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Abstract. We give a description of elementary subgroups (in the sense of first-order

logic) of finitely generated virtually free groups. In particular, we recover the fact that

elementary subgroups of finitely generated free groups are free factors. Moreover, one

gives an algorithm that takes as input a finite presentation of a virtually free group G and

a finite subset X of G, and decides if the subgroup of G generated by X is 89-elementary.

We also prove that every elementary embedding of an equationally noetherian group into

itself is an automorphism.
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1. Introduction

A map 'WH ! G between two groups H and G is elementary if the following

condition holds: for every first-order formula �.x1; : : : ; xk/ with k free variables

in the language of groups, and for every k-tuple .h1; : : : ; hk/ 2 H k , the statement

�.h1; : : : ; hk/ is true in H if and only if the statement �.'.h1/; : : : ; '.hk// is true

inG. In particular, ' is a morphism and is injective. If one only considers a certain

fragment F of the set of first-order formulas (for instance the set of 89-formulas

or 9C-formulas, see paragraph 2.1 for definitions), one says that the map ' is

F-elementary. When H is a subgroup of G and ' is simply the inclusion of H

into G, one says that H is an elementary subgroup of G if ' is elementary, and a

F-elementary subgroup of G if ' is F-elementary.

It was proved by Sela in [21] and by Kharlampovich and Myasnikov in [11]

that any non-abelian free factor of a non-abelian finitely generated free group is

elementary. Later, Perin proved that the converse holds: if H is an elementary

subgroup ofFn, thenH is non-abelian andFn splits as a free productFn D H �H 0

(see [17]). Recently, Perin gave another proof of this result (see [19]). More

generally, Sela [22] and Perin [17] described elementary subgroups of torsion-

free hyperbolic groups.

https://creativecommons.org/licenses/by/4.0/
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Our main theorem provides a characterization of 89-elementary subgroups of

virtually free groups. Recall that a group is said to be virtually free if it has a free

subgroup of finite index. In what follows, all virtually free groups are assumed

to be finitely generated and not virtually cyclic (here, and in the remainder of

this paper, virtually cyclic means finite or virtually Z). In [1], we classified

virtually free groups up to 89-elementary equivalence, i.e. we gave necessary and

sufficient conditions for two virtually free groups to have the same 89-theory. In

this context, we introduced Definition 1.1 below. Recall that virtually free groups

are hyperbolic, and that a non virtually cyclic subgroup N of a hyperbolic group

G normalizes a unique maximal finite subgroup of G, denoted by EG.N / (see

[15, Proposition 1] and Section 2.3 for further details).

Definition 1.1 (legal large extension). Let G be a hyperbolic group, and let H

be a subgroup of G. Suppose that H is not virtually cyclic. One says that G is a

legal large extension of H if there exists a finite subgroup C of H such that the

following three conditions hold.

(1) The group G admits the following presentation:

G D hH; t j Œt; c� D 1; 8c 2 C i:

In particular, H is a hyperbolic group (see Proposition 3.3 and Remark 3.4).

(2) The normalizer NH .C / of C is not virtually cyclic.

(3) The finite group EH .NH .C // is equal to C .

More generally, one says thatG is a multiple legal large extension ofH if there

exists a finite sequence of subgroups H D G0 � G1 � � � � � Gn D G such that

GiC1 is a legal large extension of Gi for every integer 0 � i � n � 1, with n � 1.

Equivalently (see Section 2.3 for details), G is a multiple legal large extension of

H if it admits a presentation of the form

G D hH; t1; : : : ; tn j Œti ; c� D 1; 8c 2 Ci ; 8i 2 ¹1; : : : ; nºi;

where C1; : : : ; Cn are finite subgroups of H such that NH .Ci / is not virtually

cyclic and EH .NH .Ci // is equal to Ci , for every integer 1 � i � n.

In terms of graphs of groups, G is a multiple legal large extension of H if it

splits as a finite graph of groups over finite groups, whose underlying graph is

a rose and whose central vertex group is H , with additional assumptions on the

edge groups.

A prototypical example of a multiple legal large extension is given by the

splitting of the free group G D Fk of rank k � 3 as Fk D hF2; t1; : : : ; tk�2 j ¿i.

In this example,H is the free group F2.
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Here is a more enlightening example. Take H D SL2.Z/. Recall that this

group splits as an amalgamated free product H D A �C B where A D hai '

Z=4Z, B D hbi ' Z=6Z and C D hci ' Z=2Z with c D a2 D b3. By using

the action of H on the Bass-Serre tree of this splitting, one can prove that H

is virtually free (more precisely, one can prove that the derived subgroup of H ,

which is the kernel of the abelianization map H � Z=12Z, is a free subgroup of

index 12) and one can classify the finite subgroups ofH , namely the trivial group

¹1º, the center Z.H/ D C (which is the maximal normal finite subgroup of H ),

and the conjugates ofA,B and hb2i ' Z=3Z. One can check thatNH .A/ D A and

NH .B/ D NH .hb
2i/ D B . Hence, the only subgroups of H whose normalizer is

not virtually cyclic are the trivial group andC . One hasNH .¹1º/ D NH .C / D H ,

and thus EH .NH .¹1º// D EH .NH .C // D C . Therefore, the only possible legal

large extension of H is hH; t j Œt; c� D 1i, and the multiple legal large extensions

of H are of the form hH; t1; : : : ; tn j Œti ; c� D 1;8i 2 ¹1; : : : ; nºi for n � 1.

In [1, Theorem 1.10], we proved the following result.

Theorem 1.2. Let G be a hyperbolic group, and let H be a subgroup of G.
Suppose that H is not virtually cyclic. If G is a multiple legal large extension
of H , then H is a 89-elementary subgroup of G.

Remark 1.3. We conjectured in [1] that H is an elementary subgroup of G. For

now, this conjecture is only known to be true when G is torsion-free, in which

case G D H � Fn for some n � 1. See [22].

Remark 1.4. In fact, the following stronger result holds: for every 989-formula

�.x1; : : : ; xk/ with k free variables, and for every k-tuple .h1; : : : ; hk/ 2 H k , if

the statement �.h1; : : : ; hk/ is true in H , then �.'.h1/; : : : ; '.hk// is true in G.

We shall prove that the converse of Theorem 1.2 holds, provided that G is a

virtually free group.

Theorem 1.5. Let G be a virtually free group, and let H be a 89-elementary
proper subgroup of G (in particular, H is not virtually cyclic). Then G is a
multiple legal large extension of H .

Remark 1.6. In particular, Theorem 1.5 recovers the result proved by Perin

in [17]: an elementary subgroup of a free group is a free factor.

Putting together Theorem 1.5 and Theorem 1.2, we get the following result.

Theorem 1.7. LetG be a virtually free group, and letH be a subgroup ofG. The
following two assertions are equivalent:

(1) H is a 89-elementary proper subgroup of G;

(2) H is not virtually cyclic and G is a multiple legal large extension of H .
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In addition, we give an algorithm that decides whether or not a finitely gener-

ated subgroup of a virtually free group is a 89-elementary subgroup.

Theorem 1.8. There is an algorithm that, given a finite presentation of a virtually
free group G and a finite subset X � G, outputs ‘Yes’ if the subgroup of G
generated by X is 89-elementary, and ‘No’ otherwise.

Remark 1.9. Note that any 89-elementary subgroup of a virtually free group is

finitely generated, as a consequence of Theorem 1.5.

Recall that every virtually free group G splits as a finite graph of finite groups

(which is not unique), called a Stallings splitting of G (we refer the reader to [12]

and Section 2.5 for details). The following result is an immediate consequence of

Theorem 1.5.

Corollary 1.10. Let G be a virtually free group. If the underlying graph of some
(or, equivalently, any) Stallings splitting of G is a tree, then G has no proper
elementary subgroup.

For instance, the virtually free group SL2.Z/, which is isomorphic to the

product Z=4Z �Z=2Z Z=6Z, has no proper elementary subgroup.

Last, let us mention another interesting consequence of Theorem 1.5: if an

endomorphism ' of a virtually free group G is 89-elementary, then ' is an

automorphism. Indeed, note that '.G/ is a 89-elementary subgroup of G, and

let us prove that '.G/ D G. Assume towards a contradiction that '.G/ is a

proper subgroup of G. It follows from Theorem 1.5 that G is a multiple legal

large extension of '.G/. Hence, there exists an integer n � 1 such that the

abelianizations ofG and '.G/ satisfyGab D '.G/ab�Z
n. But '.G/ is isomorphic

to G since ' is injective, hence Gab ' Gab � Z
n, which contradicts the fact that

n is non-zero and G is finitely generated. Thus, one has '.G/ D G and ' is an

automorphism.

In fact, the same result holds for torsion-free hyperbolic groups: if 'WG ! G is

89-elementary, then G is a hyperbolic tower in the sense of Sela over '.G/ ' G

(see [17]). By definition of a hyperbolic tower, '.G/ is a quotient of G. Since

torsion-free hyperbolic groups are Hopfian by [20], '.G/ D G and ' is an

automorphism.

We shall prove the following result, which generalizes the previous observa-

tion. Recall that a group is said to be equationally noetherian if every infinite

system of equations † in finitely many variables is equivalent to a finite subsys-

tem of †.

Theorem 1.11. Let G be a finitely generated group. Suppose that G is equation-
ally noetherian, or finitely presented and Hopfian. Then, every 9C-endomorphism
of G is an automorphism.
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Remark 1.12. Note that 89-elementary morphisms are a fortiori 9C-elementary.

Note also that, contrary to 89-elementary morphisms, 9C-elementary morphisms

are not injective in general.

As a consequence, by Proposition 2 in [14], a finitely generated group G

satisfying the hypotheses of Theorem 1.11 above is (strongly) defined by types,

and even by 9C-types, meaning that G is characterized among finitely generated

groups, up to isomorphism, by the set tp9C.G/ of all 9C-types of tuples of

elements of G. In particular, Theorem 1.11 answers positively Problem 4 posed

in [14] and recovers several results proved in [14].

2. Preliminaries

2.1. First-order logic. For detailed background on first-order logic, we refer

the reader to [13]. The language of groups uses the following symbols: the

quantifiers 8 and 9, the logical connectors ^, _, ), the equality and inequality

relations D and ¤, the symbols 1 (standing for the identity element), �1 (standing

for the inverse), � (standing for the group multiplication), parentheses . and /,

and variables x; y; g; z : : :, which are to be interpreted as elements of a group.

The terms are words in the variables, their inverses, and the identity element

(for instance, x � y � x�1 � y�1 is a term). For convenience, we omit group

multiplication. A first-order formula is made from terms iteratively: one can first

make atomic formulas by comparing two terms by means of the symbols D and

¤ (for instance, xyx�1y�1 D 1 is an atomic formula), then one can use logical

connectors and quantifiers to make new formulas from old formulas, for instance

9x..x ¤ 1/ ^ .8y.xyx�1y�1 D 1///. We sometimes drop parentheses when

there is no ambiguity. A variable is free if it is not bound by any quantifier 8 or 9.

A sentence is a formula without free variables. Given a formula '.x1; : : : ; xn/, a

group G and a tuple .g1; : : : ; gn/ 2 Gn, one says that G satisfies '.g1; : : : ; gn/

if this statement is true in the usual sense when the variables are interpreted as

elements of G.

If '.x1; : : : ; xn/ and  .x1; : : : ; xn/ are first-order formulas in the language of

groups with free variables x1; : : : ; xn, we say that '.x1; : : : ; xn/ and .x1; : : : ; xn/

are logically equivalent if for every groupG and every n-tuple .g1; : : : ; gn/ 2 Gn,

the statement '.g1; : : : ; gn/ is true in G if and only if the statement  .g1; : : : ; gn/

is true in G. Every formula in the language of groups is logically equivalent to

a formula in prenex normal form (PNF), that is a formula written as a string of

quantifiers and bound variables, followed by a quantifier-free part; moreover, one

can assume without loss of generality that the quantifier-free part is a disjunction

of conjunctions of equations and inequations. Hence, every formula is logically

equivalent to a formula of the following form:

Q1x1 : : :Qnxn

p
_

iD1

qi
^

j D1

wi;j .x1; : : : ; xn; xnC1 : : : ; xm/"i1;
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where eachQi is a quantifier 8 or 9, each "i denotes D or ¤, andwi;j is a reduced

word in the variables x1; : : : ; xm and their inverses. The variables xnC1; : : : ; xm

are free.

An existential formula (or 9-formula) is a formula in PNF in which the symbol

8 does not appear. An existential positive formula (or 9C-formula) is a formula in

PNF in which the symbols 8 and ¤ do not appear. A 89-formula is a formula of

the form '.x/W 8y9z �.x;y; z/ where �.x;y; z/ is a disjunction of conjunctions

of equations and inequations in the variables of the tuples x;y; z. We define 989-

formulas in the same way, and so on.

The existential theory of a groupG, denoted by Th9.G/, is the set of first-order

sentences that are logically equivalent to an existential formula satisfied byG. We

define similarly the existential positive theory ThC
9 .G/ of G, and the 89-theory

Th89.G/ of G.

2.2. Hyperbolic groups. In this section, we collect some basic facts about

hyperbolic groups and their boundaries that will be useful in the proof of our

main result.

Roughly speaking, a hyperbolic space is a geodesic metric space .X; d/where

all geodesic triangles are thin (see for instance [10, Definition 2.1]). We say

that two geodesic rays in X starting at a base-point are equivalent if they remain

close to each other, and we define the boundary @1X as the set of equivalence

classes of geodesic rays starting at a base-point (see [10, Definition 2.7] for a

precise definition). The boundary is equipped with the compact-open topology:

two rays are "close at infinity" if they stay Hausdorff-close for a long time (see

[10, Definition 2.12]).

Recall that a finitely generated groupG is hyperbolic if for some (equivalently,

any) finite generating set S of G, the Cayley graph �.G; S/ equipped with the

word metric dS is hyperbolic. Finitely generated free groups are typical examples

of hyperbolic groups. Since hyperbolicity is preserved under quasi-isometry, and

since finitely generated groups are quasi-isometric to their finite-index subgroups,

finitely generated virtually free groups are hyperbolic.

We define the boundary ofG by @1G D @1�.G; S/. Up to homeomorphism,

the boundary @1G does not depend on the choice of the finite generating set S ,

since a change of finite generating sets induces a quasi-isometry between the cor-

responding Cayley graphs and since two quasi-isometric proper hyperbolic spaces

have homeomorphic boundaries (see [10, Propostion 2.20 and Definition 2.21]).

The group G naturally acts by isometries on its Cayley graph �.G; S/, and this

action extends to an action of G on its boundary @1G by homeomorphisms (see

[10, Propostion 2.20]). This action turns out to be an extremely useful tool for

studying the group G. If an element g 2 G has infinite order, it fixes exactly two

distinct points of @1G denoted by gC and g� (see [10, Propostion 4.2]). The sta-

bilizer of the pair ¹gC; g�º is the unique maximal virtually cyclic subgroup of G

containing g. We denote this subgroup byMG.g/. If h and g are two elements of
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infinite order, either MG.h/ D MG.g/ or MG.h/ \ MG.g/ is finite; in the latter

case, the subgroup hh; gi is not virtually cyclic (i.e. contains a free subgroup of

rank 2).

Let KG denote the maximum order of an element of G of finite order. An

element g 2 G has infinite order if and only if gKG Š is non-trivial. The following

lemma will be useful.

Lemma 2.1. Let g be an element of G of infinite order.

(1) An element h 2 G belongs to MG.g/ if and only if the commutator

ŒgKG Š; hgKGŠh�1�

is trivial.

(2) Let h 2 G be an element of infinite order. The following assertions are
equivalent:

(a) h belongs to MG.g/,

(b) MG.h/ D MG.g/,

(c) the commutator ŒgKG Š; hKGŠ� is trivial.

Hence, the subgroup hg; hi is virtually cyclic if and only if ŒgKG Š; hKGŠ� D 1.

Proof. We only prove the first point, the proof of the second point is similar.

If h belongs to MG.g/, then hgh�1 belongs to MG.g/. Therefore, gKG Š and

.hgh�1/KG Š commute, since MG.g/ has a cyclic subgroup of index � KG. Con-

versely, if gKG Š and hgKG Šh�1 commute, then hgKG Šh�1 fixes the pair of points

¹gC; g�º. Thus, h fixes ¹gC; g�º as well. It follows that h belongs toMG.g/. �

If N is a subgroup of G that is not virtually cyclic, then there exists a unique

maximal finite subgroup EG.N / of G normalized by N . The following fact was

proved by Ol’shanskiı̆.

Proposition 2.2 ([15] Proposition 1). The finite subgroup EG.N / admits the
following description:

EG.N / D
\

g2N 0

MG.g/

where N 0 denotes the set of elements of N of infinite order.

We will need the following easy lemma.

Lemma 2.3. Let H be a hyperbolic group and let C be a finite subgroup of H .
Define G D hH; t j Œt; c� D 1; 8c 2 C i. Let N be a subgroup of H and suppose
that N is not virtually cyclic. Then EH .N / D EG.N /.
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Remark 2.4. In the next section, we will use this lemma with N D NH .C /.

Proof. First, we prove that for every element h 2 N 0, the subgroups MH .h/ and

MG.h/ coincide. Note that the inclusionMH .h/ � MG.h/ is obvious. Conversely,

let g be an element of MG.h/. Assume towards a contradiction that g does not

belong to H . Then it can be written in normal form: g D h0t
"1h1t

"2h2 � � � t "nhn

for some integer n � 1, with hi 2 H , "i 2 ¹˙1º and hi … C if "i D �"iC1. By

Lemma 2.1, one has ŒhKG Š; ghKG Šg�1� D 1. By replacing g with its normal form

in this equality, one gets:

.hKG Šh0/t
"1 � � � t "n.hnh

KGŠh�1
n /t�"n � � � t�"1.h�1

0 h�KGŠh0/t
"1 � � �

t "n.hnh
�KGŠh�1

n /t�"n � � �h�1
0 D 1:

It follows from Britton’s lemma for HNN extensions that this equality is possible

only if hnh
KG Šh�1

n belongs to C or h�1
0 h�KG Šh0 belongs to C . This is not possible

because h has infinite order (as an element of N 0) and C is finite by assumption.

This is a contradiction, and thus g belongs to H . Hence, MH .h/ coincides with

MG.h/. By Proposition 2.2, one has EH .N / D EG.N /. �

2.3. Multiple legal large extensions. In Definition 1.1, we first defined a multi-

ple legal large extension as a "tower" of legal large extensions, then we reformu-

lated this definition by means of a presentation by generators and relations, and we

claimed that these two points of view are equivalent. The purpose of this section

is to prove this claim.

Lemma 2.5. Let G be a hyperbolic group, and let H be a subgroup of G. The
following two assertions are equivalent.

(1) There exists a finite sequence of subgroupsH D G0 � G1 � � � � � Gn D G

such thatGiC1 is a legal large extension ofGi for every integer 0 � i � n�1,
with n � 1.

(2) The group G admits a presentation of the form

G D hH; t1; : : : ; tn j Œti ; c� D 1; 8c 2 Ci ; 8i 2 ¹1; : : : ; nºi;

where C1; : : : ; Cn are finite subgroups ofH such thatNH .Ci / is not virtually
cyclic and EH .NH .Ci // is equal to Ci , for every integer 1 � i � n.

Proof. We first prove the implication (2) ) (1). Define G0 D H , and for ev-

ery 1 � i � n define Gi as the subgroup of G generated by H and t1; : : : ; ti .

Note that GiC1 can be written as hGi ; tiC1 j ŒtiC1; c� D 1; 8c 2 CiC1i, for every

0 � i � n � 1. Observe that NGi
.CiC1/ is not virtually cyclic since it contains

NH .CiC1/, which is not virtually cyclic by assumption. We claim that the equality
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EGi
.NGi

.CiC1// D CiC1 holds. Note that the inclusion EGi
.NGi

.CiC1// �

CiC1 is obvious since CiC1 is normalized by its normalizer. Let us prove that

the converse inclusion holds. First, note that EGi
.NGi

.CiC1// is contained in

EGi
.NH .CiC1//, because NH .CiC1/ is contained in NGi

.CiC1/. By Lemma 2.3

(applied i times), one has EGi
.NH .CiC1// D EH .NH .CiC1//. By assumption,

EH .NH .CiC1// is equal to CiC1, and thus one has EGi
.NGi

.CiC1// � CiC1,

which concludes the proof of the implication (2) ) (1).
Now, let us prove that (2) follows from (1). We will only prove this implication

for n D 2, and the general case can be proved in exactly the same way.

First, note that every finite subgroup C2 ofG1 D hH; t1 j Œt1; c� D 1; 8c 2 C1i

is conjugate to a subgroup of H . Indeed, as a finite group, C2 fixes a point in the

Bass-Serre tree T of the splitting hH; t j Œt1; c� D 1; 8c 2 C1i of G1. Since all

vertices of T are translates of the unique vertex vH of T fixed byH , there exists an

element g 2 G1 such that C2 fixes gvH , i.e. such that g�1C2g is a subgroup ofH .

As a consequence, a legal large extension G2 D hG1; t2 j Œt2; c� D 1; 8c 2 C2i of

G1 can be written without loss of generality as G2 D hH; t1; t2 j Œti ; c� D 1; 8c 2

Ci ; 8i 2 ¹1; 2ºi; up to replacing C2 with g�1C2g and t2 with g�1t2g.

It remains to prove thatNH .C2/ is not virtually cyclic, and thatEH .NH .C2// D

C2. Note that NG1
.C2/ is not virtually cyclic, and that EG1

.NG1
.C2// D C2 since

G2 is a legal large extension of G1. We distinguish two cases.

First case: suppose that C2 is not conjugate to a subgroup of C1. We will prove

that NH .C2/ D NG1
.C2/ (and thus NH .C2/ is not virtually cyclic). The inclusion

NH .C2/ � NG1
.C2/ is obvious since NH .C2/ D H \ NG1

.C2/; let us prove that

the converse inclusion holds. Let g be an element of NG1
.C2/, and prove that g

fixes vH , i.e. that g belongs to H . Note that C2 is contained both in H and in

gHg�1. Assume towards a contradiction that gvH ¤ vH , then C2 is contained

in the stabilizer of the path in T between vH and gvH ; since all edge groups of

T are conjugates of C1, the group C2 is contained in a conjugate of C1. This is a

contradiction. Now, prove that EH .NH .C2// D C2. Since NH .C2/ D NG1
.C2/,

one has EH .NH .C2// D EH .NG1
.C2//. Moreover, EH .NG1

.C2// is obviously

contained in EG1
.NG1

.C2// D C2. Hence, one has EH .NH .C2// � C2. The

converse inclusion holds by definition of EH .NH .C2//.

Second case: suppose that C2 is conjugate to a subgroup of C1. One can

suppose without loss of generality that C2 is contained in C1. First, note that

NH .C2/ is not virtually cyclic; indeed, it contains the centralizerZH .C1/ of C1 in

H , which is not virtually cyclic as a finite-index subgroup of NH .C1/. It remains

to prove that EH .NH .C2// D C2. Let n � 1 be an integer such that, for every

h 2 NH .C1/, the element hn centralizes C1 (and thus centralizes C2). Note that

MH .h/ D MH .h
n/ for h of infinite order (see Lemma 2.1). By Proposition 2.2,

the following holds:

C1 D EH .NH .C1// D
\

h2NH .C1/0

MH .h
n/ �

\

h2NH .C2/0

MH .h/ D EH .NH .C2//:
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Hence, EH .NH .C2// is contained in C1. It follows that EH .NH .C2// is normal-

ized both by NH .C2/ (by definition) and by t1 (as a subgroup of C1). There-

fore, EH .NH .C2// is normalized by NG1
.C2/, which is generated by NH .C2/

and t1. As a consequence, EH .NH .C2// is contained in EG1
.NG1

.C2// D C2.

Conversely, C2 � EH .NH .C2// by definition, and thus EH .NH .C2// D C2. �

2.4. Properties relative to a subgroup. LetG be a finitely generated group, and

let H be a subgroup of G.

Definition 2.6. An action of the pair .G;H/ on a simplicial tree T is an action

of G on T such that H fixes a point of T . We always assume that the action is

minimal, which means that there is no proper subtree of T invariant under the

action of G. The quotient graph of groups T=G (or sometimes the tree T itself ),

which is finite since the action is minimal, is called a splitting of .G;H/, or a

splitting of G relative toH . The action is said to be trivial if G fixes a point of T .

Definition 2.7. We say that G is one-ended relative toH if G does not split as an

amalgamated product A �C B or as an HNN extension A�C such that C is finite

and H is contained in a conjugate of A or B . In other words, G is one-ended

relative to H if any action of the pair .G;H/ on a simplicial tree with finite edge

stabilizers is trivial.

Definition 2.8. The group G is said to be co-Hopfian relative to H if every

monomorphism 'WG ,! G that coincides with the identity on H is an automor-

phism of G.

The following result was first proved by Sela in [20] for torsion-free one-ended

hyperbolic groups, with H trivial.

Theorem 2.9 (see [2] Theorem 2.31). Let G be a hyperbolic group, let H be a
subgroup of G. Assume that G is one-ended relative to H . Then G is co-Hopfian
relative to H .

Remark 2.10. In [2], this result is stated and proved under the assumption that

H is finitely generated. However, Lemma 3.2 below shows that this hypothesis is

not necessary.

2.5. Relative Stallings splittings. A splitting of a group G is said to be reduced
if the following holds: if e D Œv; w� is an edge in the Bass-Serre tree of the splitting

such that Ge D Gv D Gw , then v and w are in the same G-orbit.

Let G be a finitely generated group. Under the hypothesis that there ex-

ists a constant K such that every finite subgroup of G has order at most K,
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Linnell proved in [12] that G splits as a finite graph of groups with finite edge

groups and all of whose vertex groups are finite or one-ended. Such a splitting

is called a Stallings splitting of G. It is not unique in general, but the conjugacy

classes of one-ended vertex groups do not depend on the splitting (in other words,

the G-orbits of one-ended vertex groups are the same in all Bass-Serre trees of

Stallings splittings ofG). In addition, the conjugacy classes of finite vertex groups

do not depend on a given reduced Stallings splittings of G (in other words, the

G-orbits of finite vertex groups are the same in all Bass-Serre trees of reduced

Stallings splittings of G). A one-ended subgroup of G that appears as a vertex

group of a Stallings splitting is called a one-ended factor of G.

Recall that there is a uniform bound on the order of a finite subgroup of

a hyperbolic group, and thus the aforementioned result of Linnell applies to

hyperbolic groups. Moreover, G is virtually free if and only if all vertex groups

in some (equivalently, any) Stallings splitting of G are finite. For instance, as

discussed in the introduction, the group SL2.Z/ splits as a graph of groups with

exactly two vertex groups of order 4 and 6 respectively, and one edge group of

order 2.

Given a subgroup H of G, Linnell’s result can be generalized as follows: the

pair .G;H/ splits as a finite graph of groups with finite edge groups such that each

vertex group is finite or one-ended relative to a conjugate ofH . Such a splitting is

called a Stallings splitting of G relative toH . It is not unique in general. However,

ifH is infinite, then there exists a unique vertex group containingH and this group

does not depend on the splitting. This vertex group is called the one-ended factor
of G relative toH . Moreover, theG-orbits of one-ended vertex groups that do not

contain a conjugate ofH are the same in all Bass-Serre trees of Stallings splittings

ofG relative toH , and theG-orbits of finite vertex groups are the same in all Bass-

Serre trees of reduced Stallings splittings of G relative to H . For further details,

we refer the reader to [9, Section 3.3].

Note that ifG is infinite and if the finite subgroups ofG are of order at mostK,

then every 9-elementary subgroup of G is infinite since it satisfies the sentence

9x .xKŠ ¤ 1/. As a consequence, in the context of Theorem 1.5, the one-ended

factor of G relative to H is well-defined.

2.6. The JSJ decomposition and the modular group. Let us denote by Z the

class of groups that are either finite or virtually cyclic with infinite center. Let G

be a hyperbolic group, and letH be a subgroup ofG. Suppose thatG is one-ended

relative to H . In [9], Guirardel and Levitt construct a splitting of G relative to H

called the canonical JSJ splitting of G over Z relative to H . In what follows, we

refer to this decomposition as the Z-JSJ splitting of G relative to H . This tree

T enjoys particularly nice properties and is a powerful tool for studying the pair

.G;H/. Before giving a description of T , let us recall briefly some basic facts

about hyperbolic 2-dimensional orbifolds.
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A compact connected 2-dimensional orbifold with boundary O is said to be

hyperbolic if it is equipped with a hyperbolic metric with totally geodesic bound-

ary. It is the quotient of a closed convex subsetC � H
2 by a proper discontinuous

group of isometries GO � Isom.H2/. We denote by pWC ! O the quotient map.

By definition, the orbifold fundamental group �1.O/ of O is GO. We may also

view O as the quotient of a compact orientable hyperbolic surface with geodesic

boundary by a finite group of isometries. A point of O is singular if its preim-

ages in C have non-trivial stabilizer. A mirror is the image by p of a component

of the fixed point set of an orientation-reversing element of GO in C . Singular

points not contained in mirrors are conical points; the stabilizer of the preimage

inH
2 of a conical point is a finite cyclic group consisting of orientation-preserving

maps (rotations). The orbifold O is said to be conical if it has no mirror. For in-

stance, ha; b; c; d; x; y j Œa; b�Œc; d �x7y D 1i is the orbifold fundamental group of

the orbifold whose underlying surface is orientable of genus 2 with one boundary

component, and with one conical point of order 7.

Definition 2.11. A groupG is called a finite-by-orbifold group if it is an extension

1 �! F �! G �! �1.O/ �! 1

where O is a compact connected hyperbolic conical 2-orbifold, possibly with

(totally geodesic) boundary, and F is an arbitrary finite group called the fiber.
We call an extended boundary subgroup of G the preimage in G of a boundary

subgroup of the orbifold fundamental group �1.O/ (for an indifferent choice of

regular base point). We define in the same way extended conical subgroups.

Definition 2.12. A vertex v of a graph of groups is said to be quadratically
hanging (denoted by QH) if its stabilizer Gv is a finite-by-orbifold group 1 !

F ! G ! �1.O/ ! 1 such that O has non-empty boundary, and such that any

incident edge group is finite or contained in an extended boundary subgroup of

G. We also say that Gv is QH.

Definition 2.13. Let G be a one-ended hyperbolic group, and let H be a finitely

generated subgroup of G. Let T be the Z-JSJ decomposition of G relative to H .

A vertex group Gv of T is said to be rigid if it is elliptic in every splitting of G

over Z relative to H .

The following proposition is crucial (see Section 6 of [9], Theorem 6.5 and the

paragraph below Remark 9.29). We keep the same notations as in the previous

definition.

Proposition 2.14. If Gv is not rigid, i.e. if it fails to be elliptic in some splitting of
G over Z relative to H , then Gv is quadratically hanging.
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Proposition 2.15 below summarizes the properties of the Z-JSJ splitting rela-

tive to H that are useful in the proof of Theorem 1.5.

Proposition 2.15. Let G be a hyperbolic group, and let H be a subgroup of G.
Suppose that G is one-ended relative to H . Let T be its Z-JSJ decomposition
relative to H .

� The tree T is bipartite: every edge joins a vertex carrying a maximal virtually
cyclic group to a vertex carrying a non virtually cyclic group.

� The action of G on T is acylindrical in the following strong sense: if an
element g 2 G of infinite order fixes a segment of length � 2 in T , then this
segment has length exactly 2 and its midpoint has virtually cyclic stabilizer.

� Let v be a vertex of T , and let e; e0 be two distinct edges incident to v. If Gv

is not virtually cyclic, then the group hGe; Ge0i is not virtually cyclic.

� If v is a QH vertex of T , every edge group Ge of an edge e incident to v
coincides with an extended boundary subgroup of Gv . Moreover, given any
extended boundary subgroup B of Gv, there exists a unique incident edge e
such that Ge D B .

� The subgroupH is contained in a rigid vertex group.

Remark 2.16. The rigid vertex group containingH may be QH. For instance, let

G D ha; b; c; d j Œa; b� D Œc; d �i be the fundamental group of the closed orientable

surface of genus 2. Let H be the subgroup of G generated by a; b, and consider

the splitting H �Œa;b�DŒc;d� hc; d i of G. This splitting is the Z-JSJ splitting of G

relative to H , and the vertex group containing H (namely H itself ) is both QH

and rigid relative to H .

Definition 2.17. Let G be a hyperbolic group and let H be a subgroup of G.

Suppose that G is one-ended relative to H . We denote by AutH .G/ the subgroup

of Aut.G/ consisting of all automorphisms whose restriction toH is the conjugacy

by an element of G. The modular group ModH .G/ of G relative to H is the

subgroup of AutH .G/ consisting of all automorphisms � satisfying the following

conditions:

� the restriction of � to each rigid or virtually cyclic vertex group of the Z-JSJ

splitting ofG relative toH coincides with the conjugacy by an element ofG;

� the restriction of � to each finite subgroup ofG coincides with the conjugacy

by an element of G;

� � acts trivially on the underlying graph of the Z-JSJ splitting relative to H .

Remark 2.18. In [18], the relative modular group fixes pointwise the subgroup

H , whereas we allow conjugation. As a consequence, our modular group is bigger

than the one defined in [18], and thus all results of [18] claiming the existence of

a modular automorphism are true a fortiori with our definition of ModH .G/.
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We will need the following result.

Theorem 2.19. Let G be a hyperbolic group, let H be an infinite subgroup of
G and let U be the one-ended factor of G relative to H . There exist a finite
subset F � U n ¹1º and a finitely generated subgroup H 0 � H such that, for
every non-injective homomorphism 'WU ! G that coincides with the identity
on H 0 up to conjugation, there exists an automorphism � 2 ModH .U / such that
ker.' ı �/ \ F ¤ ¿.

Proof. This result is stated and proved in [2] under the assumption that H is

finitely generated (see Theorem 2.32), in which case one can take H 0 D H . We

only give a brief sketch of how the proof can be adapted if H is not assumed to

be finitely generated. In [2], the assumption that H is finitely generated is only

used in the proof of Proposition 2.27 in order to ensure that the group H fixes a

point in a certain real tree T with virtually cyclic arc stabilizers (namely the tree

obtained by rescaling the metric of a Cayley graph of G by a given sequence of

positive real numbers going to infinity). Let ¹h1; h2; : : :º be a generating set for

H , and letHn be the subgroup ofH generated by ¹h1; : : : ; hnº. IfH is not finitely

generated, then there exists an integer n0 such that, for all n � n0, the subgroup

Hn is not virtually cyclic. It follows that allHn fix the same point of T for n � n0,

which proves that H is elliptic in T . Hence, one can just take H 0 D Hn0
. �

2.7. Related homomorphisms and Preretractions. We denote by ad.g/ the

inner automorphism h 7! ghg�1.

Definition 2.20 (related homomorphisms). Let G be a hyperbolic group and let

H be a subgroup of G. Assume that G is one-ended relative to H . Let G0

be a group. Let ƒ be the Z-JSJ splitting of G relative to H . Let ' and '0 be

two homomorphisms from G to G0. We say that ' and '0 are Z-JSJ-related or

ƒ-related if the following two conditions hold:

� for every vertex v of ƒ such that Gv is rigid or virtually cyclic, there exists

an element gv 2 G0 such that

'0
jGv

D ad.gv/ ı 'jGv
I

� for every finite subgroup F of G, there exists an element g 2 G0 such that

'0
jF D ad.g/ ı 'jF :

Remark 2.21. Note that in [18, Definition 5.15], an additional assumption is made

about the QH vertex groups. This technical assumption is not required in our

paper.



Elementary subgroups of virtually free groups 1537

Definition 2.22 (preretraction). Let G be a hyperbolic group, and let H be a

subgroup of G. Assume that G is one-ended relative to H . Let ƒ be the Z-JSJ

splitting of G relative to H . A Z-JSJ-preretraction or ƒ-preretraction of G is

an endomorphism of G that is ƒ-related to the identity map. More generally, if

G is a subgroup of a group G0, a preretraction from G to G0 is a homomorphism

ƒ-related to the inclusion ofG intoG0. Note that aƒ-preretraction coincides with

a conjugacy on H , since H is contained in a rigid vertex group of ƒ.

The following easy lemma shows that being ƒ-related can be expressed in

first-order logic. This lemma is stated and proved in [2] (see Lemma 2.22) under

the assumption that H is finitely generated, but this hypothesis is not used in the

proof.

Lemma 2.23. LetG be a hyperbolic group and letH be a subgroup ofG. Assume
that G is one-ended relative to H . Let G0 be a group. Let ƒ be the Z-JSJ
splitting of G relative to H . Let ¹g1; : : : ; gnº be a generating set of G. There
exists an existential formula �.x1; : : : ; x2n/ with 2n free variables such that, for
every '; '0 2 Hom.G;G0/, ' and '0 are ƒ-related if and only if G0 satisfies
�.'.g1/; : : : ; '.gn/; '

0.g1/; : : : ; '
0.gn//.

The proof of the following lemma is identical to that of Proposition 7.2 in [3].

Lemma 2.24. LetG be a hyperbolic group. Suppose thatG is one-ended relative
to a subgroup H . Let ƒ be the Z-JSJ splitting of G relative to H . Let ' be a
ƒ-preretraction of G. If ' sends every QH vertex group of ƒ isomorphically to a
conjugate of itself, then ' is injective.

2.8. Centered graph of groups

Definition 2.25 (centered graph of groups). A graph of groups over Z, with at

least two vertices, is said to be centered if the following conditions hold:

� the underlying graph is bipartite, with a particular QH vertex v such that

every vertex different from v is adjacent to v;

� every stabilizer Ge of an edge incident to v coincides with an extended

boundary subgroup or with an extended conical subgroup of Gv (see Def-

inition 2.11);

� given any extended boundary subgroup B , there exists a unique edge e

incident to v such that Ge is conjugate to B in Gv;

� if an element of infinite order fixes a segment of length � 2 in the Bass-Serre

tree of the splitting, then this segment has length exactly 2 and its endpoints

are translates of v.

The vertex v is called the central vertex.



1538 S. André

Figure 1. A centered graph of groups. Edges with infinite stabilizer are depicted in bold.

We also need to define relatedness and preretractions in the context of centered

graphs of groups.

Definition 2.26 (�-related homomorphisms). Let G and G0 be two groups. Let

H be a subgroup of G. Suppose that G has a centered splitting �, with central

vertex v. Suppose thatH is contained in a non-central vertex of�. Let ' and '0 be

two homomorphisms from G to G0. We say that ' and '0 are �-related (relative

to H ) if the following two conditions hold:

� for every vertex w ¤ v, there exists an element gw 2 G0 such that

'0
jGw

D ad.gw/ ı 'jGw
I

� for every finite subgroup F of G, there exists an element g 2 G0 such that

'0
jF D ad.g/ ı 'jF :

Definition 2.27 (�-preretraction). Let G be a hyperbolic group, let H be a

subgroup of G, and let � be a centered splitting of G. Let v be the central vertex

of�. Suppose thatH is contained in a non-central vertex of�. An endomorphism

' of G is called a �-preretraction (relative to H ) if it is �-related to the identity

of G in the sense of the previous definition. A �-preretraction is said to be non-
degenerate if it does not send Gv isomorphically to a conjugate of itself.

3. Elementary subgroups of virtually free groups

In this section, we prove Theorem 1.5. Recall that this theorem claims that if G is

a virtually free group and H is a proper 89-elementary subgroup of G, then G is

a multiple legal large extension of H .

3.1. Elementary subgroups are one-ended factors. As a first step, we will

prove the following result.
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Proposition 3.1. LetG be a virtually free group. LetH be a subgroup ofG. IfH
is 89-elementary, thenH coincides with the one-ended factor of G relative toH .
In other words,H appears as a vertex group in a splitting of G over finite groups.

The proof of Proposition 3.1, which is inspired from [17], consists in showing

that if G is a hyperbolic group andH is strictly contained in the one-ended factor

ofG relative toH , then there exists a centered splitting� ofG relative toH , and a

non-degenerate �-preretraction of G (see Lemmas 3.5 and 3.7 below). However,

if G is virtually free, Lemma 3.8 below shows that such a �-preretraction cannot

exist.

We shall prove Proposition 3.1 after establishing a series of preliminary lem-

mas. The following result is a generalization of Lemma 4.20 in [17]. Recall that

all group actions on trees considered in this paper are assumed to be minimal (see

Definition 2.6). As a consequence, trees have no vertex of valence 1. We say that

a tree T endowed with an action of a group G is non-redundant if there exists no

valence 2 vertex v such that both boundary monomorphisms into the vertex group

Gv are isomorphisms.

Lemma 3.2. Let G be a finitely generated group, and let H be a subgroup of G.
Suppose that G is one-ended relative to H and that there is a constant C such
that every finite subgroup of G has order at most C . Then there exists a finitely
generated subgroupH 00 of H such that G is one-ended relative to H 00.

Proof. Let ¹h1; h2; : : :º be a generating set for H , possibly infinite. For every

integer n � 1, let Hn be the subgroup of H generated by ¹h1; : : : ; hnº. By

Theorem 1 in [23], there is a maximum number mn of orbits of edges in a non-

redundant splitting ofG relative toHn over finite groups. Let Tn be such a splitting

with mn orbits of edges, and let Gn be the vertex group of Tn containing Hn.

We shall prove that GnC1 is contained in Gn for all n sufficiently large. First,

note that the sequence of integers .mn/n2N is non-increasing, because TnC1 is a

splitting of G relative to Hn. In particular, there exists an integer n0 such that

mn D mnC1 for every n � n0. We claim that GnC1 is elliptic in Tn. Otherwise,

there exists a non-trivial splitting GnC1 D A �C B or GnC1 D A�C with C finite

andHn � A, and one gets a non-redundant splitting ofG relative toHn over finite

groups with mnC1 C 1 D mn C 1 edges by replacing the vertex group GnC1 of

the graph of groups TnC1=G with the previous one-edge splitting of GnC1, which

contradicts the definition of mn.

Hence, for n � n0, one hasGn � Gn0
. In particular, Gn0

containsHn for every

integer n. Thus, Gn0
contains H . Since G is assumed to be one-ended relative

to H , one has G D Gn0
and one can take H 00 D Hn0

. �

We will need the following well-known result in the proof of Lemma 3.5 below.



1540 S. André

Proposition 3.3 ([4], Proposition 1.2). If a hyperbolic group splits over quasi-
convex subgroups, then every vertex group is quasi-convex (hence hyperbolic).

Remark 3.4. In a hyperbolic group, virtually cyclic subgroups are quasi-convex.

Therefore, the previous result applies to splittings of hyperbolic groups over

virtually cyclic subgroups.

Lemma 3.5. LetG be a hyperbolic group. LetH be a 89-elementary subgroup of
G. Let U be the one-ended factor of G relative to H . Let ƒ be the Z-JSJ splitting
of U relative toH . IfH is strictly contained in U , then there exists a non-injective
ƒ-preretraction U ! G.

Proof. Let H 0 be the finitely generated subgroup of H given by Theorem 2.19

and let H 00 be the finitely generated subgroup of H given by Lemma 3.2 above.

Let H0 be the finitely generated subgroup of H generated by H 0 [H 00.

Let us prove that every morphism 'WU ! H whose restriction toH0 coincides

with the identity is non-injective. First, note that U is one-ended relative to

H0 (since it is one-ended relative to H 00 which is contained in H0), and that U

is hyperbolic by Proposition 3.3 above. Therefore, by Theorem 2.9, U is co-

Hopfian relative to H0. Hence, a putative monomorphism 'WU ! H � U

whose restriction to H0 coincides with the identity is surjective, viewed as an

endomorphism of U . But '.U / is contained in H , which shows that U D '.U /

is contained in H . This is a contradiction since H is strictly contained in U , by

assumption.

Let i denote the inclusion of H into G. We proved in the previous paragraph

that every morphism 'WU ! H whose restriction to H0 coincides with the

identity is non-injective, and thus i ı 'WU ! G is non-injective. Therefore,

by Theorem 2.19, for every morphism 'WU ! H whose restriction to H0

(which contains H 0) coincides with the identity, there exists an automorphism

� 2 ModH .U / such that i ı ' ı � kills an element of the finite set F � U n ¹1º

given by Theorem 2.19. The morphism i WH ! G being injective, ' ı � kills

an element of F . In addition, note that the morphisms ' ı � and ' are ƒ-related

(see Definition 2.26). Hence, for every morphism 'WU ! H whose restriction

to H0 coincides with the identity, there exists a morphism '0WU ! H that kills

an element of the finite set F , and which is ƒ-related to '. We will see that this

statement .?/ is expressible by means of a 89-sentence with constants in H .

Let U D hu1; : : : ; un j R.u1; : : : ; un/ D 1i be a finite presentation of U .

Let ¹h1; : : : ; hpº be a finite generating set for H0. For every 1 � i � p, the

element hi can be written as a word wi .u1; : : : ; un/. Likewise, one can write

F D ¹v1.u1; : : : ; un/; : : : ; vk.u1; : : : ; un/º.

Observe that there is a one-to-one correspondence between the set of homo-

morphisms Hom.U;H/ and the set of solutions in Hn of the system of equations
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R.x1; : : : ; xn/ D 1. The group H satisfies the following formula, expressing the

statement .?/:

�.h1; : : : ; hp/W 8x1 : : :8xn

h�

R.x1; : : : ; xn/ D 1 ^

p
^

iD1

wi .x1; : : : ; xn/ D hi

�

)
�

9x0
1 : : :9x

0
n R.x

0
1; : : : ; x

0
n/ D 1

^ �.x1; : : : ; xn; x
0
1; : : : ; x

0
n/ D 1 ^

k
_

iD1

vi .x
0
1; : : : ; x

0
n/ D 1

�i

where � is the formula given by Lemma 2.23, expressing that the homomorphisms

' and '0 defined by 'W hi 7! xi and '0W hi 7! x0
i are ƒ-related, where ƒ denotes

the Z-JSJ splitting of U relative to H . This formula is logically equivalent to the

following 89-formula in prenex normal form:

��.h1; : : : ; hp/W 8x1 : : :8xn9x0
1 : : :9x

0
n

�

R.x1; : : : ; xn/ ¤ 1 _

p
_

iD1

wi .x1; : : : ; xn/ ¤ hi

_
�

R.x0
1; : : : ; x

0
n/ D 1 ^ �.x1; : : : ; xn; x

0
1; : : : ; x

0
n/

D 1 ^

k
_

iD1

vi .x
0
1; : : : ; x

0
n/ D 1

��

:

SinceH is a 89-elementary subgroup ofG, we know that the groupG satisfies

��.h1; : : : ; hp/ as well. For xi D ui for 1 � i � p, the interpretation of

��.h1; : : : ; hp/ in G provides a tuple .g1; : : : ; gn/ 2 Gn such that the application

pWU ! G defined by ui 7! gi for every 1 � i � p is a homomorphism, is

ƒ-related to the inclusion of U into G (see Definition 2.26), and kills an element

of F . As a conclusion, p is a non-injective ƒ-preretraction from U to G (see

Definition 2.22). �

The following easy lemma is proved in [2, Lemma 4.5].

Lemma 3.6. Let G be a group endowed with a splitting over finite groups. Let
TG denote the Bass-Serre tree associated with this splitting. Let U be a group
endowed with a splitting over infinite groups, and let TU be the associated Bass-
Serre tree. If pWU ! G is a homomorphism injective on edge groups of TU , and
such that p.Uv/ is elliptic in TG for every vertex v of TU , then p.U / is elliptic
in TG.
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Lemma 3.7. Let G be a hyperbolic group. Let H be an infinite subgroup of G.
Let U be the one-ended factor of U relative to H (which is unique since H is
infinite). Letƒ be the Z-JSJ splitting ofG relative toH . Suppose that there exists
a non-injective ƒ-preretraction pWU ! G. Then there exists a centered splitting
of G relative to H , called �, and a non-degenerate�-preretraction of G.

Proof. First, we will prove that there exists a QH vertex x ofƒ such that Ux is not

sent isomorphically to a conjugate of itself by p. Assume towards a contradiction

that this claim is false, i.e. that each stabilizer Ux of a QH vertex x of ƒ is sent

isomorphically to a conjugate of itself by p. We claim that p.U / is contained in a

conjugate of U . Let � be a Stallings splitting of G relative to H . By definition of

U , there exists a vertex u of the Bass-Serre tree T of � such that Gu D U . First,

let us check that the hypotheses of Lemma 3.6 are satisfied.

(1) By definition, � is a splitting of G over finite groups, and ƒ is a splitting of

U over infinite groups.

(2) p is injective on edge groups of ƒ (as a ƒ-preretraction).

(3) if x is a QH vertex of ƒ, then p.Ux/ is conjugate to Ux by assumption. In

particular, p.Ux/ is contained in a conjugate of U in G. As a consequence,

p.Ux/ is elliptic in T (more precisely, it fixes a translate of the vertex u of T

such that Gu D U ). If x is a non-QH vertex ofƒ, then p.Ux/ is conjugate to

Ux by definition of a ƒ-preretraction. In particular, p.Ux/ is elliptic in T .

By Lemma 3.6, p.U / is elliptic in T . It remains to prove that p.U / is contained in

a conjugate of U . Observe that U is not finite-by-(closed orbifold), as a virtually

free group. Therefore, there exists at least one non-QH vertex x in ƒ. Moreover,

since p is inner on non-QH vertices of ƒ, there exists an element g 2 G such

that p.Ux/ D gUxg
�1. Hence, p.Ux/ is contained in both p.U / and gUg�1.

Moreover, note that p.Ux/ is infinite (since Ux is infinite and p.Ux/ is conjugate

to Ux), and thus the intersection p.U /\ gUg�1 is infinite. Now, let v be a vertex

of T fixed by p.U /. If v does not coincide with gu (the unique vertex of T fixed

by gUg�1), then the stabilizer of the path joining v to gu is infinite; indeed, this

stabilizer is Gv \ Ggu, and one has Gv � p.U / and Ggu D gGug
�1 D gUg�1,

therefore Gv \Ggu contains the infinite group p.U /\gUg�1. This is not possible

since edge groups of the Bass-Serre tree T of � are finite. As a consequence, the

vertex v coincides with gu, which proves that p.U / is contained in gUg�1.

Now, up to composing p by the conjugation by g�1, one can assume that p is

an endomorphism of U . By Lemma 2.24, p is injective. This is a contradiction

since p is non-injective by hypothesis. Hence, we have proved that there exists a

QH vertex x of ƒ such that Ux is not sent isomorphically to a conjugate of itself

by p.

Then, we refine � by replacing the vertex u fixed by U by the Z-JSJ splitting

ƒ of U relative to H (which is possible since edge groups of � adjacent to u are

finite, and thus are elliptic in ƒ). With a little abuse of notation, we still denote
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by x the vertex of � corresponding to the QH vertex x of ƒ. Then, we collapse

to a point every connected component of the complement of star.x/ in � (where

star.x/ stands for the subgraph of � constituted of x and all its incident edges).

The resulting graph of groups, denoted by �, is non-trivial. One easily sees that

� is a centered splitting of G, with central vertex x.

The homomorphism pWU ! G is well-defined on Gx because Gx D Ux is

contained in U . Moreover, p restricts to a conjugation on each stabilizer of an

edge e of � incident to x. Indeed, either e is an edge coming from ƒ, either

Ge is a finite subgroup of U ; in each case, pjGe
is a conjugation since p is ƒ-

related to the inclusion of U into G. Now, one can define an endomorphism

'WG ! G that coincides with p on Gx D Ux and coincides with a conjugation

on every vertex group Gy of �, with y ¤ x. By induction on the number of

edges of �, it is enough to define ' in the case where � has only one edge. If

G D Ux �C B with pjC D ad.g/, one defines 'WG ! G by 'jUx
D p and

'jB D ad.g/. If G D Ux�C D hUx ; t j tct�1 D ˛.c/;8c 2 C i with pjC D ad.g1/

and pj˛.C/ D ad.g2/, one defines 'WG ! G by 'jUx
D p and '.t/ D g�1

2 tg1.

The endomorphism ' defined above is �-related to the identity of G (in the

sense of Definition 2.26), and ' does not send Gx isomorphically to a conjugate

of itself. Hence, ' is a non-degenerate�-preretraction ofG (see Definition 2.27).

�

The following result is proved in [2] (Lemma 4.4).

Lemma 3.8. Let G be a virtually free group, and let � be a centered splitting
of G. Then G has no non-degenerate�-preretraction.

We can now prove Proposition 3.1.

Proof of Proposition 3.1. Let U be the one-ended factor of G relative to H .

Assume towards a contradiction that H is strictly contained in U . Then by

Proposition 3.5, there exists a non-injective preretraction U ! G (with respect

to the Z-JSJ splitting of U relative to H ). By Lemma 3.7, there exists a centered

splitting � of G relative to H such that G has a non-degenerate �-preretraction.

This contradicts Lemma 3.8. Hence, H is equal to U . �

3.2. Proof of Theorem 1.5. Recall that Theorem 1.5 claims that if H is a 89-

elementary proper subgroup of a virtually free groupG, thenG is a multiple legal

large extension of H . Before proving this result, we will define five numbers

associated with a hyperbolic group, which are encoded into its 89-theory (see

Lemma 3.10 below).

Definition 3.9. LetG be a hyperbolic group. We associate to G the following five

integers:

� the number n1.G/ of conjugacy classes of finite subgroups of G,
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� the sum n2.G/ of jAutG.Ck/j for 1 � k � n1.G/, where the Ck are

representatives of the conjugacy classes of finite subgroups of G, and

AutG.Ck/ D ¹˛ 2 Aut.Ck/ j 9g 2 NG.Ck/; ad.g/jC D ˛º;

� the number n3.G/ of conjugacy classes of finite subgroups C of G such that

NG.C / is infinite virtually cyclic,

� the number n4.G/ of conjugacy classes of finite subgroups C of G such that

NG.C / is not virtually cyclic (finite or infinite),

� the number n5.G/ of conjugacy classes of finite subgroups C of G such that

NG.C / is not virtually cyclic (finite or infinite) and EG.NG.C // ¤ C .

The following lemma shows that these five numbers are preserved under 89-

equivalence. Its proof is quite straightforward and is postponed after the proof of

Theorem 1.5.

Lemma 3.10. Let G and G0 be two hyperbolic groups. Suppose that Th89.G/ D

Th89.G
0/. Then ni .G/ D ni .G

0/, for 1 � i � 5.

Theorem 1.5 will be an easy consequence of the following result.

Proposition 3.11. Let G be a virtually free group. Let H be a proper subgroup
of G. Suppose that the following three conditions are satisfied:

(1) ni .H/ D ni .G/ for all 1 � i � 5,

(2) H appears as a vertex group in a splitting of G over finite groups,

(3) two finite subgroups ofH are conjugate inH if and only if they are conjugate
in G.

Then G is a multiple legal large extension of H (see Definition 1.1).

Proof. First, note that the equality n4.H/ D n4.G/ implies thatH is non virtually

cyclic. Indeed, ifH is virtually cyclic, then n4.H/ D 0, whereas n4.G/ is greater

than 1 since NG.¹1º/ D G is not virtually cyclic by assumption.

Let T be the Bass-Serre tree of the splitting ofG given by the second condition.

Up to refining this splitting, one can assume without loss of generality that the

vertex groups of T which are not conjugate to H are finite. In other words, T is a

Stallings splitting ofG relative toH , in whichH is a vertex group by assumption.

Moreover, up to collapsing some edges, one can assume that T is reduced, which

means that if e D Œv; w� is an edge of T such that Ge D Gv D Gw , then v and w

are in the same orbit. We denote by � the quotient graph of groups T=G.

We will deduce from the third condition that the underlying graph of � has

only one vertex. Assume towards a contradiction that the Bass-Serre tree T of �

has at least two orbits of vertices. Hence, there is a vertex v of T which is not in
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the orbit of the vertex vH fixed by H . By definition of �, the vertex stabilizer Gv

is finite. It follows from the equality n1.H/ D n1.G/ that every finite subgroup of

G is conjugate to a subgroup of H , and thus there exists an element g 2 G such

that gGvg
�1 is contained in H . Therefore, Gv stabilizes the path of edges in T

between the vertices v and g�1vH . It follows that Gv coincides with the stabilizer

of an edge incident to v in T , which contradicts the assumption that T is reduced.

Hence, the underlying graph of � is a rose, and the central vertex group of �

isH . Moreover, edge stabilizers of � are finite. In other words, there exist pairs of

finite subgroups .C1; C
0
1/; : : : ; .Cn; C

0
n/ of H , together with automorphisms ˛1 2

Isom.C1; C
0
1/; : : : ; ˛n 2 Isom.Cn; C

0
n/ such that G has the following presentation:

G D hH; t1; : : : ; tn j ad.ti /jCi
D ˛i ; 8i 2 J1; nKi:

By assumption, the integers ni .G/ and ni .H/ are equal, for 1 � i � 5. From the

equality n1.G/ D n1.H/, one deduces immediately that the finite groups Ci and

C 0
i are conjugate inH for every integer i 2 ¹1; : : : ; nº. Therefore, one can assume

without loss of generality that C 0
i D Ci .

Note that for every finite subgroup C of H , the group AutH .C / is contained

in AutG.C /. Thus, the equality n2.G/ D n2.H/ guarantees that AutH .Ci / is in

fact equal to AutG.Ci/, for every 1 � i � n. Hence, since the automorphism

ad.ti/jCi
of Ci belongs to AutG.Ci /, there exists an element hi 2 NH .Ci / such

that ad.hi /jCi
D ad.ti/jCi

. Up to replacing ti with tih
�1
i , the group G has the

following presentation:

G D hH; t1; : : : ; tn j ad.ti/jCi
D idCi

; 8i 2 J1; nKi:

In order to prove that G is a multiple legal large extension of H (see Defini-

tion 1.1), it remains to prove that the following two conditions hold, for every

integer 1 � i � n:

(1) the normalizer NH .Ci / is non virtually cyclic (finite or infinite),

(2) and the finite group EH .NH .Ci // coincides with Ci .

The equalities n3.G/ D n3.H/ and n4.G/ D n4.H/ ensure thatNH .Ci / is not

virtually cyclic. Indeed, if NH .Ci / were finite, then NG.Ci / would be infinite

virtually cyclic and n3.G/ would be at least n3.H/ C 1; similarly, if NH .Ci/

were infinite virtually cyclic, then NG.Ci / would be non virtually cyclic and

n4.G/ � n4.H/C 1. Hence, the first condition above is satisfied.

Last, it follows from the equality n5.G/ D n5.H/ that the finite group

EH .NH .Ci // coincides with Ci , otherwise one would have n5.G/ � n5.H/C 1,

since EG.NG.Ci // D Ci . Thus, the second condition above holds. As a conclu-

sion, G is a multiple legal large extension ofH in the sense of Definition 1.1. �

We can now prove Theorem 1.5.
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Proof of Theorem 1.5. LetG be a virtually free group, and letH be a 89-elemen-

tary subgroup of G. By Proposition 3.1, H is a vertex group in a splitting of G

over finite groups, which means that the second condition of Proposition 3.11 is

satisfied. In addition, H is hyperbolic by Proposition 3.3.

Note that G and H have the same 89-theory. It follows from Lemma 3.10

that ni .H/ is equal to ni .G/ for all 1 � i � 5. Hence, the first condition of

Proposition 3.11 holds.

It remains to check the third condition of Proposition 3.11, namely that two

finite subgroups of H are conjugate in H if and only if they are conjugate in G.

First, recall that H and G have the same number of conjugacy classes of finite

subgroups, since n1.G/ D n1.H/. Then, the conclusion follows from the follow-

ing observation: if two finite subgroups A D ¹a1; : : : ; amº and B D ¹b1; : : : ; bmº

ofH are not conjugate inH , then they are not conjugate inG. Indeed,H satisfies

the following universal formula:

�.a1; : : : ; am; b1; : : : ; bm/W 8x

m
_

iD1

m̂

j D1

xaix
�1 ¤ bj :

Since H is 89-elementary (in particular 8-elementary), G satisfies this sentence

as well. Therefore, A and B are not conjugate in G. �

It remains to prove Lemma 3.10.

Proof of Lemma 3.10. Let us denote byKG the maximal order of a finite subgroup

of G. Since G and G0 have the same existential theory, we have KG D KG0 . Let

n � 1 be an integer. If n1.G/ � n, then the following 98-sentence, written in

natural language for convenience of the reader and denoted by �1;n, is satisfied

by G: there exist n finite subgroups C1; : : : ; Cn of G such that, for every g 2 G

and 1 � i ¤ j � n, the groups gCig
�1 and Cj are distinct. Since G and

G0 have the same 98-theory, the sentence �1;n is satisfied by G0 as well. As a

consequence, n1.G
0/ � n. It follows that n1.G

0/ � n1.G/. By symmetry, we have

n1.G/ D n1.G
0/.

In the rest of the proof, we give similar sentences �2;n; : : : ; �5;n such that the

following series of equivalences hold: ni .G/ � n , G satisfies �i;n , G0

satisfies �i;n , ni .G
0/ � n.

One has n2.G/ � n if and only if G satisfies the following 98-sentence �2;n:

there exist ` finite subgroups C1; : : : ; C` of G and, for every 1 � i � `, a finite

subset ¹gi;j º1�j �ni
of NG.Ci / such that

� for every g 2 G and 1 � i ¤ j � n, the groups gCig
�1 and Cj are distinct;

� the sum n1 C � � � C n` is equal to n;

� for every 1 � i � `, and for every 1 � j ¤ k � ni , the automorphisms

ad.gj /jCi
and ad.gk/jCi

of Ci are distinct.
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One has n3.G/ � n if and only if G satisfies the following 98-sentence �3;n:

there exist n finite subgroups C1; : : : ; Cn of G and n elements g1 2 NG.C1/; : : : ;

gn 2 NG.Cn/ of infinite order (i.e. satisfying g
KG Š
i ¤ 1) such that

� for every g 2 G and 1 � i ¤ j � n, the groups gCig
�1 and Cj are distinct;

� for every 1 � i � n and g 2 NG.Ci /, the subgroup hg; gi i of NG.Ci / is

virtually cyclic, i.e. ŒgKG Š; g
KGŠ
i � D 1 (see Lemma 2.1).

One has n4.G/ � n if and only if G satisfies the following 98-sentence �4;n:

there exist n finite subgroups C1; : : : ; Cn of G and, for every 1 � i � n, a couple

of elements .gi;1; gi;2/ normalizing Ci such that

� for every g 2 G and 1 � i ¤ j � n, the groups gCig
�1 and Cj are distinct;

� for every 1 � i � n, the subgroup hgi;1; gi;2i is not virtually cyclic (i.e.

Œg
KG Š
i;1 ; g

KG Š
i;2 � is non-trivial, by Lemma 2.1).

One has n5.G/ � n if and only if G satisfies the following 98-sentence �5;n:

there exist 2n finite subgroups C1; : : : ; Cn and C 0
1 ¡ C1; : : : ; C

0
n ¡ Cn of G and,

for every 1 � i � n, a couple of elements .gi;1; gi;2/ normalizing Ci , such that

� for every g 2 G and 1 � i ¤ j � n, the groups gCig
�1 and Cj are distinct;

� for every 1 � i � n, the subgroup hgi;1; gi;2i is not virtually cyclic;

� every element of G that normalizes Ci also normalizes C 0
i . �

4. Algorithm

In this section, we shall prove the following theorem.

Theorem 4.1. There is an algorithm that, given a finite presentation of a virtually
free group G and a finite subset X � G, outputs ‘Yes’ if the subgroup of G
generated by X is 89-elementary, and ‘No’ otherwise.

We shall use the following fact.

Lemma 4.2. A subgroupH of G is 89-elementary if and only if the three condi-
tions of Proposition 3.11 are satisfied.

Proof. If the conditions of Proposition 3.11 are satisfied, then either H D G, or

H is a proper subgroup and G is a multiple legal large extension ofH , by Propo-

sition 3.11. In both cases, the subgroup H is 89-elementary by Theorem 1.2.

Conversely, ifH is 89-elementary, then eitherH D G orH is a proper subgroup

of G and G is a multiple legal large extension of H , by Theorem 1.5. �

The proof of Theorem 4.1 consists in showing that the conditions of Proposi-

tion 3.11 can be decided by an algorithm.
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4.1. Algorithmic tools. First, we collect several algorithms that will be useful

in the proof of Theorem 4.1.

4.1.1. Solving equations in hyperbolic groups. The following theorem is the

main result of [7].

Theorem 4.3. There exists an algorithm that takes as input a finite presentation
of a hyperbolic group G and a finite system of equations and inequations with
constants in G, and decides whether there exists a solution or not.

4.1.2. Computing a finite presentation of a subgroup given by generators.

The following result is well known.

Theorem 4.4. There is an algorithm that, given a finite presentation of a hyper-
bolic and locally quasiconvex group G, and a finite subset X of G, produces a
finite presentation for the subgroup of G generated by X .

Recall that a group is said to be locally quasiconvex if every finitely generated

subgroup is quasiconvex. Marshall Hall Jr. proved that every finitely generated

subgroup of a finitely generated free group is a free factor in a finite-index sub-

group, which shows in particular that finitely generated free groups are locally

quasiconvex. It follows easily that finitely generated virtually free groups are lo-

cally quasiconvex. Thus, Theorem 4.4 applies when G is virtually free.

4.1.3. Basic algorithms

Lemma 4.5. There is an algorithm that takes as input a finite presentation of a
hyperbolic group and computes a list of representatives of the conjugacy classes
of finite subgroups in this hyperbolic group.

Proof. There exists an algorithm that computes, given a finite presentation hS jRi

of a hyperbolic group G, a hyperbolicity constant ı of G (see [16]). In addition, it

is well-known that the ball of radius 100ı in G contains at least one representative

of each conjugacy class of finite subgroups of G (see [5]). Moreover, two finite

subgroups C1 and C2 of G are conjugate if and only if there exists an element g

whose length is bounded by a constant depending only on ı and on the size of the

generating set S of G, such that C2 D gC1g
�1 (see [6]). �

Lemma 4.6 ([8], Lemma 2.5). There is an algorithm that computes a set of
generators of the normalizer of any given finite subgroup in a hyperbolic group.

Lemma 4.7 ([8], Lemma 2.8). There is an algorithm that decides, given a finite
set S in a hyperbolic group, whether hSi is finite, virtually cyclic infinite, or non
virtually cyclic ( finite or infinite).
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Lemma 4.8. There is an algorithm that takes as input a finite presentation of a
hyperbolic groupG and a finite subgroupC ofG such thatNG.C / is non virtually
cyclic ( finite or infinite), and decides whether or not EG.NG.C // D C .

Proof. By Lemma 4.5, one can compute some representatives A1; : : : ; Ak of the

conjugacy classes of finite subgroups of G. Given an element g 2 G, let �g.x/

be a quantifier-free formula expressing the following fact: there exists an integer

1 � i � k such that the finite set ¹C; gº is contained in xAix
�1. Note that the

group hC; gi is finite if and only if the existential sentence 9x �g .x/ is true in G.

One can compute a finite generating set S for NG.C / using Lemma 4.6. By

Theorem 4.3 above, one can decide if the following existential sentence with

constants in G is satisfied by G: there exist two elements g and g0 such that

(1) g does not belong to C ;

(2) �g.g
0/ is satisfied by G (hence, the subgroup C 0 WD hC; gi is finite);

(3) for every s 2 S , one has sC 0s�1 D C 0.

Note that such an element g exists if and only if C is strictly contained in

EG.NG.C //. This concludes the proof of the lemma. �

The following lemma is an immediate corollary of Lemmas 4.5–4.8 above.

Lemma 4.9. There is an algorithm that takes as input a finite presentation of
a hyperbolic group G and computes the five numbers n1.G/; : : : ; n5.G/ (see
Definition 3.9).

4.2. Decidability of the first condition of Proposition 3.11

Lemma 4.10. There is an algorithm that, given a finite presentation of a virtually
free groupG and a finite subsetX � G generating a subgroupH D hXi, outputs
‘Yes’ if ni .H/ D ni .G/ for all i 2 ¹1; 2; 3; 4; 5º and ‘No’ otherwise.

Proof. By Theorem 4.4, there is an algorithm that takes as input a finite presenta-

tion G D hSG j RGi and X , and produces a finite presentation hSH j RH i for H .

By Lemma 4.9, one can compute ni .G/ and ni .H/ for every i 2 ¹1; 2; 3; 4; 5º. �

4.3. Decidability of the second condition of Proposition 3.11

Lemma 4.11. There is an algorithm that, given a finite presentation of a virtually
free groupG and a finite subsetX � G generating a subgroupH D hXi, outputs
‘Yes’ if H is infinite and coincides with the one-ended factor of G relative to H
(well-defined since H is infinite), and ‘No’ otherwise.
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Proof. By Lemma 4.7, one can decide if H is finite or infinite. By Lemma 8.7

in [8], one can compute a Stallings splitting of G relative to H . Let T be the

Bass–Serre tree of this splitting. Let U be the one-ended factor of G relative toH

and let u be the vertex of T fixed by U . By Corollary 8.3 in [8], one can decide

if there exists an automorphism ' of G such that '.H/ D U , which is equivalent

to deciding if U D H . Indeed, if '.H/ D U , then H fixes the vertex u for the

action of G on T twisted by '. Thus, by definition of U as the one-ended factor

relative to H , the pair .U;H/ acts trivially on the tree T for the action twisted

by '. Consequently, '.U / fixes u as well. Therefore, one has '.U / D U D '.H/,

and it follows that U D H since ' is an automorphism of G. �

4.4. Decidability of the third condition of Proposition 3.11

Lemma 4.12. There is an algorithm that, given a finite presentation of a virtually
free groupG and a finite subsetX � G generating a subgroupH D hXi, decides
whether or not every finite subgroup of G is conjugate to a subgroup of H .

Proof. By Theorem 4.4, there is an algorithm that takes as input a finite presenta-

tion G D hSG j RGi and X , and produces a finite presentation hSH j RH i for H .

By Lemma 4.5, there is an algorithm that computes two lists ¹A1; : : : ; Anº and

¹B1; : : : ; Bnº of representatives of the conjugacy classes of finite subgroups of G

andH respectively. Then, for every finite subgroup Ai ofG in the first list, decid-

ing if Ai is conjugate in G to Bj for some j 2 ¹1; : : : ; nº is equivalent to solving

the following finite disjunction of systems of equations with constants inG, which

can be done using Theorem 4.3:

�.x/W 9x .xAix
�1 D B1/ _ � � � _ .xAix

�1 D Bn/:

Hence, there is an algorithm that outputs ‘Yes’ if every finite subgroup of G is

conjugate to a subgroup of H , and ‘No’ otherwise. �
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