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Signature for piecewise continuous groups

Octave Lacourte

Abstract. Let P/C\'x' be the group of bijections from [0, 1] to itself which are continuous outside
a finite set. Let PC™ be its quotient by the subgroup of finitely supported permutations. We show
that the Kapoudjian class of PC™ vanishes. That is, the quotient map PC™ — PC™ splits mod-
ulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group
homomorphism, called signature, from PC™ to Z/2Z. Then we use this signature to list normal
subgroups of every subgroup G of PC™ which contains Gfin such that G, the projection of G in
PC™, is simple.

1. Introduction

Let X be the right-open and left-closed interval [0, 1[. We denote by &(X) the group of
bijections of X to X . This group contains the subgroup composed of all finitely supported
permutations, denoted by &g,. The classical signature is well defined on &g, and its ker-
nel, denoted by gy, is the only subgroup of index 2 in &g,. An observation, originally
due to Vitali [9], is that the signature does not extend to G(X).

For every subgroup G of &(X)/Gg,, we denote by G its inverse image in &(X). The
cohomology class of the central extension

0—>Z/27 = Cg,/Wgn — é/‘)lﬁn -G —1

is called the Kapoudjian class of G it belongs to H?(G,Z/27). It appears in the works
of Kapoudjian and Kapoudjian—Sergiescu [5, 6]. The vanishing of this class means that
the above exact sequence splits; this means that there exists a group homomorphism from
the preimage of G in G(X) onto Z /27 which extends the signature on Gg, (for more on
the Kapoudjian class, see [2, §8.C]). This implies in particular that G /gy, is isomorphic
to the direct product G x Z/2Z. One can notice that for G = &(X)/Gg, we have that
G = &(X); in this case Vitali’s observation implies that the Kapoudjian class does not
vanish.

The set of all permutations of X continuous outside a finite set is a subgroup denoted
by PC™. Then we denote by PC™ its image in G(X)/Gg,. The aim here is to show the
following theorem.
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Theorem 1.1. There exists a group homomorphism & : PC™ — 7,/27, that extends the
classical signature on Gg,.

Corollary 1.2. Let G be a subgroup of PC™. Then the Kapoudjian class of G is zero.

This solves a question asked by Y. Cornulier [3, Question 1.15].

The subgroup of PCDi@lsisting of all permutations of X that are piecewise isometric
elements is denoted MTM and the one consisting of all piecewise affine permutations
of X is denoted by PAff>. We also consider for each of these groups the subgroup com-
posed of all piecewise orientation-preserving elements by replacing the symbol “><” by
the symbol “+.” Then each of these groups without the hat is the image of the group in
G&(X)/Gsy; for instance IET™ is the image in &(X)/Gg, of the group IET™.

Let us observe that when G C PCT, Corollary 1.2 is trivial. Indeed, in this case G can
be lifted inside PC™ itself. However, such a lift does not exist for PC™ or even IET™, as
was proved in [3].

The idea of proof of Theorem 1.1 is to associate two numbers for every f € P/CE' and
every finite partition J of [0, 1[ into intervals associated with f. The first is the number
of interval of # where f is order-reversing and the second is the signature of a particular
finitely supported permutation. The next step is to prove that the sum modulo 2 of these
two numbers is independent from the choice of partition. Then we show that it is enough to
prove that [gr= is a group homomorphism. For this we show that it is additive when we
look at the composition of two elements of IET™ by calculating the value of the signature
with a particular partition.

In Section 4, we apply these results to the study of normal subgroups of P/C.;q and
certain subgroups. More specifically we prove the following theorem.

Theorem 1.3. Let G be a subgroup of P/C\Dq containing g, and such that its projection
G in PC™ is simple nonabelian. Then G has exactly five normal subgroups given by the
list: {{1}, gn, G, Ker(e), G}.

—

We denote by IET;! the subgroup of IET* composed of all right-continuous elements.
We know that it is naturally isomorphic to IET". The same is true when we replace IET™*
by PAffT or PCT. This allows us to use the work of P. Arnoux [1] and the one of N.
Guelman and 1. Liousse [4] where they prove that IET™, PCT, and PAff* are simple.
From this we deduce the following result.

Theorem 1.4. The groups PC™ and PAff™ are simple.

This gives us some examples of groups that satisfy the conditions of Theorem 1.3.

Finally, Section 5 is independent and we study some normalizers; in particular, we
show that the behavior when we look inside the group PC™ or PC™ may not be the
same. We denote by R € IET™ the map x — 1 — x. Then we define IET™ as the coset
R -IETT and PC™ as the coset R - PCT. Then the groups IET* := IETT UIET" and
PC* := PC* UPC™ are well defined.
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Proposition 1.5. The subgroup IET. (resp. PC;: ) is its own normalizer in IET™ (resp.
PC;‘C' ). The normalizer of IETT (resp. PCT) in IET™ (resp. PC™) is IET™ (resp. pC* ).

2. Preliminaries

For every real interval / we denote by [° its interior in R and if I = [0, ¢[ we agree that
its interior is ]0, ¢[.

2.1. Partitions associated

An important tool to study elements in PC™ and PC™ are partitions into intervals of [0, 1].
All partitions are assumed to be finite.

Definition 2.1. For every f in P/C;‘, a finite partition & into right-open and left-closed
intervals of [0, 1] is called a partition into intervals associated with f if and only if f is
continuous on the interior of every interval of J>. We denote by I1; the set of all partitions
into intervals associated with f.

We define also the arrival partition of f associated with P, denoted by f(P), as
the partition of [0, 1] composed of all right-open and left-closed intervals such that their
interior is equal to the image by f* of the interior of an interval of &.

Remark 2.2. For every f in PC™ there exists a unique partition ffmin associated with f
which has a minimal number of intervals. It is actually minimal in the sense of refinement:
IT; consists precisely of the set of partitions refining J’}ni".

2.2. Decompositions
We define a family of elements which plays an important role inside our groups.

Definition 2.3. Let / be a non-empty right-open and left-closed subinterval of [0, 1[. The
element f € PC™ which sends the interior of I on itself with slope —1 while fixing the
rest of [0, 1] is called the 7-flip. We define a flip as any I -flip for some 1.

——

From the definition we deduce a decomposition inside IET™ and P/C\N.

Proposition 2.4. Let h be an element of IET™. There exist f,g € IET, r, s finite products

rc’

of flips, and o, t finitely supported permutations such thath = rof = gts.

Proof. Let h be an element ofﬁq, neN,and P :={I,15,...,1,} € IT, (Section 2.1).
We denote by h(P) := {J1, J2, ..., Jn} the arrival partition of & associated with #. Let
g be the map that sends / on J? by preserving the order and acts as h for every left
endpoints of /; for every 1 < j < n. Note that g is bijective and thus belongs to IET™.
For 1 < j < n let rj be the J;-flip if / is order-reversing on /;; otherwise let r; be the
identity. Let r be the product of all ;. We can notice that r fixes all endpoints of J; for
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every 1 < j <n.Thenitis just a verification to check that 1 = rg. Now as g belongs to
IET™ there exists o in &, such that g = of with f in IET}.

The other decomposition follows by decomposing 2! under the previous decompo-
sition. |

Proposition 2.5. For every h i@ there exist ¢ and  two order-preserving homeo-
morphisms of [0, 1] and f, g in IET™ such thath = Y o f = go ¢.

Proof. Let A be the Lebesgue measure on [0, 1[. Let & €PC™and P €Tl - Then there exist
¢,y € Homeo™ ([0, 1]) such that for every I € £, A(¢(1)) = A(h(1)) and A(y (h(]))) =
A(I). Then h o ¢ and ¥ o h belong to IET™. [

3. Construction of the signature homomorphism

In our case we have that X = [0, 1] and that PC™is a subgroup of ©(X). We denote here
Gfin = Ggn(X) and by &g, the classical signature on Gy, taking values in (Z /27, +).

3.1. Definitions

Definition 3.1. Let /2 be an element ofP/C\'x', neN,and P ={I,1I,...,1I,} € T1},. For
every 1 < j <n,let o; be the left endpoint of /; and let 8; be the left endpoint of i (/ ]-°).
We define the default of pseudo-right continuity for h about &, denoted by o, ), as the
finitely supported permutation which sends /(e ) to 8; for every 1 < j < n (this is well
defined because the set of all /1(«;) is equal to the set of all §;).

Definition 3.2. Let /2 be an element of P/C;<1 and P € I1j,. Let k be the number of intervals
of & on which # is order-reversing. We called the flip number of h about P the number k.
We denote it by R(h, P).

Definition 3.3. For /i € P/C\Dq and P € I, define
e(h,P) € Z/2Z = R(h,P) + &an(0@,2)) [mod2].
We define also e(h) = e(h, P™).
Proposition 3.4. For every © € ©g, and every P € Il one has that e(t, P) = g (7).

Proof. Tt is clear that for every v € Gy, and every partition & associated with T we have
that R(7, ) = 0 and o(r,p) = 7. m

We deduce that ¢ extends the classical signature 5,. Thus we will write ¢ instead of

Efin-

Proposition 3.5. Every right-continuous element f of PCY satisfies that e( f, ) = 0 for
every P € Ily.

Proof. In this case, for every partition & into intervals associated with f we always have
R(f,ﬂ’):Oanda(f,y)zld. L
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Figure 1. Illustrations of the two cases appearing in Lemma 3.6. On the left we assume that / is
order-preserving on / U J and see that oy, @) (1(x)) = o(,@n) (h(x)). On the right we assume that
h is order-reversing on I U J and see that o @) (h(x)) = (h(x)op,q) (h(@))) o o, @7y (h(x)).

3.2. Proof of Theorem 1.1

In order to prove that ¢ is a group homomorphism, we prove that the value of (%, 5) does
not depend on the partition P € ITj.

Lemma 3.6. Forevery h € P/CE' and every P € Ty, one has that e(h) = e(h, P).

Proof. Let h and & be as in the statement. By minimality of ?};“i“, in terms of refinement,

we deduce that there exist n € N and Py, P5, ..., P, € IIj such that
i Pr=2m
(i) Pp =L

(iii) for every 2 <i < n the partition ; is a refinement of the partition $#;_; where
only one interval of $;_; is cut into two.

Hence it is enough to show that e(h, @) = e(h, ") where @, @’ € I}, such that there
exist consecutive intervals I, J € Qwith I UJ € @ and @' ~{J U J} = Q~{I,J}.

Let « be the left endpoint of I and let x be the right endpoint of I (x is also the left
endpoint of J). There are only two cases which are illustrated in Figure 1 (but, in both
cases, we know that o(;,,@) = 0(,@) except maybe on h(a) and /(x)):

(1) The first case is when & is order-preserving on / U J. Then as @ ~ {[,J} =
Q' ~{I U J} we get that R(h, @) = R(h, @’). As h is order-preserving on the interior
of I U J we know that o gy (h(x)) is the left endpoint of 2(/ U J) which is the left
endpoint of /(/) and thus equal to o q)(h(cr)). With the same reasoning, we deduce
that oy, @1 (h(x)) = o@,@)(h(x)) and hence o, @) = o1,@’). Thus in Z /27 we have that
R(h, @) + e(om,@)y) = R(h, Q) + e(op,@)-
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(ii) The second case is when /£ is order-reversing on / U J. Then we get that R(h, @) =
R(h,@") + 1. This time o) (h(e)) is still the left endpoint of #(I U J) which is the left
endpoint of /2(J) and thus equal to o, @) (2 (x)). With the same reasoning, we deduce that
om,@)(h(x)) = om,q)(h(a)). Then by denoting 7 the transposition (2(x)o,aqn) (h(@))),
we obtain that o, @) = T © 0(1,@). We must notice that the transposition is not the identity
because 1 (o(4,@)(h())) is an endpoint of one of the intervals of @ and x is not.

In conclusion, in Z /27 we have that

R(/’l, CQ/) =+ S(O(h,@’)) = R(/’l, @/) +1+1+ S(O’(h,a/))
= R(h, Q) + e(op,@)- ]

If ¢ € Homeo™ ([0, 1]), then it follows from Proposition 3.5 that £(¢) = 0. We improve
this, showing that ¢ is invariant by the action of Homeo™ ([0, 1[) on PC™.

Lemma 3.7. For every h € P/C\'><1 and every ¢ € Homeo™ ([0, 1]) one has that e(h¢) =
&(h) = e(ph).

Proof. Let h € P/C.;q and ¢ € Homeo™ ([0, 1]) be as in the statement. Let n € N and
P ={l1,1,....0,} € Ny. Then @ :={¢p" (I1), ¢ ' (I2),..., 7 (L)} is in [T . We
know that ¢ is order-preserving. Then for every 1 <i <n, h¢ preserves (resp. reverses) the
order on ¢~ (1;) if and only if & preserves (resp. reverses) the order on I;; thus R(h, P) =
R(h¢, @). We can notice that the left endpoint of ¢~ (/;) (denoted by o;) is sent on
the left endpoint of I; (denoted by a;) by ¢; hence h(a;) = h¢(x;) has to be sent on
om,2)(h(a;i)), so one,@) = 0,»). We deduce that e(hg) = &(h).

The other equality has a similar proof. We denote by A(J) the arrival partition of A
associated with &. We know that ¢ is continuous. Thus i (%) is in IT4 and we deduce
that & € Il,. Also ¢ is order-preserving, then R(h, ) = R(¢h, ). We know that
0($,h(2)) = 1d, then we can notice that ¢ o o, ) o h sends the left endpoint of /; to the
left endpoint of ¢ph (7). Then o(yn,») = Pom,2)¢~ " and we deduce that e(o(gp,p)) =
e(o,#))- Hence e(¢ph) = e(h). L]

Thanks to Proposition 2.5, it is enough to prove that 8|I§F< is a group homomorphism.

Lemma 3.8. The map 8|IET\'>< is a group homomorphism.

Proof. Let f,g € IET™. Let P € II and Q € Il . For every I € @ (resp. J € &) we
denote by « (resp. By) the left endpoint of 7 (resp. J). Up to refine  and @ we can
assume that = g(@). Thus g({ar}rc@) = {Bs}sep. Then Q € 5., and for every
K € f o g(Q) we denote by yk the left endpoint of K.

In Z /27, we get immediately that R(f o g, Q) = R(g, Q) + R(f. g(Q)). Now we
want to describe the default of pseudo-right continuity for f o g about @. We recall
that 0( rog,@) is the permutation that sends f o g(ay) on yrog(r) for every I € @ while

fixing the rest of [0, 1[. Furthermore, o4, @)(g(ar)) = Begu) and o(re@)(f(Be))) =
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Vfog(r)- Then o(fg(@) © f ©0(s,@) © g(@r) = Yrog(r) and we deduce that the permu-
tation (@) © f ©0(g.@ © f ! sends f o g(ar) on yrog(r) for every I € @ while
fixing the rest of [0, 1[. Thus 0(fog,@) = Ofg@) © f ©0(s,@) © f~!. Then e(0(fog,@)) =
e(01.g(@)) + €(0(g,@)) and we conclude that e(f o g) = e(f) + &(g). n

Corollary 3.9. The map ¢ is a group homomorphism.

4. Normal subgroups of PC™ and some subgroups

Here we present some corollaries of Theorem 1.1. For every group G we denote by D(G)
its derived subgroup.

Definition 4.1. For every group H, we define J3(H) as the subgroup generated by ele-
ments of order 3.

Let G be a subgroup of P/C;<1 containing Gg,. We denote by G its projection on PC™.
We recall that 2y, is a normal subgroup of G and has a trivial centralizer. We deduce that
every nontrivial normal subgroup H of G contains g,.

From the short exact sequence

1 - Gxy — G—>G—1
we deduce the next short exact sequence which is a central extension:
1> Z/2Z — G /gy — G — 1.

This short exact sequence splits because the s1gnature R G > 7 /2Z constructed
in Section 3 is a retraction. Then we deduce that G /gy, is isomorphic to the direct product
7]27 x G.

Corollary 4.2. The projection Gab — Gy extends in an isomorphism @ab ~ Gy X Z/27.
Furthermore, D(G) = Ker(e) N D(G) is a subgroup of index 2 in D(G). In particular, if
G is a perfect group, then Gy, = 7./27.

Corollary 4.3. Let G bea subgroup of P/C\M containing Gg, such that its projection G
in PC™ is simple nonabelian. Then G has exactly 5 normal subgroups given by the list:
{1}, Agin, Ghin, Ker(e), G}.

Proof. Let G be as in the statement. First, we immediately check that the subgroups in the
list are distinct normal subgroups of G. In the case of Ker(e), there exists g € G ~ G
thus either g € Ker(e) ~ G4, or 0g € Ker(g) ~ &g, for any transposition 0.

Second, let H be a normal subgroup of G distinct from {1}. Then it contains sgy,.
Also H /U4y, is a normal subgroup of G /gy >~ Z /27 x G. Furthermore, G is simple.
Then there are only four possibilities for H/2g,. As two normal subgroups H, K of G
containing g, such that H/g, = K /Ay, are equal, we deduce that G has at most 5
normal subgroups. |
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Corollary 4.4. Let G bea subgroup of PE;' containing ©g, such that its projection G in
PC™ is simple nonabelian. If there exists an element of order 3 in G ~ gy, then J3(G) =
Ker(e) = D(G).

Remark 4.5. In the context of topological-full groups, the group J3(G) appears natu-
rally (with some mild assumptions) and is denoted by A(G) by Nekrashevych in [8]. In
some case of topological-full groups of minimal groupoids (see [7]) we have the equality
A(G) = D(G) thanks to the simplicity of D(G). In spite of the analogy, it is not clear that
the corollary can be obtained as a particular case of this result.

Remark 4.6. A lot of groups satisfy the conditions of Corollary 4.4. When G contains
IETT, there is an element of order 3 in G ~ g,. We recall that [IET>, PC™, and PAff™
are simple (see [1,4]). Thus these groups satisfy the conditions of Corollary 4.4. The next
theorem adds PC™ and PAff™ to the list of examples.

Theorem 4.7. The groups PC™ and PAff™ are simple.
Lemma 4.8. The group IET™ is generated by flips (= images of flips from IET™ ).

Proof. By Proposition 2.4 it is enough to show that IET™ is generated by flips.

For every consecutive, right-open, and left-closed subintervals / and J of [0, 1], we
define Ry, as the map that exchanges I and J. They are elements of IET;" and they
formed a generating set. Then their image r; s in IET™ is a generating set of IETY.
For every right-open and left-closed subinterval I of [0, 1[, we define s; as the I-flip.
Let / and J be two consecutive, right-open, and left-closed subintervals of |0, 1[. Then

rr,g = S18ySruJ- un

Proof of Theorem 4.7 (sketched). Since the argument in [1] could also be adapted, we
only provide a sketch.

We work with elements of PC™; all intervals below are meant modulo finite subsets.
Let N be a nontrivial normal subgroup of PC™ (resp. PAff™). Let g be a nontrivial ele-
ment of N. There exists a subinterval I of [0, 1[ such that

(i) g iscontinuous (resp. affine) on /;
(i) g() NI = & (modulo finite subsets);
(iii) 1 U g(I) # [0, 1] (modulo finite subsets).

Let f be the I-flip. If g is affine on 7, then i = g fg~! f ! is the product of the I -flip with
the g(I)-flip. Observe that & is conjugate to a single flip by a suitable element of IET*. If
g is only continuous, then 4 is still of order 2 and it is conjugate in PC™ to a single flip.
Conjugating by elements of PAff™, one obtains that N contains flips of intervals of all
possible lengths, and hence contains all flips. Thanks to Lemma 4.8, we know that IET™
is generated by the set of flips and thus N contains IET™; in particular N intersects with
PC™ (resp. PAff1) nontrivially. By simplicity of PCT (resp. PAff") we deduce that N
contains PC™ = (PCT, IET™) (resp. PAff™ = (PAff, IET™)). "
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S. About some normalizers

Here we show that computing normalizers inside P/C\ and F PC™ may lead to a different
behavior. We look at the cases of PCT, IET™ and PC+ IET+

ICc?

Proposition 5.1. The normalizer of IETT in IET™ is reduced to IET*.

Proof. Let f € IETT and g € IET*. If g € IETY, then gfg~! € IETt. We assume that
g€IET . Thengfg ! =(goR)o(Ro foR)o(Rog) e IETT.

For the inclusion from left to right, let g € IET> < IET* and let § be a representative
of g in IET'>q Hence we can find 1, J, K, L four right-open and left-closed intervals of
the same length such that their images by g are intervals and such that g is order-reversing
on I and order-preserving on J, K, and L. We define f € IETJr as the element which
exchanges g(] ) with g(J) and g(K) with g(L) while fixing the rest of [0, 1[. Then the
image f of f in IET™ is not trivial and & f 1 ¢ IET™ implies that gfg~! ¢ IETT. m

A similar argument stands for the case of PC and thus we obtain the following result.

Proposition 5.2. The normalizer of PCT in PC™ is reduced to PC*.

We now take a look to inside P/C\M‘

Proposition 5.3. The normalizer of IETJr in IET™ is IETJr

Proof. Letg be an element of ﬁq which is not the identity. There are two cases:

Ifg E/IET+ ~ IET:C', then g = og’ with 0 € Gp, ~{Id} and g’ € IET+ Then for
every f € IET; we have that gfg~! = 0g’ fg'"'o~1. Thus it is enough to treat the case
of Gg,. Let us assume that g € Gg,. Then let x be in the support of g. There exist two con-
secutive right-open and left-closed intervals I and J of the same length such that x is the
right endpoint of / (and the left endpoint of J). Up to reduce / and J we can assume that
I does not intersect with the support of g. Then let f € IET; which exchanges / and J
while fixing the rest of [0, 1[. Then gfg~! exchanges the interior of / with the interior of
J but g fg~1(x) is not equal to f(x) because f(x) is the left endpoint of I and I does not

intersect with the support of g. Then we deduce that g fg~! is not right-continuous on J .
i) If g € IET><1 ~ IET+ Then we can find two consecutive subintervals I and J
where g is continuous and order-reversing on I U J. Let a be the right endpoint of J. Let
f be the element in IET;, which exchanges / and J. Then gfg~! exchanges the interior
of g(J) with the interior of g(I). However, the left endpoint of g(J) is sent by g~! on a
which is fixed by f. Then gfg™! fixes the left endpoint of g(J) and thus g fg~! is not
right-continuous on g(J). |

A similar argument stands for the case of PC; thus we obtain the following result.

Proposition 5.4. The normalizer of PCJr in PCM is PCJr
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