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Cantor dynamics of renormalizable groups
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Abstract. A group � is said to be “finitely non-co-Hopfian,” or “renormalizable,” if there
exists a self-embedding 'W� ! � whose image is a proper subgroup of finite index. Such
a proper self-embedding is called a “renormalization for � .” In this work, we associate
a dynamical system to a renormalization ' of � . The discriminant invariant D' of the
associated Cantor dynamical system is a profinite group which is a measure of the asym-
metries of the dynamical system. If D' is a finite group for some renormalization, we
show that �=C' is virtually nilpotent, where C' is the kernel of the action map. We in-
troduce the notion of a (virtually) renormalizable Cantor action, and show that the action
associated to a renormalizable group is virtually renormalizable. We study the properties
of virtually renormalizable Cantor actions, and show that virtual renormalizability is an
invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renor-
malizable Cantor action is an invariant of continuous orbit equivalence. Finally, the notion
of a renormalizable Cantor action is related to the notion of a self-replicating group of
automorphisms of a rooted tree.
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1. Introduction

A countable group � is co-Hopfian if every monomorphism 'W� ! � is an
isomorphism [5], and is said to be non-co-Hopfian otherwise. If there exists a
self-embedding ' whose image is a proper subgroup of finite index, then � is said
to be finitely non-co-Hopfian [57]. A proper self-embedding 'W� ! � with finite
index is called a renormalization of �, in analogy with the case for � D Z

n. If �
admits a renormalization, then it is said to be renormalizable.
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The free abelian group Z
n is renormalizable, as are many finitely generated

nilpotent groups. There are also many examples of renormalizable groups which
are not nilpotent, as described for example in [19, 25, 30, 31, 29, 49, 50, 57]. On
the other hand, the free group Z

?n D Z ? � � � ? Z for n � 2 is non-co-Hopfian,
but is not renormalizable. The classification of non-co-Hopfian groups in general
appears to be a difficult problem.

There is a related concept of a scale-invariant group, introduced by Benjamini
(see [54, Section 9.2]). A scale for � is a descending chain of finite index
subgroups S D ¹�` j ` � 1º whose intersection is a finite group, and such
that for each `, there exists an isomorphism �`W� ! �`. Benjamini asked if a
scale-invariant group must be virtually nilpotent? Nekrashevych and Pete [49,
Theorem 1.1] gave examples of scale-invariant groups which are not virtually
nilpotent. In the same work, the authors defined the notion of a strongly scale-
invariant group, as a renormalizable group � such that the collection of subgroups
¹�` D '`.�/ j ` � 0º is a scale for �. Then [49, Question 1.1] asks if a strongly
scale-invariant group must be virtually nilpotent?

In this work, we obtain a partial answer to this question. The key idea is
to study the properties of an infinite profinite group y�' naturally associated to
a renormalization '. The group y�' is a proper quotient of the full profinite
completion of �. The key observation is given in Proposition 5.2, which shows
that 'W� ! � induces an open embedding O'W y�' ! y�' . Then Theorem 1.5 states
that if both the intersections

T
`>0 '

`.�/ and
T

`>0 O'
`.y�'/ are finite groups, then

� is virtually nilpotent. In other words, we answer in the affirmative the question
of Nekrashevych and Pete above under a stronger assumption, that both � and the
infinite profinite group y�' admit a scale.

More precisely, given a renormalization 'W� ! �, let C.G'/ be the largest
normal subgroup of K.G'/ D

T
`>0 '

`.�/. In Definition 2.5 we define a closed
subgroup D' � y�' which is naturally associated to the renormalization '. In
Theorem 5.3, we prove that D' D

T
`>0 O'

`.y�'/. In particular, ' induces a scale
on the profinite group y�' if and only if D' is finite. We have:

Theorem 1.1. Let � be a finitely generated group, and let 'W� ! � be a
renormalization of �.

(1) If D' is the trivial group, then �=C.G'/ is nilpotent.

(2) If D' is a finite group, then �=C.G'/ is virtually nilpotent.

The assumption that � is finitely generated is essential, as shown by the
examples in Section 9.1.

Our approach to the study of renormalizable groups is based on the study of
the Cantor dynamical systems naturally associated to their renormalizations. We
now briefly discuss this approach.
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An action ˆW� � X ! X, or .X; �; ˆ/, is said to be a Cantor action if
� is a finitely generated group, X is a Cantor metric space, and the action is
minimal. The basic properties of Cantor actions are discussed in Section 2.
In Section 3, we associate a minimal equicontinuous Cantor action .X' ; �; ˆ'/ to a
renormalization ' of �. Furthermore, we show that the renormalization 'W� ! �

induces a renormalization of the action .X' ; �; ˆ'/, as in Definitions 7.1 and 7.2.
Let ˆ' W� ! Homeo.X'/ be the action homomorphism associated to the

minimal equicontinuous Cantor dynamical system .X' ; �; ˆ'/. The closure of the
image ˆ'.�/ is an infinite profinite group, denoted by y�' , called the Ellis group
of the action in the literature [4, 23, 24]. There is an induced transitive action ŷ '

of y�' onX' , and the discriminant group D' � y�' is the isotropy subgroup of this
action at the canonical fixed-point x' 2 X' of the contraction �' WX' ! X' . The
isomorphism class of D' depends only on the conjugacy class of the action, and
has other invariance properties [21, 22, 37, 39]. If � is abelian, the discriminant
group D' is the trivial group for any renormalization, but for � non-abelian it
need not be trivial. The regularity properties of the restricted action of D' on X' ,
as discussed in Section 4, play a fundamental role in the proof of our results.

The proof of Theorem 1.1 is given in Section 6, and uses Theorem 5.3 which is
based on the results in Reid [51], quoted as Theorem 5.1 below, and Theorem 4.4
and Proposition 5.2 in this work.

We give an example in Section 9.3 of a renormalization of the Heisenberg
group for which D' is an infinite profinite group. Thus, while the assumption
that D' is finite is sufficient to conclude that �=C.G'/ is nilpotent, it is not
a necessary condition. On the other hand, there are renormalizations of the
Heisenberg group for which D' is the trivial group. The known examples of
renormalizations suggest that it is an interesting problem to study the collection
of all renormalizations for a given group �, even for the Heisenberg group.

We will now discuss dynamical properties of the Cantor actions associated to
renormalizations, which play the key role in the proof of Theorems 1.1, and of its
corollary for strongly scale-invariant groups. While most of these properties and
results do not require that � be finitely-generated, many of our results do require
this assumption, as will be pointed out when appropriate.

A Cantor action .X; G;ˆ/ is free if for any g 2 � which is not the identity,
the action ˆ.g/ has no fixed points. The action is topologically free, as in
Definition 2.1, if the set of points fixed by at least one non-trivial element of
the group is a meager set. The notion of a quasi-analytic Cantor action, as in
Definition 4.1, was introduced in the works [22, 37] as a generalization of the
notion of a topologically free action. The quasi-analytic property of a Cantor
action is a fundamental property of renormalizable groups and actions.

Theorem 1.2. The Cantor actionˆ' W��X' ! X' associated to a renormaliza-
tion ' is quasi-analytic. Hence, if the actionˆ' is effective then it is topologically
free.
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In fact, Theorem 1.2 is a consequence of a stronger statement. Given a Cantor
action .X; �; ˆ/, let ˆ.�/ � Homeo.X/ denote the image subgroup. If the action
is equicontinuous, then the closure ˆ.�/ � Homeo.X/ in the uniform topology
of maps is a separable profinite group. This is discussed further in Section 2.2.
For the Cantor action .X' ; �; ˆ'/ associated to a renormalization ', we denote
this closure by y�' D ˆ'.�/. We prove in Theorem 4.4 that the profinite action
ŷ

' W y�' � X' ! X' is quasi-analytic, which implies Theorem 1.2. The quasi-
analytic property is used to prove that the monomorphism 'W� ! � induces an
open embedding of the closure y�' into itself as below:

Theorem 1.3. Let ' be a renormalization of the finitely generated group �. Then
' induces an injective homomorphism O'W y�' ! y�' whose image is a clopen
subgroup of y�' .

This is proved in Section 5, where we use its conclusion to obtain a structure
theorem for the closure y�' , an important consequence of which is the following:

Theorem 1.4. Let ' be a renormalization of the finitely generated group �, and
O'W y�' ! y�' the induced map given by Theorem 1.3. Then, D' D

T
n>0 O'

n
.y�'/.

Theorem 1.1 and Theorem 1.4 yield an answer to the profinite version of the
Nekrashevych–Pete question:

Theorem 1.5. Let ' be a renormalization of the finitely generated group �.
Suppose that

K.G'/ D
\

`>0

'`.�/ � �; D' D
\

n>0

O'n
0.
y�'/ � y�'

are both finite groups. Then � is virtually nilpotent. If both groups are trivial,
then � is nilpotent.

As mentioned above, our study of renormalizable groups naturally suggests a
related notion, that of a renormalizable equicontinuous Cantor action, as intro-
duced in Definition 7.1. It is modeled on the concept of a renormalizable dynam-
ical system, and also that of self-similar groups [32, 47] and percolation theory
[54, Section 9.2]. The class of renormalizable Cantor actions includes the class of
actions associated to a self-embedding 'W� ! �, discussed above. We introduce
a variant of this notion, the virtually renormalizable actions, in Definition 7.2.

The study of renormalizable Cantor actions is motivated, in part, by the ex-
amples of Cantor actions on d -adic trees, where elements of the acting group are
defined recursively, in terms of the action of a finite set of generators on a rooted
d -adic tree for d � 2, where there is an embedding 'W� ! � whose image is a
subgroup of the stabilizer group of a branch of a tree (see for example [47]). The
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image '.�/ � � need not be of finite index in �, even though the stabilizer group
of a branch always has finite index in �. We discuss the relation of the notion of a
renormalizable action with the notion of self-replicating groups in more detail in
Section 7.2.

An equicontinuous Cantor action can be quasi-analytic, locally quasi-analytic
or wild, using the notions and classification introduced in the works [37, 38, 39].
For renormalizable actions, there is the following dichotomy:

Theorem 1.6. A renormalizable equicontinuous Cantor action .X; �; ˆ/ is either
quasi-analytic, and in this case� is renormalizable and the action is topologically
conjugate to the action given by a renormalization of �, or the action is wild.

This result motivates the study of the invariants of renormalizable Cantor
actions, both to understand the invariants of the renormalization map, and to
discover invariants of these actions which distinguish between the quasi-analytic
and wild cases of Theorem 1.6. Our final results in this work considers their
invariant properties under continuous orbit equivalence.

Theorem 1.7. Let .X; �; ˆ/ and .X0; � 0; ˆ0/ be minimal equicontinuous Cantor
actions which are continuously orbit equivalent. If .X; �; ˆ/ is renormalizable
and locally quasi-analytic, then .X0; � 0; ˆ0/ is virtually renormalizable.

As a consequence, we obtain that the isomorphism class of the discriminant
group D' associated to a renormalization ' is an invariant of continuous orbit
equivalence.

Theorem 1.8. Let .X' ; �; ˆ'/ and .X 0'0 ; �
0; ˆ0'0/ be Cantor actions associated to

renormalizations 'W� ! � and '0W� 0 ! � 0, respectively. If the actions are
continuously orbit equivalent, then their discriminant groups D' and D0'0 are
isomorphic.

Examples and applications of our results are discussed in Section 9.
Section 10 discusses open problems. In particular, the works [2, 37, 39] study

wild Cantor actions, and the relations between the discriminant invariant and the
wild property for the action. It is an interesting problem to further explore this
relation for renormalizable actions, as these include many class of branch groups
and related constructions, as in [6, 7, 47, 49, 48, 33].

2. Cantor actions

In this section, we recall some of the properties of Cantor actions. A basic
reference is [4].
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2.1. Basic concepts. For an action ˆW� �X! X and  2 �, let x D ˆ./.x/.
We also sometimes write  � x D ˆ./.x/ when necessary for notational clarity.

Let .X; �; ˆ/ denote an action ˆW� �X! X. The orbit of x 2 X is the subset
O.x/ D ¹x j  2 �º. The action is minimal if for all x 2 X, its orbit O.x/ is
dense in X.

An action .X; �; ˆ/ is equicontinuous with respect to a metric dX on X, if for
all " > 0 there exists ı > 0, such that for all x; y 2 X with dX.x; y/ < ı and all
 2 �, we have dX.x; y/ < ". The equicontinuous property is independent of
the choice of the metric on X by Proposition 2.2.

An action .X; �; ˆ/ is effective, or faithful, if the action homomorphism
ˆW� ! Homeo.X/ has trivial kernel. The action is free if for all x 2 X and
 2 �, x D x implies that  D e, the identity of the group. The isotropy group
of x 2 X is the subgroup

�x D ¹ 2 � j x D xº: (1)

Let Fix./ D ¹x 2 X j x D xº, and introduce the isotropy set

Iso.ˆ/ D ¹x 2 X j 9 2 �;  ¤ id; x D xº D
[

e¤2�

Fix./: (2)

Definition 2.1. [12, 43, 52] .X; �; ˆ/ is said to be topologically free if Iso.ˆ/ is
meager in X.

Note that if Iso.ˆ/ is meager, then Iso.ˆ/ has empty interior.
The notion of topologically free Cantor actions was introduced by Boyle in his

thesis [11], and later used in the works by Boyle and Tomiyama [12] for the study
of classification of Cantor actions, by Renault [52] for the study of theC �-algebras
associated to Cantor actions, and by Li [43] in his study of rigidity properties of
equicontinuous Cantor actions.

Now assume that X is a Cantor space. Let CO.X/ denote the collection of all
clopen (closed and open) subsets of X, which forms a basis for the topology of X.
For � 2 Homeo.X/ and U 2 CO.X/, the image �.U / 2 CO.X/. The following
result is folklore, and a proof is given in [38, Proposition 3.1].

Proposition 2.2. A Cantor action ˆW� � X! X is equicontinuous if and only if
the orbit of every U 2 CO.X/ is finite for the induced action ˆ�W� � CO.X/ !
CO.X/.

Let .X; �; ˆ/ be a minimal equicontinuous Cantor action. We say that U � X

is adapted to the action if U is a non-empty clopen subset, and for any  2 �, if
ˆ./.U /\U ¤ ; thenˆ./.U / D U . The proof of Proposition 3.1 in [38] shows
that given x 2 X and a clopen set W with x 2 W , there is an adapted clopen set
U with x 2 U � W .
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The key property of an adapted set U is that the set of “return times” to U ,

�U D ¹ 2 � j ˆ./.U / D U º (3)

is a subgroup of �, called the stabilizer of U . Then for ;  0 2 � with ˆ./.U /\
ˆ. 0/.U / ¤ ; we have ˆ.�1/ ı ˆ. 0/.U / D U , hence �1 0 2 �U . Thus, as
the action is assumed to be minimal, the translates ¹ˆ./.U / j  2 �º form a
finite clopen partition of X, and are in 1-1 correspondence with the elements in
the quotient spaceXU D �=�U . Then � acts by permutations of the finite setXU

and so the stabilizer group �U � � has finite index.
The action of  2 � on XU is trivial precisely when  is a stabilizer of each

coset � � �U , so  2 CU where CU D
T

�2� ��U �
�1 � �U is the largest normal

subgroup of � contained in �U . The action of the finite group QU � �=CU on
XU by permutations is a finite approximation of the action of � on X, and the
isotropy group of the identity coset e � �U is DU � �U =CU � QU .

Definition 2.3. Let .X; �; ˆ/ be an equicontinuous Cantor action. A properly
descending chain of clopen sets U D ¹U` � X j ` � 0º is an adapted
neighborhood basis at x 2 X for the action ˆ, if x 2 U`C1 � U` for all ` � 0,
each U` is adapted to the action ˆ, and the intersection

T
`>0U` D ¹xº.

Given x 2 X and " > 0, Proposition 2.2 implies there exists an adapted
clopen set U 2 CO.X/ with x 2 U and diam.U / < ". Thus, one can choose
a descending chain U of adapted sets in CO.X/ whose intersection is x, which
shows the following:

Proposition 2.4. Let .X; �; ˆ/ be a minimal equicontinuous Cantor action. Given
x 2 X, there exists an adapted neighborhood basis U at x for the action ˆ.

2.2. The dynamical profinite model. Given an equicontinuous Cantor action
.X; �; ˆ/, let ˆ.�/ � Homeo.X/ denote the image subgroup. Then the closure
ˆ.�/ � Homeo.X/ in the uniform topology of maps is a separable profinite group.
This group is identified with the Ellis group for the action, as defined in [4, 23, 24];
see also [21, Section 2]. Each element Og 2 ˆ.�/ is the uniform limit of a sequence
of maps ¹ˆ.gi / j i � 1º � ˆ.�/. We sometimes denote the limit Og by .gi /.

For example, if � is an abelian group, then ˆ.�/ is a compact totally discon-
nected abelian group, which can be thought of as the group of asymptotic motions
of the system. When � is non-abelian, the closureˆ.�/ can have much more sub-
tle algebraic properties.

Let ŷ Wˆ.�/�X! X denote the induced action of ˆ.�/ on X. For Og 2 ˆ.�/
we write its action on X by Ogx D ŷ . Og/.x/. For a minimal equicontinuous action
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ˆW� �X! X, the groupˆ.�/ acts transitively on X. Given x 2 X, introduce the
isotropy group at x,

ˆ.�/x D ¹ Og 2 ˆ.�/ j Og x D xº � Homeo.X/; (4)

which is a closed subgroup of ˆ.�/, and thus is either finite, or is an infinite
profinite group.

Definition 2.5. The groupˆ.�/x is called the discriminant of the action .X; �; ˆ/.

There is a natural identification X Š ˆ.�/=ˆ.�/x of left ˆ.�/-spaces, and
thus the conjugacy class of ˆ.�/x in ˆ.�/ is independent of the choice of x. If
ˆ.�/x is the trivial group, then X is identified with the profinite group ˆ.�/, and
the action ŷ is free. Note that there exists examples of free minimal equicontinu-
ous Cantor actions .X; �; ˆ/ for which the action ŷ is not free, and in fact ˆ.�/x
is an infinite profinite group. The first such examples were constructed by Fokkink
and Oversteegen in [26, Section 8], and further examples are constructed in [22,
Section 10].

2.3. Equivalence of Cantor actions. We recall three notions of equivalence of
Cantor actions.

The first and strongest is that of isomorphism of Cantor actions, which is a
generalization of the usual notion of conjugacy of topological actions. For � D Z,
isomorphism corresponds to the notion of “flip conjugacy” introduced in the work
of Boyle and Tomiyama [12].

Definition 2.6. Two Cantor actions .X; �; ˆ/ and .X0; � 0; ˆ0/ are said to be isomor-
phic if there is a homeomorphism hWX! X0 and a group isomorphism‚W� ! � 0

so that
ˆ./ D h�1 ıˆ0.‚.// ı h 2 Homeo.X0/ for all  2 �: (5)

Return equivalence is a form of “virtual isomorphism” for minimal equicontin-
uous Cantor actions, and is weaker than the notion of isomorphism. This equiv-
alence is natural when considering the Cantor systems arising from geometric
constructions, as in the works [37, 38, 39].

Throughout this work, by a small abuse of notation, for a minimal equicon-
tinuous Cantor action .X; �; ˆ/ and adapted subset U � X, we use ˆU to de-
note both the restricted action ˆU W�U �U ! U and the induced quotient action
ˆU WHU � U ! U where HU D ˆ.�U / � Homeo.U /.

Definition 2.7. Minimal equicontinuous Cantor actions .X; �; ˆ/ and .X0; � 0; ˆ0/
are return equivalent if there exists an adapted set U � X for the action ˆ and an
adapted set V � X0 for the actionˆ0, such that the restricted actions .U;HU ; ˆU /

and .V;H 0V ; ˆ
0
V / are isomorphic.
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Continuous orbit equivalence for Cantor actions was introduced in [11, 12],
and plays a fundamental role in various approaches to the classification of these ac-
tions [52]. Consider the equivalence relation on X defined by an action .X; �; ˆ/,

R.X; �; ˆ/ � ¹.x; x// j x 2 X;  2 �º � X � X: (6)

Given actions .X; �; ˆ/ and .X0; � 0; ˆ0/, we say they are orbit equivalent if there
exist a bijection hWX ! X0 which maps R.X; �; ˆ/ onto R.X0; � 0; ˆ0/, and simi-
larly for the inverse map h�1.

Definition 2.8. Let .X; �; ˆ/ and .X0; � 0; ˆ0/ be Cantor actions. A continuous
orbit equivalence between the actions is a homeomorphism hWX ! X0 which is
an orbit equivalence, and there exist continuous functions ˛W� � X ! � 0 and
ˇW� 0 � X0 ! � such that

(1) for each x 2 X and  2 �, there exists ˛.; x/ 2 � 0 and an open set
x 2 Ux � X such that ‰.˛.; x// ı hjUx D h ıˆ./jUx ;

(2) for each y 2 X0 and  0 2 � 0, there exists ˇ. 0; y/ 2 � and an open set
y 2 Vy � X0 such that ˆ.ˇ. 0; y// ı hjVy D h ı‰.

0/jVy .

Note that the maps ˛ and ˇ are not assumed to be cocycles over the respective
actions.

3. Renormalizable groups

In this section, we construct the minimal equicontinuous Cantor action .X' ; �; ˆ'/

associated to a renormalization 'W� ! �, and give some of the basic properties
of this action.

Set �0 D �, and for ` � 1, recursively define subgroups �` � �, where
�` D '.�`�1/ � '

`.�/.
Let G' � ¹�` j ` � 0º denote the descending group chain, where each �` has

finite index in �. Denote the intersection of the group chain byK.G'/ �
T

`>0 �`.
If K.G'/ is a finite group, then the group � is said to be strongly scale-invariant,
in the terminology of Nekrashevych and Pete [49].

Let X` D �=�` be the finite coset space. Note that X` is not necessarily a
group, as the subgroup �` is not assumed to be normal in �. Note that � acts
transitively on the left on X`, and the inclusion �`C1 � �` induces a natural �-
invariant quotient map p`C1WX`C1 ! X`. The inverse limit space

X' � lim
 �
¹p`C1WX`C1 ! X` j ` � 0º (7)

with the Tychonoff topology is a Cantor space. The actions of � on the factors X`

induce a minimal equicontinuous action on X' , denoted by ˆ' W� �X' ! X' or
by .X' ; �; ˆ'/.
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Let y�' � Homeo.X'/ denote the closure of the image ˆ'.�/ � Homeo.X'/,
as introduced in Section 2.2, and let ŷ' W y�'�X' ! X' denote the induced action.

The embedding ' induces a mapping �' WX' ! X' , which is defined as the
shift map on sequences as follows. A point Ox 2 X' is defined by an equivalence
class of sequences Ox D .g0; g1; g2; : : :/ with each g` 2 � satisfying the relations
g` D g`C1 mod�` for all ` � 0. Then �'. Ox/ D .e; '.g0/; '.g1/; '.g2/; : : :/ is
well defined, and is a contraction on X' . Let x' 2 X' be the unique fixed point
for �' . Then x' D .e; e; e; : : :/ where e 2 � is the identity.

Following Definition 2.5, we obtain a fundamental notion associated to a
renormalization of �.

Definition 3.1. The discriminant group of .X' ; �; ˆ'/ is D' � .y�'/x'
� y�' .

For k � 0, define

Uk D ¹.g0; g1; g2; : : :/ 2 X' j gi D e for 0 � i � kº

Š lim
 �
¹p`C1W�k=�`C1 �! �k=�` j ` � kº;

(8)

which is a clopen subset of X' adapted to the action ˆ' , with stabilizer subgroup
�Uk
D �k . The clopen sets ¹Uk j k � 0º form an adapted neighborhood basis at

x' , and so we have x' D
T

k>0 Uk .
Observe that for all ` � 0, the contraction mapping �' WX' ! X' defined

above restricts to a homeomorphism onto �' WU` ! U`C1.
As the orbit of x' is dense in X' , for any non-empty open subset U � X there

exists g 2 � so that ˆ'.g/.x'/ 2 U . It follows that there also exists k > 0 such
that ˆ'.g/.Uk/ � U .

3.1. The geometric (tree) model. Given a group chain G' as above, the asso-
ciated dynamical system ˆ' W� � X' ! X' can be represented as an action of a
subgroup of the automorphism group of a regular rooted tree as we discuss now.
The construction we discuss is applicable to any chain �0 � �1 � �2 � of finite
index subgroups of the group � D �0, without a requirement that the subgroups
in the chain are isomorphic to �.

A tree T consists of a set of vertices V D
F

`�0 V`, where V` is a finite vertex
set at level `, and of edges joining vertices in V`C1 and V`, for all ` � 0, defined
as follows. For ` � 0, identify the vertex set V` with the coset space X` D �=�`.
Join v` 2 V` and v`C1 2 V`C1 by an edge if and only if v`C1 � v` as cosets. Let
d D j� W '.�/j be the index, then for ` � 0 the cardinality of V` is d `. Such a tree
is called a d -ary, or a regular tree.

An infinite path in T is a sequence of vertices .v`/`�0 such that v`C1 and v`

are joined by an edge, for ` � 0. The boundary @T of T is the collection of all
infinite paths in T , and so it is the subspace

@T D
°
.v`/`�0 �

Y

`�0

V`

ˇ̌
ˇ v`C1 and v` are joined by an edge

±
:
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The space @T is a Cantor set with the relative topology from the product topology
on

Q
`�0 V`. It is immediate that the identification of the vertex sets V` with the

coset spaces X` induces an identification of @T with the inverse limit space X'

defined by (7), with points in X' corresponding to infinite paths in @T .
The action of � on the coset spaces X` D V`, ` � 0, is by permutations.

Since the action of � preserves the containment of cosets, the action preserves
the connectedness of the tree T , that is, the vertices v` 2 V` and v`C1 2 V`C1

are joined by an edge if and only if for any g 2 G the images g � v` 2 V`

and g � v`C1 2 V`C1 are joined by an edge. Thus every g 2 � defines an
automorphism of the tree T , and we can consider � as a subgroup of the group of
tree automorphisms Aut.T /.

The study of actions of subgroups of automorphism groups of regular trees is
an active topic in geometric group theory, see for instance [47]. When studying the
dynamical properties of an action .X' ; �; ˆ'/, sometimes it is useful to represent
it as an action on the boundary of a regular tree. However, our results in this
paper rely heavily on the properties of the profinite completion G of �, and the
combinatorial character of the methods used to study group actions on rooted
trees makes their use in the study of profinite completions rather cumbersome.
In this paper, we rely mostly on the algebraic methods we describe further in
Sections 3.2 and 3.3, while explaining the implications of our results for the
actions of automorphisms of regular rooted trees in Section 7.2.

3.2. The algebraic profinite model. We next introduce an alternate profinite
model for the minimal equicontinuous action .X' ; �; ˆ'/. For each ` � 1, let C`

denote the largest normal subgroup (the core) of the stabilizer group �`, so

C` D
\

g2�

g�`g
�1 � �`: (9)

As �` has finite index in �, the same holds for C`. Observe that for all ` � 1, we
have C`C1 � C`. Introduce the quotient group Q` D �=C` with identity element
e` 2 Q`. There are natural quotient maps q`C1WQ`C1 ! Q`, and we can form
the inverse limit group

y�1 D lim
 �
¹q`C1WQ`C1 �! Q` j ` � 0º: (10)

Theorem 3.2 ([21, Theorem 4.4]). There is a natural isomorphism O� W y�' ! y�1
which identifies the discriminant group D' with the inverse limit group

D1 D lim
 �
¹q`C1W�`C1=C`C1 �! �`=C` j ` � 0º � y�1: (11)

There is an interpretation of the group D1 as an asymptotic defect of the
�-action onX1. Suppose that �` is a normal subgroup, so that the quotient �=�`

is a group. Then �=�` acts transitively and freely on X`. For example, if � is
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abelian then this is always true. In general, for the normal core C` � �`, the finite
group Q` D �=C` acts transitively on X` and the finite subgroup D` D �`=C` is
the “defect” for the action ofQ` onX` being a free action. Then D1 is the inverse
limit of these finite defects, and provides a measure of the deviation of the action
ŷ
1 of y�1 on X1 from being a free action.

Associated to the group chain G' , there are two subgroups,

K.G'/ D
\

`>0

�`; C.G'/ D
\

g2�

gK.G'/g
�1: (12)

where C.G'/ is the largest normal subgroup of � contained in K.G'/. Note that
for any g 2 C.G'/, the action of ˆ'.g/ on X' is trivial.

3.3. The universal profinite model. We now introduce a model for the action
.X' ; �; ˆ'/ in terms of the profinite completion G of �. Recall that G is the
inverse limit of the finite quotient groups �=N , for the set N D ¹N j N �
� is a normal subgroup of finite indexº which is partially ordered by inclusion.
That is, G D lim

 �
¹�=N j N 2 Nº.

There is a homomorphism  W� ! G with dense image, and the kernel of  is
the group N. / given by the intersection of all normal subgroups of finite index
in �. Thus, N. / is trivial exactly when the group � is residually finite.

By the universal property of the profinite completion, the map ˆ' W� ! y�' �

Homeo.X'/ induces a surjective map …' WG ! y�' of profinite groups, and let
N.…'/ � G denote its kernel.

Let D' � Gx'
� G denote the isotropy subgroup at x' of the action ŷG of G.

Then N.…'/ � D' .
We use the universal property of G to show a basic fact required for our study

of renormalizations.

Proposition 3.3. The renormalization 'W� ! � induces an open embedding
O'GWG! G.

Proof. Let �1 D '.�/ � � denote the image of '. Then the partially ordered set

N1 D ¹N1 j N1 � �1 is a subgroup of finite index, normal in �1º

yields the universal profinite completion G1 of �1 and ' induces an isomorphism
O'1WG! G1.

Next, consider the partially ordered set N01 D ¹N \ �1 j N 2 Nº, where N

is the collection of finite-index subgroups which are normal in �. Let G01 denote
the profinite completion of �1 with respect to N01. It is immediate that G01 is the
closure of  .�1/ � G in G.

Note that if N 0 2 N0, then N 0 is also normal in �1 so N 0 2 N1. Conversely, if
N 2 N1 then its normal core CN1 D

T
g2� g

�1N1g � N1 is a normal subgroup
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of� which has finite index in �1 soCN1 2 N01. Thus, the two partially ordered sets
N1 and N01 are cofinal in �1, hence the identity map induces a homeomorphism
bIdWG1 Š G01. It follows that the composition O'G � bId ı O'1WG! G1 Š G01 is an
isomorphism onto the subgroup G01 � G of finite index, which is thus open. �

For each ` � 1, let G` D O'
`
G
.G/ which is an open subgroup of G of finite

index, with G=G` Š �=�`.
By an argument analogous to the proof of Proposition 3.3, G` is identified with

the closure of �` in G, and thus G` D ¹g 2 G j ŷG.g/.U`/ D U`º. That is, U`

is an adapted set for the action ŷGWG � X' ! X' with stabilizer GU`
D G`.

It follows that the isotropy group D' at x' 2 X' of the action O'G is given byT
`�0 G`, and so …'.D'/ D D' � y�' .

Corollary 3.4. The embedding O'GWG! G restricts to an isomorphism

O'GWD' �! D' :

Proof. We have O'G.D'/ D
T

`�0 O'G.G`/ D
T

`�0 G`C1 D D' , so the restriction
O'GWD' ! D' is onto. As O'G is an embedding, its restriction to D' is injective.

�

Remark 3.5. We want to obtain a version of Proposition 3.3 for the completion
y�' of �, in place of the universal profinite completion G. That is, we will show
that 'W� ,! � induces an open embedding O'W y�' ,! y�' (see Proposition 5.2 in
the next section).

Unfortunately, the argument in Proposition 3.3 does not directly generalize to
the case of the closure of the action y�' . Indeed, in the above proof, the key idea
is that the system N01 is cofinal in N1, and this follows because N01 contains all
normal cores (in �) of members of N1.

On the other hand, the group y�' is defined as the closure of the action group
ˆ'.�/ � Homeo.X'/, and the map ' induces a natural isomorphism with the
closure of the image '.�/ D �1 D �U1

in Homeo.U1/. In order to obtain an
embedding of y�' into itself, we must relate the closure of �1 in Homeo.U1/ with
that in Homeo.X'/. Thus, the above algebraic argument using normal cores needs
to be replaced by a dynamical argument. The key point is that one needs to show
that if g 2 y�' acts trivially on U1, then it acts trivially on X' . This dynamical
regularity, i.e. that the action of g 2 y�' is determined by its behavior on any open
set, is the goal of the next two sections.

4. Regularity of Cantor actions

In this section we recall the notion of quasi-analytic actions, and the localized
version of this property. This is a type of regularity property for Cantor actions,
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introduced in the works by Álvarez López, Candel, and Moreira Galicia [1, 3],
inspired by work of Haefliger [35]. We then consider this property for the action
O'GWG � X' ! X' of the profinite completion G. In the following definitions, H
denotes a topological group which need not be countable.

Definition 4.1. An action ˆWH � X ! X, where H is a topological group and
X is a Cantor space, is said to be quasi-analytic (or QA) if for each clopen set
U � X, if the action of g 2 H satisfies ˆ.g/.U / D U and the restriction ˆ.g/jU
is the identity map on U , then ˆ.g/ acts as the identity on all of X.

Note that if an action is not quasi-analytic, then there is some g 2 H whose
action ˆ.g/ on X is non-trivial, yet there is a clopen subset U such that the
restriction of the action ˆ.g/ to U is the identity, and thus the isotropy group
for the action at a point x 2 U is non-trivial. So, for example, if the space X

is homeomorphic to a profinite group H for which the action ˆ is defined by
group multiplication, so that the action is induced by a group homomorphism
ˆWH ! H, then the action is quasi-analytic. A topologically free action, as in
Definition 2.1, is quasi-analytic. Conversely, the Baire Category Theorem implies
that an effective quasi-analytic action of a countable group is topologically free
[52, Section 3].

A local formulation of the QA condition for actions was introduced in the
works [22, 37], and has proved very useful for the study of the dynamical proper-
ties of equicontinuous Cantor actions.

Definition 4.2. An action ˆWH �X! X, where H is a topological group and X

a Cantor metric space with metric dX, is locally quasi-analytic (or LQA), if there
exists " > 0 such that for any non-empty open set U � X with diam.U / < ",
and for any non-empty open subset V � U , if the action of g 2 H satisfies
ˆ.g/.V / D V and the restrictionˆ.g/jV is the identity map on V , thenˆ.g/ acts
as the identity on all of U .

Examples of minimal equicontinuous Cantor actions which are locally quasi-
analytic, but not quasi-analytic, are elementary to construct; some examples are
given in [22, 37].

If .X; H;ˆ/ is an equicontinuous Cantor action which is not quasi-analytic,
then the isotropy group defined in (4) is non-trivial. On the other hand, there
are actions with non-trivial isotropy group that are quasi-analytic (see Section 9.3
below, and the examples in [22]). Finally, we define:

Definition 4.3. An equicontinuous Cantor action .X; �; ˆ/ is said to be stable if
the associated profinite action ŷ Wˆ.�/ � X ! X is locally quasi-analytic. The
action is said to be wild otherwise.
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There are many examples of wild Cantor actions. For example, the actions of
branch groups on the boundaries of their associated trees are always wild [33].
The work [2] gives the construction of wild Cantor actions exhibiting a variety of
characteristic properties, using algebraic methods.

Here is our main technical result for the profinite actions associated to renor-
malizations.

Theorem 4.4. Let � be a finitely generated group and 'W� ! � a renormaliza-
tion of �. Then the profinite action ŷGWG �X' ! X' is quasi-analytic.

Proof. Let g 2 G be such that ŷG.g/ acts non-trivially on X' . Suppose there
exists a non-empty open set U � X' such that ŷG.g/ acts on U as the identity.

The orbit of every point of X' is dense in X' under the action of �, so there
exists h 2 � such that ˆ'.h/.x'/ 2 U . Set g0 D h�1gh so that ŷG.g0/ fixes the
open set U 0 D ˆ'.h

�1/.U /. In particular, ŷG.g0/ fixes x' and hence g0 2 D' .
Thus, we can assume without loss of generality that ŷG.g/ acts as the identity on
U and x' 2 U , so that g 2 D' .

The nested clopen sets U D ¹U` j ` � 0º form a neighborhood basis at x' so
there exists some k0 > 0 such that Uk � U for all k � k0. Thus, for all k � k0 we
have �k

'.X'/ � U .
Recall that the restriction O'GWD' ! D' is an automorphism by Corollary 3.4.

Thus for g 2 D' there is a well-defined element g` D O'
`
G
.g/ 2 D' for all ` 2 Z.

Lemma 4.5. Let g 2 D' , and suppose g acts trivially on Uk0
, for some k0 � 0.

Then for all ` � k0, the action of g�` D O'
�`
G
.g/ 2 D' on X' is trivial.

Proof. For x 2 X' and ` � 0, set x` D �`
'.x/. Choose gx 2 G such that

x D gxD' via the identification X' Š G=D' ; that is, x is represented in X' by
the cosetgxD' . Recall that under this identification, for h 2 G the action of ŷG.h/
onX' becomes left multiplication by h. That is, ŷG.h/.x/ D h�gxD' D hgx �D'.
Then for ` � k0 we have that

x` D �
`
'.x/ D �

`
'.gxD'/ D O'

`
G
.gx/D' 2 Uk0

: (13)

Thus, for ` � k0 we have

x` D ŷG.g/.x`/ D ŷG.g/. O'
`
G
.gx/D'/ D g O'

`
G
.gx/D' : (14)

So for g 2 D' and ` � k0, using that O'GWG! G is a homomorphism, we have

x` D g O'
`
G
.gx/D'

D O'`
G
. O'�`

G
.g// O'`

G
.gx/D'

D O'`
G
. O'�`

G
.g/gx/D'

D O'`
G
.g�`gx/D' :

(15)
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Thus for g 2 D' , x 2 X' and ` � k0,

x D ��`
' .x`/ D �

�`
' . O'`

G
.g�`gx/D'/

D O'�`
G
. O'`

G
.g�`gx//D'

D g�`gxD' D ŷG.g�`/.x/:

(16)

That is, ŷG.g�`/.x/ D x for all x 2 X' and ` � k0, as was to be shown. 4

Note that for g 2 G the equicontinuous action of O'G.g/ onX' is approximated
by the action on the finite quotient spaces X` for ` > 0. Thus, the assumption
that O'G.g/ acts non-trivially on X' implies there exists some m0 > 0 such that
the induced action of O'G.g/ on Xm0

D �=�m0
is non-trivial for some m0 > 0.

Denote this action by ŷm0
.g/ 2 Perm.Xm0

/, where Perm.Xm0
/ is the group of

permutations of the finite set Xm0
, hence Perm.Xm0

/ is a finite group.
The second key observation required for the proof of Theorem 4.4 is the

following “periodicity” of the restricted action ŷm0
WD' ! Perm.Xm0

/, which
allows us to promote properties of the action of g�` on small scales Uk (for k
large) to global properties of the action of g.

Lemma 4.6. Let g 2 D' . Then for every m0 � 1, there exists N0 � 1 such that
for all ` � 1 we have ŷm0

.g�N0`/ D ŷm0
.g/.

Proof. Let m0 � 1. We note the following two elementary properties of
Hom.G; Perm.Xm0

//:

(1) for any � 2 Hom.G; Perm.Xm0
// and ` � 0, we have

� ı O'`
G
2 Hom.G; Perm.Xm0

//:

(2) Hom.G; Perm.Xm0
// is a finite set, as � is finitely generated and Perm.Xm0

/

is finite. Indeed, every element in Hom.G; Perm.Xm0
// is a group homomor-

phism, and so it is determined by its values on the generating set of a dense
subgroup � of G, which is finite.

Now consider ŷm0
2 Hom.G; Perm.Xm0

//. By properties (1) and (2) above, there
exist 0 � N1 < N2 such that ŷm0

ı O'N2

G
D ŷm0

ı O'N1

G
2 Hom.G; Perm.Xm0

//. In
particular, their restrictions satisfy ŷm0

ı O'N2

G
D ŷm0

ı O'N1

G
WD' ! Perm.Xm0

/.
Now recall from Corollary 3.4 that O'G restricts to an automorphism on D' , so

that O'�N1

G
WD' ! D' is well defined. It follows that

ŷ
m0
ı O'N2�N1

G
D ŷm0

ı O'N2

G
ı O'�N1

G

D ŷm0
ı O'N1

G
ı O'�N1

G

D ŷm0
WD' �! Perm.Xm0

/:

Therefore N0 D N2 �N1 satisfies the conclusion of the lemma. 4
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We can now complete the proof that the action ŷGWG � X' ! X' is quasi-
analytic. If not, then there exists g 2 D' such that ŷG.g/ acts non-trivially on
X' , and a non-empty open set U � X' with x' 2 U such that O'G.g/ acts on U as
the identity.

Let m0 > 0 be such that the induced action of O'G.g/ on Xm0
D �=�m0

is
non-trivial. Then, there exists some k0 > 0 such that Uk � U for all k � k0. We
assume that k0 � m0. By Lemma 4.5, for all ` � k0 we have ŷm0

.g�`/.x/ D x for
all x 2 Xm0

. By Lemma 4.6, there exists N0 > 0 so that ŷm0
.g�N0`/ D ŷm0

.g/

for all ` � 0. However, for N0` > k0 we obtain a contradiction, as ŷm0
.g/

is assumed to act non-trivially on Xm0
while ŷm0

.g�N0`/ acts trivially on Xm0
.

Thus, the action of ŷG must be quasi-analytic. �

Finally, note that Theorem 4.4 shows that the profinite action .X' ;G; ŷG/ is
quasi-analytic, so the same holds for the action .X' ; �; ˆ'/ obtained by restricting
the action to the image ˆG.�/ � G. Then the Baire Category Theorem implies
(see [38, Proposition 2.2] for example) that if the action ˆ' is effective, that is
if ˆ' W� ! Homeo.X'/ is injective, then the action .X' ; �; ˆ'/ is topologically
free, as asserted in Theorem 1.2.

Corollary 4.7. Let � be a finitely generated group and 'W� ! � a renormaliza-
tion of �. Then the profinite action ŷ' W y�' �X' ! X' is quasi-analytic, and the
action .X' ; �; ˆ'/ is stable.

Proof. Let U � X' be a clopen set and Og 2 y�' such that ŷ '. Og/ restricts to the
identity on U . Recall that …' WG ! y�' is onto, so there exists g 2 G such that
…'.g/ D Og. Then the action ŷG.g/ restricts to the identity on U , so ŷG.g/ acts
as the identity on X' by Theorem 4.4. �

5. Open embeddings

In this section, given a renormalization 'W� ! � with associated Cantor action
.X' ; �; ˆ'/, we obtain a structure theory for the profinite group y�' that is the key
to the proof of Theorem 1.1. Recall that Proposition 3.3 showed that the induced
map O'GWG ! G of the profinite completion G of � is an open embedding. We
thus obtain by [57, Theorem 3.10], which is a reformulation of the results of Reid
in [51], the following structure theorem:

Theorem 5.1. There exist closed subgroups C' � G and Q' � G so that

(1) G Š C' ÌQ' , where C' is a pro-nilpotent normal subgroup of G;

(2) C' is O'G-invariant, and O'G restricts to an open contracting embedding
on C';

(3) Q' is O'G-invariant, and O'G restricts to an automorphism of Q' .
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Moreover, let ye 2 G be the identity element, then we have

C' D ¹g 2 G j lim
n!1

O'n
G
.g/ D Oeº; Q' D

\

n>0

O'n
G
.G/: (17)

Next, we show that O'G induces an open embedding O'W y�' ! y�' as promised
in Remark 3.5.

Proposition 5.2. Let ' be a renormalization of the finitely-generated group �.
Then ' induces an injective homomorphism O'W y�' ! y�' whose image is a clopen
subgroup of y�' .

Proof. Let N.…'/ D ker¹…' WG! y�'º � G be the kernel of the homomorphism
…' . We claim that O'GWG! G descends to a homomorphism

O'W y�' Š G=N.…'/ �! y�' Š G=N.…'/: (18)

Recall that Theorem 1.2 implies that for g 2 G, the action of O'G.g/ on X' is
locally determined. In particular, the action O'G.g/ is determined by its restriction
to the clopen subset U1 D �'.X'/.

For g 2 N.…'/, observe that O'G.g/ acts as the identity on the clopen subset
U1 D �'.X'/. As the action ŷG is quasi-analytic, this implies that O'G.g/ acts as
the identity onX' , and thus O'G.g/ 2 N.…'/. That is, O'G.N.…'// � N.…'/ � G,
and thus we have the composition of homomorphisms

O'W y�' D G=N.…'/ �! O'.G/= O'.N.…'// �! G= O'.N.…'/! G=N.…'/ D y�'

which defines the map (18). We claim that O' is injective. If not, let  2 y�' such
that O'./ D Id. That is, O'./ 2 y�' acts as the identity on X' . In particular, O'./
acts as the identity on �'.X'/, so for x 2 X' ,

�'.x/ D O'./ � �'.x/ D �'.x/:

As �' is an injection, we have x D x for all x 2 X' , and thus  2 Homeo.X'/

is the identity, as was to be shown. �

We use the conclusions of Theorem 5.1 and Proposition 5.2 to obtain:

Theorem 5.3. Let 'W� ! � be a renormalization for the finitely generated
group �, with associated Cantor action .X' ; �; ˆ'/. Let O'W y�' ! y�' be the
embedding induced from '. Then there exists a closed pro-nilpotent normal

subgroup yN' � y�' so that

(1) y�' Š yN' Ì D' is a semi-direct product;

(2) yN' is O'-invariant, and O' restricts to an open contracting embedding of yN';

(3) D' is O'-invariant, and O' restricts to an automorphism of D' .
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Moreover, let Oe 2 y�' be the identity element, then we have

yN' D ¹g 2 y�' j lim
n!1

O'n.g/ D Oeº; D' D
\

n>0

O'n.y�'/: (19)

Proof. Recall that by Theorem 5.1 the embedding O'GWG! G induces an isomor-
phism G Š C' ÌQ' , where C' andQ' are characterized by the formulae in (17).
First, we show:

Lemma 5.4. D' D …G.Q'/ � y�' .

Proof. Recall that the clopen neighborhoods U` of x' are defined by (8), and for
each ` � 0 we have U` D �`

'.X'/. For each ` � 0, define the clopen subset
yU` D ¹ 2 y�' j ŷ'./.U`/ D U`º � y�' .

Also, recall that D' D ¹ 2 y�' j  � x' D x'º. As x' D
T

`�0 U`, we then

have D' D
T

`�0
yU`, and so yU` D O'

`.y�'/ where O'W y�' ! y�' was defined in
Proposition 5.2.

Recall that G` D O'
`
G
.G/ � G, and thus yU` D …G.G`/. Then,

…G.Q'/ D …G

° \

`�0

G`

±
D

\

`�0

…G.G`/ D
\

`�0

yU` D D' ; (20)

as was to be shown. 4

Next, set yN' D …G.C'/ � y�' which is a pro-nilpotent closed subgroup. Then
by an argument exactly analogous to the proof of Lemma 5.4, we have

yN' D ¹ 2 y�' j lim
`!1

O'`./ D Oe 2 y�'º: (21)

The proof of Theorem 5.3 now follows. �

Note that the identities (19) in Theorem 5.3 identify the images of the groups
C' and Q' in Homeo.X'/ in terms of the dynamical properties of the action O'
on y�' .

The conclusions of Theorem 5.3 are illustrated in various examples of renor-
malizable groups and self-embeddings in Section 9, and also by the examples in
the works [49, 56, 57]. Moreover, the conclusion that ' induces an automorphism
of the discriminant group D' has applications to the constructions of examples of
Cantor actions using the Lenstra method as given in [37, Section 8.2].

6. Finite discriminant

We next consider the consequences of Theorem 5.3, for D' a finite group and
prove Theorem 1.1.
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Proof of Theorem 1.1. We first assume that the discriminant group D' is trivial,
and show that the quotient group �=C.G'/ is nilpotent, where C.G'/ is the normal
core of the intersection K.G'/ D

T
`�0 �` � �, as defined in (12). Recall that

C.G'/ � � is identified with the kernel of the homomorphism ˆ' W� ! y�' �

Homeo.X'/, and that O'W y�' ! y�' was defined in Proposition 5.2.

Note that ' restricts to an isomorphism of K.G'/ by its definition, and so
' also maps C.G'/ isomorphically to itself, and thus induces an embedding
'0W�=C.G'/ ! �=C.G'/. Then without loss of generality, we can replace �
with �=C.G'/, so can assume that ˆ' W� ! y�' is an embedding, and identify �
with its image ˆ'.�/. As we assume that D' is trivial, by Theorem 5.3 we have
y�' Š yN' where yN' is a closed pro-nilpotent normal group.

Section 3 of the work [57] gives an overview of some of the structure theory
of pro-nilpotent groups, and we recall those aspects as required for the proof of
Theorem 1.1. First, yN' admits a splitting by [28, Theorem B] as yN' Š yN1 � yNtor

where yN1 is a torsion-free nilpotent group and yNtor is a torsion group with
bounded exponent, by results of [40]. We now claim:

Lemma 6.1. If D' is trivial, then yNtor is the trivial group.

Proof. Let �torW yN' ! yNtor be the projection, then the image �tor.�/ � yNtor is
dense.

The abelianization yAtor of yNtor is an abelian group of bounded exponent, which
is trivial if and only if yNtor is trivial. By Prüfer’s First Theorem (see §24 of [41]),
yAtor is a direct sum of (possibly infinitely many) cyclic groups. As � is finitely

generated, the image of � in yAtor is finite rank and dense, and therefore the
abelianization yAtor has finite rank. Thus, yAtor is a direct sum of finitely many
cyclic groups, hence is a finite group.

Note that the contraction mapping O'W yN' ! yN' induces a contraction mapping
O'torW yNtor ! yNtor.

The second part of Theorem B in Glöckner and Willis [28] proves the existence
of a Jordan-Hölder series for bounded exponent contraction groups with each
composition factor a simple contraction group. Here we say a contraction group
with contraction ˛ is simple if it has no nontrivial, proper closed normal ˛-
invariant subgroup. Further, the simple contraction groups are classified as shifts
on FN where F is a finite simple group. By considering the first composition
factor, we see that yNtor has a quotient of the form FN where F is a finite simple
group. Since yNtor is solvable of bounded exponent [51], we conclude that F is
abelian. In particular yNtor has an infinite abelian quotient, which contradicts the
fact that yAtor is a finite group, as shown previously. It follows that yNtor must be the
trivial group 4
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Since by assumption D' is trivial, then � � yN1. Now observe that by
Lemma 6.1, yN1 is a torsion-free nilpotent group, thus � is nilpotent. This
concludes the proof of Theorem 1.1 in the case where D' is trivial.

Next, assume that D' is a finite group. By Theorem 5.3, we have D' D

…G.Q'/ � y�' and its intersection with yN' D …G.C'/ is the trivial subgroup. As
D' is a finite group, it follows that yN' is a clopen subset of y�' , and soƒ' � �\ yN'

is a dense subgroup of yN'

The restriction of O' defines a contraction mapping O'W yN' ! yN' . We can thus
apply the above arguments for the case when D' is trivial to the action of ƒ' on
yN' to conclude that ƒ' is nilpotent. As ƒ' has finite index in �, this completes
the proof of Theorem 1.1. �

Proof of Theorem 1.5. Assume that both D' and the subgroup K.G'/ in (12) are
finite groups. Thus its core C.G'/ � K.G'/ is also finite. Recall that in the above
proof of Theorem 1.1, we replaced � with the quotient �=C.G'/, and concluded
that �=C.G'/ contains a nilpotent subgroup of finite index. In the case where both
groups D' and K.G'/ are trivial, then the claim of the corollary follows directly
from Theorem 1.1 and Theorem 5.3. In the case where both groups are finite, we
have thatC.G'/ is a finite normal subgroup of � and �=C.G'/ contains a nilpotent
subgroup of finite index, which implies that � contains a nilpotent subgroup of
finite index. This completes the proof. �

Remark 6.2. We clarify the relation between the groups K.G'/ and D' in the
hypothesis of Theorem 1.5. The group K.G'/ contains every element of � which
fixes the base point x' , while the group D' contains every element in y�' which
fixes x' . The relationship between K.G'/ and D' is provided by an embedding
� ! y�' � Homeo.X'/. It follows that if D' is a finite group, then the quotient
group K.G'/=C.G'/ must be finite, where C.G'/ is the normal core of K.G'/.
Thus if D' is finite,K.G'/may still be infinite if its normal core C.G'/ is infinite.
Thus both assumptions in (12) in Theorem 1.5 are necessary.

7. Renormalizable Cantor actions

In this section, we introduce the notions of (virtually) renormalizable Cantor
actions, and study their regularity properties and invariants, yielding a proof of
Theorem 1.6.

7.1. Renormalizable actions. For a Cantor action .X; �; ˆ/ and an adapted
set U � X, note that HU D ˆ.�U / � Homeo.U / acts faithfully on U , so
.U;HU ; ˆU / is always an effective action.
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Definition 7.1. A Cantor action .X; �; ˆ/ is renormalizable if it is equicontinuous,
and there exists an adapted proper clopen setU � X such that the actions .X; �; ˆ/
and .U;HU ; ˆU / are isomorphic (as in Definition 2.6) by a homeomorphism
�WX ! U and isomorphism ‚W� ! HU , and the intersection

T
`�0 �

`.X/ is
a point.

For example, let .X' ; �; ˆ'/ be the Cantor action associated to a renormaliza-
tion ' of �. Suppose the action is effective, then by Theorem 1.2 it is topologically
free, and thus the mapˆU W�U ! HU is an injection. Then the action is renormal-
izable with � D �' and ‚ D ˆU ı 'W� ! HU . In general, for a renormalizable
action, there is no requirement that the map ˆU W�U ! HU is injective, and so
HU need not be identified with a subgroup of �.

Definition 7.2. A Cantor action .X; �; ˆ/ is virtually renormalizable if it is
equicontinuous, and there exists an adapted set V � X such that the restricted
action .V;HV ; ˆV / is renormalizable.

The class of virtually renormalizable actions is much more general than the
renormalizable actions, as it allows for the case when the action map ˆW� !
Homeo.X/ has a non-trivial kernel. In the following, we show some properties of
these actions. We first show:

Proposition 7.3. Suppose that the Cantor action .X; �; ˆ/ is renormalizable and
locally quasi-analytic, then it is quasi-analytic.

Proof. We assume there is given a homeomorphism �WX! U and group isomor-
phism‚W� ! HU implementing an isomorphism of .X; �; ˆ/with .U;HU ; ˆU /

as in (5).
First, suppose that the map ˆU W�U ! HU is injective, and hence is an

isomorphism, as it is onto by the definition of HU . Then the composition ' �
ˆ�1

U ı ‚W� ! � is a proper inclusion with image �U � �. As U is adapted,
�U has finite index in �, and thus ' is a renormalization of �. It follows from
Theorem 1.2 that the action ˆ is quasi-analytic.

It thus suffices to show that ifˆU W�U ! HU has a non-trivial kernelKU � �,
then the action ˆ is not locally quasi-analytic, which yields a contradiction. We
show this using a recursive argument.

Set U0 D X, then U1 D �.X/ is a clopen set by assumption. Also define
clopen sets U` D �`.U0/ for ` > 1, so that U` � U`�1. The assumption in
Definition 7.1 that the intersection

T
`�0 �

`.X/ is a point, denoted by x� 2 X,
implies that ¹U` j ` � 0º is an adapted neighborhood basis at x�.

Now set �` D �U`
for ` � 0, and let H` D ˆU`

.�`/ � Homeo.U`/ for ` � 0.
Let ¹�` j ` � 0º be the associated group chain. Recall that as the action of H1

on U1 is effective, and the actions .X; �; ˆ/ and .U1; H1; ˆU1
/ are isomorphic,
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so the action of � on X is effective. That is, the kernel K0 � � of ˆ is trivial,
and ˆW� ! H0 is an isomorphism onto. To avoid cumbersome notation, we will
identify � D H0 and write the action as g � x D ˆ.g/.x/.

Now observe that

�`C1 D ¹g 2 � j g � U`C1 D U`C1º D ¹g 2 �` j g � U`C1 D U`C1º D .�U`
/U`C1

since g � U`C1 D U`C1 implies g � U` D U`, as U` is an adapted clopen set and
U`C1 � U`.

We give the first step of the recursive argument. Define

K1 � ker¹ˆU1
W�1 ! H1 � Homeo.U1/º � �1 � �: (22)

By assumption, the subgroup K1 is non-trivial.
Let ˆ1

U1
WH1 � U1 ! U1 denote the action of H1, and let .H1/U2

� H1

denote the elements of H1 which map U2 to itself. Then introduce the subgroup
K 02 � .H1/U2

of elements which restrict to the identity on U2. Then we have

K 02 D ker¹ˆ1
U2
W .H1/U2

! Homeo.U2/º

D ker¹ˆ1
U2
W .H1/�.U1/ ! Homeo.�.U1//º

D ker¹ˆ1
U2
W‚.�/�.U1/ ! Homeo.�.U1//º

D ‚.ker¹ˆU1
W�U1

! Homeo.U1/º/ D ‚.K1/;

(23)

where the last equality follows because .X; �; ˆ/ and .U1; H1; ˆU1
/ are isomor-

phic.
By assumption K1 is a non-trivial subgroup, so by (23) we have K 02 D ‚.K1/

is also non-trivial. That is, if g 2 K1 � �1 is not the identity, then g acts non-
trivially on U0 D X and restricts to the identity on U1 by the definition (22) ofK1.
Thus, h D ‚.g/ 2 H1 acts non-trivially on U1 and restricts to the identity on U2.
SinceH1 D ˆU1

.�1/, there exists g0 2 �1 such that ˆU1
.g0/ D h. We have found

g0 2 �1, such that g0 … K1 and g0 2 K2. Therefore, K1 is a non-trivial proper
subgroup of K2.

Set K` D ker¹ˆU`
W�` ! Homeo.U`/º for ` � 2, then by repeating the above

arguments in (23), we have K` � K`C1 � � is a proper inclusion for all ` � 1.
As the diameter of the sets U` tends to 0 as ` increases, given any adapted set
V � X for the action ˆ, there exist ` > 0 and  2 � such that O D  � U` � V .
This implies that the dynamics of �` acting on U` is conjugate to the restricted
action of �V on the adapted clopen setO . Thus, there exists some element  0 2 �
such that  0 � O D O and the action of ˆ. 0/ restricted to O is non-trivial, but
restricts to the identity on some open set that is a translate of U`C1 in O , namely
 0 D �1 ı s ı  , where s 2 K`C1 and s … K`. As this holds for all ` > 0, the
action ˆ is not locally quasi-analytic. �
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We have the following consequence of the above proof of Proposition 7.3.

Proposition 7.4. Suppose that the Cantor action .X; �; ˆ/ is renormalizable and
locally quasi-analytic, then the action is isomorphic to an action .X' ; �; ˆ'/

associated to a renormalization 'W� ! �, and in particular � is renormalizable,
and the action .X; �; ˆ/ is stable.

Proof. As in the proof of Proposition 7.3, let ¹U` j ` � 0º be an adapted
neighborhood basis at x' , and let ¹�` j ` � 0º is the associated group chain. The
action .X; �; ˆ/ is quasi-analytic by Proposition 7.3, so we have isomorphisms
�` Š H`, and in particular the composition ' � ˆ�1

U1
ı ‚W� ! � is a proper

inclusion with image �1 � � a subgroup of finite index. It then follows that
�` D '`.�/, and by the results in Section 3 (see also [15, 21, 22]) the Cantor
action .X; �; ˆ/ is isomorphic to the action .X' ; �; ˆ'/. Then the action .X; �; ˆ/
is stable by Corollary 4.7. �

As a consequence of the above, we have the following result, which implies
Theorem 1.6.

Theorem 7.5. Let ' be a renormalization of�, then .X' ; �; ˆ'/ is virtually renor-
malizable. Conversely, suppose that a minimal equicontinuous Cantor action
.X; �; ˆ/ is renormalizable and locally quasi-analytic, then � is renormalizable,
and there is a renormalization ' such that .X; �; ˆ/ is isomorphic to .X' ; �; ˆ'/.

7.2. Renormalizable actions on trees. We will now discuss the relationship
between renormalizable actions on Cantor sets and self-similarity properties of
groups acting on rooted trees. Recall that, given a group chain ¹�`º`�0 consisting
of finite index subgroups of � D �0, the tree model is a natural action of � on a
rooted tree (see Section 3.1). We start by briefly recalling this construction. As in
the rest of the paper, the action of � � Aut.T / on the boundary of T is assumed
minimal in this section.

Recall that V` D X` D �=�`, and V D
F

`�0 V` is the vertex set of a tree T .
The boundary @T of T consists of all infinite connected paths .v`/`�0 2 @T . Let
Oe D .e`/`�0 D .e � �`/ be the path passing through the coset of the identity e 2 �
at each level V`. Then, as in (8), for k � 0,

Uk D ¹.w`/`�0 2 @T j w` D e � �`; 0 � ` � kº

D ¹.w`/`�0 2 @T j wk D e � �kº
(24)

is a clopen neighborhood of Oe and �k is the stabilizer subgroup of Uk . Since the
action of � on @T is minimal, the induced action of � on each vertex level V` is
transitive, for ` � 0.

We now discuss Definition 7.1 of a renormalizable action as applied to actions
on rooted trees, described in the previous paragraph. Suppose the action .@T; �/
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is renormalizable with U D U1. The set U1 contains all infinite paths in @T
which pass through the vertex e1 D e � �1, and every element in �1 fixes e1.
For each g 2 �1 � Aut.T /, denote by g1 D gjU1 the restriction. If the
action .@T; �/ is quasi-analytic, then there is precisely one element g 2 � which
restricts to g1, and so the map ˆU1

W�1 ! HU1
is invertible. As discussed at

the beginning of this section, in this case there is an injective homomorphism
' D ˆ�1

U1
ı ‚W� ! �1 � �. In particular, the conditions that .@T; �/ is quasi-

analytic and minimal implies that there are no elements in � whose support is
contained entirely in U1, and it follows that the class of groups which admit
renormalizations does not contain weakly branch groups (see [7, 32] for more
details about weakly branch groups).

If the action .@T; �/ is renormalizable but not quasi-analytic, then the elements
inHU1

can be extended from U1 to @T in multiple ways, and � may have elements
with support contained entirely in U1. Such renormalizable actions are wild.
Some actions of branch groups belong to this class, for instance, the action of
the Grigorchuk group, as we show below.

We will show that renormalizability of the action of � on @T is closely related
to the self-replicating property of the action of � on T . Given a vertex v` 2 V ,
let v`T be a subtree of T with root v`. Fix an isomorphism of rooted trees
pv`
WT ! v`T and let @pv`

W @T ! @.v`T / be the induced homeomorphism of
boundaries. Note that the inclusion v`T ,! T also induces a homeomorphism
between @.v`T / and the clopen subset Uv`

of @T that consists of all paths passing
through the vertex v`. If v` D e`, then Uv`

D U` for the set U` defined in (24).
Denote by �v`

the subgroup of elements g 2 � which fix v` and so preserve
Uv`

. For g 2 �v`
denote by g` D gjUv`

the restriction, and consider the pullback
p�

`
g` to @T . We refer to [32] for a precise definition of a self-replicating group,

but it implies that for any v` 2 V` and any ` � 0, the morphisms

Qp`W�v`
�! Aut.T /; g 7�! p�` g` D p

�
` .gjUv`

/ (25)

have image in � � Aut.T / and are surjective onto �. We are now in the position
to establish the connection between self-replicating groups and renormalizable
actions.

Proposition 7.6. Let � be a self-replicating group acting on the boundary @T
of a regular tree T . Then the action .@T; G/ is renormalizable in the sense of
Definition 7.1.

Proof. In the notation of above, fix the vertex v` D e � �`, so Uv`
D U` and

�v`
D �`. The group HU`

� Homeo.U`/ is a quotient group of �`. The pullback
mapp�

`
WHU`

! � is clearly an injective group homomorphism, asHU`
is a group

of homeomorphisms of a subtree. The map p�
`

is surjective by the definition of a
self-replicating group and (25). It follows that the action of � is renormalizable
with maps � D p`W @T ! @.v`T / and ‚ D .p�

`
/�1W� ! HU`

. �
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An example of a group whose action is renormalizable and not quasi-analytic
is the Grigorchuk group, which is known to be self-replicating [32]. We refer
to [32] for other examples of self-replicating groups, acting on trees, and to [8] for
the overview of the relation between the notions of self-similar groups and other
notions of renormalizability, for instance that of tilings.

Grigorchuk [32, Proposition 11.6] showed that a countable self-replicating
group � which acts freely on the boundary @T of a tree T is scale-invariant, see the
Introduction for the definitions. Nekrashevych and Pete [49] provided examples of
finitely generated scale-invariant groups that are not strongly scale-invariant. Our
results can be used to strengthen Grigorchuk’s result in [32, Proposition 11.6]
for free actions of finitely generated self-replicating groups to show that they are
strongly scale-invariant.

Proposition 7.7. Let � be a finitely generated self-replicating group, and suppose
the action of � on the boundary @T of a regular tree T is free. Then � is strongly
scale-invariant.

Proof. By the argument above the action of a self-replicating group is renormaliz-
able, and if it is free, then it is quasi-analytic. Then by Proposition 7.4� is strongly
scale-invariant, that is, there is a renormalization 'W� ! �, and the group chain
¹'`.�/ j ` � 0º has trivial intersection. �

It is natural to ask if the converse of Proposition 7.6 holds, that is, if an ef-
fective renormalizable action is always that of a self-replicating group of homeo-
morphisms. In Definition 7.1 of a renormalizable action the map ‚W� ! HU is
allowed to be any group isomorphism, introducing a possibility of a ‘twist’. We
leave the question whether the converse holds as an open problem.

Problem 7.8. Let .X; �; ˆ/ be an effective renormalizable Cantor action, and
suppose .X; �; ˆ/ is conjugate to an action of � on .@T; �/, where @T is the
boundary of a regular tree T . Prove that � is a self-replicating group, or find
a counterexample to this statement.

8. Continuous orbit equivalence

We next give the proofs of Theorems 1.7 and 1.8, which consider the properties
of renormalizable actions which are preserved by continuous orbit equivalence.

8.1. Proof of Theorem 1.7. Let .X; �; ˆ/ and .X0; � 0; ˆ0/ be minimal equicon-
tinuous Cantor actions which are continuously orbit equivalent, and assume that
.X; �; ˆ/ is renormalizable and locally quasi-analytic. We claim that .X0; � 0; ˆ0/
is virtually renormalizable.
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First note that by Proposition 7.3, the action .X; �; ˆ/ is quasi-analytic, and
by Proposition 7.4, there exists a proper self-embedding 'W� ! � such that the
action .X; �; ˆ/ is isomorphic to the action .X' ; �; ˆ'/. Thus, the Cantor actions
.X' ; �; ˆ'/ and .X0; � 0; ˆ0/ are continuously orbit equivalent, where .X' ; �; ˆ'/

is quasi-analytic by Theorem 1.2, and stable by Corollary 4.7. Then Theorem 6.9
of [39] implies that .X0; � 0; ˆ0/ is locally quasi-analytic.

The hypotheses of Theorem 1.5 in [38] are then satisfied, so that .X' ; �; ˆ'/

is return equivalent to .X0; � 0; ˆ0/. Thus, there exists adapted sets V � X' for the
action .X' ; �; ˆ'/ and V 0 � X0 for the action .X0; � 0; ˆ0/, so that the restricted
actions .V;HV ; ˆV / and .V 0; H 0V 0 ; ˆ

0
V 0/ are isomorphic, whereHV D ˆV .�V / �

Homeo.V / and H 0V 0 D ˆ0V 0.�
0
V 0/ � Homeo.V 0/.

Let x' 2 X' denote the fixed-point for the contraction �' WX' ! X' . The
action .X' ; �; ˆ'/ is minimal, so by conjugating by an element of �, we can
assume that x' 2 V .

Let hWV ! V 0 be a homeomorphism and‚WHV ! H 0V 0 a group isomorphism
which realizes the isomorphism between .V;HV ; ˆV / and .V 0; H 0V 0 ; ˆ

0
V 0/ as in

Definition 2.6.
For the action .X' ; �; ˆ'/, we have an adapted neighborhood basis ¹U` D

�`.X'/ j ` � 0º and a group chain G' D ¹�` D '
`.�/ j ` � 0º as before.

Choose `0 > 0 sufficiently large so that U`0
� V and h.U`0

/ � V 0. Then set
W D U`0

. Note that �'.U`/ D U`C1 for all ` � 0, so W1 D �'.W / � W . Set
W 0 D h.W / � V 0 andW 01 D h.W1/ � W

0. Then the restriction of ' to �W D �`0

yields a proper self-embedding 'W W�W ! �W .
Since the action .X' ; �; ˆ'/ is quasi-analytic, the map ˆW W�W ! HW is an

isomorphism. Thus, 'W induces a proper self-embedding O'W WHW ! HW . Then
set H` D O'

`
W .HV / for all ` � 0. It then follows from the constructions that the

Cantor action .W;HW ; ˆW / is isomorphic with the Cantor action associated to
O'W WHW ! HW .

Finally, the isomorphism between .V;HV ; ˆV / and .V 0; H 0V 0 ; ˆ
0
V 0/ restricts to

an isomorphism between .W;HW ; ˆW / and .W 0; H 0W 0 ; ˆ
0
W 0/ which then defines

a self-embedding of H 0W 0 . Thus, the Cantor action .X0; � 0; ˆ0/ is virtually renor-
malizable. This completes the proof of Theorem 1.7.

8.2. Proof of Theorem 1.8. Let .X' ; �; ˆ'/ and .X 0'0 ; �
0; ˆ0'0/ be Cantor actions

associated to renormalizations 'W� ! � and '0W� 0 ! � 0, respectively. Assume
that .X' ; �; ˆ'/ and .X 0'0 ; �

0; ˆ0'0/ are continuously orbit equivalent. We must
show that the discriminant groups D' and D0'0 for these actions are isomorphic.

By Corollary 4.7, the actions .X' ; �; ˆ'/ and .X 0'0 ; �
0; ˆ0'0/ are quasi-analytic

and stable. Then Theorem 1.5 in [38] implies that the actions .X; �; ˆ/ and
.X 0'0 ; �

0; ˆ0'0/ are return equivalent.
Thus, there exist adapted sets V � X for the action .X; �; ˆ/ and V 0 �

X0 for the action .X0; � 0; ˆ0/ so that the restricted actions .V;HV ; ˆV / and
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.V 0; H 0V 0 ; ˆ
0
V 0/ are isomorphic, where recall that HV D ˆV .�V / � Homeo.V /

and H 0V 0 D ˆ0V 0.�
0
V 0/ � Homeo.V 0/. As the actions are quasi-analytic, the maps

ˆV and ˆ0V 0 are monomorphisms, hence are isomorphisms. Thus, the actions
.V; �V ; ˆV / and .V 0; � 0V 0 ; ˆ

0
V 0/ are isomorphic, induced by a homeomorphism

hWV ! V 0.
Let DV denote the discriminant group for the restricted action .V; �V ; ˆV /.

Then by the arguments in [37, Section 4], there is a surjective map �X;V WD' !

DV which is an isomorphism when the profinite action ŷ ' WG � X' ! X' is
quasi-analytic. Likewise, for the discriminant D0V 0 of the action .V 0; � 0V 0 ; ˆ

0
V 0/,

there is an isomorphism �X0;V 0 WD'0 ! D0V 0 .
The isomorphism class of the discriminant group is an invariant for isomor-

phism of Cantor actions, so we conclude D' Š DV Š D0V 0 Š D0'0 as claimed.
This completes the proof of Theorem 1.8.

9. Applications and Examples

In this section, we discuss some of the applications of the results of this paper,
then give a selection of examples to illustrate these results.

For a compact manifold M without boundary, an expansive diffeomorphism
�WM ! M gives rise to a renormalization 'W� ! � of the fundamental group
� D �1.M; x/. In this case, Shub showed in [55] that the universal covering
of M has polynomial growth type, and hence by Gromov [34] the group �

has a finite-index nilpotent subgroup. There are a variety of constructions of
expansive diffeomorphisms on nilmanifolds, and the invariants associated to the
renormalization ' of � are then invariants of the expansive map �.

The construction of generalized Hirsch foliations in [10, 36] is based on choos-
ing a renormalization 'W� ! � of the fundamental group of a compact manifold
M . Thus, invariants of the renormalization yield invariants for this genre of foli-
ated manifolds.

The classification of M -like laminations, where M is a fixed compact mani-
fold, is reduced to the classification of renormalizations in the work [13].

These applications are all based on the constructions of renormalizations
for groups with the non-co-Hopfian property. Many finitely generated nilpotent
groups are renormalizable, as shown for example in [9, 14, 18, 17, 16, 42]. There
is also a variety of examples of renormalizable groups which are not nilpotent, as
described for example in [19, 25, 30, 31, 29, 49, 50, 57]. While these works show
the existence of a proper self-embedding for a particular class of groups, they do
not calculate the groups D' and yN' which are associated to an embedding ' by
Theorem 5.3. In the following, we make these calculations for a selected set of
examples of renormalizable groups.
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In Section 9.1 we give a basic example of a renormalizable Cantor action,
where the group � is not finitely generated, and � is not virtually nilpotent.

In Section 9.2 we give a basic example of the cross-product construction of
renormalizable groups, for which the discriminant is a non-trivial finite group.

In Section 9.3 we calculate the discriminant D' and the induced map O'WD' !
D' for an “untwisted” embedding 'WH! H of the Heisenberg group H.

In Section 9.4 we give an example of a renormalizable group that arises in the
study of arboreal representations of absolute Galois groups of number fields.

9.1. Infinitely generated actions. The assumption that � is finitely generated is
essential for the conclusion of Theorem 1.1, as shown by the following example.
Let F be a finite nonabelian simple group and set � WD

L1
iD0 F . Then � is a

countable group, but not finitely generated.
Observe that � admits a renormalization, given by the shift map,

'.f0; f1; : : :/ D .e; f0; f1; : : :/;

for e 2 F the identity element. The associated Cantor space is the infinite product
X' D

Q1
0 F . The action ˆ' of � on X' is free, so the discriminant D' is trivial

in this case. However, � is not virtually nilpotent.

9.2. Multihedral groups. This is an elementary example of a group � with self-
embedding ' and non-trivial finite discriminant group D' � �.

Let ƒ D Z
k be the free abelian group on k generators. Let H � Perm.k/

be a non-trivial subgroup of the finite symmetric group Perm.k/ on k symbols,
and assume that H is a simple group. Let Perm.k/ � GL.k;Z/ be the standard
embedding permuting the coordinates.

Let � D Z
k

ÌH be the semi-direct product of these groups. Fix m > 1, then
define 'W� ! � to be multiplication bym on the Zk factor. That is, for .Ev; g/ 2 �
set '.Ev; g/ D .m � Ev; g/. Then,

�` D ¹.m
` � Ev; g/ j Ev 2 Z

k ; g 2 H º D m`
Z

k
ÌH; (26)

K.G'/ D ¹.0; 0; g/ j g 2 H º Š H; (27)

where G' D ¹�` j ` � 0º. Then we have X' Š yZ
k
m, the product of k-copies of

the inverse limit space yZm D lim
 �
¹Z=mkC1

Z! Z=mk
Z; k � 0º. The subgroup

H acts on X' by permutations of the coordinates, so the adjoint action on X' of
a non-identity element g 2 H is a non-trivial permutation of the coordinate axes,
hence is non-trivial. Thus, the normal core C.G'/ � K.G'/ is trivial, and we
have K.G'/ � D' . Thus, a calculation shows that the normal core C` � �` is the
subgroup of (26) where g D e 2 H is the identity, so �`=C` Š H for all ` > 0.
Thus, D' Š H . Also, the subgroup yN' is the product of k copies of yZm, or the
m-adic k-torus.
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Observe that the map ' restricts to the identity on the subgroup H , while '
acts as multiplication by m on the normal subgroup Z

k . Thus, O'WD' ! D' in
Theorem 5.3, item 3, is the identity map, and O'W yN' ! yN' in Theorem 5.3, item
2, is induced by coordinate-wise multiplication by m on Z

k.

9.3. Nilpotent endomorphisms. The 3-dimensional Heisenberg group H is the
simplest non-abelian nilpotent group, and we give a self-embedding for which D'

is an infinite profinite group.
A general construction for self-embeddings of 2-step nilpotent groups is given

by Lee and Lee in [42], of which this example is a special case. More generally,
group chains in H were studied in detail by Lightwood, Şahin and Ugarcovici
in [44], where they give a complete description for the subgroups of H and a
characterization of which subgroups are normal. This work also gives a discussion
of twisted and untwisted subgroups of the Heisenberg group, which can be used
to construct further examples of renormalizations.

Group chains in H whose discriminant invariant is an infinite group were first
constructed by Dyer in her thesis [20], and also described in [21, Example 8.1].
In the following, we construct such a group chain realized via a self-embedding
of H.

Let H be represented as .Z3; �/ with the group operation �. We have

.x; y; z/�.u; v; w/D .xCu; yCv; zCwCxv/; .x; y; z/�1 D .�x;�y;�zCxy/;
(28)

for x; u; y; v; z; w 2 Z. This is equivalent to the upper triangular representation
in GL.Z3/. In particular, we have

.x; y; z/ � .u; v; w/ � .x; y; z/�1 D .u; v; wC xv � yu/: (29)

For integers p; q > 0 define 'WH ! H by a self-embedding by '.x; y; z/ D
.px; qy; pqz/. Then

H` D '
`.H/ D ¹.p`x; q`y; .pq/`z/ j x; y; z 2 Zº;

\

`>0

H` D ¹eº:

Now assume that p; q > 1 are distinct prime numbers. Formula (29) implies that
the normal core for H` is given by

C` D core.H`/ D ¹..pq/
`x; .pq/`y; .pq/`z/ j x; y; z 2 Zº:

Thus, the finite group

Q` D H=C` D ¹.x; y; z/ j x; y; z 2 Z=.pq/`Zº: (30)

The profinite group yH1 is the inverse limit of the quotient groupsQ` so we have

yH1 D ¹.x; y; z/ j x; y; z 2 yZpqº
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with multiplication on each finite quotient induced given by the formula (29). To
identify the discriminant subgroup D1 first note

H`=C` D ¹.p
`x; q`y; 0/ j x 2 Z=q`

Z; y 2 Z=p`
Zº � Q`; (31)

H`C1=C`C1 D ¹.p
`C1x; q`C1y; 0/ j x 2 Z=q`C1

Z; y 2 Z=p`C1
Zº: (32)

The bonding map q`C1WH`C1=C`C1 ! H`=C` from the definition (11) for
D1 is induced from the inclusion H`C1 � H` modulo quotient by

H`C1 \ C` D ¹.p
`C1q`x; p`q`C1y; .pq/`C1z/ j x; y; z 2 Zº:

Thus, in terms of the coordinates x; y in (32) the bonding map is given by

q`C1.x; y; 0/ D .x mod q`
Z; y modp`

Z; 0/:

It then follows by formula (11) that

D' Š D1 D lim
 �
¹q`C1WH`C1=C`C1 ! H`=C` j ` � 0º Š yZq � yZp: (33)

The induced map O'WD' ! D' is given by multiplication by p on yZq in the first
x-coordinate, and multiplication by q on yZp in the second y-coordinate, so that O'
acts as an isomorphism on D' , as asserted in Theorem 5.3.

Finally, consider the subgroup of Q` in (30) which is complementary to the
subgroup H`=C`,

N` D ¹.q
`x; p`y; z/ j x 2 Z=p`

Z; y 2 Z=q`
Z; z 2 Z=.pq/`Zº � Q`: (34)

The map ' induces a map on N` given by multiplication by p in the first x-
coordinate, and multiplication by q in the second y-coordinate, so the action is
nilpotent onN`. The inverse limit of the groupsN` is a subgroup of yH1 identified
with

yN' Š yH1=D1 Š ¹.x; y; z/ j x 2 yZp; y 2 yZq ; z 2 yZpqº;

and is a pro-nilpotent group as it has the finite nilpotent groups N` as quotients.
Moreover, the induced map O'W yN' ! yN' is a contraction, as asserted in Theo-
rem 5.3.

Note that if we take p D q in the above calculations, so 'WH ! H is the
“diagonal expansion” by p on the abelian factor Z2, then H2` � C`. So while
each quotient H2`=C2` is non-trivial, its image under the composition of bonding
maps in (11) vanishes in H`=C`, hence D' is the trivial group in the inverse limit.
Correspondingly, the inverse limit space X' has a well-defined group structure.

9.4. Semi-direct product of dyadic integers with its group of units. This
example can be viewed as a more sophisticated version of Example 9.2. It arises,
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in particular, as the profinite arithmetic iterated monodromy group associated to
a certain post-critically finite quadratic polynomial, as discussed in [46].

Let y� D yZ2 Ì yZ�2 , where yZ2 is the dyadic integers, and yZ�2 is the multiplicative
group of dyadic integers. Denote by a the topological generator of the abelian
group yZ2, that is, a is identified with .Œ1�/ 2 yZ2, where Œ1� is the equivalence class
of 1 in Z=2n

Z, n � 1.
Recall that yZ�2 is the automorphism group of yZ2. The multiplicative units in the

2-adic integers can be computed by computing the units in Z=2n
Z for any n, and

taking the inverse limit (see [53, Theorem 4.4.7]) so we have yZ�2 Š Z=2Z � yZ2.
Here, Z=2Z is generated by .Œ�1�/ 2 yZ�2 , where Œ�1� denotes the equivalence class
of �1 in Z=2n

Z for n � 1, and the the second factor is generated by .Œ5�/ 2 yZ�2 ,
where Œ5� is the equivalence class of 5 inZ=2n

Z for n � 1. Denote these generators
by b and c respectively. Then let

� Š ha; b; c j b2 D 1; bab�1 D a�1; cac�1 D a5; bcb�1c�1 D 1i; (35)

where b and c commute since they are generators of different factors in a product
space.

Define a self-embedding 'W� ! � by setting '.a/ D a2, '.b/ D b and
'.c/ D c. That is, we have

�1 D '.�/ Š ha
2; b; c j b2 D 1; ba2b�1 D a�2;

ca2c�1 D .a2/5; bcb�1c�1 D 1i;

and so we obtain a group chain �` D ha
2`

; b; ci; ` � 1. The discriminant group
of the action defined by this group chain was computed in [46, Section 7]. In
particular, computing the normal cores of the subgroups �` we obtain C` D

ha2`

; c2`�2i � �`, and it follows that

D' D lim
 �
¹�`C1=C`C1 �! �`=C`º Š yZ

�
2 :

10. Problems

The study of the properties of the dynamical systems of the form .X' ; �; ˆ'/

suggests the following approach to the classification problem for renormalizable
groups and their proper self-embeddings.

Problem 10.1. Classify the structure of renormalizable groups � which satisfy:

(1) D' is the trivial group;

(2) D' is a finite group;

(3) D' is an infinite profinite group.
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Case (1) is discussed further in Section 10.1 below. There are numerous and
varied constructions of examples of case (2), where D' is a finite group. See
Section 9.2 for some typical examples.

The most interesting problems arise for case (3), where D' is an infinite
profinite group. Corollary 4.7 implies that all of the direct limit group invariants
for Cantor actions defined in [39] are bounded for these examples. Thus, the
problem is to refine the invariants constructed from the adjoint action of D' on the
pro-nilpotent normal subgroup yN' � y�' to distinguish these various examples.
Note that if the group chainG' has trivial intersection, then the intersectionD'\�
is trivial, so the invariants constructed using the adjoint action of D' are only
“seen” when considering the action of the profinite group y�' .

10.1. Renormalizable nilpotent groups. Suppose that � admits a renormaliza-
tion 'W� ! �, such that each of the subgroups �` D '

`.�/ is a normal subgroup
of �. Then the third author showed in the work [56] that the quotient �=C.G'/

must be free abelian. In particular, if the group chain G' D ¹�` j ` � 0º has
trivial intersection, then � is free abelian. Theorem 1.1 is a more general form of
this result, where the assumption that G' has finite discriminant implies that � is
virtually nilpotent.

The remarks at the end of Section 9.3 show thatD' is trivial whenp D q for the
construction in Section 9.3. In fact, these remarks apply in general to the diagonal
action on the nilpotent subgroup of upper triangular integer matrices, where ' is
given by multiplication by a constant factor p on the super-diagonal entries; that
is, those directly above the diagonal. This suggests that the non-triviality of the
discriminant invariant D' for an endomorphism of a nilpotent group is a measure
of the “asymmetry” of the embedding '. It is an interesting problem to make this
statement more precise for the general nilpotent group.

Problem 10.2. Let � be a finitely generated torsion free nilpotent group, and ' a
renormalization such that G' D ¹�` j ` � 0º has trivial intersection. Develop the
relationship between the properties of the discriminant group D' , the embedding
', and the nilpotent structure theory of �, as developed for example in [14, 16].

10.2. Algebraic invariants. The reduced group C �-algebra C �r .X' ; �; ˆ'/ ob-
tained from the group action .X' ; �; ˆ/ is a source of invariants for the group �
and the embedding '. In the case when � D Z

n is free abelian, the work [27]
shows that the ordered K-theory of this C �-algebra is a complete invariant of the
action. It is natural to ask whether similar results are possible in more generality:

Problem 10.3. Let � be a finitely generated nilpotent group, and ' a renormal-
ization of �. What information about the nilpotent structure constants of � and
the embedding ' is determined by the K-theory groups K�.C �r .X' ; �; ˆ'//?
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Note that by Theorem 1.8, the isomorphism class of the discriminant group
D' is an invariant of the continuous orbit equivalence class of the Cantor action
.X' ; �; ˆ'/, and the isomorphism class of C �r .X' ; �; ˆ'/ is also invariant. It
seems natural that these two invariants should be closely related.

Problem 10.4. Let � be a renormalizable group. How does the algebraic struc-
ture of C �r .X' ; �; ˆ'/ reflect the properties of the profinite group D'?

Theorem 5.3 shows that the profinite group y�' is a semi-direct product withD'

as a factor. One approach to Problem 10.4 would be to relate the decomposition
y�' Š yN' Ì D' in Theorem 5.3 to the algebraic structure of C �r .X' ; �; ˆ'/.

10.3. Realization. Given any pro-finite group D which is topologically count-
ably generated, it was shown in [37, 39], using the Lenstra method, that there ex-
ists a finitely generated group � and Cantor action .X; �; ˆ/ whose discriminant
is isomorphic to D.

Problem 10.5. What profinite groups can be realized as the discriminant of a
Cantor action associated to a renormalizable group �?

10.4. Renormalizable Cantor actions. Let .X; �; ˆ/ be a minimal equicontin-
uous Cantor action of wild type; that is, the action ŷ Wˆ.�/ ! Homeo.X/ is not
locally quasi-analytic. The action is said to be wild of finite type if, in addition,
for some x 2 X and every adapted set with x 2 U , the kernel of the restriction
ker¹ ŷU Wˆ.�/x ! Homeo.U /º is finite. Examples of wild actions constructed by
the first two authors in [37] are of finite type. However, the examples in [37] are
not renormalizable.

Problem 10.6. Do there exist renormalizable Cantor actions which are wild of
finite type?

Problem 10.7. Suppose that .X; �; ˆ/ is a renormalizable Cantor action which
is wild. What can be said about the algebraic properties of �? For example,
must � have exponential growth type? What can be said about the profinite group
ˆ.�/ � Homeo.X/ for such actions?

10.5. Representations of Galois groups. The works of the second author [45,
46] define the discriminant invariants associated to arboreal representations of
absolute Galois groups for number fields and function fields. Such a representation
is a profinite group, obtained as the inverse limit of finite Galois groups, which
act on finite extensions of the ground field, obtained by adjoining the roots of the
n-th iteration of the same polynomial, for n � 1.

The example given in Section 9.4 is an example of an arboreal representation
of an absolute Galois group, which is isomorphic to a Cantor action associated to
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a renormalization. For many polynomials the associated action is known to be not
locally quasi-analytic [46] and, therefore, by Theorem 1.2 it cannot be associated
to a renormalization of a group. This suggests the following problem:

Problem 10.8. For which arboreal representations of absolute Galois groups
does there exists a dense finitely generated group� and a renormalization 'W�!�,
such that the arboreal representation of � is return equivalent to a Cantor action
associated to .X' ; �; ˆ'/?

Although, as discussed above, many arboreal representations are not associ-
ated to a finite-index embedding 'W� ! �, since they are associated to a structure
built using iterations of the same polynomial, it is natural to look for a formalism
similar to the non-co-Hopfian setting for the study of these groups. This motivated
the definition of renormalizable actions in Section 7, and suggests the following
interesting problem:

Problem 10.9. Let .X; �; ˆ/ be an equicontinuous minimal Cantor action, and
suppose that .X; �; ˆ/ is renormalizable as in Definition 7.1. Develop a structure
theory for the group obtained as the closure of the action .X; �; ˆ/ in Homeo.X/,
analogous to Theorem 5.3.
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