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Signature for piecewise continuous groups

Octave Lacourte

Abstract. Let bPC‰ be the group of bijections from Œ0; 1Œ to itself which are continuous outside
a finite set. Let PC‰ be its quotient by the subgroup of finitely supported permutations. We show
that the Kapoudjian class of PC‰ vanishes. That is, the quotient map bPC‰ ! PC‰ splits mod-
ulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group
homomorphism, called signature, from bPC‰ to Z=2Z. Then we use this signature to list normal
subgroups of every subgroup yG of bPC‰ which contains Sfin such that G, the projection of yG in
PC‰, is simple.

1. Introduction

Let X be the right-open and left-closed interval Œ0; 1Œ. We denote by S.X/ the group of
bijections of X to X . This group contains the subgroup composed of all finitely supported
permutations, denoted by Sfin. The classical signature is well defined on Sfin and its ker-
nel, denoted by Afin, is the only subgroup of index 2 in Sfin. An observation, originally
due to Vitali [9], is that the signature does not extend to S.X/.

For every subgroup G of S.X/=Sfin, we denote by yG its inverse image in S.X/. The
cohomology class of the central extension

0! Z=2Z D Sfin=Afin ! yG=Afin ! G ! 1

is called the Kapoudjian class of G; it belongs to H 2.G;Z=2Z/. It appears in the works
of Kapoudjian and Kapoudjian–Sergiescu [5, 6]. The vanishing of this class means that
the above exact sequence splits; this means that there exists a group homomorphism from
the preimage of G in S.X/ onto Z=2Z which extends the signature on Sfin (for more on
the Kapoudjian class, see [2, §8.C]). This implies in particular that yG=Afin is isomorphic
to the direct product G � Z=2Z. One can notice that for G D S.X/=Sfin we have that
yG D S.X/; in this case Vitali’s observation implies that the Kapoudjian class does not
vanish.

The set of all permutations of X continuous outside a finite set is a subgroup denoted
by bPC‰. Then we denote by PC‰ its image in S.X/=Sfin. The aim here is to show the
following theorem.
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Theorem 1.1. There exists a group homomorphism " W bPC‰ ! Z=2Z that extends the
classical signature on Sfin.

Corollary 1.2. Let G be a subgroup of PC‰. Then the Kapoudjian class of G is zero.

This solves a question asked by Y. Cornulier [3, Question 1.15].
The subgroup of bPC‰ consisting of all permutations ofX that are piecewise isometric

elements is denoted by 1IET‰ and the one consisting of all piecewise affine permutations
of X is denoted by 1PAff‰. We also consider for each of these groups the subgroup com-
posed of all piecewise orientation-preserving elements by replacing the symbol “‰” by
the symbol “C.” Then each of these groups without the hat is the image of the group in
S.X/=Sfin; for instance IETC is the image in S.X/=Sfin of the group 1IETC.

Let us observe that when G � PCC, Corollary 1.2 is trivial. Indeed, in this case G can
be lifted inside bPCC itself. However, such a lift does not exist for PC‰ or even IET‰, as
was proved in [3].

The idea of proof of Theorem 1.1 is to associate two numbers for every f 2 bPC‰ and
every finite partition P of Œ0; 1Œ into intervals associated with f . The first is the number
of interval of P where f is order-reversing and the second is the signature of a particular
finitely supported permutation. The next step is to prove that the sum modulo 2 of these
two numbers is independent from the choice of partition. Then we show that it is enough to
prove that "jIET‰ is a group homomorphism. For this we show that it is additive when we
look at the composition of two elements of 1IET‰ by calculating the value of the signature
with a particular partition.

In Section 4, we apply these results to the study of normal subgroups of bPC‰ and
certain subgroups. More specifically we prove the following theorem.

Theorem 1.3. Let yG be a subgroup of bPC‰ containing Sfin and such that its projection
G in PC‰ is simple nonabelian. Then yG has exactly five normal subgroups given by the
list: ¹¹1º;Afin;Sfin;Ker."/; yGº.

We denote by 1IETCrc the subgroup of 1IETC composed of all right-continuous elements.
We know that it is naturally isomorphic to IETC. The same is true when we replace IETC

by PAffC or PCC. This allows us to use the work of P. Arnoux [1] and the one of N.
Guelman and I. Liousse [4] where they prove that IET‰, PCC, and PAffC are simple.
From this we deduce the following result.

Theorem 1.4. The groups PC‰ and PAff‰ are simple.

This gives us some examples of groups that satisfy the conditions of Theorem 1.3.
Finally, Section 5 is independent and we study some normalizers; in particular, we

show that the behavior when we look inside the group bPC‰ or PC‰ may not be the
same. We denote by R 2 IET‰ the map x 7! 1 � x. Then we define IET� as the coset
R � IETC and PC� as the coset R � PCC. Then the groups IET˙ WD IETC [ IETC and
PC˙ WD PCC[PC� are well defined.
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Proposition 1.5. The subgroup 1IETCrc (resp. bPCCrc ) is its own normalizer in 1IET‰ (resp.
bPCCrc ). The normalizer of IETC (resp. PCC) in IET‰ (resp. PC‰) is IET˙ (resp. PC˙).

2. Preliminaries

For every real interval I we denote by I ı its interior in R and if I D Œ0; t Œ we agree that
its interior is �0; t Œ.

2.1. Partitions associated

An important tool to study elements in bPC‰ and PC‰ are partitions into intervals of Œ0; 1Œ.
All partitions are assumed to be finite.

Definition 2.1. For every f in bPC‰, a finite partition P into right-open and left-closed
intervals of Œ0; 1Œ is called a partition into intervals associated with f if and only if f is
continuous on the interior of every interval of P . We denote by…f the set of all partitions
into intervals associated with f .

We define also the arrival partition of f associated with P , denoted by f .P /, as
the partition of Œ0; 1Œ composed of all right-open and left-closed intervals such that their
interior is equal to the image by f of the interior of an interval of P .

Remark 2.2. For every f in bPC‰ there exists a unique partition P min
f

associated with f
which has a minimal number of intervals. It is actually minimal in the sense of refinement:
…f consists precisely of the set of partitions refining P min

f
.

2.2. Decompositions

We define a family of elements which plays an important role inside our groups.

Definition 2.3. Let I be a non-empty right-open and left-closed subinterval of Œ0; 1Œ. The
element f 2 bPC‰ which sends the interior of I on itself with slope �1 while fixing the
rest of Œ0; 1Œ is called the I -flip. We define a flip as any I -flip for some I .

From the definition we deduce a decomposition inside 1IET‰ and bPC‰.

Proposition 2.4. Let h be an element of 1IET‰. There exist f; g 21IETCrc , r;s finite products
of flips, and �; � finitely supported permutations such that h D r�f D g�s.

Proof. Let h be an element of 1IET‰, n2N, and P WD ¹I1; I2; : : : ; Inº 2…h (Section 2.1).
We denote by h.P / WD ¹J1; J2; : : : ; Jnº the arrival partition of h associated with P . Let
g be the map that sends I ıj on J ıj by preserving the order and acts as h for every left
endpoints of Ij for every 1 � j � n. Note that g is bijective and thus belongs to 1IETC.
For 1 � j � n let rj be the Jj -flip if h is order-reversing on Ij ; otherwise let rj be the
identity. Let r be the product of all rj . We can notice that r fixes all endpoints of Jj for
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every 1 � j � n. Then it is just a verification to check that h D rg. Now as g belongs to
1IETC there exists � in Sn such that g D �f with f in 1IETCrc .

The other decomposition follows by decomposing h�1 under the previous decompo-
sition.

Proposition 2.5. For every h in bPC‰ there exist � and  two order-preserving homeo-
morphisms of Œ0; 1Œ and f; g in 1IET‰ such that h D  ı f D g ı �.

Proof. Let � be the Lebesgue measure on Œ0;1Œ. Let h2bPC‰ and P 2…h. Then there exist
�; 2 HomeoC.Œ0; 1Œ/ such that for every I 2P , �.�.I //D �.h.I // and �. .h.I ///D
�.I /. Then h ı � and  ı h belong to 1IET‰.

3. Construction of the signature homomorphism

In our case we have that X D Œ0; 1Œ and that bPC‰ is a subgroup of S.X/. We denote here
Sfin D Sfin.X/ and by "fin the classical signature on Sfin taking values in .Z=2Z;C/.

3.1. Definitions

Definition 3.1. Let h be an element of bPC‰, n 2 N, and P D ¹I1; I2; : : : ; Inº 2…h. For
every 1 � j � n, let j̨ be the left endpoint of Ij and let ǰ be the left endpoint of h.I ıj /.
We define the default of pseudo-right continuity for h about P , denoted by �.h;P /, as the
finitely supported permutation which sends h. j̨ / to ǰ for every 1 � j � n (this is well
defined because the set of all h. j̨ / is equal to the set of all ǰ ).

Definition 3.2. Let h be an element of bPC‰ and P 2…h. Let k be the number of intervals
of P on which h is order-reversing. We called the flip number of h about P the number k.
We denote it by R.h;P /.

Definition 3.3. For h 2 bPC‰ and P 2 …h, define

".h;P / 2 Z=2Z D R.h;P /C "fin
�
�.h;P /

�
Œmod 2�:

We define also ".h/ D ".h;P fin
h
/.

Proposition 3.4. For every � 2 Sfin and every P 2 …� one has that ".�;P / D "fin.�/.

Proof. It is clear that for every � 2 Sfin and every partition P associated with � we have
that R.�;P / D 0 and �.�;P / D � .

We deduce that " extends the classical signature "fin. Thus we will write " instead of
"fin.

Proposition 3.5. Every right-continuous element f of bPCC satisfies that ".f;P / D 0 for
every P 2 …f .

Proof. In this case, for every partition P into intervals associated with f we always have
R.f;P / D 0 and �.f;P / D Id.
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Figure 1. Illustrations of the two cases appearing in Lemma 3.6. On the left we assume that h is
order-preserving on I [ J and see that �.h;Q/.h.x// D �.h;Q0/.h.x//. On the right we assume that
h is order-reversing on I [ J and see that �.h;Q/.h.x// D .h.x/�.h;Q0/.h.˛/// ı �.h;Q0/.h.x//.

3.2. Proof of Theorem 1.1

In order to prove that " is a group homomorphism, we prove that the value of ".h;P / does
not depend on the partition P 2 …h.

Lemma 3.6. For every h 2 bPC‰ and every P 2 …h one has that ".h/ D ".h;P /.

Proof. Let h and P be as in the statement. By minimality of P min
h

, in terms of refinement,
we deduce that there exist n 2 N and P1;P2; : : : ;Pn 2 …h such that

(i) P1 D P min
h

;

(ii) Pn D P ;

(iii) for every 2 � i � n the partition Pi is a refinement of the partition Pi�1 where
only one interval of Pi�1 is cut into two.

Hence it is enough to show that ".h;Q/ D ".h;Q0/ where Q;Q0 2…h such that there
exist consecutive intervals I; J 2 Q with I [ J 2 Q0 and Q0 X ¹I [ J º D Q X ¹I; J º.

Let ˛ be the left endpoint of I and let x be the right endpoint of I (x is also the left
endpoint of J ). There are only two cases which are illustrated in Figure 1 (but, in both
cases, we know that �.h;Q/ D �.h;Q0/ except maybe on h.˛/ and h.x/):

(i) The first case is when h is order-preserving on I [ J . Then as Q X ¹I; J º D

Q0 X ¹I [ J º we get that R.h;Q/ D R.h;Q0/. As h is order-preserving on the interior
of I [ J we know that �.h;Q0/.h.˛// is the left endpoint of h.I [ J / which is the left
endpoint of h.I / and thus equal to �.h;Q/.h.˛//. With the same reasoning, we deduce
that �.h;Q0/.h.x//D �.h;Q/.h.x// and hence �.h;Q/ D �.h;Q0/. Thus in Z=2Z we have that
R.h;Q0/C ".�.h;Q0// D R.h;Q/C ".�.h;Q//.
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(ii) The second case is when h is order-reversing on I [ J . Then we get thatR.h;Q/D
R.h;Q0/C 1. This time �.h;Q0/.h.˛// is still the left endpoint of h.I [ J /which is the left
endpoint of h.J / and thus equal to �.h;Q/.h.x//. With the same reasoning, we deduce that
�.h;Q0/.h.x// D �.h;Q/.h.˛//. Then by denoting � the transposition .h.x/�.h;Q0/.h.˛///,
we obtain that �.h;Q/D � ı �.h;Q0/. We must notice that the transposition is not the identity
because h�1.�.h;Q0/.h.˛/// is an endpoint of one of the intervals of Q0 and x is not.

In conclusion, in Z=2Z we have that

R.h;Q0/C ".�.h;Q0// D R.h;Q
0/C 1C 1C ".�.h;Q0//

D R.h;Q/C ".�.h;Q//:

If � 2HomeoC.Œ0;1Œ/, then it follows from Proposition 3.5 that ".�/D 0. We improve
this, showing that " is invariant by the action of HomeoC.Œ0; 1Œ/ on bPC‰.

Lemma 3.7. For every h 2 bPC‰ and every � 2 HomeoC.Œ0; 1Œ/ one has that ".h�/ D
".h/ D ".�h/.

Proof. Let h 2 bPC‰ and � 2 HomeoC.Œ0; 1Œ/ be as in the statement. Let n 2 N and
P WD ¹I1; I2; : : : ; Inº 2…h. Then Q WD ¹��1.I1/; �

�1.I2/; : : : ; �
�1.In/º is in…h� . We

know that � is order-preserving. Then for every 1� i � n, h� preserves (resp. reverses) the
order on ��1.Ii / if and only if h preserves (resp. reverses) the order on Ii ; thusR.h;P /D
R.h�;Q/. We can notice that the left endpoint of ��1.Ii / (denoted by ˛i ) is sent on
the left endpoint of Ii (denoted by ai ) by �; hence h.ai / D h�.˛i / has to be sent on
�.h;P /.h.ai //, so �.h�;Q/ D �.h;P /. We deduce that ".h�/ D ".h/.

The other equality has a similar proof. We denote by h.P / the arrival partition of h
associated with P . We know that � is continuous. Thus h.P / is in …� and we deduce
that P 2 …�h. Also � is order-preserving, then R.h;P / D R.�h;P /. We know that
�.�;h.P // D Id, then we can notice that � ı �.h;P / ı h sends the left endpoint of Ii to the
left endpoint of �h.I ıi /. Then �.�h;P / D ��.h;P /��1 and we deduce that ".�.�h;P // D
".�.h;P //. Hence ".�h/ D ".h/.

Thanks to Proposition 2.5, it is enough to prove that "jbIET‰
is a group homomorphism.

Lemma 3.8. The map "jbIET‰
is a group homomorphism.

Proof. Let f; g 2 1IET‰. Let P 2 …f and Q 2 …g . For every I 2 Q (resp. J 2 P ) we
denote by ˛I (resp. ˇJ ) the left endpoint of I (resp. J ). Up to refine P and Q we can
assume that P D g.Q/. Thus g.¹˛I ºI2Q/ D ¹ˇJ ºJ2P . Then Q 2 …f ıg and for every
K 2 f ı g.Q/ we denote by 
K the left endpoint of K.

In Z=2Z, we get immediately that R.f ı g;Q/ D R.g;Q/C R.f; g.Q//. Now we
want to describe the default of pseudo-right continuity for f ı g about Q. We recall
that �.f ıg;Q/ is the permutation that sends f ı g.˛I / on 
f ıg.I/ for every I 2 Q while
fixing the rest of Œ0; 1Œ. Furthermore, �.g;Q/.g.˛I // D ˇg.I/ and �.f;g.Q//.f .ˇg.I/// D
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f ıg.I/. Then �.f;g.Q// ı f ı �.g;Q/ ı g.˛I / D 
f ıg.I/ and we deduce that the permu-
tation �.f;g.Q// ı f ı �.g;Q/ ı f �1 sends f ı g.˛I / on 
f ıg.I/ for every I 2 Q while
fixing the rest of Œ0; 1Œ. Thus �.f ıg;Q/ D �f;g.Q/ ı f ı �.g;Q/ ı f �1. Then ".�.f ıg;Q// D
".�f;g.Q//C ".�.g;Q// and we conclude that ".f ı g/ D ".f /C ".g/.

Corollary 3.9. The map " is a group homomorphism.

4. Normal subgroups of 1PC‰ and some subgroups

Here we present some corollaries of Theorem 1.1. For every group G we denote byD.G/
its derived subgroup.

Definition 4.1. For every group H , we define J3.H/ as the subgroup generated by ele-
ments of order 3.

Let yG be a subgroup of bPC‰ containing Sfin. We denote by G its projection on PC‰.
We recall that Afin is a normal subgroup of yG and has a trivial centralizer. We deduce that
every nontrivial normal subgroup H of yG contains Afin.

From the short exact sequence

1! Sfin ! yG ! G ! 1

we deduce the next short exact sequence which is a central extension:

1! Z=2Z! yG=Afin ! G ! 1:

This short exact sequence splits because the signature "
j yG
W yG ! Z=2Z constructed

in Section 3 is a retraction. Then we deduce that yG=Afin is isomorphic to the direct product
Z=2Z �G.

Corollary 4.2. The projection yGab!Gab extends in an isomorphism yGab �Gab �Z=2Z.
Furthermore, D. yG/ D Ker."/ \1D.G/ is a subgroup of index 2 in 1D.G/. In particular, if
G is a perfect group, then yGab D Z=2Z.

Corollary 4.3. Let yG be a subgroup of bPC‰ containing Sfin such that its projection G
in PC‰ is simple nonabelian. Then yG has exactly 5 normal subgroups given by the list:
¹¹1º;Afin;Sfin;Ker."/; yGº.

Proof. Let yG be as in the statement. First, we immediately check that the subgroups in the
list are distinct normal subgroups of yG. In the case of Ker."/, there exists g 2 yG XSfin;
thus either g 2 Ker."/ XSfin or �g 2 Ker."/ XSfin for any transposition � .

Second, let H be a normal subgroup of yG distinct from ¹1º. Then it contains Afin.
Also H=Afin is a normal subgroup of yG=Afin ' Z=2Z � G. Furthermore, G is simple.
Then there are only four possibilities for H=Afin. As two normal subgroups H;K of yG
containing Afin such that H=Afin D K=Afin are equal, we deduce that yG has at most 5
normal subgroups.
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Corollary 4.4. Let yG be a subgroup of bPC‰ containing Sfin such that its projection G in
PC‰ is simple nonabelian. If there exists an element of order 3 inG XAfin, then J3. yG/D
Ker."/ D D. yG/.

Remark 4.5. In the context of topological-full groups, the group J3.G/ appears natu-
rally (with some mild assumptions) and is denoted by A.G/ by Nekrashevych in [8]. In
some case of topological-full groups of minimal groupoids (see [7]) we have the equality
A.G/DD.G/ thanks to the simplicity ofD.G/. In spite of the analogy, it is not clear that
the corollary can be obtained as a particular case of this result.

Remark 4.6. A lot of groups satisfy the conditions of Corollary 4.4. When yG contains
1IETC, there is an element of order 3 in G X Afin. We recall that IET‰, PCC, and PAffC

are simple (see [1,4]). Thus these groups satisfy the conditions of Corollary 4.4. The next
theorem adds PC‰ and PAff‰ to the list of examples.

Theorem 4.7. The groups PC‰ and PAff‰ are simple.

Lemma 4.8. The group IET‰ is generated by flips (= images of flips from 1IET‰).

Proof. By Proposition 2.4 it is enough to show that IETC is generated by flips.
For every consecutive, right-open, and left-closed subintervals I and J of Œ0; 1Œ, we

define RI;J as the map that exchanges I and J . They are elements of 1IETCrc and they
formed a generating set. Then their image rI;J in IET‰ is a generating set of IETC.
For every right-open and left-closed subinterval I of Œ0; 1Œ, we define sI as the I -flip.
Let I and J be two consecutive, right-open, and left-closed subintervals of j0; 1Œ. Then
rI;J D sI sJ sI[J .

Proof of Theorem 4.7 (sketched). Since the argument in [1] could also be adapted, we
only provide a sketch.

We work with elements of PC‰; all intervals below are meant modulo finite subsets.
Let N be a nontrivial normal subgroup of PC‰ (resp. PAff‰). Let g be a nontrivial ele-
ment of N . There exists a subinterval I of Œ0; 1Œ such that

(i) g is continuous (resp. affine) on I ;

(ii) g.I / \ I D ¿ (modulo finite subsets);

(iii) I [ g.I / ¤ Œ0; 1Œ (modulo finite subsets).

Let f be the I -flip. If g is affine on I , then hD gfg�1f �1 is the product of the I -flip with
the g.I /-flip. Observe that h is conjugate to a single flip by a suitable element of IETC. If
g is only continuous, then h is still of order 2 and it is conjugate in PC‰ to a single flip.
Conjugating by elements of PAffC, one obtains that N contains flips of intervals of all
possible lengths, and hence contains all flips. Thanks to Lemma 4.8, we know that IET‰

is generated by the set of flips and thus N contains IET‰; in particular N intersects with
PCC (resp. PAffC) nontrivially. By simplicity of PCC (resp. PAffC) we deduce that N
contains PC‰ D hPCC; IET‰i (resp. PAff‰ D hPAffC; IET‰i).
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5. About some normalizers

Here we show that computing normalizers inside bPC‰ and PC‰ may lead to a different
behavior. We look at the cases of PCC, IETC and bPCCrc , 1IETCrc .

Proposition 5.1. The normalizer of IETC in IET‰ is reduced to IET˙.

Proof. Let f 2 IETC and g 2 IET˙. If g 2 IETC, then gfg�1 2 IETC. We assume that
g 2 IET�. Then gfg�1 D .g ıR/ ı .R ı f ıR/ ı .R ı g/ 2 IETC.

For the inclusion from left to right, let g 2 IET‰ X IET˙ and let Og be a representative
of g in 1IET‰. Hence we can find I; J; K; L four right-open and left-closed intervals of
the same length such that their images by Og are intervals and such that Og is order-reversing
on I and order-preserving on J , K, and L. We define Of 21IETC as the element which
exchanges Og.I / with Og.J / and Og.K/ with Og.L/ while fixing the rest of Œ0; 1Œ. Then the
image f of Of in IETC is not trivial and Og Of Og�1 …1IETC implies that gfg�1 … IETC.

A similar argument stands for the case of PC and thus we obtain the following result.

Proposition 5.2. The normalizer of PCC in PC‰ is reduced to PC˙.

We now take a look to inside bPC‰:

Proposition 5.3. The normalizer of 1IETCrc in 1IET‰ is 1IETCrc .

Proof. Let g be an element of 1IET‰ which is not the identity. There are two cases:
(i) If g 21IETC X1IETCrc , then g D �g0 with � 2 Sfin X ¹Idº and g0 21IETCrc . Then for

every f 21IETCrc we have that gfg�1 D �g0fg0�1��1. Thus it is enough to treat the case
of Sfin. Let us assume that g 2Sfin. Then let x be in the support of g. There exist two con-
secutive right-open and left-closed intervals I and J of the same length such that x is the
right endpoint of I (and the left endpoint of J ). Up to reduce I and J we can assume that
I does not intersect with the support of g. Then let f 21IETCrc which exchanges I and J
while fixing the rest of Œ0; 1Œ. Then gfg�1 exchanges the interior of I with the interior of
J but gfg�1.x/ is not equal to f .x/ because f .x/ is the left endpoint of I and I does not
intersect with the support of g. Then we deduce that gfg�1 is not right-continuous on J .

(ii) If g 2 1IET‰ X1IETC. Then we can find two consecutive subintervals I and J
where g is continuous and order-reversing on I [ J . Let a be the right endpoint of J . Let
f be the element in 1IETCrc which exchanges I and J . Then gfg�1 exchanges the interior
of g.J / with the interior of g.I /. However, the left endpoint of g.J / is sent by g�1 on a
which is fixed by f . Then gfg�1 fixes the left endpoint of g.J / and thus gfg�1 is not
right-continuous on g.J /.

A similar argument stands for the case of PC; thus we obtain the following result.

Proposition 5.4. The normalizer of bPCCrc in bPC‰ is bPCCrc .
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