : : : ; v

r
1 2 S� with d.v0; v

j
1 / D 2� for j D 1; : : : ; r . To see this,

choose v0 2 X \C.x; c0; �/. By Lemma 3.7 there is at least one index 1 � j � `

such that ı.c0; cj / D w0. Then, by Lemma 3.6, using the fact that� has .�1/-type,
we have d.v0; z/ D d.v0; x/C d.x; z/ D �� C � D 2� for all z 2 C.x; cj ; �/, and
so any choice of v1

1; : : : ; v
r
1 2 X \ C.x; cj ; �/ will work.

Let v 2 S���. Let X be the set of all sequences .xk ; xk�1; : : : ; x1/ such that
xk 2 S���k

\ C.v/ and xk�j 2 C.xk�j C1/ \ S���k�j
for j D 1; 2; : : : ; k � 1.

Suppose that there exists a sequence .xk ; xk�1; : : : ; x1/ 2 X such that each xj has
type A. Thus, as noted above, there are chambers c1; c

0
1 2 O.x1/, and vertices

v0 2 X \ C.x1; c1; �1/ and v1
1; : : : ; v

r
1 2 X \ C.x1; c

0
1; �1/ with d.v0; v

i
1/ D 2�1

for all 1 � i � r .
For each j D 2; : : : ; k let cj 2 O.xj / be the chamber cj D c.x1; xj /. Since xj

has type A, the argument above shows that there is a chamber c0
j ¤ cj in O.xj /

and distinct vertices v1
j ; : : : ; v

r
j 2 X \C.xj ; c

0
j ; �j / with d.v0; v

i
j / D 2�j for each

1 � i � r and 1 � j � k, and so ¹v0º [ ¹vi
j j 1 � i � r; 1 � j � kº forms a

.k;�; r1/-star, where 12N
k is the vector with every entry equal to 1. In particular,

X contains a .k;�; r/-star, a contradiction.
Thus, every .xk; xk�1; : : : ; x1/ 2 X contains at least one vertex of typeB . Note

that if xj has type B , then the proportion of F�;�1
atoms of C.xj ; �j / intersecting

X in at least r vertices is at most 1��. Thus, we can partition the set ofF�;�1
atoms

in C.v; �/ in such a way that in each part of the partition the proportion of atoms
with the property that they intersect X in at least r vertices is at most 1� �. Thus,
the proportion of all F�;�1

atoms of C.v; �/ with this property is at most 1 � �,
and hence the result. �
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Lemma 3.9. Suppose that � has .�1/-type. Let X � VP , k > 0, and r 2 N
k.

For 1 � j � ` let �j D .�i;j /
k
iD1 2 M

k , and suppose that �k;j � �1;j C1 for
each j D 1; : : : ; `� 1. If X contains no .k;�j ; r/-stars for each 1 � j � `, then,
for all � � �k;`,

jX \ S�j
jS�j < .1 � �/` C rq`.w0/�h�1;1;2�i;

where r D max¹ri j 1 � i � kº.

Proof. Lemma 3.8 (applied to the case v D o) implies that the proportion of
F�;�1;`

atoms intersecting X in at least r vertices is at most 1 � �. Let X` be
such an atom, and let x` be the projection of this atom onto S���1;`

(that is,
X` D S� \ C.x`/). Lemma 3.8, this time applied to the case v D x`, implies
that the proportion of the F�;�1;`�1

atoms contained in X` with the property that
they intersect X in at least r vertices is at most 1� �. Hence the proportion of all
F�;�1;`�1

atoms with the property that they intersect X in at least r vertices is at
most .1� �/2. Iterating this process shows that the proportion of all F�;�1;1

atoms
with the property that they intersect X in at least r vertices is at most .1 � �/`.
Each atom in the remaining 1 � .1 � �/` proportion of atoms contains at most
r � 1 elements of X . Since the total number of F�;�1;1

atoms is jS���1;1
jq`.w0/ D

q`.w0/�h�1;1;2�ijS�j (see Corollary 3.2 and Lemma 3.5) we have

jX \ S�j
jS�j � .1 � �/` C .1 � .1� �/`/q`.w0/�h�1;1;2�i.r � 1/

< .1 � �/` C rq`.w0/�h�1;1;2�i;

hence the result. �

Proof of Theorem 3.3. The proof follows from Lemmas 3.8 and 3.9 in exactly the
same fashion as the proof of Theorem 1.3. �

Remark 3.10. We have not been able to push our techniques through to the case
of non-.�1/-type affine buildings (note that �� D � is used in an essential way
in Lemma 3.8). Indeed Theorem 3.3 does not hold in its current form for non-
.�1/-type buildings. For example, in a thick zAn building the set X D VQ has
d�.X/ D 1

nC1
> 0, and we have d.x; y/ 2 Q\PC for all x; y 2 X D VQ. Thus,

if � D !1 C N�0, then 2� … Q (assuming that n � 2). Thus, there are arbitrarily
large � 2 PC such that 2� … ¹d.x; y/ j x; y 2 Xº.

In light of Remark 3.10, we make the following conjecture.

Conjecture 3.11. Let � be an irreducible affine building with uniform thickness
2 � q < 1. Let X � VP with d�.X/ > 0. For each k > 0 there exists
K D K.X; k/ > 0 such that whenever �1; : : : ; �k 2 Q \ PC with �k � � � � �
�2 � �1 � K�0 there exists a subset ¹v0; v1; : : : ; vkº � X with d.v0; vj / D �j for
all 1 � j � k and d.o; v0/ D d.o; v1/ D � � � D d.o; vk/.
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Remark 3.12. In the definition ofMk in Section 3.4 we used �. Less restrictively
one could instead use < in this definition. Theorem 3.3 still holds using this less
restrictive definition, with a very similar proof. However some technical changes
are required in Lemmas 3.8 and 3.9, for if z; z0 2 VP with d.z; z0/ 2 PCnPCC,
then the chamber c.z; z0/ from Figure 8 is no longer unique. Instead one must
argue using the (unique) “projection” of z0 onto the “residue” of z, which in general
is a lower dimensional simplex. While this makes the arguments more technical,
the essential details are the same.

3.7. Extension to buildings of non-uniform thickness. We have assumed, for
simplicity and readability of the paper, that our buildings (and trees) have uniform
thickness parameter q. Our main results apply more generally to the case of “reg-
ular” affine buildings, with only minor modifications required in the proofs. These
buildings arise naturally from simple algebraic groups over non-archimedean lo-
cal fields. We briefly sketch these modifications in this subsection.

Recall that uniform thickness parameter q means that every panel of the build-
ing is contained in precisely q C 1 chambers. More generally, an affine building
� is called regular if, for each 0 � i � n, there exists an integer qi � 1 such that
every panel of cotype i is contained in precisely qi C 1 chambers. In other words,
for each 0 � i � n the cardinality

qi D j¹d 2 C j d �i cºj

is finite, and does not depend on the chamber c 2 C. The numbers .qi/
n
iD0 are

called the thickness parameters of the building.

In fact, every locally finite (meaning that each panel is contained in only finitely
many chambers) thick irreducible affine building � of dimension at least 2 is
regular (see, for example, [12, Theorem 2.4]). If n D 1, then � is a tree (a
building of type zA1), and in this case � is regular if and only if this tree is “bi-
regular” (where the valencies q0 C1 and q1 C1 alternate according to the bipartite
structure of the tree). Thus, regularity is a very minor assumption. Moreover, we
note that the possible thickness parameters of an affine building are considerably
more restricted than it may first appear. Indeed, if si and sj are conjugate in W ,
then necessarily qi D qj (see [12, Corollary 2.2]).

Treating all regular affine buildings in a uniform way requires the introduction
of more technical language, including the use of the non-reduced root systems
of type BCn (see, for example, [12]). We will avoid this language here, and
content ourselves with making some seemingly ad hoc modifications. To begin
with, define L D P (the coweight lattice) in all cases except the following:

.1/ � is of type zA1 with q0 ¤ q1;

.2/ � is of type zCn with q0 ¤ qn.
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In these excluded cases, set L D Q (the coroot lattice). Let LC D L \ PC and
LCC D L \ PCC. The set of good vertices of � is VL (thus, VL D VP except in
the two cases above where VL D VQ).

To deal with the case of regular buildings, we replace all occurrences ofP ,PC,
PCC, and VP with L, LC, LCC, and VL, respectively, in Sections 3.3–3.6. With
these changes, Theorem 3.3 holds for the general case of thick regular irreducible
affine buildings of .�1/-type. The modifications required in the proof are as
follows.

Let qw D qi1 � � �qik whenever w D si1 � � � sik is reduced (the geometry of the
building forces this to be independent of the particular reduced expression chosen;
see [12, Proposition 2.1]). In the case of uniform thickness, we have qw D q`.w/.
In the general case, the formula for jS�.x/j (for x 2 VL and � 2 LC) from (3.2)
now reads

jS�.x/j D W0.q
�1/

W0�.q
�1/

qt 0
�
;

where t 0
�

2 W is the unique element of W such that t 0
�
.c0/ D t�.c0/ (recall that

W acts simply transitively on the chambers of the Coxeter complex, and also that
the translation t� is only an element of W when � 2 Q). Moreover, in the above
formula we write U.q�1/ D

P

u2U q
�1
u for finite subsets U � W .

Then, in Lemma 3.5 one has jA�;�j D jS�jqw0
and jC.x; c; �/j D qt 0

�
q�1

w0
.

Lemma 3.6 and its proof remain correct with no modification (other than replacing
VP by VL). Lemma 3.7 is modified as follows. Let w0 D si1 � � � siN be a reduced
expression for w0. Then, the right hand side of the inequality in Lemma 3.7
is replaced with �0qw0

, where �0 D .1 � q�1
i1
/ � � � .1 � q�1

iN
/. Then, Lemma 3.8

holds with � replaced by �0. Finally, in Lemma 3.9, in the right hand side of the
inequality we replace q`.w0/�h�1;1;2�i with qw0

q�1
t 0
�1;1

. The proof of Theorem 3.3,

then follows as before. We also expect that Conjecture 3.11 holds for the general
regular case.

3.8. Application to simple algebraic groups over non-archimedean local

fields. We conclude with an application to sets of positive density in simple alge-
braic groups over non-archimedean local fields. Let F be a non-archimedean local
field with valuation ring o and let G be a simple algebraic group with relative root
systemˆ. LetK be a maximal compact subgroup ofG. There is an affine building
�.G;K/ associated to .G;K/ whose set of type 0 vertices is G=K D VQ � VP

(see [7]). This building is thick and regular.
There are elements $� 2 G such that

G D
G

�2Q\P C

K$�K
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(roughly speaking, $� is a diagonal matrix whose entries are powers of the
uniformiser �). Moreover, the vector distance between vertices gK and hK is
d.gK; hK/ D � if and only if g�1h 2 K$�K. For g 2 G let �.g/ D d.K; gK/.

We define upper density d�.X/ of a subset X � G=K as in (3.3).

Corollary 3.13. Let .G;K/ be as above, and suppose that�.G;K/ has .�1/-type.
Let r 2 N. Let X � G=K with d�.X/ > 0. There exists a constant N > 0 such
that for all g1; : : : ; gr with �.gj / 2 2P and N�0 � �.g1/ � � � � � �.gr/ we have

X \Xg1K \ � � � \XgrK ¤ ;:

Proof. Note that X \ Xg1K \ � � � \ XgrK ¤ ; if and only if there exit
h0K; : : : ; hrK 2 X with h0K � hjKgjK for all 1 � j � r . Thus,
h�1

j h0 2 KgjK D K$�.gj /K, and so d.hjK; h0K/ D �.gj / for all 1 �
j � r . Since �.G;K/ is of .�1/-type we have d.h0K; hjK/ D �.gj /, and so
X \ Xg1K \ � � � \ XgrK ¤ ; if and only if there exist vertices vj D hjK 2 X

with d.v0; vj / D �.gj / for 1 � j � r . The result follows from Theorem 3.3 (cf.
Section 3.7). �
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