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On hereditarily self-similar p-adic analytic pro-p groups

Francesco Noseda and Ilir Snopce

Abstract. A non-trivial finitely generated pro-p group G is said to be strongly hereditarily self-
similar of index p if every non-trivial finitely generated closed subgroup of G admits a faithful self-
similar action on a p-ary tree. We classify the solvable torsion-free p-adic analytic pro-p groups of
dimension less than p that are strongly hereditarily self-similar of index p. Moreover, we show that
a solvable torsion-free p-adic analytic pro-p group of dimension less than p is strongly hereditarily
self-similar of index p if and only if it is isomorphic to the maximal pro-p Galois group of some
field that contains a primitive pth root of unity. As a key step for the proof of the above results, we
classify the 3-dimensional solvable torsion-free p-adic analytic pro-p groups that admit a faithful
self-similar action on a p-ary tree, completing the classification of the 3-dimensional torsion-free
p-adic analytic pro-p groups that admit such actions.

Dedicated to Said Sidki on the occasion of his 80th birthday.

1. Introduction

Groups that admit a faithful self-similar action on some regular rooted d -ary tree Td form
an interesting class that contains many important examples such as the Grigorchuk 2-
group [8], the Gupta–Sidki p-groups [9], the affine groups Zn Ì GLn.Z/ [3], and groups
obtained as iterated monodromy groups of self-coverings of the Riemann sphere by post-
critically finite rational maps [16]. Recently there has been an intensive study on the self-
similar actions of other important families of groups including abelian groups [4], wreath
products of abelian groups [5], finitely generated nilpotent groups [2], arithmetic groups
[10], and groups of type FPn [14]. Self-similar actions of some classes of finite p-groups
were studied in [1, 25].

We say that a group G is self-similar of index d if G admits a faithful self-similar
action on Td that is transitive on the first level; moreover, we say that G is self-similar
if it is self-similar of some index d . In [19] we initiated the study of self-similar actions
of p-adic analytic pro-p groups. In particular, we classified the 3-dimensional unsolvable
torsion-free p-adic analytic pro-p groups for p > 5, and determined which of them admit
a faithful self-similar action on a p-ary tree. In the present paper, instead, we focus on the
study of self-similar actions of torsion-free solvable p-adic analytic pro-p groups.
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It is fairly easy to show that every free abelian group Zr of finite rank r > 1 is self-
similar of any index d > 2 (cf. [16, Section 2.9.2]; see also [17]). Hence, every non-trivial
subgroup of Zr is self-similar of any index d > 2. Similarly, every non-trivial closed
subgroup of a free abelian pro-p group Zrp is self-similar of index pk , for k > 1. Motivated
by this phenomenon we make the following definitions. A finitely generated pro-p group
G is said to be hereditarily self-similar of index pk if any open subgroup of G is self-
similar of index pk . If G and all of its non-trivial finitely generated closed subgroups are
self-similar of index pk , thenG is said to be strongly hereditarily self-similar of index pk .

From [19, Proposition 1.5], it follows that any torsion-free p-adic analytic pro-p group
of dimension 1 or 2 is strongly hereditarily self-similar of index pk for all k > 1. More-
over, it is not difficult to see that if p > 5, then any 3-dimensional solvable torsion-free
p-adic analytic pro-p group is strongly hereditarily self-similar of index p2m for allm> 1

(see Proposition 3.4). Observe that the latter class contains a continuum of groups that are
pairwise incommensurable (see [23]), in contrast to the discrete case, where there are
only countably many pairwise non-isomorphic finitely generated self-similar groups (cf.
[16, Section 1.5.3]). On the other hand, it is an interesting problem to understand which
pro-p groups have the property of being strongly hereditarily self-similar of index p, and
the main result of this paper is the classification of the solvable torsion-free p-adic analytic
pro-p groups with this property.

Theorem A. Let p be a prime, and let G be a solvable torsion-free p-adic analytic pro-
p group. Suppose that p > d WD dim.G/. Then G is strongly hereditarily self-similar of
index p if and only if G is isomorphic to one of the following groups:

(1) for d > 1, the abelian pro-p group Zdp ;

(2) for d > 2, the metabelian pro-p groupGd .s/ WDZp Ë Zd�1p , where the canonical
generator of Zp acts on Zd�1p by multiplication by the scalar 1C ps , for some
integer s > 1.

Observe that the “if” part of the theorem holds in greater generality (Proposition 3.7);
we also remark that the condition p > d makes it possible to apply Lie methods (see
Section 3, in particular, Remark 3.2). It is worth noting that during the last decade the
groups listed in Theorem A have appeared in the literature in different contexts (see, for
example, [12, 13, 20–22, 24]). The reader will find a more detailed account of the related
results at the end of Section 3.

Let K be a field. The absolute Galois group of K is the profinite group GK D

Gal.Ks=K/, where Ks is a separable closure of K. The maximal pro-p Galois group
ofK, denoted byGK.p/, is the maximal pro-p quotient ofGK . More precisely,GK.p/D
Gal.K.p/=K/, whereK.p/ is the composite of all finite Galois p-extensions ofK (inside
Ks). Describing absolute Galois groups of fields among profinite groups is one of the most
important problems in Galois theory. Already describing GK.p/ among pro-p groups is a
remarkable challenge. Theorem A and a result of Ware [26] yield the following.



On hereditarily self-similar p-adic analytic pro-p groups 87

Theorem B. Let p be a prime, and let G be a non-trivial solvable torsion-free p-adic
analytic pro-p group. Suppose that p > dim.G/. Then G is strongly hereditarily self-
similar of index p if and only if G is isomorphic to the maximal pro-p Galois group of
some field that contains a primitive pth root of unity.

Similarly to Theorem A, the “if” part holds in greater generality (Proposition 3.8).
The proof of Theorem A is by induction on d D dim.G/. As mentioned above, for

d D 1; 2 matters are trivial, while for d D 3 interesting phenomena start to occur. Indeed,
as a basis for the induction, one has to consider the case d D 3, and this leads us to the
classification result below. This result is interesting on its own right since it completes the
classification started by [19, Theorem B] of the 3-dimensional torsion-free p-adic analytic
pro-p groups that are self-similar of index p.

Theorem C. Let p > 5 be a prime and fix � 2 Z�p a non-square modulo p. Let G be
a 3-dimensional solvable torsion-free p-adic analytic pro-p group. Then the following
holds.

(1) G is self-similar of index p2.

(2) Let L be the Zp-Lie lattice associated with G. Then G is self-similar of index p if
and only if L is isomorphic to a Lie lattice presented in the following irredundant
list (cf. Remark 2.21; the parameters below take values s; r; t 2 N, c 2 Zp , and
" 2 ¹0; 1º):

(a) hx0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D 0; Œx0; x2� D 0i;

(b) for s > 1, hx0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D psx1; Œx0; x2� D psx2i;

(c) for s; r > 1 and vp.c/ D 1,˝
x0; x1; x2 j Œx1; x2� D 0;

Œx0; x1� D p
sx1 C p

sCrcx2;

Œx0; x2� D p
sCrx1 C p

sx2
˛
I

(d) hx0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D psC1�"x2; Œx0; x2� D psx1i;

(e) for s > 1, hx0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D psx2; Œx0; x2� D psx1i;

(f) for r > 1 and vp.c/ D 1,˝
x0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D p

sCrx1 C p
scx2; Œx0; x2� D p

sx1
˛
I

(g) for s > 1 and vp.1C 4c/ D 1,˝
x0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D p

sx1 C p
scx2; Œx0; x2� D p

sx1
˛
:

In dimension 3, Theorem C and [19, Theorem B] yield the following stronger version
of Theorem A.
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Theorem D. Let p > 5 be a prime, and let G be a 3-dimensional torsion-free p-adic
analytic pro-p group. Then the following are equivalent.

(1) G is hereditarily self-similar of index p.

(2) G is strongly hereditarily self-similar of index p.

(3) G is isomorphic to Z3p or to G3.s/ for some integer s > 1.

We believe that one can drop the assumption of solvability in Theorem A even in
higher dimension.

Conjecture E. Let p be a prime, and let G be a torsion-free p-adic analytic pro-p group
of dimension d . Suppose that p > d . Then G is strongly hereditarily self-similar of index
p if and only if G is isomorphic to Zdp for d > 1 or to Gd .s/ for d > 2 and some integer
s > 1.

Main strategy and outline of the paper. For the proof of the main results we use Lie
methods. More precisely, we use the language of virtual endomorphisms (see, for instance,
[19, Proposition 1.3]) to translate self-similarity problems on p-adic analytic groups to
problems on Zp-Lie lattices (Proposition 3.1). Recall from [19] that a Zp-Lie lattice L is
said to be self-similar of index pk if there exists a homomorphism of algebras ' WM !L,
where M � L is a subalgebra of index pk and ' is simple, which means that there are no
non-zero ideals of L that are '-invariant.

In Section 2, we prove results on Lie lattices, and for the main ones mentioned here we
assume that p > 3. The first main result of that section is Theorem 2.22, where we classify
the 3-dimensional solvable Zp-Lie lattices that are self-similar of index p, complementing
the analogue result for unsolvable lattices proven in [19, Theorem 2.32]. In Definition
2.32, we introduce the notion of (strongly) hereditarily self-similar Lie lattice. Thanks to
the classification result, we are able to prove Proposition 2.41, which is a classification of
the 3-dimensional Zp-Lie lattices that are (strongly) hereditarily self-similar of index p.
This result is particularly relevant since it is used as the basis of the induction (which is on
dimension) for the proof of the second main result on Lie lattices, Theorem 2.34, which
provides a classification of the solvable Zp-Lie lattices that are strongly hereditarily self-
similar of index p. At the beginning of Section 2 the reader will find a more detailed
account of its structure.

In Section 3, we prove the main theorems of the paper and provide additional results on
hereditarily self-similar groups. We observe that Theorem C follows from Theorem 2.22,
Theorem D follows from Proposition 2.41, and Theorem A follows from Theorem 2.34. In
Section 4, we state some open problems that we consider challenging and that we believe
will stimulate future research on the subject.

Notation. Throughout the paper, p denotes a prime number and�p denotes equivalence
modulo p. For p>3we fix �2Z�p a non-square modulo p. We denote the p-adic valuation
by vp W Qp ! Z [ ¹1º. The set N of natural numbers is assumed to contain 0. For the
lower central series n.G/ and the derived series ın.G/ of a group (or Lie algebra) G
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we use the conventions 0.G/ D G and ı0.G/ D G. By a Zp-lattice we mean a finitely
generated free Zp-module. Let L be a Zp-lattice. When M � L is a submodule, we
denote the isolator ofM in L by isoL.M/ WD ¹x 2 L W 9k 2 N pkx 2M º. We denote by
hx1; : : : ; xni the submodule of L generated by x1; : : : ; xn 2 L. When L has the structure
of a Lie algebra, we denote its center by Z.L/.

2. Results on Lie lattices

In this section, which is self-contained, we prove results about self-similarity of Zp-Lie
lattices. The main results, mentioned in Section 1, are proved under the assumption that
p > 3. On the other hand, most of the auxiliary results are valid and proved for any p,
and we believe that they constitute a large part of the work needed to generalize the main
results to p D 2. The structure of the section is as follows. In Section 2.1, we prove some
basic results on Zp-Lie lattices that admit an abelian ideal of codimension 1; these results
are used both for the study of 3-dimensional lattices and of lattices in higher dimension.
After two preparatory technical sections (Sections 2.2 and 2.3), in Section 2.4, we prove
one of the main theorems on Lie lattices (Theorem 2.22). After another preparatory section
(Section 2.5), in Section 2.6, we prove the other two main results (Proposition 2.41 and
Theorem 2.34). Apart from the main results, a few statements are worth to be mentioned
here, for instance, Propositions 2.6, 2.13, and 2.36. The most difficult technical results are
the proofs of non-self-similarity of Propositions 2.20 and 2.25.

We will be dealing with several families of Zp-Lie lattices, which we list in the def-
inition below. For p > 3, families from (0) to (5) are needed for the classification of
3-dimensional solvable Zp-Lie lattices (see Remark 2.21). Family (6) generalizes fami-
lies (0) and (1), while family (7) generalizes families (4) and (5).

Definition 2.1. We define eight families of 3-dimensional solvable Zp-Lie lattices
through presentations.

(0) L0 D hx0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D 0; Œx0; x2� D 0i.

(1) For s 2N, L1.s/D hx0; x1; x2 j Œx1; x2�D 0; Œx0; x1�D psx1; Œx0; x2�D psx2i.

(2) For s; r 2 N and c 2 Zp ,

L2.s; r; c/ D
˝
x0; x1; x2 j Œx1; x2� D 0;

Œx0; x1� D p
sx1 C p

sCrcx2;

Œx0; x2� D p
sCrx1 C p

sx2
˛
:

(3) For s 2 N, L3.s/ D hx0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D 0; Œx0; x2� D psx1i.

(4) For p > 3, s; t 2 N and " 2 ¹0; 1º,

L4.s; t; "/ D
˝
x0; x1; x2 j Œx1; x2� D 0; Œx0; x1� D p

sCt�"x2; Œx0; x2� D p
sx1

˛
:
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(5) For s; r 2 N and c 2 Zp ,

L5.s; r; c/ D
˝
x0; x1; x2 j Œx1; x2� D 0;

Œx0; x1� D p
sCrx1 C p

scx2;

Œx0; x2� D p
sx1

˛
:

(6) For a 2 Zp , L6.a/ D hx0; x1; x2 j Œx1; x2�D 0; Œx0; x1�D ax1; Œx0; x2�D ax2i.

(7) For s 2 N and a; c 2 Zp ,

L7.s;a;c/D
˝
x0;x1;x2 j Œx1;x2�D0; Œx0;x1�Dp

sax1Cp
scx2; Œx0;x2�Dp

sx1
˛
:

2.1. On a class of metabelian Lie lattices

Given an integer d > 1, we are going to consider .d C 1/-dimensional Zp-Lie lattices that
admit a d -dimensional abelian ideal. Greek indices will take values in ¹0; : : : ; dº, while
Latin indices will take values in ¹1; : : : ; dº. For matrices in gldC1.Qp/ we use a notation
like xU D .U˛ˇ /; moreover, for such a matrix, we denote U D .Uij / 2 gld .Qp/.

Let L be a .d C 1/-dimensional antisymmetric Zp-algebra. Observe that L admits a
d -dimensional abelian ideal if and only if there exists a basis x D .x0; : : : ; xd / of L and
a matrix A 2 gld .Zp/, A D .Aij /, such that for all i , j we have

Œxi ; xj � D 0;

Œx0; xi � D
X
l

Alixl :

In this case, hx1; : : : ; xd i is a d -dimensional abelian ideal. It is immediate to see that,
for such an L, the Jacobi identity holds, and that ı2.L/ D ¹0º; in other words, L is a
metabelian Lie lattice. When it exists, a basis as above is called a good basis of L, and A
is called the matrix of L with respect to the (good) basis x. Observe that A is the matrix
of the homomorphism of lattices Œx0; � � W hx1; : : : ; xd i ! hx1; : : : ; xd i with respect to the
displayed bases.

Let L be a .d C 1/-dimensional Zp-Lie lattice that admits a d -dimensional abelian
ideal, let x be a good basis of L, and let A be the corresponding matrix. Observe that
rk.A/ D dimŒL; L�, so that rk.A/ is an isomorphism invariant of L. In particular, A is
invertible over Qp if and only if dimŒL; L� D d , a relevant special case. Let M � L be
a finite-index submodule, let y D .y0; : : : ; yd / be a basis of M , and let xU D .U˛ˇ / 2

gldC1.Zp/ be the matrix of y with respect to x, namely, yˇ D
P
˛ U˛ˇx˛ . Observe that

M \ hx1; : : : ; xd i D hy1; : : : ; yd i if and only if U0i D 0 for all i ; moreover, there exists a
basis ofM such thatU˛ˇ D 0 for all ˛ < ˇ. We also observe that dimŒM;M�D dimŒL;L�.

Lemma 2.2. Let d;L;x;A;M;y; xUD.U˛ˇ/ be as above. Assume thatM\hx1; : : : ;xdiD
hy1; : : : ; yd i. Then U D .Uij / is invertible over Qp (it is a d � d matrix), and one may
define B 2 gld .Qp/ by B D U00U�1AU . Then the following holds.

(1) M is a subalgebra of L if and only if B has entries in Zp .
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(2) Assume that M is a subalgebra of L. Then y is a good basis of M and B is the
matrix of M with respect to y .

Proof. Since yj D
P
i Uijxi , it follows that Œyi ; yj � D 0. Over Qp , we have

Œy0; yj � D U00
X
i

Uij Œx0; xi � D U00
X
i;l

UijAlixl D U00
X
i;l;k

UijAliU
�1
kl yk ;

so that Œy0; yj � D
P
k Bkjyk . The lemma follows.

Observe that the case M D L is included in the above discussion. In this case, U is
invertible over Zp , and the defining formula of B is the change-of-basis formula for the
matrix of L (under lower block-triangular changes of basis).

We now study homomorphisms of algebras.

Lemma 2.3. Let L;M be .d C 1/-dimensional Zp-Lie lattices endowed with good bases
x; y , and let A; B be the respective matrices. Let ' W M ! L be a homomorphism of
modules, and let xF 2 gldC1.Zp/ be the matrix of ' with respect to the given bases; namely,
'.yˇ / D

P
˛ F˛ˇx˛ . Then the following holds.

(1) The homomorphism ' is a homomorphism of algebras if and only if, for all i; j :

(a)
P
l F0lBlj D 0;

(b) F0i .AF /kj � F0j .AF /ki D 0, for all k;

(c) .FB/ij D F00.AF /ij � F0j
P
l AilFl0.

(2) Assume that ' is a homomorphism of algebras and dimŒM;M�D d . Then F0i D 0
for all i .

(3) Assume that F0i D 0 for all i . Then ' is a homomorphism of algebras if and only
if FB D F00AF .

Proof. The homomorphism ' is a homomorphism of algebras if and only if, for all i; j ,
Œ'.yi /; '.yj /� D 0 and '.Œy0; yj �/ D Œ'.y0/; '.yj /�. One computes�
'.yi /; '.yj /

�
D

X
l

.F0iFlj � F0jFli /Œx0; xl � D
X
k

�
F0i .AF /kj � F0j .AF /ki

�
xk ;

'
�
Œy0; yj �

�
D

X
l;˛

BljF˛lx˛ D
�X

l

F0lBlj

�
x0 C

X
i

.FB/ijxi ;

�
'.y0/; '.yj /

�
D

X
l

.F00Flj �Fl0F0j /Œx0; xl �D
X
i

�
F00.AF /ij CF0j

X
l

AilFl0

�
xi ;

from which item (1) follows. For item (2), one observes that B is invertible over Qp and
applies item (1a). Item (3) follows directly from item (1).

Corollary 2.4. Let L be a .d C 1/-dimensional Zp-Lie lattice with dimŒL; L� D d , and
let ' W M ! L be a virtual endomorphism of L. Let x be a good basis of L. Then the
following holds.
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(1) Let y be a basis of M with the property M \ hx1; : : : ; xd i D hy1; : : : ; yd i. Then
FB D F00AF , where A, B , and xF are as in Lemma 2.3.

(2) Assume that hx1; : : : ; xd i �M . Then hx1; : : : ; xd i is a '-invariant ideal of L.

Remark 2.5. Any 3-dimensional solvable Zp-Lie lattice admits a 2-dimensional abelian
ideal.

2.2. Self-similarity results

When ' WM ! L is a virtual endomorphism of a Lie lattice L, we denote byDn, n 2 N,
the domain of the power 'n and define D1 D

T
n2N Dn. We recall that, by definition,

D0 D L and DnC1 D ¹x 2M W '.x/ 2 Dnº (see, for instance, [19, Definition 1.1]).

Proposition 2.6. Let k; d > 1 be integers, and let L be a Zp-Lie lattice of dimension
d C 1. Assume that L admits a d -dimensional abelian ideal. Then L is self-similar of
index pdk .

Proof. If L is abelian, it is easy to see that L is self-similar of index pm for all m>1.
Assume thatL is not abelian. There exists a basis .x0;x1; : : : ;xd / ofL such that Œxi ;xj �D
0 and Œx0; xi � D

Pd
lD1 Alixl for all 1 6 i , j 6 d , and some Ali 2 Zp . We define M D

hx0; p
kx1; : : : ; p

kxd i and observe thatM is a subalgebra of L of index pdk . We define a
homomorphism of algebras ' WM ! L by '.x0/ D x0 and '.pkxi / D xi for 1 6 i 6 d .
We are going to show that ' is simple. One sees that D1 D hx0i. Let I be a non-trivial
ideal of L. We show that I is not '-invariant by proving the existence of w 2 I such that
w 62D1. Indeed, there exists 0¤ z D a0x0 C � � � C adxd 2 I . If ai ¤ 0 for some i > 0,
then one may take w D z. Otherwise, z D a0x0 with a0 ¤ 0. Since L is not abelian, there
exists i > 0 such that Œx0; xi � ¤ 0. In this case one may take w D Œz; xi �.

Corollary 2.7. Let k > 1 be an integer, and let L be a 3-dimensional solvable Zp-Lie
lattice. Then L is self-similar of index p2k .

Proof. Since L admits a 2-dimensional abelian ideal, the corollary follows from Proposi-
tion 2.6.

In order to have a more elegant proof of simplicity in Lemma 2.9 below, we observe
that the following generalization of [16, Proposition 2.9.2] holds. Let R be a principal
ideal domain, and let K be the field of fractions of R. We identify R �K. Let d 2N,
ˆ W Kd!Kd be a K-linear function, and let pˆ.�/2KŒ�� be the characteristic polyno-
mial ofˆ. LetM be the set of x 2Rd such thatˆ.x/ 2Rd . ThenM is a sub-R-module of
Rd and the restriction ' WM !Rd ofˆmay be interpreted as a virtual endomorphism of
the R-module Rd (in the application below, Rd is thought of as an abelian R-Lie lattice).

Proposition 2.8. In the context described above, D1 D ¹0º if and only if there are no
monic irreducible factors of pˆ.�/ with coefficients in R.

Proof. The proof of [16, Proposition 2.9.2] works in this more general context.
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Lemma 2.9. Let k > 1 be an integer. Then the following Lie lattices are self-similar of
index pk:

(1) L6.a/;

(2) L2.s; r; c/ with vp.c/ D 1;

(3) L7.s; a; c/ with vp.c/ D 1 and vp.a/ > 1, or with vp.4c C a2/ D 1, vp.a/ D 0,
and vp.c/ D 0;

(4) for p > 3, L7.s; 0; 1/.

Proof. Let .x0; x1; x2/ be the basis of the relevant Lie lattice as given by its presentation
in Definition 2.1. We begin with L D L6.a/, where we exhibit a simple virtual endo-
morphism ' W M ! L of index pk . Define M D hx0; x1; pkx2i. For a D 0, the abelian
case, define '.x0/ D x1, '.x1/ D x2, and '.pkx2/ D x0. For a ¤ 0, define '.x0/ D x0,
'.x1/ D x2, and '.pkx2/ D x1. Recall that D1 is the intersection of the domains of the
powers of '. In the abelian case one shows that D1 D ¹0º, while in the non-abelian case
one shows that D1 D hx0i. Since a '-invariant subset of L has to be a subset of D1,
in both cases one shows that a non-zero ideal of L is not '-invariant (cf. the proof of
Proposition 2.6).

We now denote byL any of the Lie lattices that remain to be analyzed. From Corollary
2.7, it is enough to treat the case where kD 2l C 1 is odd. We exhibit a simple virtual endo-
morphism ' WM !L of index p2lC1. ForL2.s; r; c/, defineM D hx0;plx1;plC1x2i and
'.x0/ D x0, '.plx1/ D x1 C p�1cx2, and '.plC1x2/ D x1 C px2. For L7.s; a; c/ with
vp.c/ D 1 and vp.a/ > 1, define M D hx0; plx1; plC1x2i and '.x0/ D x0, '.plx1/ D
p�1cx2, and '.plC1x2/D x1 � ax2. ForL7.s;a;c/with vp.4cC a2/D 1, vp.a/D 0 and
vp.c/D 0 (necessarily p > 3), defineM D hx0; pl .x1 � 2�1ax2/; plC1x2i and '.x0/D
x0, '.pl .x1 � 2�1ax2// D p�1.c C 4�1a2/x2, and '.plC1x2/ D x1 � 2�1ax2. Finally,
for L7.s; 0; 1/, defineMDhx0; pl .x1�x2/; plC1x2i and '.x0/D�x0, '.pl .x1�x2//D
x1 C x2, and '.plC1x2/ D x1 � .1C p/x2. The proof of simplicity of ' may go as fol-
lows. Let  W M \ hx1; x2i ! hx1; x2i be the restriction of '. Let D1 be as above, and
letE1 be the intersection of the domains of the powers of  . We haveD1 D hx0i ˚E1
(indeed, ' is the direct sum of  and a homomorphism that sends hx0i to hx0i). We claim
that E1 D ¹0º, from which the simplicity of ' follows. Observe that in each of the cases
at hand  is an isomorphism. Because of that, one can see that the virtual endomorphism
associated withˆ WD  ˝Qp (as described above Proposition 2.8) may be identified with
 . Hence, by the proposition itself, it suffices to show that the characteristic polynomial
p.�/2QpŒ�� ofˆ WQpx1˚Qpx2!Qpx1˚Qpx2 has no monic irreducible factors with
coefficients in Zp . We treat the case ofL2.s; r; c/; the other cases are similar and are left to
the reader. We have ˆ.x1/ D p�lx1 C p�l�1cx2 and ˆ.x2/ D p�l�1x1 C p�lx2. Then
p.�/D �2 � 2p�l�Cp�2l � cp�2l�2. Observe that vp.p�2l � cp�2l�2/D�2l � 1 < 0
so that in case p.�/ is irreducible there is nothing left to prove. Assume that p.�/ is
reducible. The proof of the lemma is concluded once we prove that this assumption
leads to a contradiction. Indeed, p.�/ D .� � �/.� � �/ for some �; � 2 Qp . We have
�C � D 2p�l and �� D p�2l � cp�2l�2. Since vp.�/C vp.�/D�2l � 1, then, without
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loss of generality, we can assume that vp.�/ < vp.�/, so that vp.�/ 6 �l � 1. It follows
that vp.�C �/ 6 �l � 1 < vp.2p�l / D vp.�C �/, a contradiction.

2.3. Non-self-similarity results in dimension 3

The main results of this relatively long technical section are Propositions 2.13, 2.16, and
2.20.

Remark 2.10. Let L be a 3-dimensional Zp-lattice endowed with a basis .x0; x1; x2/.
For e; f 2 Zp we define submodules of L of index p by L. / D hpx0; x1; x2i, L.e/ D
hx0 C ex1; px1; x2i, and L.e;f / D hx0 C ex2; x1 C f x2; px2i. Any submodule of L of
index p is isomorphic to L� for some � D . /; .e/; .e; f /. By changing e or f modulo p,
L.e/ and L.e;f / do not change (cf. [19, Definition 2.22, Lemma 2.23]). Observe that when
L� is displayed as above, it is endowed with a basis.

Assume thatM is a submodule of L of index p endowed with a basis .y0; y1; y2/, and
let ' WM ! L be a homomorphism of modules. We denote by xF D .F˛ˇ / 2 gl3.Zp/ the
matrix of ' relative to the respective bases, namely, '.yˇ /D

P
˛ F˛ˇx˛ (cf. Section 2.1).

First, we treat the case where dimŒL;L� D 1.

Lemma 2.11. Let L be a 3-dimensional Zp-Lie lattice with dimŒL; L� D 1. Then the
following holds.

(1) dimZ.L/ D 1.

(2) Let M � L be a subalgebra of index p. Then Z.L/ �M or ŒM;M� D ŒL;L�.

Proof. There exist s 2N, r 2N [ ¹1º and a basis .x0;x1;x2/ ofL such that Œx1;x2�D 0,
Œx0; x1� D ps.prx1 C x2/, and Œx0; x2� D 0, where p1 WD 0. For item (1), one easily
checks that Z.L/ D hx2i. For item (2), one observes that if M is of type L. / or L.e/ (cf.
Remark 2.10), then Z.L/ � M . On the other hand, if M is of type L.e;f /, then it is a
straightforward computation to show that ŒM;M� D ŒL;L�.

Lemma 2.12. LetL be a 3-dimensional Zp-Lie lattice with dimŒL;L�D 1. Let ' WM!L

be a virtual endomorphism of L. If ' is simple, then ' is injective.

Proof. Assume that ' is not injective. We exhibit a non-trivial '-invariant ideal I of L.

Case 1: ker' �Z.L/. Since dimZ.L/D 1, then dimker' D 1, so that there exists k 2N
such that pkZ.L/ � ker'. Thus, it suffices to take I D pkZ.L/.

Case 2: ker' 6� Z.L/. There exists z 2 ker' such that z 62 Z.L/, so Œw; z�¤ 0 for some
w 2 L. Since M has finite index in L, there exists k 2 N such that pkw 2 M . Hence,
pk Œw; z�¤ 0 and pk Œw; z� 2 ker'. By taking x 2 L such that isoLŒL;L�D hxi, one sees
that pk Œw; z� D ax for some a 2 Zp with a ¤ 0. Thus, it suffices to take I D haxi.

Proposition 2.13. Let L be a 3-dimensional Zp-Lie lattice with dimŒL; L� D 1. Then L
is not self-similar of index p.
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Proof. Let ' W M ! L be a virtual endomorphism of L of index p. We prove that ' is
not simple by either referring to a previous result or by exhibiting a non-trivial '-invariant
ideal I ofL. If ŒM;M�D ŒL;L�, then it suffices to take I D ŒL;L�. Otherwise, by item (2)
of Lemma 2.11, we haveZ.L/�M . ThenZ.L/DZ.M/. Also, if ' is not injective, then
' is not simple (Lemma 2.12); hence, we can assume that ' is injective. Then dim'.M/D

dimL, so that '.Z.M// � Z.L/. Thus, it suffices to take I D Z.L/.

Next, we treat the case where dimŒL;L� D 2.

Lemma 2.14. In the context of Remark 2.10, assume that F01 D F02 D 0. Then the fol-
lowing holds.

(1) Assume that M DL. /. Then hx1; x2i is '-invariant.

(2) Assume that M DL.e/, pjF11, and pjF21. Then hpx1; px2i is '-invariant.

(3) Assume that M DL.e;f /, pjF12, and pjF22. Then hpx1; px2i is '-invariant.

(4) Assume thatMDL.e;f /, f �p0, pjF21, and pjF22. Then hx1;px2i is '-invariant.

Proof. We leave the simple proof to the reader.

Lemma 2.15. Let L be a 3-dimensional Zp-Lie lattice with dimŒL; L� D 2, and let x D

.x0; x1; x2/ be a good basis of L. LetM D hx0 C ex1; px1; x2i for some e 2 Zp , assume
that M is a subalgebra of L, and let ' WM ! L be a homomorphism of algebras. Let

A D ps
�
a b

c d

�
; s 2 N; a; b; c; d 2 Zp

be the matrix ofL with respect to x. Moreover, assume that one of the following conditions
is true:

(1) vp.b/ D 0 or

(2) a D d D 1, vp.b/ 6 vp.c/, and b ¤ 0.

Then hpx1; px2i is a '-invariant ideal of L.

Proof. Clearly, I D hpx1; px2i is an ideal of L. Let B be the matrix of M with respect
to the displayed basis, and let xF be the matrix of '. From item (1) of Corollary 2.4 it
follows that FB D F00AF , and this matrix equation is equivalent to the system of scalar
equations

a.1 � F00/F11 C pcF12 � bF00F21 D 0; (2.1)

�cF00F11 C .a � dF00/F21 C pcF22 D 0; (2.2)

bF11 C p.d � aF00/F12 � pbF00F22 D 0; (2.3)

�pcF00F12 C bF21 C pd.1 � F00/F22 D 0: (2.4)

From item (2) of Lemma 2.14 it is enough to show that pjF11 and pjF21. Indeed, we claim
that pjF11 and pjF21 and proceed to prove the claim. In case vp.b/D 0, the claim follows
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from (2.3) and (2.4). Assume that aD d D 1 and r WD vp.b/6 vp.c/. If vp.1� F00/> r ,
the claim follows again from (2.3) and (2.4). In case vp.1 � F00/ < r the claim follows
from (2.1) and (2.2).

Proposition 2.16. Let s; r 2N with r > 1, and let c 2Zp with vp.c/¤ 1. ThenL2.s; r; c/
is not self-similar of index p.

Proof. Observe that dimŒL; L� D 2. Let ' W M ! L be a virtual endomorphism of L of
index p. We will show that there exists a non-trivial '-invariant ideal I of L, from which
the proposition follows. Observe that hx1; x2i, hpx1; px2i, and hx1; px2i are non-trivial
ideals of L. The '-invariance of the various I defined below follows from Lemma 2.3 (2)
and Lemma 2.14. Observe that the matrix equation FB D F00AF of item (1) of Corollary
2.4 holds. We divide the proof into four cases.

Case 1: M D L. /. It suffices to take I D hx1; x2i.

Case 2: M D L.e/. It suffices to take I D hpx1; px2i (Lemma 2.15).

Case 3: M D L.e;f / with f 6�p 0. The matrix equation FB D F00AF implies that the
following equations hold true:

p.1C prf � F00/F11 C .�f � p
rf 2 C prc C p2f /F12 � p

rC1F00F21 D 0;

�prC1cF00F11 C p.1C p
rf � F00/F21 C .�f � p

rf 2 C prc C p2f /F22 D 0;

from which we can see that pjF12 and pjF22. Thus, it suffices to take I D hpx1; px2i.

Case 4: M D L.e;0/. The matrix equation FB D F00AF is equivalent to the equations

.1 � F00/F11 C p
r�1cF12 � p

rF00F21 D 0; (2.5)

�prcF00F11 C .1 � F00/F21 C p
r�1cF22 D 0; (2.6)

prC1F11 C .1 � F00/F12 � p
rF00F22 D 0; (2.7)

�prcF00F12 C p
rC1F21 C .1 � F00/F22 D 0: (2.8)

If vp.1 � F00/ < r , then (2.7) and (2.8) imply that pjF12 and pjF22, and we can take
I D hpx1; px2i. Assume that l WD vp.1� F00/ > r . Observe that, since r > 1, F00 2 Z�p .
We divide the proof into two cases, according to whether vp.c/ > 2 or vp.c/ D 0.

(1) Assume that vp.c/ > 2.

(a) Assume that l > r C 1. From (2.7), we have pjF22, so that pjF21 (see (2.8)).
Thus, it suffices to take I D hx1; px2i.

(b) Assume that l D r . From (2.8), we have pjF22, so that pjF12 (see (2.7)).
Thus, it suffices to take I D hpx1; px2i.

(2) Assume that vp.c/ D 0. From (2.5), we have pjF12; from (2.6), we have pjF22.
Thus, it suffices to take I D hpx1; px2i.

Lemma 2.17. Let s 2 N and a; c; e; f 2 Zp with c ¤ 0. Define L D L7.s; a; c/, where
L is endowed with the basis .x0; x1; x2/ given in Definition 2.1. Let M D hx0 C ex2;
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x1 C f x2; px2i and assume that M is a subalgebra of L. Let ' WM ! L be homomor-
phism of algebras, and let F be the matrix of ' with respect to the given bases. Then

pF21 � F00
�
pfF11 C .c � af � f

2/F12
�
D 0; (2.9)

F22 � F00
�
pF11 � .aC f /F12

�
D 0; (2.10)

.F00 � 1/
�
� p.1C F00/F11 C

�
f .1C F00/C aF00

�
F12

�
D 0; (2.11)

.F00 � 1/
�
p
�
aC f .1C F00/

�
F11 C .1C F00/.c � af � f

2/F12
�
D 0: (2.12)

Proof. The result follows from Corollary 2.4 (1).

Lemma 2.18. In the context of Lemma 2.17, the following holds.

(1) Assume that pjF12. Then hpx1; px2i is a '-invariant ideal of L.

(2) Assume that c�af �f 2D0, a¤0, 2f Ca 6�p 0, and F122Z�p . Then hx1Cf x2i
is a '-invariant ideal of L.

(3) Assume that p > 3, f D�2�1a, vp.a/D 0, vp.4cC a2/ > 2, and F12 ¤ 0. Then
hx1 � 2

�1ax2; px2i is a '-invariant ideal of L.

Proof. (1) From (2.10) of Lemma 2.17 it follows that pjF22. Now the item follows from
item (3) of Lemma 2.14.

(2) Observe that f ¤ 0;�a, since c ¤ 0. One checks directly that Œx0; x1 C f x2� is a
Zp-multiple of x1 C f x2; hence, I D hx1 C f x2i is an ideal of L. We have

'.x1 C f x2/ D F11.x1 C f x2/C .F21 � fF11/x2:

(a) Case F00 D 1. From (2.9) of Lemma 2.17 we have F21 D fF11; hence, I is
'-invariant.

(b) Case F00 ¤ 1. Since F12 2 Z�p , (2.11) and (2.12) of Lemma 2.17 have a non-
trivial solution in the variables F11 and F12. It follows that�

f .1C F00/C aF00
��
aC f .1C F00/

�
D 0:

(i) Case f .1C F00/C aF00 D 0. We have

F00 D �
f

aC f
; aC f .1C F00/ D a

aC 2f

aC f
¤ 0:

Hence, F11 D 0 (see (2.12)), so that F21 D 0 (see (2.9)). Hence, I is '-
invariant.

(ii) Case aC f .1C F00/ D 0. We show that we have a contradiction. Indeed,
F00 D �

aCf
f

, so that aŒpF11 � .2f C a/F12� D 0 (see (2.11)), and con-
sequently pF11 D .2f C a/F12 2 Z�p , which is a contradiction.

(3) By applying Œx0; � � to its generators, one sees that I D hx1 � 2�1ax2; px2i is an
ideal of L. We have (cf. item (2) of Lemma 2.3)

'.x1 � 2
�1ax2/ D F11.x1 � 2

�1ax2/C .F21 C 2
�1aF11/x2;

'.px2/ D F12.x1 � 2
�1ax2/C .F22 C 2

�1aF12/x2;
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from which we see that to show that I is '-invariant is equivalent to show that
pj.F21 C 2

�1aF11/ and pj.F22 C 2�1aF12/. We claim that, indeed, pj.F21 C 2�1aF11/
and pj.F22 C 2�1aF12/. In fact, (2.9) and (2.10) of Lemma 2.17 are equivalent to

F21 C 2
�1aF11 D �.F00 � 1/2

�1aF11 C F00p
�1.c C 4�1a2/F12;

F22 C 2
�1aF12 D pF00F11 � .F00 � 1/2

�1aF12:

(a) Case F00 D 1. The claim is obviously true.

(b) Case F00 ¤ 1. Since F12 ¤ 0, (2.11) and (2.12) of Lemma 2.17 have a non-trivial
solution in the variables F11 and F12. Hence, the determinant of the coefficient
matrix has to be zero, which implies that

a2.F00 � 1/
2
� .F00 C 1/

2.4c C a2/ D 0:

It follows that pj.F00 � 1/, so the claim is true.

Corollary 2.19. In the context of Lemma 2.17, assume that a ¤ 0 and that f is a simple
root modulo p of the polynomial P.�/ D �2 C a� � c. Then ' is not simple.

Proof. From Hensel’s lemma it follows that there exists Nf 2 Zp such that Nf �p f and
P. Nf / D 0. Clearly, 2 Nf C a 6�p 0 and M D hx0 C ex2; x1 C Nf x2; px2i. In other words,
we can assume that c � af � f 2 D 0 and 2f C a 6�p 0. In case pjF12, hpx1; px2i is
a non-trivial '-invariant ideal of L by Lemma 2.18 (1). In case p−F12, hx1 C f x2i is a
non-trivial '-invariant ideal of L by Lemma 2.18 (2). Hence, ' is not simple.

Proposition 2.20. Let s 2 N and a; c 2 Zp with c ¤ 0. Assume that one of the following
conditions is satisfied:

(1) vp.a/ > 1 and vp.c/ > 2;

(2) vp.a/ D 0 and vp.c/ > 1;

(3) p > 3, a ¤ 0, vp.a/ > 1, and vp.c/ D 0;

(4) a D 0, vp.c/ D 0, and c is not a square modulo p;

(5) vp.a/ D 0, vp.c/ D 0, and vp.4c C a2/ ¤ 1.

Then L7.s; a; c/ is not self-similar of index p.

Proof. Observe that dimŒL;L�D 2. Denote LD L7.s; a; c/, and let ' WM ! L be a vir-
tual endomorphism of L of index p. We will show that ' is not simple by either applying
a previously proven result or exhibiting a '-invariant ideal I of L. Recall Remark 2.10.
If M D hpx0; x1; x2i, then it suffices to take I D hx1; x2i (Corollary 2.4 (2)). If M D
hx0C ex1;px1; x2i, where e 2Zp , then it suffices to take I D hpx1;px2i (Lemma 2.15).
Assume that M D hx0 C ex2; x1 C f x2; px2i, where e; f 2 Zp (the last case to be
treated). By Lemma 2.18 (1), we can assume that F12 2 Z�p . We observe that this implies
that c � af � f 2 �p 0. We divide the proof into several cases, depending on which
assumption of the statement holds.
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(1) Assume that vp.a/ > 1 and vp.c/ > 2. Hence, f �p 0, and it follows that pjF21
and pjF22. Thus, it suffices to take I D hx1; px2i, which is an ideal of L (since,
in particular, vp.c/ > 1) and is '-invariant by Lemma 2.14 (4).

(2) Assume that vp.a/ D 0 and vp.c/ > 1, or that p > 3, a ¤ 0, vp.a/ > 1, and
vp.c/D 0. Then f is a simple root of the polynomialP.�/D �2C a� � c modulo
p. Applying Corollary 2.19, we see that ' is not simple.

(3) Assume that a D 0, vp.c/ D 0, and c is not a square modulo p. This case contra-
dicts c � af � f 2 �p 0.

(4) Assume that vp.a/D0, vp.c/D0, and vp.4cCa2/¤1. Case 1: vp.4cCa2/D 0.
Then f is a simple root of the polynomial P.�/D �2C a� � c modulo p. Apply-
ing Corollary 2.19, we see that ' is not simple. Case 2: vp.4c C a2/ > 2. Then
p > 3 and f �p �2�1a. We can assume that f D �2�1a. By Lemma 2.18 (3),
we can take I D hx1 � 2�1ax2; px2i.

2.4. Self-similarity of 3-dimensional solvable Lie lattices

Remark 2.21. Assume that p > 3. Any 3-dimensional solvable Zp-Lie lattice is isomor-
phic to exactly one of the Lie lattices in the list below (see Definition 2.1 for the notation
and [7, Proposition 7.3] for the proof). We also give necessary and sufficient conditions for
the respective Lie lattice to be residually nilpotent (cf. [7, p. 731]). For p > 5 the resid-
ually nilpotent Lie lattices in the list provide a classification of 3-dimensional solvable
torsion-free p-adic analytic pro-p groups (cf. [7, Theorem B]).

(0) L0. It is abelian; hence, it is residually nilpotent.

(1) L1.s/. It is residually nilpotent if and only if s > 1.

(2) L2.s; r; c/ with r > 1. It is residually nilpotent if and only if s > 1.

(3) L3.s/. It is nilpotent; hence, it is residually nilpotent.

(4) L4.s; t; "/. It is residually nilpotent if and only if s > 1 or t > 1.

(5) L5.s; r; c/. It is residually nilpotent if and only if s > 1 holds, or r > 1 and vp.c/>
1 hold.

Recall that the self-similarity index of a self-similar Zp-Lie lattice L is the smallest
power of p, say pk , such that L is self-similar of index pk .

Theorem 2.22. Assume that p > 3. LetL be a 3-dimensional solvable Zp-Lie lattice, and
let � be the self-similarity index of L. Then � D p or � D p2. Moreover, � D p if and
only if L is isomorphic to one of the Lie lattices that appear in the following sublist of the
list given in Remark 2.21:

(0) L0;

(1) L1.s/;

(2) L2.s; r; c/ with vp.c/ D 1 (and r > 1);
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(4) L4.s; t; "/ with t D 1, or with t D 0 and " D 0;

(5) L5.s; r; c/ with r > 1 and vp.c/ D 1, or with r D 0 and vp.4c C 1/ D 1.

Proof. By Corollary 2.7, � D p or � D p2. Observe that L0 D L6.0/, L1.s/ D L6.ps/,
L4.s; t; "/D L7.s; 0; p

t�"/, and L5.s; r; c/D L7.s; pr ; c/. The claim that the Lie lattices
in the statement are self-similar of index p follows from Lemma 2.9. The remaining Lie
lattices of Remark 2.21 (the ones not in the statement) are not self-similar of index p by
Propositions 2.13, 2.16, and 2.20.

2.5. Non-self-similarity results in higher dimension

The main results of this section are Proposition 2.25 and Corollary 2.26; the latter is a key
ingredient in the proof of Theorem 2.34.

Let d > 2 be an integer. As in Section 2.1, Greek indices will take values in ¹0; : : : ; dº,
while Latin indices will take values in ¹1; : : : ; dº. We denote the p-adic valuation by v
instead of vp .

Definition 2.23. Let a D .a1; : : : ; ad / 2 Zdp and b D .b1; : : : ; bd�1/ 2 Zd�1p . We define
an antisymmetric .d C 1/-dimensional Zp-algebra L.a; b/ as follows. As a Zp-module,
L D ZdC1p . Denoting by .x0; : : : ; xd / the canonical basis of L, the bracket of L.a; b/ is
induced by the commutation relations

Œxi ; xj � D 0;

Œx0; x1� D
P
i aixi ;

Œx0; xiC1� D bixi if i < d:

Remark 2.24. L.a; b/ is a metabelian (possibly abelian) Lie lattice.

We will prove the following proposition at the end of the section.

Proposition 2.25. Let a 2 Zdp and b 2 Zd�1p be as in Definition 2.23. Assume that

(1) ad ¤ 0,

(2) v.bi / < v.biC1/ whenever i < d � 1,

(3) v.bi / < v.ai / whenever i < d , and

(4) v.bd�1/C 1 < v.ad /.

Then L.a; b/ is not self-similar of index p.

Corollary 2.26. Let a 2 Zdp and b 2 Zd�1p be as in Definition 2.23. Assume that ad ¤ 0
and b1 D � � � D bd�1 D 1. Then L.a; b/ admits a finite-index subalgebra that is not self-
similar of index p.

Proof. Let L D L.a; b/ and take k0; : : : ; kd 2 N as follows. Choose

k0 >
d � 1

2
; k1 > max

�
.i � 1/k0 �

.i � 1/.i � 2/

2

�
iD1;:::;d
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and, for i > 2, define

ki D k1 � .i � 1/k0 C
.i � 1/.i � 2/

2
:

It is not difficult to show that k0Ck1�ki>i�1 for all i . DefineMDhpk0x0; : : : ;pkd xd i.
Then M is a finite-index subalgebra of L which is isomorphic to L.a0; b0/, where

b0i D p
i�1 if i < d;

a0i D p
k0Ck1�kiai :

By Proposition 2.25, M is not self-similar of index p.

The remainder of the section is devoted to the proof of Proposition 2.25.

Remark 2.27. Let a 2 Zdp , b 2 Zd�1p , and L D L.a; b/; see Definition 2.23. We define
I0 D hx1; : : : ; xd i and Ii D hx1; : : : ; xi�1; pxi ; : : : ; pxd i. Hence, I1 D pI0 and I1 �
I2 � � � � � Id � I0. Moreover, I0 and I1 are ideals of L.

Lemma 2.28. Let i > 1 and Ii be defined as in Remark 2.27. Then Ii is an ideal of L if
and only if pjaj for all j > i .

Proof. It suffices to observe that Ii is an ideal of L if and only if Œx0; y� 2 Ii for all the
generators y of Ii displayed in the definition of Ii .

Lemma 2.29. Let a1; : : : ; ad ; b1; : : : ; bd�1 2 Zp and define A D .Aij / 2 gld .Zp/ by

Aij D

8̂̂<̂
:̂
ai if j D 1;

bi if j D i C 1;

0 if j > 1 and j ¤ i C 1:

Let i0 2 ¹1; : : : ; dº and f1; : : : ; fi0�1 2 Zp (no choice of coefficients “f ” has to be made
when i0 D 1). Define U D .Uij / 2 gld .Zp/ by

Uij D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

p if i D j D i0;

1 if i D j ¤ i0;

�fj if i > j and i D i0;

0 if i > j and i ¤ i0;

0 if i < j:

Let yU be the cofactor matrix of U . Let F00 2 Zp and F D .Fij / 2 gld .Zp/. Assume
that F yU TA D F00AF yU T and that the ai ’s and bj ’s satisfy the four assumptions in the
statement of Proposition 2.25. Then the following holds.

(1) Assume that fk D 0 for all k < i0. Then pjFij for i > i0 and j 6 i0.

(2) Assume that there exists k0 < i0 such that fk0 6�p 0 and fk D 0 for all k < k0.
Then pjFi;i0 for i > k0, and pjFij for i > k0 and j < k0.
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Proof. We have

yU Tij D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1 if i D j D i0;

p if i D j ¤ i0;

fj if i > j and i D i0;

0 if i > j and i ¤ i0;

0 if i < j:

A straightforward computation gives

.F yU TA/ik D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

P
j<i0

.pajFij C fjajFi;i0/

C ai0Fi;i0 C
P
j>i0

pajFij if k D 1;

pbk�1Fi;k�1 C fk�1bk�1Fi;i0 if 1 < k < i0 C 1;

bi0Fi;i0 if k D i0 C 1;

pbk�1Fi;k�1 if k > i0 C 1

and

.F00AF yU
T /ik D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

F00paiF1k C F00fkaiF1;i0

C F00pbiFiC1;k C F00fkbiFiC1;i0 if i < d and k < i0;

F00aiF1;i0 C F00biFiC1;i0 if i < d and k D i0;

F00paiF1k C F00pbiFiC1;k if i < d and k > i0;

F00padF1k C F00fkadF1;i0 if i D d and k < i0;

F00adF1;i0 if i D d and k D i0;

F00padF1k if i D d and k > i0:

We denote by F.i; k/ the equality .F yU TA/ik D .F00AF yU T /ik , which is true for all i
and k by assumption. Observe that bi ¤ 0 whenever i < d . We divide the proof of the
two items of the statement of the lemma into four cases. The fourth case will be treated in
detail, while the details of the other cases are left to the reader.

(1) Item (2) of the statement, proof of pjFi;i0 . The claim pjFi;i0 follows from
F.i; k0 C 1/. The proof has to be done by descending induction on i , since for
i D k0 one needs to use that pjFk0C1;i0 .

(2) Item (2) of the statement, proof of pjFij . The claim pjFij follows from
F.i; j C 1/. We observe that for i D k0 and j D k0 � 1 one has also to use
that pjFk0C1;i0 , which was proven in the previous item.

(3) Item (1) of the statement, case i0 < d . The claim pjFij follows from F.i; j C 1/.
The proof has to be done by descending induction on j , since for i D i0 and
j D i0 � 1 one needs to use that pjFi0C1;i0 .
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(4) Item (1) of the statement, case i0 D d . We have to prove that pjFdj for all j .

(a) Assume that j < d � 1. The equation F.d; j C 1/ reads

pbjFdj D F00padF1;jC1:

Hence, v.Fdj / > v.ad / � v.bj /. In particular, pjFdj .

(b) Assume that j D d � 1. The equation F.d; j C 1/ reads

pbd�1Fd;d�1 D F00adF1;d :

Hence, v.Fd;d�1/ > v.ad / � v.bd�1/ � 1. In particular, pjFd;d�1.

(c) Assume that j D d . The equation F.d; 1/ readsX
j<d

pajFdj C adFdd D F00padF11:

For all j < d � 1, we have v.pajFdj /D 1C v.aj /C v.Fdj /> 1C v.aj /C

v.ad / � v.bj / > v.ad /. For j D d � 1, we have

v.pad�1Fd;d�1/ D 1C v.ad�1/C v.Fd;d�1/

> 1C v.ad�1/C v.ad / � v.bd�1/ � 1

> v.ad /:

Hence, pjFdd .

Remark 2.30. Let L be a .d C 1/-dimensional Zp-lattice endowed with a basis .x0; : : : ;
xd /, and let M � L be a submodule of index p. Exactly one of the following cases holds
(cf. [19, Lemma 2.23]):

(1) .y0; : : : ; yd / is a basis of M , where y0 D px0 and yi D xi ;

(2) there exist i0 2 ¹1; : : : ; dº and f0 2 Zp such that .y0; : : : ; yd / is a basis of M ,
where y0 D x0 � f0xi0 and

yi D

´
xi if i ¤ i0;

pxi0 if i D i0I

(3) there exist k0; i0 2 ¹1; : : : ; dº and f0; fk0 ; : : : ; fi0�1 2 Zp such that k0 < i0, fk0
is invertible in Zp , and .y0; : : : ; yd / is a basis of M , where y0 D x0 � f0xi0 and

yi D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
xi if i < k0;

xi � fixi0 if k0 6 i < i0;

pxi0 if i D i0;

xi if i > i0:
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Lemma 2.31. Let L be a .d C 1/-dimensional lattice, let M � L be a submodule of
index p, and let ' WM ! L be a homomorphism of modules. Let .x0; : : : ; xd / be a basis
of L, let .y0; : : : ; yd / be a basis of M , and let yˇ D

P
˛ F˛ˇx˛ . Assume that F0i D 0

for all i . Let Ii WD hz1; : : : ; zd i, where

zj D

´
xj if j < i;

pxj if j > i

(cf. Remark 2.27). Then the following holds.

(1) Assume that .y0; : : : ; yd / has the form displayed in case (2) of Remark 2.30. Then

(a) Ii0 �M ,

(b) '.Ii0/ � Ii0 if and only if pjFij for i > i0 and j 6 i0.

(2) Assume that .y0; : : : ; yd / has the form displayed in case (3) of Remark 2.30. Then

(a) Ik0 �M ,

(b) '.Ik0/� Ik0 if and only if pjFi;i0 for i > k0, and pjFij for i > k0 and j < k0.

Proof. We prove item (2), leaving item (1), which is similar, to the reader. Since

zj D

8̂̂̂̂
<̂
ˆ̂̂:
yj if j 6 k0;

pyj C fjyi0 if k0 6 j < i0;

yj if j D i0;

pyj if j > i0;

we have Ik0 �M . Observe that '.Ik0/ � Ik0 if and only if '.zj / 2 Ik0 for all j . Since

'.zj / D

8̂̂̂̂
<̂
ˆ̂̂:
P
i Fijxi if j < k0;P
i .pFij C fjFi;i0/xi if k0 6 j < i0;P
i Fi;i0xi if j D i0;P
i pFijxi if j > i0;

item (2) follows.

Proof of Proposition 2.25. Let L D L.a; b/, let M � L be a subalgebra of index p, and
let ' WM ! L be a homomorphism of algebras. We have to show that there exists a non-
trivial '-invariant ideal I of L. Observe that any bi is non-zero and that dimŒL; L� D d .
Moreover, v.ai / > 1 for all i , and any I˛ is a non-trivial ideal of L (see Remark 2.27 and
Lemma 2.28). Let x D .x0; : : : ; xd / be the canonical basis of L, and let y D .y0; : : : ; yd /

be a basis of M in one of the forms given in Remark 2.30. The bases x and y are good
bases for L andM , respectively (cf. Lemma 2.2). Let A be the matrix of L with respect to
x (cf. Section 2.1), and observe that it is equal to the matrix A of Lemma 2.29. Let yˇ DP
˛ U˛ˇx˛ , and let '.yˇ / D

P
˛ F˛ˇx˛ . By Lemma 2.3 (2), F0i D 0 for all i . The proof

is completed below by considering each one of the three cases of Remark 2.30. For the last
two cases, in order to apply Lemma 2.29, we have to make some observations. In those
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cases, U00 D 0 and the d � d matrix U D .Uij / has the format of the one of Lemma 2.29.
The matrix of M with respect to y is B D U�1AU ; moreover, FB D F00AF (Lemma
2.3 (3)). An easy computation gives F yU TAD F00AF yU T , where yU is the cofactor matrix
of U .

(1) For case (1) of Remark 2.30 we take I D I0, which is invariant by Corollary
2.4 (2).

(2) For case (2) of Remark 2.30 we take I D Ii0 , which is invariant by Lemma 2.29 (1)
and Lemma 2.31 (1).

(3) For case (3) of Remark 2.30 we take I D Ik0 , which is invariant by Lemma
2.29 (2) and Lemma 2.31 (2).

2.6. Strongly hereditarily self-similar Lie lattices

Definition 2.32. Let L be a Zp-Lie lattice, and let k 2 N.

(1) L is hereditarily self-similar of index pk if and only if any finite-index subalgebra
of L is self-similar of index pk .

(2) L is strongly hereditarily self-similar of index pk if and only if L is self-similar
of index pk and any non-zero subalgebra of L is self-similar of index pk .

The main result of this section is as follows, and the proof of the theorem will be given
at the end of the section.

Definition 2.33. Let d > 2 be an integer, and let a 2 Zp . We define an antisymmetric
d -dimensional Zp-algebra Ld .a/ as follows. As a Zp-module, Ld .a/ D Zdp . Denoting
by .x0; : : : ; xd�1/ the canonical basis of Zdp , the bracket of Ld .a/ is induced by the com-
mutation relations Œxi ; xj �D 0 and Œx0; xi �D axi , where i; j take values in ¹1; : : : ; d � 1º.

Theorem 2.34. Assume that p > 3. Let d > 2 be an integer, and let L be a solvable
Zp-Lie lattice of dimension d that is strongly hereditarily self-similar of index p. Then
L ' Ld .ps/ for a unique s 2 N [ ¹1º (with p1 WD 0).

Before proving the theorem we provide some examples and make some remarks on
hereditarily self-similar Lie lattices.

Remark 2.35. Let L be a Zp-Lie lattice. Clearly, if L is strongly hereditarily self-similar
of index pk , then L is hereditarily self-similar of index pk . From [19, Remark 2.2] it
follows that if L has dimension 1 or 2, then L is strongly hereditarily self-similar of index
pk for all k > 1. Consequently, if L has dimension 3 and L is hereditarily self-similar of
index pk , then L is strongly hereditarily self-similar of index pk . Proposition 2.41 below
classifies, for p > 3, the 3-dimensional Lie lattices that are hereditarily self-similar of
index p.

Proposition 2.36. Letm > 1 be an integer, and let L be a 3-dimensional solvable Zp-Lie
lattice. Then L is strongly hereditarily self-similar of index p2m.

Proof. The proposition follows from Corollary 2.7 and Remark 2.35.
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Proposition 2.36 and [23, Proposition 3.1] have a consequence that we find worth to
state explicitly. We recall that, by definition, two Lie lattices L1 and L2 are incommensu-
rable if there are no finite-index subalgebrasM1 � L1 andM2 � L2 such thatM1 'M2.

Corollary 2.37. There exists a set H of the cardinality of the continuum such that any
element of H is a Zp-Lie lattice that is strongly hereditarily self-similar of index p2m for
each m > 1, and such that any two distinct elements of H are incommensurable.

The next results are interesting on their own and they are a preparation for the proof
of Theorem 2.34.

Remark 2.38. We list some properties of L D Ld .a/ that the reader may easily prove.
The Lie lattice L belongs to the class discussed in Section 2.1; in particular, L is a Lie
lattice and ı2.L/D ¹0º. We have Ld .a/' Le.b/ if and only if d D e and vp.a/D vp.b/;
moreover, L is abelian if and only if a D 0. If a ¤ 0, then isoLŒL; L� D hx1; : : : ; xd�1i.
Any submodule of L is a subalgebra, and any 2-generated subalgebra of L has dimension
at most 2. Finally, note that L0 D L3.0/, L1.s/ D L3.ps/, and L6.a/ D L3.a/ (see
Definition 2.1).

Lemma 2.39. Let d > 2 be an integer, let a 2 Zp , and let M be a subalgebra of Ld .a/
of dimension e > 2. Then M ' Le.psa/ for some s 2 N [ ¹1º.

Proof. DenoteLDLd .a/ and recall thatL is endowed with the basis .x0; : : : ; xd�1/. Let
JLDisoLŒL;L�. IfM�JL, then one takes sD1. Assume thatM 6�JL. Hence, a¤0 and
L=JL 'Zp , generated by the class of x0. Let ' WM !L=JL be the canonical map. Then
'.M/ is non-zero; hence, there exists x 2 M such that the class of x in L=JL is a basis
of '.M/ over Zp . Also, ŒL=JL W '.M/� D ps for some s 2 N. Let x D cx0 C

P
j cjxj ,

where the index takes values in ¹1; : : : ; d � 1º. Observe that vp.c/ D s. One proves that
M D hxi ˚ .M \ JL/, from which the conclusionM ' Le.ca/' Le.psa/ follows.

Proposition 2.40. Let d > 2 and k > 1 be integers, and let a 2 Zp . Then

(1) Ld .a/ is self-similar of index pk ,

(2) Ld .a/ is strongly hereditarily self-similar of index pk .

Proof. Item (2) is a consequence of item (1) and Lemma 2.39. We prove (1). For d D 2 see
Remark 2.35. Assume that d > 3. Let LD Ld .a/, and letM D hx0; pkx1; x2; : : : ; xd�1i.
ThenM is a subalgebra of L of index pk . The module homomorphism ' WM ! L deter-
mined by '.x0/D x0, '.pkx1/D x2, '.xi /D xiC1 for 26 i < d � 1, and '.xd�1/D x1
is a homomorphism of algebras. We prove that ' is simple. Indeed, the intersection of the
domains of the powers of ' is D1 D hx0i. Let I be a non-trivial ideal of L. Similarly to
what has been done in the proof of Proposition 2.6, one shows that L is not '-invariant by
proving the existence of w 2 I such that w 62 D1.

Proposition 2.41. Assume that p > 3, and let L be a 3-dimensional Zp-Lie lattice. The
following are equivalent.
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(1) L is hereditarily self-similar of index p.

(2) L is isomorphic either to L0 or to L1.s/ for some s 2 N.

Proof. Remark 2.38 and Proposition 2.40 (2) show that the implication “(2))(1)” holds
even in greater generality than stated here. For the other implication, we assume that (2)
does not hold and show that there exists a finite-index subalgebra M of L that is not self-
similar of index p. We divide the proof into two parts according to whether L is solvable
or unsolvable.

Assume that L is solvable. The following observations are enough to cover all the
cases (cf. Remark 2.21). If dimŒL; L� D 1, then L itself is not self-similar of index p
(Proposition 2.13). If r > 1, then M D hx0; px1; x2i is a subalgebra of L2.s; r; c/ and
M 'L2.s; r � 1;p

2c/. If r > 2, thenM is not self-similar of index p by Proposition 2.16.
If r D 1, one shows that L2.s; 0; p2c/ ' L7.s; 1; 4�1.p2c � 1//, so that M is not self-
similar of index p by item (5) of Proposition 2.20. Now, let L D L7.s; a; c/ with c ¤ 0.
Observe that pL is a subalgebra ofL and that pL'L7.sC 1;a;c/; hence, we can assume
that s > 1. Then M D hx0; px1; x2i is a subalgebra of L and M ' L7.s � 1; pa; p2c/,
so that M is not self-similar of index p by item (1) of Proposition 2.20.

Now, assume that L is unsolvable. There exists a basis .x0; x1; x2/ of L such that
Œxi ; xiCi � D aiC2xiC2, where the index i is interpreted in Z=3Z, and the ai ’s are non-
zero p-adic integers with vp.a0/ 6 vp.a1/ 6 vp.a2/; see [19, Proposition 2.7]. It is not
difficult to see that one can choose k0; k1; k2 2 N such that, defining yi D pkixi , one has
Œyi ; yiCi �D biC2yiC2, where the bi ’s are non-zero p-adic integers and vp.b0/ < vp.b1/ <
vp.b2/. Hence, M D hy0; y1; y2i is a subalgebra of L that is not self-similar of index p
by [19, Theorem 2.32].

Proof of Theorem 2.34. Uniqueness of s is easy to prove (cf. Remark 2.38). The proof of
existence is by induction on d . For d D 2 the theorem is easily proven, while for d D 3
it follows from Proposition 2.41 and Remark 2.38. For the induction step, let d > 4 and
assume that the theorem holds with d 0 in place of d , where d 0 < d . Let L D L˝Zp Qp .
Since L is a solvable Lie algebra over a field of characteristic 0, Lie’s theorem implies that
the Qp-Lie algebra ŒL;L� is nilpotent. Hence, the Zp-Lie lattice ŒL;L� is nilpotent as well.

We prove that ŒL;L� is abelian. Denote temporarily M D ŒL;L�, and assume by con-
tradiction that M is not abelian. Hence, M is a non-abelian nilpotent Lie lattice. Let c
be the nilpotency class of M ; then c > 2. We claim that there exists x; y 2 M such that
Œx;y�¤ 0 and Œx;y� 2Z.M/ (the center ofM ). Indeed, ¹0º ¤ c�1.M/�Z.M/. Hence,
there exist x 2M and y 2 c�2.M/ such that Œx;y�¤ 0. Since Œx;y�2 c�1.M/, it follows
that Œx; y� 2 Z.M/, and the claim is proven. Let N be the subalgebra generated by x and
y. ThenN is a nilpotent non-abelian subalgebra ofL with dimŒN;N �D 1. The dimension
of N is either 2 or 3. Since no non-abelian Lie lattice of dimension 2 is nilpotent, we have
dimN D 3. Hence, N is not self-similar of index p by Proposition 2.13, a contradiction.

Let m D dimŒL; L�. Note that m < d , since otherwise L would not be solvable. If
m D 0 (L abelian), then one takes s D 1. Assume that m > 0 (L not abelian). Let
J D isoLŒL; L�, which is an isolated abelian ideal of L. Hence, dim J D m, and there
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exists a basis .x1; : : : ; xd�m; y1; : : : ; ym/ of L such that .y1; : : : ; ym/ is a basis of J . Let
Greek indices take values in ¹1; : : : ; d �mº, and Latin indices take values in ¹1; : : : ; mº.
We have Œyi ; yj � D 0, and any commutator in L is a linear combination of the yi ’s. Let
M˛ D hx˛; y1; : : : ; ymi. Then M˛ is a subalgebra of L of dimension m C 1 > 2. For
z 2 J , z ¤ 0, define M 0z to be the subalgebra of L generated by x1 and z. Observe that
M 0z has dimension nz > 2. Moreover, observe that all M˛’s and M 0z’s are solvable and
strongly hereditarily self-similar of index p. We divide the proof into two cases.

(1) Casem< d � 1. ThenmC 1 < d andM˛ ' L
mC1.ps˛ / for some s˛ 2N [ ¹1º.

Since hx˛; yi i is a subalgebra of M˛ , Œx˛; yi � D c˛iyi for some c˛i 2 Zp . By contradic-
tion, assume that c˛i ¤ c j̨ for some i; j . Since hx˛; yi C yj i is a subalgebra of M˛ ,
Œx˛; yi C yj � D c˛i .yi C yj /C .c j̨ � c˛i /yj 2 hx˛; yi C yj i, which is a contradiction.
It follows that Œx˛; yi � D c˛yi for all indices i and some c˛ 2 Zp with vp.c˛/ D s˛ .
Observe that d �m > 2 and that c˛0 ¤ 0 for some ˛0.

(a) Case Œx˛; xˇ �D 0 for all ˛;ˇ. LetN D hx˛0 ; x˛1 ; y1i with ˛1 ¤ ˛0. ThenN is a
subalgebra of L of dimension 3, and dimŒN;N �D 1. Hence,N is not self-similar
of index p, a contradiction.

(b) Case Œxˇ0 ; xˇ1 �¤ 0 for some ˇ0;ˇ1. Let zD Œxˇ0 ; xˇ1 �, and letN D hxˇ0 ; xˇ1 ; zi.
Then N is a subalgebra of L of dimension 3, and dimŒN; N � D 1 (observe that
Œx

ǰ
; z� D c

ǰ
z). Hence, N is not self-similar of index p, a contradiction.

(2) Case m D d � 1. Recall the notation nz D dimM 0z .

(a) Case nz D d for some z. Let M D M 0z and JM D isoM ŒM;M�. Observe that
dim JM D d � 1. Define by recursion z1 D z and ziC1 D Œx; zi � for i > 1. One
can show that JM D hzi W i > 1i. We claim that ¹z1; : : : ; zd�1º is a basis of
JM . Indeed, denoting by Nw the residue of w 2 JM in JM=pJM , we show that
¹Nz1; : : : ; Nzd�1º is linearly independent over Fp D Zp=pZp . If it was not inde-
pendent, some Nzj0 would be a linear combination of Nz1; : : : ; Nzj0�1, and one could
prove (from the recursive definition of the zi ’s) that any Nzi , i > j0, would be
such a linear combination, so that the dimension of JM=pJM over Fp would
be less than d � 1, a contradiction. The claim that ¹z1; : : : ; zd�1º is a basis of
JM over Zp follows, and from it we get a basis ¹x; z1; : : : ; zd�1º of M , where
Œzi ; zj � D 0, Œx; zi � D ziC1 for i < d � 1, and Œx; zd�1� D

Pd�1
jD1 aj zj for some

aj 2 Zp . We claim that a1 ¤ 0. By contradiction, assume that a1 D 0. Then
N WD hx; z2; : : : ; zd�1i is a subalgebra of L of dimension d � 1 > 3. Moreover,
N is solvable and strongly hereditarily self-similar of index p. Thus, there exists
s 2N [ ¹1º such thatN ' Ld�1.ps/. Then hx; z2i is a subalgebra ofN , a con-
tradiction (since d > 4). Hence, a1¤ 0. By Corollary 2.26, there exists a non-zero
subalgebra of M that is not self-similar of index p, which gives a contradiction.

(b) Case nz < d for all z. ThenM 0yi ' L
nyi .psi / for some si 2 N [ ¹1º (for all i ).

Hence, hx1; yi i is a subalgebra of M 0yi , and so Œx1; yi � D biyi for some bi 2 Zp .
Assume by contradiction that bj0 ¤ bj1 for some j0; j1. Let z0 D yj0 C yj1 . Then
M 0z0 ' L

nz0 .pt /. On the other hand, Œx1; z0�D bj0z0C .bj1 � bj0/yj1 yields that
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the 2-generated algebraLnz0 .pt / has dimension greater than 2, which is a contra-
diction. Thus, Œx; yi �D byi for all indices i and some b 2 Zp with b ¤ 0. Hence,
L ' Ld .b/ ' Ld .ps/, where s D vp.b/.

3. Results on groups

In this section, we prove the main theorems of the paper, stated in Section 1. Essentially,
the proofs follow from the results on Lie lattices of Section 2 and from Proposition 3.1
below, which is a slightly generalized version of [19, Proposition A]. Before stating the
proposition we recall the notion of saturable pro-p group and Lazard’s correspondence.

A finitely generated pro-p group is saturable if it admits a certain type of valuation
map; for precise details we refer to [6, Section 3]. Saturable groups were introduced by
Lazard [15] and play a central role in the theory of p-adic analytic groups: a topological
group is p-adic analytic if and only if it contains an open finitely generated pro-p subgroup
which is saturable [15, Sections III (3.1) and III (3.2)]. With a saturable pro-p groupG one
may associate a saturable Zp-Lie latticeLG in the following way:G andLG are identified
as sets, and the Lie operations are defined by

g C h D lim
n!1

.gp
n

hp
n

/p
�n

;

Œg; h�Lie D lim
n!1

Œgp
n

; hp
n

�p
�2n

D lim
n!1

.g�p
n

h�p
n

gp
n

hp
n

/p
�2n

:

The assignment G 7! LG gives an isomorphism between the category of saturable pro-p
groups and the category of saturable Zp-Lie lattices; see [15, IV (3.2.6)], [11, Section 2],
and [7] for more details.

Proposition 3.1. Let G be a torsion-free p-adic analytic pro-p group. Assume that any
closed subgroup of G is saturable and that any 2-generated closed subgroup of G has
dimension at most p. Let LG be the Zp-Lie lattice associated with G, and assume that
any 2-generated subalgebra of LG has dimension at most p. Then, for all k 2 N, the
following holds.

(1) G is a self-similar group of index pk if and only if LG is a self-similar Lie lattice
of index pk .

(2) G is hereditarily self-similar of index pk (respectively, strongly hereditarily self-
similar of index pk) if and only if LG is hereditarily self-similar of index pk

(respectively, strongly hereditarily self-similar of index pk).

Proof. The proposition follows from Lazard’s correspondence, [7, Theorem E], the
argument proving ŒG W D� D ŒLG W LD� in the proof of [19, Theorem 3.1], and from
[19, Proposition 1.3].

Remark 3.2. Let G be a torsion-free p-adic analytic pro-p group. If G is saturable and
dim.G/ 6 p, then the hypotheses of Proposition 3.1 are satisfied; if dim.G/ < p, then the
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same hypotheses hold without assuming a priori that G is saturable [7, Theorem A]. We
will also use the fact that if G is saturable and LG is the associated Zp-Lie lattice, then G
is solvable if and only if LG is solvable [6, Theorem B].

Remark 3.3. This remark is the analogue of Remark 2.35 in the context of groups. Let G
be a finitely generated pro-p group. For k 2 N, if G is strongly hereditarily self-similar
of index pk , then G is hereditarily self-similar of index pk . Assume, moreover, that G is
torsion-free and p-adic analytic. From [19, Proposition 1.5] it follows that if dim.G/ D
1; 2, then G is strongly hereditarily self-similar of index pk for all k > 1. Consequently,
if G has dimension 3 and G is hereditarily self-similar of index pk , then G is strongly
hereditarily self-similar of index pk .

Proposition 3.4. Let m > 1, and let G be a 3-dimensional solvable torsion-free p-adic
analytic pro-p group. Assume that either “p > 5” or “p D 3 and G is saturable”. Then
G is strongly hereditarily self-similar of index p2m.

Proof. The proposition follows from Propositions 3.1 and 2.36.

Proof of Theorem C. LetL be the Zp-Lie lattice associated withG. ThenL is a residually
nilpotent 3-dimensional solvable Lie lattice [7, Theorem B]. From Corollary 2.7, L is
self-similar of index p2. Hence, by Proposition 3.1, G is self-similar of index p2. The
statement on self-similarity of index p follows from Proposition 3.1, Theorem 2.22, and
Remark 2.21.

Proof of Theorem D. The theorem follows from Remark 3.3, Proposition 3.1, and Propo-
sition 2.41.

Remark 3.5. A similar result to Theorem C holds for p D 3. Let G be a 3-dimensional
solvable saturable 3-adic analytic pro-3 group. Then G is self-similar of index 9. Let L
be the Z3-Lie lattice associated with G. Then G is self-similar of index 3 if and only if L
is isomorphic to a Lie lattice appearing in the list of Theorem 2.22.

Remark 3.6. Let G be one of the groups in the list below, where d is an integer. Observe
that this list extends the one appearing in the statement of Theorem A (here there is no
assumption p > d ).

(1) For d > 1, the abelian pro-p
vspace-1pt group Zdp .

(2) For d > 2, the metabelian pro-p group Gd .s/D Zp Ë Zd�1p , where the canonical
generator of Zp acts on Zd�1p by multiplication by the scalar 1 C ps for some
integer s such that s > 1 if p > 3, and s > 2 if p D 2.

Then G is a uniformly powerful p-adic analytic pro-p group of dimension d . Let LG be
the Zp-Lie lattice associated withG. Observe that ifG is abelian, thenLG 'Ld .0/, while
if G D Gd .s/, then LG ' Ld .ps/. One can show that any subgroup of G generated by
two elements is powerful. It follows that any closed subgroup of G is uniformly powerful,
hence, saturable. Clearly, any 2-generated closed subgroup of G has dimension at most 2.



On hereditarily self-similar p-adic analytic pro-p groups 111

Proposition 3.7. Let k > 1 be an integer, and let G be a group isomorphic to one of the
groups in the list of Remark 3.6. Then G is strongly hereditarily self-similar of index pk .

Proof. If d WD dim.G/D 1, then G ' Zp and the result is clear. Assume that d > 2. The
result follows from Remark 3.6, Remark 2.38, Proposition 3.1, and Proposition 2.40.

Under the assumption that p > dim.G/ we can prove the converse of Proposition 3.7,
which is the main result of the paper.

Proof of Theorem A. The “if” part follows from Proposition 3.7. For the “only if” part, if
d D 1, then G ' Zp . Assume that d > 2. Observe that in this case p > 3. By Remark 3.2
we can apply Proposition 3.1. Let LG be the Zp-Lie lattice associated with G, which is
residually nilpotent. From Theorem 2.34,LG'Ld .ps/ for some s2N[¹1º, while from
residual nilpotency we deduce that s > 1. Now, the theorem follows from Remark 3.6.

Assume that p is odd, and let K be a field that contains a primitive pth root of unity
(necessarily, K has a characteristic different from p). In [26], Roger Ware proved that if
GK.p/ is finitely generated and it does not contain a non-abelian free pro-p subgroup,
thenGK.p/ is either a free abelian pro-p group of finite rank, or it is isomorphic toGd .s/
for some integers d > 2 and s > 1. In particular, the same conclusion holds if GK.p/ is
solvable or p-adic analytic. Indeed, Ware proved this result under the additional assump-
tion thatK contains a primitive p2th root of unity and conjectured that the result should be
true without this assumption. The conjecture was proved by Quadrelli [20, Corollary 4.9].
As a direct consequence of Proposition 3.7 and the result of Ware, we have the following.

Proposition 3.8. Assume that p > 3, and let K be a field that contains a primitive pth
root of unity. Suppose that GK.p/ is a non-trivial finitely generated pro-p group that
does not contain a non-abelian free pro-p subgroup. Then GK.p/ is strongly hereditarily
self-similar of index p.

Conversely, for p odd, it is shown in [26] that any group in the list of Remark 3.6 is
isomorphic toGK.p/ for some fieldK that contains a primitive pth root of unity. We recall
the construction of K for the non-abelian groups Gd .s/, in which case d > 2 and s > 1.
Let r be a prime with r �p 1, and let F D Fr .!s/, where Fr is a finite field with r elements
and !s is a primitive psth root of unity. Then one may takeK D F..x1// � � � ..xd�1//, the
field of iterated formal Laurent series.

Proof of Theorem B. For p > 2 the result follows from Theorem A and the above discus-
sion. When p D 2, we observe that GFq .2/ ' Z2 for any finite field Fq with q elements;
this follows from the well-known fact that the absolute Galois group of Fq is isomorphic
to yZ D

Q
r Zr , where the product ranges over all primes r .

As mentioned in Section 1, during the last decade the groups listed in Theorem A
have been object of study. We recall the related results and complement them with the
results of this paper. A pro-p group G is said to have a constant generating number on
open subgroups if d.H/ D d.G/ for all open subgroups H of G, where d.G/ is the
minimum number of elements of a topological generating set for G. Pro-p groups with



F. Noseda and I. Snopce 112

constant generating number on open subgroups were classified by Klopsch and Snopce
in [12]. A Bloch–Kato pro-p group is a pro-p group G with the property that the Fp-
cohomology ring of every closed subgroup of G is quadratic. In [20], Quadrelli described
explicitly all finitely generated Bloch–Kato pro-p groups that do not contain a free non-
abelian pro-p group. A pro-p group G is said to be hereditarily uniform if every open
subgroup of G is uniform. Hereditarily uniform pro-p groups were classified by Klopsch
and Snopce in [13]. Finally, a pro-p group G is said to be Frattini-injective if distinct
finitely generated subgroups of G have distinct Frattini subgroups. Frattini-injective pro-
p groups were introduced and studied by Snopce and Tanushevski in [24]. The results
of Klopsch–Snopce, Quadrelli, and Snopce–Tanushevski ([12, Corollary 2.4], [13, Corol-
lary 1.13], [20, Theorem B], and [24, Theorem 1.2]) together with Theorem B yield the
following.

Theorem 3.9. Let G be a non-trivial solvable torsion-free p-adic analytic pro-p group,
and suppose that p > dim.G/. Then the following are equivalent.

(1) G is strongly hereditarily self-similar of index p.

(2) G is isomorphic to the maximal pro-p Galois group of some field that contains a
primitive pth root of unity.

(3) G has constant generating number on open subgroups.

(4) G is a Bloch–Kato pro-p group.

(5) G is a hereditarily uniform pro-p group.

(6) G is a Frattini-injective pro-p group.

4. Open problems

This paper deals with as-yet-unexplored directions about self-similar groups, so there are
many interesting open problems that one may consider. The following two problems are
natural.

Problem 1. Classify the strongly hereditarily self-similar pro-p groups of index p.

Problem 2. Classify the hereditarily self-similar pro-p groups of index p.

All the examples of strongly hereditarily self-similar pro-p groups of index p that we
know are p-adic analytic.

Problem 3. Is there a finitely generated strongly hereditarily self-similar pro-p group of
index p which is not p-adic analytic?

Let K be a p-adic number field, that is, a finite extension of Qp . It is well known (see
[18, Theorem 7.5.11]) that ifK does not contain a primitive pth root of unity, thenGK.p/
is a free pro-p group of finite rank. On the other hand, if K contains a primitive pth root
of unity, then GK.p/ is a Demushkin group, that is, a Poincaré duality pro-p group of
dimension 2. Pro-p completions of surface groups are also Demushkin groups. It would
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be interesting to find a proof of Proposition 3.8 using Galois theory. Such a proof would
shed some light on how to approach the following two problems.

Problem 4. Does a free pro-p group of finite rank admit a faithful self-similar action on
a p-ary tree?

Problem 5. Does a Demushkin pro-p group admit a faithful self-similar action on a p-ary
tree?

Note that an affirmative answer to Problem 4 would imply that a free pro-p group
of finite rank is strongly hereditarily self-similar of index p. On the other hand, since
every open subgroup of a Demushkin group is also Demushkin, an affirmative answer to
Problem 5 would imply that Demushkin groups are hereditarily self-similar of index p.
Moreover, since every infinite index subgroup of a Demushkin group is free pro-p an
affirmative answer to both problems would imply that Demushkin groups are strongly
hereditarily self-similar of index p. Note that if G is a Demushkin group with d.G/ D 2,
then it is a torsion-free p-adic analytic pro-p group of dimension 2, and therefore it is
strongly hereditarily self-similar of index p. Thus Problem 5 is open only for Demushkin
groups G with d.G/ > 2.
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