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On hereditarily self-similar p-adic analytic pro-p groups
Francesco Noseda and Ilir Snopce

Abstract. A non-trivial finitely generated pro-p group G is said to be strongly hereditarily self-
similar of index p if every non-trivial finitely generated closed subgroup of G admits a faithful self-
similar action on a p-ary tree. We classify the solvable torsion-free p-adic analytic pro-p groups of
dimension less than p that are strongly hereditarily self-similar of index p. Moreover, we show that
a solvable torsion-free p-adic analytic pro-p group of dimension less than p is strongly hereditarily
self-similar of index p if and only if it is isomorphic to the maximal pro-p Galois group of some
field that contains a primitive pth root of unity. As a key step for the proof of the above results, we
classify the 3-dimensional solvable torsion-free p-adic analytic pro-p groups that admit a faithful
self-similar action on a p-ary tree, completing the classification of the 3-dimensional torsion-free
p-adic analytic pro-p groups that admit such actions.

Dedicated to Said Sidki on the occasion of his 80th birthday.

1. Introduction

Groups that admit a faithful self-similar action on some regular rooted d -ary tree 7 form
an interesting class that contains many important examples such as the Grigorchuk 2-
group [8], the Gupta—Sidki p-groups [9], the affine groups Z" x GL,(Z) [3], and groups
obtained as iterated monodromy groups of self-coverings of the Riemann sphere by post-
critically finite rational maps [16]. Recently there has been an intensive study on the self-
similar actions of other important families of groups including abelian groups [4], wreath
products of abelian groups [5], finitely generated nilpotent groups [2], arithmetic groups
[10], and groups of type FP,, [14]. Self-similar actions of some classes of finite p-groups
were studied in [1,25].

We say that a group G is self-similar of index d if G admits a faithful self-similar
action on Ty that is transitive on the first level; moreover, we say that G is self-similar
if it is self-similar of some index d. In [19] we initiated the study of self-similar actions
of p-adic analytic pro-p groups. In particular, we classified the 3-dimensional unsolvable
torsion-free p-adic analytic pro-p groups for p = 5, and determined which of them admit
a faithful self-similar action on a p-ary tree. In the present paper, instead, we focus on the
study of self-similar actions of torsion-free solvable p-adic analytic pro-p groups.
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It is fairly easy to show that every free abelian group Z” of finite rank » > 1 is self-
similar of any index d = 2 (cf. [16, Section 2.9.2]; see also [17]). Hence, every non-trivial
subgroup of Z” is self-similar of any index d > 2. Similarly, every non-trivial closed
subgroup of a free abelian pro-p group Z;, is self-similar of index p¥, for k = 1. Motivated
by this phenomenon we make the following definitions. A finitely generated pro-p group
G is said to be hereditarily self-similar of index p* if any open subgroup of G is self-
similar of index p*. If G and all of its non-trivial finitely generated closed subgroups are
self-similar of index pk , then G is said to be strongly hereditarily self-similar of index pk .

From [19, Proposition 1.5], it follows that any torsion-free p-adic analytic pro-p group
of dimension 1 or 2 is strongly hereditarily self-similar of index p¥ for all kK > 1. More-
over, it is not difficult to see that if p = 5, then any 3-dimensional solvable torsion-free
p-adic analytic pro-p group is strongly hereditarily self-similar of index p2™ forallm > 1
(see Proposition 3.4). Observe that the latter class contains a continuum of groups that are
pairwise incommensurable (see [23]), in contrast to the discrete case, where there are
only countably many pairwise non-isomorphic finitely generated self-similar groups (cf.
[16, Section 1.5.3]). On the other hand, it is an interesting problem to understand which
pro-p groups have the property of being strongly hereditarily self-similar of index p, and
the main result of this paper is the classification of the solvable torsion-free p-adic analytic
pro-p groups with this property.

Theorem A. Let p be a prime, and let G be a solvable torsion-free p-adic analytic pro-
p group. Suppose that p > d := dim(G). Then G is strongly hereditarily self-similar of
index p if and only if G is isomorphic to one of the following groups:

(1) ford =1, the abelian pro-p group Z2;

(2) ford =2, the metabelian pro-p group G%(s) 1= Zp X Zg_l, where the canonical
generator of Z, acts on Zg_l by multiplication by the scalar 1 + p®, for some
integer s = 1.

Observe that the “if” part of the theorem holds in greater generality (Proposition 3.7);
we also remark that the condition p > d makes it possible to apply Lie methods (see
Section 3, in particular, Remark 3.2). It is worth noting that during the last decade the
groups listed in Theorem A have appeared in the literature in different contexts (see, for
example, [12, 13,20-22,24]). The reader will find a more detailed account of the related
results at the end of Section 3.

Let K be a field. The absolute Galois group of K is the profinite group Gx =
Gal(Ks/K), where K is a separable closure of K. The maximal pro-p Galois group
of K, denoted by Gk (p), is the maximal pro-p quotient of Gg. More precisely, Gg (p) =
Gal(K(p)/K), where K(p) is the composite of all finite Galois p-extensions of K (inside
Kj). Describing absolute Galois groups of fields among profinite groups is one of the most
important problems in Galois theory. Already describing G g (p) among pro-p groups is a
remarkable challenge. Theorem A and a result of Ware [26] yield the following.
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Theorem B. Let p be a prime, and let G be a non-trivial solvable torsion-free p-adic
analytic pro-p group. Suppose that p > dim(G). Then G is strongly hereditarily self-
similar of index p if and only if G is isomorphic to the maximal pro-p Galois group of
some field that contains a primitive pth root of unity.

Similarly to Theorem A, the “if”” part holds in greater generality (Proposition 3.8).

The proof of Theorem A is by induction on d = dim(G). As mentioned above, for
d = 1,2 matters are trivial, while for d = 3 interesting phenomena start to occur. Indeed,
as a basis for the induction, one has to consider the case d = 3, and this leads us to the
classification result below. This result is interesting on its own right since it completes the
classification started by [19, Theorem B] of the 3-dimensional torsion-free p-adic analytic
pro-p groups that are self-similar of index p.

Theorem C. Let p = 5 be a prime and fix p € Z; a non-square modulo p. Let G be
a 3-dimensional solvable torsion-free p-adic analytic pro-p group. Then the following
holds.

(1) G is self-similar of index p?.

(2) Let L be the Z,-Lie lattice associated with G. Then G is self-similar of index p if
and only if L is isomorphic to a Lie lattice presented in the following irredundant

list (¢f. Remark 2.21; the parameters below take values s,r,t € N, ¢ € Zp, and
e €{0,1}):

@ (xo0,x1,x2 | [x1,x2] =0, [x0,x1] =0, [x0,x2] = 0);
(d) fors =1, (xo,x1,x2 | [x1,x2] =0, [x0,x1] = p°x1, [x0,x2] = p*x2);
() fors,r = landvp(c) =1,
{x0. x1.x2 | [x1,2x2] =0,
[x0.x1] = p*x1 + p* T exa,
[x0.x2] = p**"x1 + p*xa);

(d) (x0,x1,x2 | [x1,x2] =0, [x0,x1] = p*T1p°x2, [x0,X2] = p*x1);

(e) fors =1, (xo,x1,x2 | [x1,Xx2] =0, [x0,x1] = p°x2, [X0,Xx2] = px1);
) forr=1landvy(c) =1,

(x0,x1,x2 | [x1,x2] = 0, [x0.x1] = p*™"x1 + pexa, [x0.x2] = px1);
(g) fors =1landv,(1+4c) =1,
{xo, x1, %2 | [x1,%2] = 0, [x0, 1] = p*x1 + p°exa, [xo,%2] = p*xi).

In dimension 3, Theorem C and [19, Theorem B] yield the following stronger version
of Theorem A.
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Theorem D. Let p = 5 be a prime, and let G be a 3-dimensional torsion-free p-adic
analytic pro-p group. Then the following are equivalent.

(1) G is hereditarily self-similar of index p.
(2) G is strongly hereditarily self-similar of index p.
(3) G is isomorphic to Zg or to G3(s) for some integer s = 1.

We believe that one can drop the assumption of solvability in Theorem A even in
higher dimension.

Conjecture E. Let p be a prime, and let G be a torsion-free p-adic analytic pro-p group
of dimension d. Suppose that p > d. Then G is strongly hereditarily self-similar of index
p if and only if G is isomorphic to Zg ford = 1orto G%(s) for d = 2 and some integer
s =1

Main strategy and outline of the paper. For the proof of the main results we use Lie
methods. More precisely, we use the language of virtual endomorphisms (see, for instance,
[19, Proposition 1.3]) to translate self-similarity problems on p-adic analytic groups to
problems on Z,-Lie lattices (Proposition 3.1). Recall from [19] that a Z ,-Lie lattice L is
said to be self-similar of index p if there exists a homomorphism of algebras ¢ : M — L,
where M C L is a subalgebra of index p* and ¢ is simple, which means that there are no
non-zero ideals of L that are ¢-invariant.

In Section 2, we prove results on Lie lattices, and for the main ones mentioned here we
assume that p > 3. The first main result of that section is Theorem 2.22, where we classify
the 3-dimensional solvable Z ,-Lie lattices that are self-similar of index p, complementing
the analogue result for unsolvable lattices proven in [19, Theorem 2.32]. In Definition
2.32, we introduce the notion of (strongly) hereditarily self-similar Lie lattice. Thanks to
the classification result, we are able to prove Proposition 2.41, which is a classification of
the 3-dimensional Z,-Lie lattices that are (strongly) hereditarily self-similar of index p.
This result is particularly relevant since it is used as the basis of the induction (which is on
dimension) for the proof of the second main result on Lie lattices, Theorem 2.34, which
provides a classification of the solvable Z,-Lie lattices that are strongly hereditarily self-
similar of index p. At the beginning of Section 2 the reader will find a more detailed
account of its structure.

In Section 3, we prove the main theorems of the paper and provide additional results on
hereditarily self-similar groups. We observe that Theorem C follows from Theorem 2.22,
Theorem D follows from Proposition 2.4 1, and Theorem A follows from Theorem 2.34. In
Section 4, we state some open problems that we consider challenging and that we believe
will stimulate future research on the subject.

Notation. Throughout the paper, p denotes a prime number and =, denotes equivalence
modulo p.For p=3 wefixpe Z; anon-square modulo p. We denote the p-adic valuation
by v, : Qp — Z U {oo}. The set N of natural numbers is assumed to contain 0. For the
lower central series y,(G) and the derived series 6,(G) of a group (or Lie algebra) G
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we use the conventions yo(G) = G and 6o(G) = G. By a Zp-lattice we mean a finitely
generated free Z,-module. Let L be a Zp-lattice. When M C L is a submodule, we
denote the isolator of M in L by isor (M) :={x € L : 3k € N pkx € M}. We denote by
(x1,...,x,) the submodule of L generated by x1,...,x, € L. When L has the structure
of a Lie algebra, we denote its center by Z(L).

2. Results on Lie lattices

In this section, which is self-contained, we prove results about self-similarity of Z,-Lie
lattices. The main results, mentioned in Section 1, are proved under the assumption that
p = 3. On the other hand, most of the auxiliary results are valid and proved for any p,
and we believe that they constitute a large part of the work needed to generalize the main
results to p = 2. The structure of the section is as follows. In Section 2.1, we prove some
basic results on Z,-Lie lattices that admit an abelian ideal of codimension 1; these results
are used both for the study of 3-dimensional lattices and of lattices in higher dimension.
After two preparatory technical sections (Sections 2.2 and 2.3), in Section 2.4, we prove
one of the main theorems on Lie lattices (Theorem 2.22). After another preparatory section
(Section 2.5), in Section 2.6, we prove the other two main results (Proposition 2.41 and
Theorem 2.34). Apart from the main results, a few statements are worth to be mentioned
here, for instance, Propositions 2.6, 2.13, and 2.36. The most difficult technical results are
the proofs of non-self-similarity of Propositions 2.20 and 2.25.

We will be dealing with several families of Z,-Lie lattices, which we list in the def-
inition below. For p > 3, families from (0) to (5) are needed for the classification of
3-dimensional solvable Z,-Lie lattices (see Remark 2.21). Family (6) generalizes fami-
lies (0) and (1), while family (7) generalizes families (4) and (5).

Definition 2.1. We define eight families of 3-dimensional solvable Z,-Lie lattices
through presentations.
(0) Lo = (xo,x1,x2 | [x1.x2] = 0, [x0,x1] = 0, [x0, x2] = 0).
(1) Fors € N, Ly(s) = {xo,x1,x2 | [x1,x2] =0, [x0,x1] = p*x1, [X0,Xx2] = p*x2).
(2) Fors,r e Nandc € Z,,

La(s,r,¢) = (xo.x1,x2 | [x1,x2] =0,
[x0.x1] = p*x1 + p**exs,

[X0.X2] = p*™x1 4 p'xa).
(3) Fors € N, L3(s) = (x0, x1. X2 | [x1,x2] =0, [x0,x1] =0, [x0,x2] = p°x1).
(4) For p = 3,s,t e Nand e € {0, 1},

La(s.t,8) = {xo. x1.x2 | [x1,x2] = 0, [xo, x1] = p** p°x2, [x0,x2] = p°x1).
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(5) Fors,r e Nandc € Zp,

Ls(s,r,¢) = (xo0.x1,x2 | [x1,x2] =0,
[X0. x1] = p**"x1 + p’exa,

[X0, x2] = Psxl)-

(6) Fora € Zp, Ls(a) = (xo,x1,X2 | [x1,X2] =0, [x0,X1] = axi, [xo, X2] = axz).
(7) Fors e Nanda,c € Z,,

Li(s.a,c)=(xo,x1,x2 | [x1,x2] =0, [x0,x1]= p’axi + p*cxa, [x0,x2] = p’x1).

2.1. On a class of metabelian Lie lattices

Given an integer d = 1, we are going to consider (d + 1)-dimensional Z,-Lie lattices that
admit a d-dimensional abelian ideal. Greek indices will take values in {0, ..., d}, while
Latin indices will take values in {1, ..., d}. For matrices in gl;, ; (Q,) we use a notation
like U = (Uqp); moreover, for such a matrix, we denote U = (U;;) € gl (Qp).

Let L be a (d + 1)-dimensional antisymmetric Z,-algebra. Observe that L admits a
d-dimensional abelian ideal if and only if there exists a basis x = (xp, ..., xg) of L and
amatrix A € gly(Zp), A = (Aij), such that for all i, j we have

[xi,xj] =0,

[xo.x:] =Y Asix;.
1

In this case, {x1,...,xg) is a d-dimensional abelian ideal. It is immediate to see that,
for such an L, the Jacobi identity holds, and that §,(L) = {0}; in other words, L is a
metabelian Lie lattice. When it exists, a basis as above is called a good basis of L, and A
is called the matrix of L with respect to the (good) basis x. Observe that A is the matrix
of the homomorphism of lattices [x¢,-] : (x1,...,Xxq) = (X1,...,xg) with respect to the
displayed bases.

Let L be a (d + 1)-dimensional Z,-Lie lattice that admits a d-dimensional abelian
ideal, let x be a good basis of L, and let A be the corresponding matrix. Observe that
rk(A) = dim[L, L], so that rk(A) is an isomorphism invariant of L. In particular, A4 is
invertible over QQ,, if and only if dim[L, L] = d, a relevant special case. Let M C L be
a finite-index submodule, let y = (yo, ..., yq4) be a basis of M, and let U = (Uap) €
gly41(Zp) be the matrix of y with respect to x, namely, yg = ), Uypxq. Observe that
M N {xy,...,xq) = {y1,...,yq) if and only if Uy; = O for all i; moreover, there exists a
basis of M such that U,g = 0 for all« < 8. We also observe that dim[M, M] = dim[L, L].

Lemma?2.2. Letd,L,x,A,M,y, U= (Uap) be as above. Assume that M0 (x1,...,Xg)=
(¥1,....Yd). Then U = (Uj;) is invertible over Q, (it is a d x d matrix), and one may
define B € gl;(Q,) by B = UgoU "' AU. Then the following holds.

(1) M is a subalgebra of L if and only if B has entries in Zp,.
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(2) Assume that M is a subalgebra of L. Then y is a good basis of M and B is the
matrix of M with respect to y.

Proof. Since y; = )_; U;;x;, it follows that [y;, y;] = 0. Over Q,, we have

[vo.y7] = Uoo »_ Uijlxo.xi] = Uoo D _ Uij Asix; = Uso Y _ Uyj A1 Ui yie.
i il ik

so that [yo, ¥;] = > Bxkjyk. The lemma follows. [

Observe that the case M = L is included in the above discussion. In this case, U is
invertible over Z,, and the defining formula of B is the change-of-basis formula for the
matrix of L (under lower block-triangular changes of basis).

We now study homomorphisms of algebras.

Lemma 2.3. Let L, M be (d + 1)-dimensional Z,-Lie lattices endowed with good bases
x,y, and let A, B be the respective matrices. Let ¢ : M — L be a homomorphism of
modules, and let F € gly1(Zp) be the matrix of ¢ with respect to the given bases; namely,
©(¥g) = Do FapXa. Then the following holds.

(1) The homomorphism ¢ is a homomorphism of algebras if and only if, for all i, j:
(@ > ForBi; =0;
(b) Foi(AF)g; — Foj(AF)k; =0, forall k;
(©) (FB)ij = Foo(AF)ij — Foj >_; Air Fio.

(2) Assume that ¢ is a homomorphism of algebras and dim[M, M| =d. Then Fy; =0
foralli.

(3) Assume that Fo; = 0 for alli. Then ¢ is a homomorphism of algebras if and only
if FB = FyoAF.

Proof. The homomorphism ¢ is a homomorphism of algebras if and only if, for all i, j,
[¢(yi), ¢(;)] = 0and ([0, y;]) = [¢(y0), ¢(¥;)]. One computes

[e(yi).o(yj)] = Z(Fm Fy; — Foj Fpi)[xo.x1] = Z (Foi (AF)xj — Foj (AF ki) Xk,
] k
([0, ¥j1) =D Bij FarXa = (Z FOlBlj)xo + Y (FB)jxi,
Lo 1 i

[p(r0). 0(y))] =Y _(Foo F1; — FroFoj)[xo. x1] =) _ (FOO(AF)ij + Foj ) AilFm)xz',
1 i 1

from which item (1) follows. For item (2), one observes that B is invertible over Q,, and

applies item (1a). Item (3) follows directly from item (1). [

Corollary 2.4. Let L be a (d + 1)-dimensional Z,-Lie lattice with dim[L, L] = d, and
let ¢ : M — L be a virtual endomorphism of L. Let x be a good basis of L. Then the
following holds.
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(1) Let y be a basis of M with the property M N {(x1,....Xg) = (¥1,...,Ya). Then
FB = FooAF, where A, B, and F are as in Lemma 2.3.

(2) Assume that (x1,...,xq) € M. Then (xy,...,xq) is a g-invariant ideal of L.

Remark 2.5. Any 3-dimensional solvable Z ,-Lie lattice admits a 2-dimensional abelian
ideal.

2.2. Self-similarity results

When ¢ : M — L is a virtual endomorphism of a Lie lattice L, we denote by D,,,n € N,
the domain of the power ¢" and define Do, = [,y Dn- We recall that, by definition,
Do = Land Dyy1 ={x € M : p(x) € D,} (see, for instance, [19, Definition 1.1]).

Proposition 2.6. Let k,d = 1 be integers, and let L be a Zp-Lie lattice of dimension
d + 1. Assume that L admits a d-dimensional abelian ideal. Then L is self-similar of
index p*.

Proof. If L is abelian, it is easy to see that L is self-similar of index p™ for all m>1.
Assume that L is not abelian. There exists a basis (xo, x1, ..., x4) of L such that [x;, x;] =
0 and [xg, x;] = Z;Ll Apixp forall 1 <i, j <d, and some A;; € Z,. We define M =
(x0, p¥x1,..., pFx4) and observe that M is a subalgebra of L of index p%¥. We define a
homomorphism of algebras ¢ : M — L by ¢(xo) = xo and ¢(p¥x;) = x; for 1 <i <d.
We are going to show that ¢ is simple. One sees that Dy, = (x¢). Let I be a non-trivial
ideal of L. We show that I is not g-invariant by proving the existence of w € I such that
w € Doo. Indeed, there exists 0 # z = agxg + - + agxg € I.If a; # 0 for some i > 0,
then one may take w = z. Otherwise, z = agxo with ag # 0. Since L is not abelian, there
exists i > 0 such that [xg, x;] # 0. In this case one may take w = [z, x;]. L]

Corollary 2.7. Let k = 1 be an integer, and let L be a 3-dimensional solvable Z,-Lie
lattice. Then L is self-similar of index p?*.

Proof. Since L admits a 2-dimensional abelian ideal, the corollary follows from Proposi-
tion 2.6. u

In order to have a more elegant proof of simplicity in Lemma 2.9 below, we observe
that the following generalization of [16, Proposition 2.9.2] holds. Let R be a principal
ideal domain, and let K be the field of fractions of R. We identify R C K. Let d € N,
®: K4 — K< be a K-linear function, and let pe(A) € K[A] be the characteristic polyno-
mial of ®. Let M be the set of x € R? such that ®(x) € R?. Then M is a sub- R-module of
R? and the restriction ¢ : M — R% of ® may be interpreted as a virtual endomorphism of
the R-module R? (in the application below, R? is thought of as an abelian R-Lie lattice).

Proposition 2.8. In the context described above, Do, = {0} if and only if there are no
monic irreducible factors of pe(A) with coefficients in R.

Proof. The proof of [16, Proposition 2.9.2] works in this more general context. ]
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Lemma 2.9. Let k = 1 be an integer. Then the following Lie lattices are self-similar of
index p*:
(1) Le(a);
(2) La(s,r,c) withvy(c) = 1;
(3) L1(s,a,c) withvy(c) = 1 and vy(a) = 1, or with vy(4c + a?) = 1, vp(a) = 0,
and vp(c) = 0;
(4) for p =3, L7(s,0,1).

Proof. Let (x¢, x1, X2) be the basis of the relevant Lie lattice as given by its presentation
in Definition 2.1. We begin with L = Lg(a), where we exhibit a simple virtual endo-
morphism ¢ : M — L of index p¥. Define M = (x¢, x1, p¥x5). For a = 0, the abelian
case, define ¢(xo) = x1, ¢(x1) = X2, and ¢(p¥x,) = xo. Fora # 0, define ¢(xo) = xo,
@(x1) = x3, and ¢( pk X2) = x1. Recall that D is the intersection of the domains of the
powers of ¢. In the abelian case one shows that Do, = {0}, while in the non-abelian case
one shows that Do, = (xg). Since a @-invariant subset of L has to be a subset of D,
in both cases one shows that a non-zero ideal of L is not g-invariant (cf. the proof of
Proposition 2.6).

‘We now denote by L any of the Lie lattices that remain to be analyzed. From Corollary
2.7, itis enough to treat the case where k = 2/ + 1 is odd. We exhibit a simple virtual endo-
morphism ¢ : M — L of index p? 1. For L, (s, r,c), define M = (xo, p' x1, p'T'x,) and
¢(x0) = X0, ¢(p'x1) = x1 + p~'exz, and @(p'T1x2) = x1 + pxp. For L(s,a.c) with
vp(c) = 1 and vp(a) = 1, define M = (xo, p'x1, p!*1x;2) and ¢(x0) = X0, 9(p'x1) =
plexa, and o(p't1x2) = x1 — ax,. For L1(s,a,c) with vy, (4¢ + a?) = 1, v,(a) = 0 and
vp(c) = 0 (necessarily p > 3), define M = (xo, p' (x1 — 27 ax,), p'T'x2) and ¢ (xp) =
x0, (Pl (x1 —27'ax,y)) = p~ e + 47 'a?)x,, and p(p' T1x2) = x; — 27 ax,. Finally,
for L7(s.,0,1), define M = (xo, p’ (x1—x2), p'*1x3) and p(x0) =—x0. (p' (x1—x2)) =
X1 4+ X2, and @(p'T1x2) = x1 — (1 4+ p)x2. The proof of simplicity of ¢ may go as fol-
lows. Let ¢ : M N {x1, x2) — {x1, x2) be the restriction of ¢. Let Dy, be as above, and
let E be the intersection of the domains of the powers of 1. We have Do, = (x0) @ Eco
(indeed, ¢ is the direct sum of ¥ and a homomorphism that sends {xg) to {xg)). We claim
that Eoc = {0}, from which the simplicity of ¢ follows. Observe that in each of the cases
at hand v is an isomorphism. Because of that, one can see that the virtual endomorphism
associated with ® := ¥ ® Q,, (as described above Proposition 2.8) may be identified with
Y. Hence, by the proposition itself, it suffices to show that the characteristic polynomial
pA)eQp[A] of @ : Qpx1 BQpx2—Qpx1 ®Qpx2 has no monic irreducible factors with
coefficients in Z,. We treat the case of L (s, r, ¢); the other cases are similar and are left to
the reader. We have ®(x;) = p_lxl + p_l_lcxz and ®(x,) = p_l_lxl + p_lxz. Then
p(A) =A% =2p~ A 4 p=2 —cp~2/=2 Observe that vp(p_zl —cp =21 -1<0
so that in case p(A) is irreducible there is nothing left to prove. Assume that p(A) is
reducible. The proof of the lemma is concluded once we prove that this assumption
leads to a contradiction. Indeed, p(1) = (A — u)(A — v) for some p, v € Q,. We have
w+v=2p " and pv = p~2 —cp=-2 Since vp (1) + v, (v) = =21 — 1, then, without
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loss of generality, we can assume that v, (i) < vp(v), so that v, () < —/ — 1. It follows
thatv,(u +v) < -l —1< vp(2p_l) = vp(u + v), a contradiction. |

2.3. Non-self-similarity results in dimension 3

The main results of this relatively long technical section are Propositions 2.13, 2.16, and
2.20.

Remark 2.10. Let L be a 3-dimensional Z,-lattice endowed with a basis (xg, X1, x2).
For e, f € Z, we define submodules of L of index p by LO = (pxo, X1, X2), L© =
(xo + exy, px1, x2), and L)) = (xo + exz,x1 + fx2, px2). Any submodule of L of
index p is isomorphic to L# for some & = (), (e), (e, f). By changing e or f modulo p,
L® and L) do not change (cf. [19, Definition 2.22, Lemma 2.23]). Observe that when
LE is displayed as above, it is endowed with a basis.

Assume that M is a submodule of L of index p endowed with a basis (yq, y1, ¥2), and
let  : M — L be a homomorphism of modules. We denote by F = (Fop) € gl3(Zp) the
matrix of ¢ relative to the respective bases, namely, ¢(yg) = D, FupXa (cf. Section 2.1).

First, we treat the case where dim[L, L] = 1.
Lemma 2.11. Let L be a 3-dimensional Z,-Lie lattice with dim[L, L] = 1. Then the
following holds.

(1) dimZ(L) = 1.

(2) Let M C L be a subalgebra of index p. Then Z(L) C M or [M,M] = [L, L].

Proof. Thereexists € N, r € N U {oo} and a basis (xg, x1, x3) of L such that [xy, x;] =0,
[x0, x1] = p*(p"x1 + x2), and [xg, x2] = 0, where p* := 0. For item (1), one easily
checks that Z(L) = (x,). For item (2), one observes that if M is of type L0 or L(®) (cf.
Remark 2.10), then Z(L) € M. On the other hand, if M is of type L), then it is a
straightforward computation to show that [M, M| = [L, L]. |

Lemma 2.12. Let L be a 3-dimensional Z,-Lie lattice withdim[L, L] =1. Letp : M — L
be a virtual endomorphism of L. If ¢ is simple, then ¢ is injective.

Proof. Assume that ¢ is not injective. We exhibit a non-trivial g-invariant ideal / of L.

Case 1:kerp C Z(L). Sincedim Z(L) = 1, then dimker ¢ = 1, so that there exists k € N
such that pK Z(L) C ker ¢. Thus, it suffices to take I = p* Z(L).

Case 2: kergp € Z(L). There exists z € ker such that z ¢ Z(L), so [w, z] # 0 for some
w € L. Since M has finite index in L, there exists k € N such that pkw € M. Hence,
p¥lw, z] # 0 and p¥[w, z] € ker ¢. By taking x € L such thatisoz [L, L] = (x), one sees
that p¥[w, z] = ax for some a € Zp with a # 0. Thus, it suffices to take / = (ax). =

Proposition 2.13. Let L be a 3-dimensional 7 p-Lie lattice with dim[L, L] = 1. Then L
is not self-similar of index p.
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Proof. Let ¢ : M — L be a virtual endomorphism of L of index p. We prove that ¢ is
not simple by either referring to a previous result or by exhibiting a non-trivial ¢-invariant
ideal I of L.If [M, M] = [L, L], then it suffices to take / = [L, L]. Otherwise, by item (2)
of Lemma2.11, we have Z(L) C M. Then Z(L) = Z(M). Also, if ¢ is not injective, then
¢ is not simple (Lemma 2.12); hence, we can assume that ¢ is injective. Then dimg(M) =
dim L, so that ¢(Z(M)) € Z(L). Thus, it suffices to take I = Z(L). |

Next, we treat the case where dim[L, L] = 2.
Lemma 2.14. In the context of Remark 2.10, assume that Fo; = Foy = 0. Then the fol-
lowing holds.

(1) Assume that M = LO. Then (x1, x») is ¢-invariant.

(2) Assume that M = L©, p|Fy1, and p|Fay. Then (pxy, px3) is g-invariant.

(3) Assume that M = L©) | p|Fi», and p|F»y. Then (px1, px») is g-invariant.

(4) Assume that M =L¢F) f =,0, p|F21, and p|Fa;. Then (x1, px3) is p-invariant.

Proof. We leave the simple proof to the reader. |

Lemma 2.15. Let L be a 3-dimensional Z,-Lie lattice with dim[L, L] = 2, and let x =
(x0,x1,X2) be a good basis of L. Let M = (xo + ex1, px1,x2) for some e € Zp, assume
that M is a subalgebra of L, and let ¢ : M — L be a homomorphism of algebras. Let

A:ps[i 2:|, seN, ab,cdeZ,

be the matrix of L with respect to x. Moreover, assume that one of the following conditions
is true:

(1) vp(b) =0o0r

2) a=d =1,v,(b) < vp(c), and b # 0.
Then (px1, pxa) is a @-invariant ideal of L.
Proof. Clearly, I = (px1, pxz) is an ideal of L. Let B be the matrix of M with respect
to the displayed basis, and let F be the matrix of ¢. From item (1) of Corollary 2.4 it

follows that FB = Fy9AF, and this matrix equation is equivalent to the system of scalar
equations

a(l — Foo) F11 + pcFi2 —bFooF21 = 0, 2.1
—cFoo F11 + (a — dFoo) F21 + pcFap = 0, (2.2)
bFi1 + p(d —aFoo) Fi2 — pbFoo F22 = 0, (2.3)

—pcFooFi2 + bFy1 + pd(1 — Foo) Faz = 0. (2.4)

From item (2) of Lemma 2.14 it is enough to show that p|F1; and p|F5;. Indeed, we claim
that p| F1; and p|F>; and proceed to prove the claim. In case v, (b) = 0, the claim follows
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from (2.3) and (2.4). Assume thata =d = land 7 := v, (b) < vp(c). If v, (1 — Foo) =7,
the claim follows again from (2.3) and (2.4). In case v, (1 — Fgo) < r the claim follows
from (2.1) and (2.2). [ ]

Proposition 2.16. Lets,r € N withr = 1, and let ¢ € Z, withv,(c) # 1. Then Ly(s,r,c)
is not self-similar of index p.

Proof. Observe that dim[L, L] = 2. Let ¢ : M — L be a virtual endomorphism of L of
index p. We will show that there exists a non-trivial ¢-invariant ideal / of L, from which
the proposition follows. Observe that (x1, x2), {px1, px2), and (x1, px,) are non-trivial
ideals of L. The gp-invariance of the various I defined below follows from Lemma 2.3 (2)
and Lemma 2.14. Observe that the matrix equation FB = Foo A F of item (1) of Corollary
2.4 holds. We divide the proof into four cases.

Case I: M = LO. Tt suffices to take I = (x1,x2).
Case 2: M = L©. It suffices to take I = (px, px,) (Lemma 2.15).

Case 3: M = L) with f #, 0. The matrix equation FB = FyoAF implies that the
following equations hold true:

p(L+p" f—Foo)Fi1+ (—f —p" f>+ p'c+ p*f)Fio— p" ' Foo Fa1 =0,
—p " eFooFii 4+ p(L+ p' f — Foo) Far + (—f = p" f2+ p'c + p* f)Fa2 = 0,

from which we can see that p|Fy, and p|F5,. Thus, it suffices to take I = (pxy, pxs).

Case 4: M = L9, The matrix equation FB = FyoAF is equivalent to the equations

(1 — Foo)F11 + p"'¢Fio — p" Foo F21 = 0, (2.5)
—p"cFooF11 + (1 — Foo)Fa1 + p"'cFap =0, (2.6)
' Fiy+ (1= Foo) Fio — p' FooFz = 0, 2.7
—p"cFooF12 + p" T Fa1 + (1 — Foo) Far = 0. (2.8)

If v, (1 — Foo) < r, then (2.7) and (2.8) imply that p|Fi» and p|F>», and we can take
I = (px1, px2). Assume that / := v, (1 — Foo) = r. Observe that, since r = 1, Fgo € Z;.
We divide the proof into two cases, according to whether v,(c) = 2 or v,(c) = 0.
(1) Assume that v,(c) = 2.
(a) Assume that/ = r + 1. From (2.7), we have p|F53, so that p|F>; (see (2.8)).
Thus, it suffices to take I = (x1, px2).
(b) Assume that [ = r. From (2.8), we have p|F,;, so that p|Fi, (see (2.7)).
Thus, it suffices to take I = (pxy1, px2).

(2) Assume that v,(c) = 0. From (2.5), we have p|Fj,; from (2.6), we have p|F>;.
Thus, it suffices to take I = (px1, pxz). |

Lemma 2.17. Lets € Nanda,c,e, f € Z, with c # 0. Define L = L+(s,a, c), where
L is endowed with the basis (xg, x1, X3) given in Definition 2.1. Let M = (x¢ + exa,
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X1+ fxa, px2) and assume that M is a subalgebra of L. Let ¢ : M — L be homomor-
phism of algebras, and let F be the matrix of ¢ with respect to the given bases. Then

pFa1 — Foo[pfFi1 + (¢ —af — f?)F12] =0, (2.9)

Fay — Foo[ pFi1 — (a+ f)Fi2] =0,  (2.10)

(Foo — D[ — p(1 4+ Foo) Fi1 + (f(1 + Foo) + aFoo) Fi2] =0,  (2.11)

(Foo — D[p(a + f(1+ Foo)) Fi1 + (1 + Foo)(c —af — fHFi2] =0.  (2.12)
Proof. The result follows from Corollary 2.4 (1). ]

Lemma 2.18. In the context of Lemma 2.17, the following holds.
(1) Assume that p|F1,. Then (px1, px2) is a -invariant ideal of L.
(2) Assume thatc—af — f>=0,a#0,2f +a#,0, and Fi, € Z}. Then (x; + fx3)
is a g-invariant ideal of L.
(3) Assumethatp =3, f = —27 g, vp(a) =0, vp(4e + a?) =2, and Fy» # 0. Then

(x1 — 27 Yax,, pxs) is a g-invariant ideal of L.

Proof. (1) From (2.10) of Lemma 2.17 it follows that p|F,;. Now the item follows from
item (3) of Lemma 2.14.

(2) Observe that f # 0, —a, since ¢ # 0. One checks directly that [xg, x; + fx2]isa
Zp-multiple of x; + fx2; hence, I = (x; + fx2) is an ideal of L. We have

o(x1 + fx2) = Fii(x1 + fx2) + (Fa1 — fF11)x2.

(a) Case Fyo = 1. From (2.9) of Lemma 2.17 we have F»; = fFij; hence, [ is
@-invariant.

(b) Case Fyp # 1. Since Fy, € Z;, (2.11) and (2.12) of Lemma 2.17 have a non-
trivial solution in the variables F; and F;,. It follows that

[£(1 + Foo) +aFool[a + f(1 + Foo)] = 0.
(i) Case f(1 4+ Foo) + aFpo = 0. We have

f a+2f
Foo = ———, + f(1 + Fyo) = #0
00 atf a+ f( 00) =a at+ f
Hence, Fy; = 0 (see (2.12)), so that F»; = 0 (see (2.9)). Hence, I is ¢-

invariant.

(i) Casea + f(1 + Fyo) = 0. We show that we have a contradiction. Indeed,
Foo = —%, so that a[pF11 — (2f + a)F12] = 0 (see (2.11)), and con-
sequently pFi1 = (2f + a)F12 € Z%, which is a contradiction.

(3) By applying [xo, -] to its generators, one sees that I = (x; — 27 'ax,, px,) is an
ideal of L. We have (cf. item (2) of Lemma 2.3)
p(x1 —27"axy) = Fii(xy —27'axy) + (Fa1 + 27 'aFiy)xa,
@(px2) = Fia(x1 —27'axs) + (Fao + 27 aFip)xa,
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from which we see that to show that / is ¢-invariant is equivalent to show that
pl(Fa1 +27YaFyy) and p|(Fas + 27 'aFy,). We claim that, indeed, p|(Fa; + 2 'aFy;)
and p|(Faz + 2 'aFi3). In fact, (2.9) and (2.10) of Lemma 2.17 are equivalent to

Fo1 +27'aFy1 = —(Foo — )2 'aF11 + Foop™'(c +47'a®) Fi2,
Fas + 27 aFyy = pFooFi1 — (Foo — )27 'a Fya.

(a) Case Fyo = 1. The claim is obviously true.

(b) Case Fyo # 1. Since Fy5 # 0, (2.11) and (2.12) of Lemma 2.17 have a non-trivial
solution in the variables F;; and Fj5. Hence, the determinant of the coefficient
matrix has to be zero, which implies that

a®(Foo — 1)* = (Foo + 1)*(4c + a*) = 0.
It follows that p|(Foo — 1), so the claim is true. |

Corollary 2.19. In the context of Lemma 2.17, assume that a # 0 and that f is a simple
root modulo p of the polynomial P (k) = k? + ak — c. Then ¢ is not simple.

Proof. From Hensel’s lemma it follows that there exists f € Zp such that f =, f and
P(f) =0.Clearly,2f +a #p 0and M = (xo + exz, x1 + X2, px2). In other words,
we can assume that ¢ —af — f2 =0and 2f + a #, 0. In case p|Fi2, (px1, pxa) is
a non-trivial ¢-invariant ideal of L by Lemma 2.18 (1). In case p} Fia, (x1 + fx2) isa
non-trivial p-invariant ideal of L by Lemma 2.18 (2). Hence, ¢ is not simple. ]

Proposition 2.20. Let s € N and a,c € Z, with ¢ # 0. Assume that one of the following
conditions is satisfied:

(1) vp(a) = 1and vp(c) = 2;

(2) vp(a) =0and vy(c) = 1;

3B) p=3a#0vp(a) =1, andvy(c) =0;

4) a =0, vy(c) =0, and c is not a square modulo p;

(5) vp(a) =0, vp(c) =0, and vy (4c + a?) # 1.

Then L+(s,a,c) is not self-similar of index p.

Proof. Observe that dim[L, L] = 2. Denote L = L7(s,a,c),andletp : M — L be a vir-
tual endomorphism of L of index p. We will show that ¢ is not simple by either applying
a previously proven result or exhibiting a ¢-invariant ideal / of L. Recall Remark 2.10.
If M = (pxg, x1, X2), then it suffices to take I = (x, x) (Corollary 2.4 (2)). If M =
(x0 + exy, px1,x2), where e € Z,, then it suffices to take I = (px;, pxz) (Lemma 2.15).
Assume that M = (xo + exz, x1 + fx2, pxa), where e, f € Z, (the last case to be
treated). By Lemma 2.18 (1), we can assume that Fj, € Z;. We observe that this implies
that ¢ —af — f? =, 0. We divide the proof into several cases, depending on which
assumption of the statement holds.
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(1) Assume that v,(a) = 1 and v, (c) = 2. Hence, f =, 0, and it follows that p|F>;
and p|F,,. Thus, it suffices to take I = (x1, px,), which is an ideal of L (since,
in particular, v,(c) = 1) and is g-invariant by Lemma 2.14 (4).

(2) Assume that v,(a) = 0 and v,(c) = 1, or that p = 3, a # 0, v,(a) = 1, and
vp(c) = 0. Then f is a simple root of the polynomial P (k) = k? + ak — ¢ modulo
p. Applying Corollary 2.19, we see that ¢ is not simple.

(3) Assume thata = 0, v,(c) = 0, and ¢ is not a square modulo p. This case contra-
dictsc —af — f? =, 0.

(4) Assume that v,(a) =0, v,(c) =0, and v, (4c +a?) # 1. Case 1: v, (4c +a?) =0.
Then £ is a simple root of the polynomial P (k) = k2 + ak — ¢ modulo p. Apply-
ing Corollary 2.19, we see that ¢ is not simple. Case 2: v, (4c + a?) = 2. Then
p=3and f =, —2"'a. We can assume that / = —27!a. By Lemma 2.18 (3),
we can take [ = (x; — 27 lax,, px,). ]

2.4. Self-similarity of 3-dimensional solvable Lie lattices

Remark 2.21. Assume that p = 3. Any 3-dimensional solvable Z,-Lie lattice is isomor-
phic to exactly one of the Lie lattices in the list below (see Definition 2.1 for the notation
and [7, Proposition 7.3] for the proof). We also give necessary and sufficient conditions for
the respective Lie lattice to be residually nilpotent (cf. [7, p. 731]). For p = 5 the resid-
uvally nilpotent Lie lattices in the list provide a classification of 3-dimensional solvable
torsion-free p-adic analytic pro-p groups (cf. [7, Theorem B]).

(0) Ly. Itis abelian; hence, it is residually nilpotent.

(1) Lq(s). It is residually nilpotent if and only if s > 1.

(2) La(s,r,c) with r = 1. Itis residually nilpotent if and only if s > 1.

(3) Ls(s). It is nilpotent; hence, it is residually nilpotent.

(4) Lau(s,t,¢). Itis residually nilpotent if and only if s = 1 or¢ > 1.

(5) Ls(s,r,c).Itisresidually nilpotent if and only if s = 1 holds, or » = 1 and v, (c) =

1 hold.

Recall that the self-similarity index of a self-similar Z,-Lie lattice L is the smallest
power of p, say p¥, such that L is self-similar of index p¥.

Theorem 2.22. Assume that p = 3. Let L be a 3-dimensional solvable Z,-Lie lattice, and
let o be the self-similarity index of L. Then ¢ = p or 6 = p?. Moreover, ¢ = p if and
only if L is isomorphic to one of the Lie lattices that appear in the following sublist of the
list given in Remark 2.21:

(0) Lo;

(1) Li(s);

(2) La(s,r,c) withvy(c) =1 (andr = 1);
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4) Lya(s,t,e)witht =1, orwitht =0ande = 0;

(5) Ls(s,r,c) withr = 1 and vp(c) =1, orwithr = 0 and v,(4c +1) = 1.
Proof. By Corollary 2.7,0 = p oro = p2. Observe that Ly = Lg(0), L1(s) = Le(p®),
L4(s,t,e) = L7(s,0, p'p®),and Ls(s,r,c) = L(s, p", c¢). The claim that the Lie lattices
in the statement are self-similar of index p follows from Lemma 2.9. The remaining Lie

lattices of Remark 2.21 (the ones not in the statement) are not self-similar of index p by
Propositions 2.13, 2.16, and 2.20. [

2.5. Non-self-similarity results in higher dimension

The main results of this section are Proposition 2.25 and Corollary 2.26; the latter is a key
ingredient in the proof of Theorem 2.34.

Let d = 2 be an integer. As in Section 2.1, Greek indices will take values in {0, ...,d},
while Latin indices will take values in {1,...,d}. We denote the p-adic valuation by v
instead of vj,.

Definition 2.23. Leta = (ay,...,a4) € Zl‘f and b = (b1,...,bg_1) € Zl‘f’l. We define
an antisymmetric (d + 1)-dimensional Z,-algebra L(a, b) as follows. As a Z,-module,
L= Zl‘fﬂ. Denoting by (x, ..., xg) the canonical basis of L, the bracket of L(a, b) is
induced by the commutation relations

[xi,x;] = 0,
[Xo,xl] = Zi aipXij,
[xo,xi_H] = b,'x,' ifi <d.
Remark 2.24. L(a, b) is a metabelian (possibly abelian) Lie lattice.
We will prove the following proposition at the end of the section.

Proposition 2.25. Leta € ZI”,I and b € Zg_l be as in Definition 2.23. Assume that
(1) ag #0,
2) v(b;) < v(bjy1) wheneveri <d — 1,
(3) v(b;) < v(a;) wheneveri < d, and
@ v(bg-1) + 1 < v(aq).
Then L(a, b) is not self-similar of index p.
Corollary 2.26. Leta € Zg and b € Zz_l be as in Definition 2.23. Assume that ag # 0

and by = --- = bg_1 = 1. Then L(a, b) admits a finite-index subalgebra that is not self-
similar of index p.

Proof. Let L = L(a,b) and take ko, ...,k ; € N as follows. Choose

—1 i — 1)@ —2
ko > d—, k1 = max ((l—l)ko—w)
2 2 i=1,...d

=1,...,
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and, fori = 2, define

ki=k1—(i—1)ko+(i_1)2$.

It is not difficult to show that ko 4k —k; >i —1 forall i. Define M = (p¥ox, . .., p¥dxg).
Then M is a finite-index subalgebra of L which is isomorphic to L(a’, b"), where

b =p'~l ifi <d,

14
a; — pk0+k1_kiai.
By Proposition 2.25, M is not self-similar of index p. ]
The remainder of the section is devoted to the proof of Proposition 2.25.

Remark 2.27. Leta € Zg, be Zg_l, and L = L(a, b); see Definition 2.23. We define
Io = {x1,...,xg)and I; = (x1,...,Xi—1, pXi,..., pxq). Hence, Iy = ply and I; C
I, C---C 1z C Iy. Moreover, Iy and [, are ideals of L.

Lemma 2.28. Leti > 1 and I; be defined as in Remark 2.27. Then I; is an ideal of L if
and only if pla; forall j = i.

Proof. 1t suffices to observe that /; is an ideal of L if and only if [xg, y] € I; for all the
generators y of /; displayed in the definition of /;. ]

Lemma 2.29. Letay,...,a4,b1,...,bg_1 € Z, and define A = (A;;) € gly(Zp) by
ai ifj =1,
Ajj=1b ifj=i+1,
0 ifj>landj #i+1.

Letig € {l,...,d}and fi,.... fi,—1 € Zp (no choice of coefficients “ f ” has to be made
when ig = 1). Define U = (U;j) € gl (Zp) by

p ifi =j =io,

1 ifi=j #io,
Uij=4—f ifi>jandi =iy,

0 ifi > jandi # iy,

0 ifi < J.

Let U be the cofactor matrix of U. Let Foo € Zp and F = (Fjj) € gly(Zp). Assume
that FUT A = FyoAFUT and that the a;’s and b;’s satisfy the four assumptions in the
statement of Proposition 2.25. Then the following holds.

(1) Assume that fi = 0 for all k < iy. Then p|F;j fori = ig and j < iy.

(2) Assume that there exists ko < io such that fi, #p 0 and fi = 0 for all k < k.
Then p|F;;, fori = ko, and p|F;j fori = ko and j < ko.
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Proof. We have

1 ifi =j =iy,

p ifi =j #io,

vl = fi ifi > jandi =i,
0 ifi > jandi # ip,

0 ifi <.
A straightforward computation gives
> j<iy(Paj Fij + fja; Fij,)
+a;, Fi iy + Zj>i0 pa; Fij ifk =1,
(FUT A)ik = { pbe—1Fij—1 + femrbi—1Fijy if1 <k <ig+ 1,

biy Fi iy ifk =ig+1,
Pbi—1Fi k-1 ifk >ip+1
and
Foopa; Fix + Foo frai Fi,i
+ Foopbi Fit1x + Foo fibi Fit1,, ifi <d andk < iy,
Fooai F1,iy + Foobi Fi+1,i, ifi <dandk =i,
(FooAFUT); = { Foopai Fix + Foopbhi Fiv1x ifi <dandk > i,
Foopag Fri + Foo fraa Fu i, ifi =dandk < iy,
Fooag Fi i, ifi =dand k =iy,
Foopag Fix ifi =d and k > iy.

We denote by F (i, k) the equality (FﬁTA)ik = (FOOAFUT)ik, which is true for all i
and k by assumption. Observe that b; # 0 whenever i < d. We divide the proof of the
two items of the statement of the lemma into four cases. The fourth case will be treated in
detail, while the details of the other cases are left to the reader.

(1) Item (2) of the statement, proof of p|F;;,. The claim p|F;;, follows from
F(i, ko + 1). The proof has to be done by descending induction on i, since for
i = ko one needs to use that p|Fgy41,,-

(2) Item (2) of the statement, proof of p|F;j. The claim p|F;; follows from
F(i,j + 1). We observe that for i = kg and j = ko — 1 one has also to use
that p| Fx,+1,i,» which was proven in the previous item.

(3) Item (1) of the statement, case iy < d. The claim p|F;; follows from F(i, j + 1).
The proof has to be done by descending induction on j, since for i = iy and
Jj = io — 1 one needs to use that p|F;+1,,-
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(4) Item (1) of the statement, case iy = d. We have to prove that p|Fy; for all j.
(a) Assume that j < d — 1. The equation F(d, j + 1) reads

pb; Fg; = Foopag Fi jy1.

Hence, v(Fy;j) = v(ag) — v(b;). In particular, p|Fy;.
(b) Assume that j = d — 1. The equation F(d, j + 1) reads

pba_1Faq-1 = FooaqFi 4.

Hence, v(Fy,4-1) = v(ag) —v(bg—1) — 1. In particular, p|Fg 4_1.
(c) Assume that j = d. The equation F(d, 1) reads

> pajFaj +aqFaq = Foopagq Fuy.
j<d

Forall j <d —1,wehave v(pa; Fg;) =1+ v(a;) +v(Fg;) =14+ v(a;) +
v(ag) —v(b;) > v(ag). For j =d — 1, we have

v(pag—1Fga-1) =1+v(ag—1) +v(Faa-1)
= 1+ v(ag-1) +v(ag) —v(bg—1) — 1

> v(ag).
Hence, p|F4. |

Remark 2.30. Let L be a (d + 1)-dimensional Z,-lattice endowed with a basis (x, ...,
Xgq),and let M C L be a submodule of index p. Exactly one of the following cases holds
(cf. [19, Lemma 2.23]):

(1) (yo,...,yaq) is abasis of M, where yo = pxg and y; = x;;

(2) there existip € {1,...,d} and fo € Z, such that (yo, ..., yq) is a basis of M,
where yo = xo — foxX;, and

Xi ifi 75 io,
Vi = e
pxi, ifi =ip;
(3) there exist ko, ip € {1,...,d}and fo, fk,,- .-, fio—1 € Zp such that kg < ip, fx,
is invertible in Zp, and (yg, ..., y4) is a basis of M, where yo = xo — fox;, and
Xi ifi < k(),

x,-—fixio ifko <i <y,
yi = e
DXi, ifi =i,

Xi ifi > io.
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Lemma 2.31. Let L be a (d + 1)-dimensional lattice, let M C L be a submodule of
index p, and let ¢ - M — L be a homomorphism of modules. Let (xy, ..., xq) be a basis
of L, let (yo,...,yq) be a basis of M, and let yg =), FopXq. Assume that Fo; = 0
foralli. Let I; := (z1,...,z4), where

Xj ifj <i,
7T { Py iz
(cf- Remark 2.27). Then the following holds.
(1) Assume that (yo, ..., yq) has the form displayed in case (2) of Remark 2.30. Then
(@ i, &M,
(b) @(l;)) C I, ifand only if p|F;j fori = ip and j < iy.
(2) Assume that (yo, ..., Yyq) has the form displayed in case (3) of Remark 2.30. Then
(@ Iy, &M,
(b) @k,) € Ik, ifand only if p|Fi i, fori = ko, and p|F;j fori = ko and j < ko.

Proof. We prove item (2), leaving item (1), which is similar, to the reader. Since

Vi if j < ko,

Z = | P + fivio ifko < j <o,
Vi if j = o,
Pyj if j > i,

we have I, € M. Observe that ¢(Ix,) C I, if and only if ¢(z;) € I, for all j. Since

> Fijxi if j < ko,
Zi(pFij + iji,iO)xi if ko < j <o,
e(zj) = e
> Fiigxi if j = io,
> i PFijxi if j > i,
item (2) follows. ]

Proof of Proposition 2.25. Let L = L(a,b), let M C L be a subalgebra of index p, and
letp : M — L be a homomorphism of algebras. We have to show that there exists a non-
trivial g-invariant ideal / of L. Observe that any b; is non-zero and that dim[L, L] = d.
Moreover, v(a;) = 1 for all i, and any I, is a non-trivial ideal of L (see Remark 2.27 and
Lemma 2.28). Let x = (xo,...,Xq) be the canonical basis of L, and let y = (o, ..., yq)
be a basis of M in one of the forms given in Remark 2.30. The bases x and y are good
bases for L and M, respectively (cf. Lemma 2.2). Let A be the matrix of L with respect to
x (cf. Section 2.1), and observe that it is equal to the matrix 4 of Lemma 2.29. Let yg =
> o UapXa, andlet (yg) = >, FopXe. By Lemma 2.3 (2), Fo; = 0 for all i. The proof
is completed below by considering each one of the three cases of Remark 2.30. For the last
two cases, in order to apply Lemma 2.29, we have to make some observations. In those
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cases, Ugg = 0 and the d x d matrix U = (U;;) has the format of the one of Lemma 2.29.
The matrix of M with respectto y is B = U ~1AU; moreover, FB = FyoAF (Lemma
2.3(3)). An easy computation gives FUT A = FopoAFUT, where U is the cofactor matrix
of U.

(1) For case (1) of Remark 2.30 we take I = Iy, which is invariant by Corollary
2.4(2).

(2) For case (2) of Remark 2.30 we take I = I;,, which is invariant by Lemma 2.29 (1)
and Lemma 2.31 (1).

(3) For case (3) of Remark 2.30 we take I = Ii,, which is invariant by Lemma
2.29 (2) and Lemma 2.31 (2). [

2.6. Strongly hereditarily self-similar Lie lattices

Definition 2.32. Let L be a Z,-Lie lattice, and let k € N.
(1) L is hereditarily self-similar of index p* if and only if any finite-index subalgebra
of L is self-similar of index pk .
(2) L is strongly hereditarily self-similar of index p* if and only if L is self-similar
of index p* and any non-zero subalgebra of L is self-similar of index p*.

The main result of this section is as follows, and the proof of the theorem will be given
at the end of the section.

Definition 2.33. Let d > 2 be an integer, and let a € Z,. We define an antisymmetric
d-dimensional Z,-algebra L4(a) as follows. As a Zp-module, L (a) = Zl‘f. Denoting
by (xo, ..., Xg—1) the canonical basis of Z¢, the bracket of L (@) is induced by the com-
mutation relations [x;, x;] = 0 and [x¢, x;] = ax;, where i, j take valuesin {1,...,d — L}.

Theorem 2.34. Assume that p = 3. Let d = 2 be an integer, and let L be a solvable
Zp-Lie lattice of dimension d that is strongly hereditarily self-similar of index p. Then
L ~ L%(p®) for a unique s € N U {oo} (with p™® :=0).

Before proving the theorem we provide some examples and make some remarks on
hereditarily self-similar Lie lattices.

Remark 2.35. Let L be a Z,-Lie lattice. Clearly, if L is strongly hereditarily self-similar
of index pk, then L is hereditarily self-similar of index p¥. From [19, Remark 2.2] it
follows that if L has dimension 1 or 2, then L is strongly hereditarily self-similar of index
p¥ for all k > 1. Consequently, if L has dimension 3 and L is hereditarily self-similar of
index p¥, then L is strongly hereditarily self-similar of index p¥. Proposition 2.41 below
classifies, for p > 3, the 3-dimensional Lie lattices that are hereditarily self-similar of
index p.

Proposition 2.36. Let m = 1 be an integer, and let L be a 3-dimensional solvable Z.,-Lie
lattice. Then L is strongly hereditarily self-similar of index p*™.

Proof. The proposition follows from Corollary 2.7 and Remark 2.35. ]



F. Noseda and I. Snopce 22

Proposition 2.36 and [23, Proposition 3.1] have a consequence that we find worth to
state explicitly. We recall that, by definition, two Lie lattices L and L, are incommensu-
rable if there are no finite-index subalgebras M; C L and M, C L, such that M| >~ M,.

Corollary 2.37. There exists a set H of the cardinality of the continuum such that any
element of ¥ is a Z,-Lie lattice that is strongly hereditarily self-similar of index p*™ for
each m = 1, and such that any two distinct elements of # are incommensurable.

The next results are interesting on their own and they are a preparation for the proof
of Theorem 2.34.

Remark 2.38. We list some properties of L = L% (a) that the reader may easily prove.
The Lie lattice L belongs to the class discussed in Section 2.1; in particular, L is a Lie
lattice and 8, (L) = {0}. We have L4 (a) ~ L¢(b) if and only if d = e and vp(a) = vp(b);
moreover, L is abelian if and only if a = 0. If @ # 0, then isor [L, L] = (x1,...,Xg—1)-
Any submodule of L is a subalgebra, and any 2-generated subalgebra of L has dimension
at most 2. Finally, note that Lo = L3(0), L,(s) = L3(p®), and Le(a) = L3(a) (see
Definition 2.1).

Lemma 2.39. Let d = 2 be an integer; let a € Z,, and let M be a subalgebra of L4(a)
of dimension e = 2. Then M >~ L¢(p®a) for some s € N U {oo}.

Proof. Denote L = L% (a) and recall that L is endowed with the basis (xo, ..., xz_1). Let
Jp =isor[L, L]. If M C Jp, then one takes s = o0o. Assume that M € J; . Hence, a # 0 and
L/Ji >~ Z,, generated by the class of xo. Let ¢ : M — L/Jp, be the canonical map. Then
¢(M) is non-zero; hence, there exists x € M such that the class of x in L/Jy is a basis
of (M) over Z,. Also, [L/Jy, : ¢(M)] = p® for some s € N. Let x = cxo + Zj CjXj,
where the index takes values in {1,...,d — 1}. Observe that v,(c) = s. One proves that
M = (x) & (M N Jp), from which the conclusion M ~ L.(ca) >~ L.(p®a) follows. =

Proposition 2.40. Letd = 2 and k > 1 be integers, and let a € Z,. Then
(1) L% (a) is self-similar of index p*,
(2) L%(a) is strongly hereditarily self-similar of index p*.

Proof. Ttem (2) is a consequence of item (1) and Lemma 2.39. We prove (1). For d = 2 see
Remark 2.35. Assume that d = 3. Let L = L% (a), and let M = (xq. p*x1.X2.....x4_1).
Then M is a subalgebra of L of index p¥. The module homomorphism ¢ : M — L deter-
mined by ¢(x0) = Xo, p(p*x1) = x2,9(x;) = xip1 for2 <i <d —1,and p(xg—1) = X1
is a homomorphism of algebras. We prove that ¢ is simple. Indeed, the intersection of the
domains of the powers of ¢ is Do, = (x¢). Let I be a non-trivial ideal of L. Similarly to
what has been done in the proof of Proposition 2.6, one shows that L is not ¢-invariant by
proving the existence of w € I such that w &€ D. ]

Proposition 2.41. Assume that p = 3, and let L be a 3-dimensional Z,-Lie lattice. The
following are equivalent.
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(1) L is hereditarily self-similar of index p.

(2) L is isomorphic either to Lo or to L(s) for some s € N.

Proof. Remark 2.38 and Proposition 2.40 (2) show that the implication *“(2)=>(1)" holds
even in greater generality than stated here. For the other implication, we assume that (2)
does not hold and show that there exists a finite-index subalgebra M of L that is not self-
similar of index p. We divide the proof into two parts according to whether L is solvable
or unsolvable.

Assume that L is solvable. The following observations are enough to cover all the
cases (cf. Remark 2.21). If dim[L, L] = 1, then L itself is not self-similar of index p
(Proposition 2.13). If » = 1, then M = (xo, px1, x2) is a subalgebra of L;(s, r, ¢) and
M ~ Ly(s,r — 1, p?c).If r =2, then M is not self-similar of index p by Proposition 2.16.
If r = 1, one shows that L,(s,0, p?c) =~ L7(s, 1,4 '(p?c — 1)), so that M is not self-
similar of index p by item (5) of Proposition 2.20. Now, let L = L7(s,a, ¢) with ¢ # 0.
Observe that pL is a subalgebra of L and that pL ~ L;(s + 1,a, ¢); hence, we can assume
that s = 1. Then M = (xg, px1, X2) is a subalgebra of L and M ~ L;(s — 1, pa, p?c),
so that M is not self-similar of index p by item (1) of Proposition 2.20.

Now, assume that L is unsolvable. There exists a basis (xg, X1, X2) of L such that
[xi, Xi+i] = ai4+2Xi4+2, where the index i is interpreted in Z/37Z, and the a;’s are non-
zero p-adic integers with v, (ag) < vp(ar) < vp(az); see [19, Proposition 2.7]. It is not
difficult to see that one can choose kg, k1, k> € N such that, defining y; = pk" X;, one has
Vi, Yi+i] = bit2yi42, Where the b;’s are non-zero p-adic integers and v, (bo) < vp(b1) <
vp(b2). Hence, M = (yo, y1, y2) is a subalgebra of L that is not self-similar of index p
by [19, Theorem 2.32]. [

Proof of Theorem 2.34. Uniqueness of s is easy to prove (cf. Remark 2.38). The proof of
existence is by induction on d. For d = 2 the theorem is easily proven, while for d = 3
it follows from Proposition 2.41 and Remark 2.38. For the induction step, let d > 4 and
assume that the theorem holds with d’ in place of d, where d’ < d.Let £ = L ®z » Qp.
Since £ is a solvable Lie algebra over a field of characteristic 0, Lie’s theorem implies that
the Q,-Lie algebra [£, £] is nilpotent. Hence, the Z ,-Lie lattice [L, L] is nilpotent as well.

We prove that [L, L] is abelian. Denote temporarily M = [L, L], and assume by con-
tradiction that M is not abelian. Hence, M is a non-abelian nilpotent Lie lattice. Let ¢
be the nilpotency class of M; then ¢ = 2. We claim that there exists x, y € M such that
[x,v] #0and [x, y] € Z(M) (the center of M ). Indeed, {0} # y.—1(M) € Z(M). Hence,
there exist x € M and y € y.—»(M) such that [x, y] # 0. Since [x, y] € y.—1 (M), it follows
that [x, y] € Z(M), and the claim is proven. Let N be the subalgebra generated by x and
y. Then N is a nilpotent non-abelian subalgebra of L with dim[N, N] = 1. The dimension
of N is either 2 or 3. Since no non-abelian Lie lattice of dimension 2 is nilpotent, we have
dim N = 3. Hence, N is not self-similar of index p by Proposition 2.13, a contradiction.

Let m = dim[L, L]. Note that m < d, since otherwise L would not be solvable. If
m = 0 (L abelian), then one takes s = oco. Assume that m > 0 (L not abelian). Let
J =isor[L, L], which is an isolated abelian ideal of L. Hence, dim J = m, and there
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exists a basis (X1,...,X7—m, V1,---, Ym) of L such that (yy,..., yn) is a basis of J. Let
Greek indices take values in {1, ...,d — m}, and Latin indices take values in {1, ..., m}.
We have [y;, y;] = 0, and any commutator in L is a linear combination of the y;’s. Let
My = (Xq, Y1,---, Ym). Then My is a subalgebra of L of dimension m + 1 = 2. For
z € J,z # 0, define M to be the subalgebra of L generated by x; and z. Observe that
M has dimension n; > 2. Moreover, observe that all M,,’s and M’s are solvable and
strongly hereditarily self-similar of index p. We divide the proof into two cases.

(1)Casem <d — 1. Thenm + 1 <d and My, ~ L™+ (p%) for some s, € N U {oo}.
Since (xg, y;) is a subalgebra of My, [xq. yi] = cq:iy:i for some cq; € Z,. By contradic-
tion, assume that co; # co; for some i, j. Since (X, y; + y;) is a subalgebra of M,
[(Xa, yi + il = cai(yi +yj) + (caj — Cai)y;j € (Xa,yi + yj), which is a contradiction.
It follows that [xq, y;] = coyi for all indices i and some ¢, € Z, with v,(ca) = Sa.
Observe that d —m > 2 and that ¢, 7 0 for some .

(a) Case [xq,xg] =0foralla, B.Let N = (x4, Xq;, Y1) With o # 0g. Then N is a
subalgebra of L of dimension 3, and dim[V, N] = 1. Hence, N is not self-similar
of index p, a contradiction.

(b) Case [xg,,xp,] # 0forsome Bo, B1.Letz = [xg,,xp,], and let N = (xp,, xg,.,2).
Then N is a subalgebra of L of dimension 3, and dim[N, N] = 1 (observe that
[x,gj ,z] = CﬁjZ). Hence, N is not self-similar of index p, a contradiction.

(2) Case m = d — 1. Recall the notation n, = dim M.

(a) Case n; = d for some z. Let M = M and Jpr = isop [M, M]. Observe that
dim Jy; = d — 1. Define by recursion z; = z and z;4; = [x, z;] fori = 1. One
can show that Jyy = (z; : i = 1). We claim that {z;,...,z4_1} is a basis of
Jyr - Indeed, denoting by w the residue of w € Jys in Jyr/ pJyr, we show that
{Z1,...,Zg—1} is linearly independent over F, = Z,/pZ,. If it was not inde-
pendent, some Zj, would be a linear combination of Zy, ..., Zj,—1, and one could
prove (from the recursive definition of the z;’s) that any z;, i = jo, would be
such a linear combination, so that the dimension of Jps/pJy over F, would
be less than d — 1, a contradiction. The claim that {z1,...,z47_1} is a basis of
Ju over Z, follows, and from it we get a basis {x, zy,...,zg—1} of M, where
[zi,zj] = 0, [x,z;] = ziy1 fori <d —1,and [x,z4_4] = Z;i;ll a;jzj for some
aj € Zp. We claim that a; # 0. By contradiction, assume that a; = 0. Then
N :=({x,z3,...,24—1) is a subalgebra of L of dimension d — 1 = 3. Moreover,
N is solvable and strongly hereditarily self-similar of index p. Thus, there exists
s € N U {oo} such that N ~ L4=1(p%). Then (x, z,) is a subalgebra of N, a con-
tradiction (since d = 4). Hence, a; # 0. By Corollary 2.26, there exists a non-zero
subalgebra of M that is not self-similar of index p, which gives a contradiction.

(b) Casen, < d forall z. Then My/i ~ L™i(p*) for some s; € N U {oo} (for all 7).
Hence, (x1, y;) is a subalgebra of M’i, and so [xy, y;] = b; y; for some b; € Z,,.
Assume by contradiction that b, # b;, for some jo, ji. Let zo = yj, + y;,. Then
M, ~ L"=(p"). On the other hand, [x1,zo] = bj,zo + (bj, — bj,)yj, yields that
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the 2-generated algebra L"20 (p’) has dimension greater than 2, which is a contra-
diction. Thus, [x, y;] = by; for all indices i and some b € Z, with b # 0. Hence,
L~ L4(b) ~ L4(p*), where s = vp(b). |

3. Results on groups

In this section, we prove the main theorems of the paper, stated in Section 1. Essentially,
the proofs follow from the results on Lie lattices of Section 2 and from Proposition 3.1
below, which is a slightly generalized version of [19, Proposition A]. Before stating the
proposition we recall the notion of saturable pro-p group and Lazard’s correspondence.

A finitely generated pro-p group is saturable if it admits a certain type of valuation
map; for precise details we refer to [6, Section 3]. Saturable groups were introduced by
Lazard [15] and play a central role in the theory of p-adic analytic groups: a topological
group is p-adic analytic if and only if it contains an open finitely generated pro-p subgroup
which is saturable [15, Sections III (3.1) and III (3.2)]. With a saturable pro-p group G one
may associate a saturable Z ,-Lie lattice L in the following way: G and L¢ are identified
as sets, and the Lie operations are defined by

n

g+ h = lim (g7 h?")P",
n—o00

2n 2n

g Hluie = lim [g7", h7")7" = lim (g™ W7 g k)"

n—>oo
The assignment G +— L gives an isomorphism between the category of saturable pro-p
groups and the category of saturable Z,-Lie lattices; see [15, IV (3.2.6)], [11, Section 2],
and [7] for more details.

Proposition 3.1. Let G be a torsion-free p-adic analytic pro-p group. Assume that any
closed subgroup of G is saturable and that any 2-generated closed subgroup of G has
dimension at most p. Let Lg be the Z,-Lie lattice associated with G, and assume that
any 2-generated subalgebra of Lg has dimension at most p. Then, for all k € N, the
following holds.

(1) G is a self-similar group of index p* if and only if L is a self-similar Lie lattice
of index p*.

(2) G is hereditarily self-similar of index p* (respectively, strongly hereditarily self-
similar of index pk) if and only if Lg is hereditarily self-similar of index pk
(respectively, strongly hereditarily self-similar of index pk ).

Proof. The proposition follows from Lazard’s correspondence, [7, Theorem E], the
argument proving [G : D] = [Lg : Lp] in the proof of [19, Theorem 3.1], and from
[19, Proposition 1.3]. [

Remark 3.2. Let G be a torsion-free p-adic analytic pro-p group. If G is saturable and
dim(G) < p, then the hypotheses of Proposition 3.1 are satisfied; if dim(G) < p, then the
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same hypotheses hold without assuming a priori that G is saturable [7, Theorem A]. We
will also use the fact that if G is saturable and Lg is the associated Z,-Lie lattice, then G
is solvable if and only if L is solvable [6, Theorem B].

Remark 3.3. This remark is the analogue of Remark 2.35 in the context of groups. Let G
be a finitely generated pro-p group. For k € N, if G is strongly hereditarily self-similar
of index pk, then G is hereditarily self-similar of index pk. Assume, moreover, that G is
torsion-free and p-adic analytic. From [19, Proposition 1.5] it follows that if dim(G) =
1,2, then G is strongly hereditarily self-similar of index p* for all k = 1. Consequently,
if G has dimension 3 and G is hereditarily self-similar of index p¥, then G is strongly
hereditarily self-similar of index p*.

Proposition 3.4. Let m = 1, and let G be a 3-dimensional solvable torsion-free p-adic
analytic pro-p group. Assume that either “p = 5” or “p = 3 and G is saturable”. Then
G is strongly hereditarily self-similar of index p®™.

Proof. The proposition follows from Propositions 3.1 and 2.36. ]

Proof of Theorem C. Let L be the Z,-Lie lattice associated with G. Then L is a residually
nilpotent 3-dimensional solvable Lie lattice [7, Theorem B]. From Corollary 2.7, L is
self-similar of index p2. Hence, by Proposition 3.1, G is self-similar of index p2. The
statement on self-similarity of index p follows from Proposition 3.1, Theorem 2.22, and
Remark 2.21. ]

Proof of Theorem D. The theorem follows from Remark 3.3, Proposition 3.1, and Propo-
sition 2.41. ]

Remark 3.5. A similar result to Theorem C holds for p = 3. Let G be a 3-dimensional
solvable saturable 3-adic analytic pro-3 group. Then G is self-similar of index 9. Let L
be the Z3-Lie lattice associated with G. Then G is self-similar of index 3 if and only if L
is isomorphic to a Lie lattice appearing in the list of Theorem 2.22.

Remark 3.6. Let G be one of the groups in the list below, where d is an integer. Observe
that this list extends the one appearing in the statement of Theorem A (here there is no
assumption p > d).
(1) For d = 1, the abelian pro-p
vspace-1pt group Zg.
(2) Ford = 2, the metabelian pro-p group G¥ (s) = Zp X Zl‘f ~1, where the canonical
generator of Z, acts on Zl‘f_l by multiplication by the scalar 1 + p* for some
integer s suchthats > 1if p > 3,ands = 2if p = 2.

Then G is a uniformly powerful p-adic analytic pro-p group of dimension d. Let Lg be
the Z,-Lie lattice associated with G. Observe that if G is abelian, then Lg >~ L4 (0), while
if G = G9(s), then Lg ~ L9(p®). One can show that any subgroup of G generated by
two elements is powerful. It follows that any closed subgroup of G is uniformly powerful,
hence, saturable. Clearly, any 2-generated closed subgroup of G has dimension at most 2.
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Proposition 3.7. Let k = 1 be an integer, and let G be a group isomorphic to one of the
groups in the list of Remark 3.6. Then G is strongly hereditarily self-similar of index pk.

Proof. If d := dim(G) = 1, then G ~ Z,, and the result is clear. Assume that d > 2. The
result follows from Remark 3.6, Remark 2.38, Proposition 3.1, and Proposition 2.40. m

Under the assumption that p > dim(G) we can prove the converse of Proposition 3.7,
which is the main result of the paper.

Proof of Theorem A. The “if” part follows from Proposition 3.7. For the “only if” part, if
d =1, then G >~ Z,. Assume that d > 2. Observe that in this case p > 3. By Remark 3.2
we can apply Proposition 3.1. Let L be the Z,-Lie lattice associated with G, which is
residually nilpotent. From Theorem 2.34, Lg ~ L% (p*) for some s € N U{oo}, while from
residual nilpotency we deduce that s > 1. Now, the theorem follows from Remark 3.6. m

Assume that p is odd, and let K be a field that contains a primitive pth root of unity
(necessarily, K has a characteristic different from p). In [26], Roger Ware proved that if
Gk (p) is finitely generated and it does not contain a non-abelian free pro-p subgroup,
then Gk (p) is either a free abelian pro-p group of finite rank, or it is isomorphic to G (s)
for some integers d = 2 and s = 1. In particular, the same conclusion holds if Gg(p) is
solvable or p-adic analytic. Indeed, Ware proved this result under the additional assump-
tion that K contains a primitive pZth root of unity and conjectured that the result should be
true without this assumption. The conjecture was proved by Quadrelli [20, Corollary 4.9].
As a direct consequence of Proposition 3.7 and the result of Ware, we have the following.

Proposition 3.8. Assume that p = 3, and let K be a field that contains a primitive pth
root of unity. Suppose that Gg(p) is a non-trivial finitely generated pro-p group that
does not contain a non-abelian free pro-p subgroup. Then Gk (p) is strongly hereditarily
self-similar of index p.

Conversely, for p odd, it is shown in [26] that any group in the list of Remark 3.6 is
isomorphic to Gk (p) for some field K that contains a primitive pth root of unity. We recall
the construction of K for the non-abelian groups G (s), in which case d = 2 and s > 1.
Let r be a prime with r =, 1, and let F' = F, (wy), where I, is a finite field with r elements
and wj is a primitive p®th root of unity. Then one may take K = F((x1))---((xg—1)), the
field of iterated formal Laurent series.

Proof of Theorem B. For p > 2 the result follows from Theorem A and the above discus-
sion. When p = 2, we observe that Gr, (2) >~ Z, for any finite field [F; with ¢ elements;
this follows from the well-known fact that the absolute Galois group of [F, is isomorphic
t0Z = 1, Z,, where the product ranges over all primes r. ]

As mentioned in Section 1, during the last decade the groups listed in Theorem A
have been object of study. We recall the related results and complement them with the
results of this paper. A pro-p group G is said to have a constant generating number on
open subgroups if d(H) = d(G) for all open subgroups H of G, where d(G) is the
minimum number of elements of a topological generating set for G. Pro-p groups with
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constant generating number on open subgroups were classified by Klopsch and Snopce
in [12]. A Bloch-Kato pro-p group is a pro-p group G with the property that the IFp-
cohomology ring of every closed subgroup of G is quadratic. In [20], Quadrelli described
explicitly all finitely generated Bloch—Kato pro-p groups that do not contain a free non-
abelian pro-p group. A pro-p group G is said to be hereditarily uniform if every open
subgroup of G is uniform. Hereditarily uniform pro-p groups were classified by Klopsch
and Snopce in [13]. Finally, a pro-p group G is said to be Frattini-injective if distinct
finitely generated subgroups of G have distinct Frattini subgroups. Frattini-injective pro-
p groups were introduced and studied by Snopce and Tanushevski in [24]. The results
of Klopsch—Snopce, Quadrelli, and Snopce—Tanushevski ([12, Corollary 2.4], [13, Corol-
lary 1.13], [20, Theorem B], and [24, Theorem 1.2]) together with Theorem B yield the
following.

Theorem 3.9. Let G be a non-trivial solvable torsion-free p-adic analytic pro-p group,
and suppose that p > dim(G). Then the following are equivalent.
(1) G is strongly hereditarily self-similar of index p.

(2) G is isomorphic to the maximal pro-p Galois group of some field that contains a
primitive pth root of unity.

(3) G has constant generating number on open subgroups.
(4) G is a Bloch—Kato pro-p group.

(5) G is a hereditarily uniform pro-p group.

(6) G is a Frattini-injective pro-p group.

4. Open problems

This paper deals with as-yet-unexplored directions about self-similar groups, so there are
many interesting open problems that one may consider. The following two problems are
natural.

Problem 1. Classify the strongly hereditarily self-similar pro-p groups of index p.
Problem 2. Classify the hereditarily self-similar pro-p groups of index p.

All the examples of strongly hereditarily self-similar pro-p groups of index p that we
know are p-adic analytic.

Problem 3. Is there a finitely generated strongly hereditarily self-similar pro-p group of
index p which is not p-adic analytic?

Let K be a p-adic number field, that is, a finite extension of Q. It is well known (see
[18, Theorem 7.5.11]) that if K does not contain a primitive pth root of unity, then Gx (p)
is a free pro-p group of finite rank. On the other hand, if K contains a primitive pth root
of unity, then Gg(p) is a Demushkin group, that is, a Poincaré duality pro-p group of
dimension 2. Pro-p completions of surface groups are also Demushkin groups. It would
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be interesting to find a proof of Proposition 3.8 using Galois theory. Such a proof would
shed some light on how to approach the following two problems.

Problem 4. Does a free pro-p group of finite rank admit a faithful self-similar action on
a p-ary tree?

Problem 5. Does a Demushkin pro-p group admit a faithful self-similar action on a p-ary
tree?

Note that an affirmative answer to Problem 4 would imply that a free pro-p group
of finite rank is strongly hereditarily self-similar of index p. On the other hand, since
every open subgroup of a Demushkin group is also Demushkin, an affirmative answer to
Problem 5 would imply that Demushkin groups are hereditarily self-similar of index p.
Moreover, since every infinite index subgroup of a Demushkin group is free pro-p an
affirmative answer to both problems would imply that Demushkin groups are strongly
hereditarily self-similar of index p. Note that if G is a Demushkin group with d(G) = 2,
then it is a torsion-free p-adic analytic pro-p group of dimension 2, and therefore it is
strongly hereditarily self-similar of index p. Thus Problem 5 is open only for Demushkin
groups G with d(G) > 2.
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