Signature for piecewise continuous groups

Octave Lacourte

Abstract. Let \widehat{PC}^{\bowtie} be the group of bijections from [0, 1] to itself which are continuous outside a finite set. Let PC^{\bowtie} be its quotient by the subgroup of finitely supported permutations. We show that the Kapoudjian class of PC^{\bowtie} vanishes. That is, the quotient map $\widehat{PC}^{\bowtie} \rightarrow PC^{\bowtie}$ splits mod-
ulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group
homomorphism, c ulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group homomorphism, called signature, from \widehat{PC}^{\bowtie} to $\mathbb{Z}/2\mathbb{Z}$. Then we use this signature to list normal subgroups of every subgroup \widehat{G} of \widehat{PC}^{\bowtie} which contains $\mathfrak{S}_{\text{fin}}$ such that G, the project subgroups of every subgroup \widehat{G} of \widehat{PC}^{\bowtie} which contains \mathfrak{S}_{fin} such that G , the projection of \widehat{G} in PC^{\bowtie} , is simple. PC^{\bowtie} , is simple.

1. Introduction

Let X be the right-open and left-closed interval [0, 1]. We denote by $\mathfrak{S}(X)$ the group of bijections of X to X . This group contains the subgroup composed of all finitely supported permutations, denoted by \mathfrak{S}_{fin} . The classical signature is well defined on \mathfrak{S}_{fin} and its kernel, denoted by $\mathfrak{A}_{\text{fin}}$, is the only subgroup of index 2 in $\mathfrak{S}_{\text{fin}}$. An observation, originally due to Vitali [\[9\]](#page-9-0), is that the signature does not extend to $\mathfrak{S}(X)$.

For every subgroup G of $\mathfrak{S}(X)/\mathfrak{S}_{\text{fin}}$, we denote by \widehat{G} its inverse image in $\mathfrak{S}(X)$. The cohomology class of the central extension

$$
0\to \mathbb{Z}/2\mathbb{Z}=\mathfrak{S}_\mathrm{fin}/\mathfrak{A}_\mathrm{fin}\to \hat{G}/\mathfrak{A}_\mathrm{fin}\to G\to 1
$$

is called the Kapoudjian class of G; it belongs to $H^2(G,\mathbb{Z}/2\mathbb{Z})$. It appears in the works of Kapoudjian and Kapoudjian–Sergiescu [\[5,](#page-9-1) [6\]](#page-9-2). The vanishing of this class means that the above exact sequence splits; this means that there exists a group homomorphism from the preimage of G in $\mathfrak{S}(X)$ onto $\mathbb{Z}/2\mathbb{Z}$ which extends the signature on \mathfrak{S}_{fin} (for more on the Kapoudjian class, see [\[2,](#page-9-3) §8.C]). This implies in particular that $\hat{G}/\mathfrak{A}_{\text{fin}}$ is isomorphic to the direct product $G \times \mathbb{Z}/2\mathbb{Z}$. One can notice that for $G = \mathfrak{S}(X)/\mathfrak{S}_{fin}$ we have that $\hat{G} = \mathfrak{S}(X)$; in this case Vitali's observation implies that the Kapoudjian class does not vanish.

The set of all permutations of X continuous outside a finite set is a subgroup denoted by \overline{PC}^{∞} . Then we denote by \overline{PC}^{∞} its image in $\mathfrak{S}(X)/\mathfrak{S}_{fin}$. The aim here is to show the following theorem.

²⁰²⁰ Mathematics Subject Classification. Primary 37E05; Secondary 20F65, 20J06.

Keywords. Permutations groups, interval exchange transformations, signature, Kapoudjian class.

Theorem 1.1. *There exists a group homomorphism* ε : $\widehat{PC^{\bowtie}} \to \mathbb{Z}/2\mathbb{Z}$ *that extends the classical signature on* Sfin*.*

Corollary 1.2. Let G be a subgroup of PC^{\bowtie} . Then the Kapoudjian class of G is zero.

This solves a question asked by Y. Cornulier [\[3,](#page-9-4) Question 1.15].

The subgroup of \widehat{PC}^{\bowtie} consisting of all permutations of X that are piecewise isometric elements is denoted by $\widehat{IET^{\bowtie}}$ and the one consisting of all piecewise affine permutations of X is denoted by PAff^{$\dot{\bowtie}$}. We also consider for each of these groups the subgroup composed of all piecewise orientation-preserving elements by replacing the symbol " \bowtie " by the symbol "+." Then each of these groups without the hat is the image of the group in $\mathfrak{S}(X)/\mathfrak{S}_{\text{fin}}$; for instance IET⁺ is the image in $\mathfrak{S}(X)/\mathfrak{S}_{\text{fin}}$ of the group IET⁺.
Let us observe that when $G \subset PC^+$, Corollary [1.2](#page-1-0) is trivial. Indeed, in this case G can

be lifted inside PC⁺ itself. However, such a lift does not exist for PC^{\bowtie} or even IET^{\bowtie}, as was proved in [\[3\]](#page-9-4).

The idea of proof of Theorem [1.1](#page-1-1) is to associate two numbers for every $f \in \widehat{PC}^{\bowtie}$ and every finite partition $\mathcal P$ of [0, 1] into intervals associated with f. The first is the number of interval of P where f is order-reversing and the second is the signature of a particular finitely supported permutation. The next step is to prove that the sum modulo 2 of these two numbers is independent from the choice of partition. Then we show that it is enough to prove that $\varepsilon|_{\text{IET}^{\bowtie}}$ is a group homomorphism. For this we show that it is additive when we look at the composition of two elements of \overline{IET}^{\bowtie} by calculating the value of the signature with a particular partition.

In Section [4,](#page-6-0) we apply these results to the study of normal subgroups of \widehat{PC}^{\bowtie} and certain subgroups. More specifically we prove the following theorem.

Theorem 1.3. Let \widehat{G} be a subgroup of \widehat{PC}^{\bowtie} containing \mathfrak{S}_{fin} and such that its projection G in PC^{\bowtie} is simple nonabelian. Then \widehat{G} has exactly five normal subgroups given by the *list:* $\{ \{1\}, \mathfrak{A}_{\text{fin}}, \mathfrak{S}_{\text{fin}}, \text{Ker}(\varepsilon), \widehat{G} \}.$

We denote by $\widehat{IET_{rc}^+}$ the subgroup of \widehat{IET}^+ composed of all right-continuous elements.
know that it is naturally isomorphic to IET^+ . The same is true when we replace IET^+ We know that it is naturally isomorphic to IET^+ . The same is true when we replace IET^+ by PAff⁺ or PC⁺. This allows us to use the work of P. Arnoux [\[1\]](#page-9-5) and the one of N. Guelman and I. Liousse [\[4\]](#page-9-6) where they prove that IET^{\bowtie} , PC^+ , and $PAff^+$ are simple. From this we deduce the following result.

Theorem 1.4. *The groups* PC^{\bowtie} *and* $PAff^{\bowtie}$ *are simple.*

This gives us some examples of groups that satisfy the conditions of Theorem [1.3.](#page-1-2)

Finally, Section [5](#page-8-0) is independent and we study some normalizers; in particular, we show that the behavior when we look inside the group \widehat{PC}^{\bowtie} or PC^{\bowtie} may not be the same. We denote by $\mathcal{R} \in IET^{\bowtie}$ the map $x \mapsto 1 - x$. Then we define IET⁻ as the coset $\mathcal{R} \cdot IET^+$ and PC⁻ as the coset $\mathcal{R} \cdot P\mathbf{C}^+$. Then the groups IET^{\pm} := IET⁺ \cup IET⁺ and PC^{\pm} := $PC^{\pm} \cup PC^{-}$ are well defined.

Proposition 1.5. *The subgroup* $\widehat{\operatorname{IET}^+_{\text{rc}}}$ *(resp.* $\widehat{\operatorname{PC}^+_{\text{rc}}}$ *) is its own normalizer in* $\widehat{\operatorname{IET}^{\bowtie}}$ *(resp.* $\operatorname{PC}^{\perp}$ *). The normalizer of* IET^+ *(resp.* $\operatorname{PC}^{\bowtie}$ *) in* $\operatorname{$ \widehat{PC}_{rc}^+). The normalizer of IET^+ (resp. PC^+) in IET^∞ (resp. PC^∞) is IET^\pm (resp. PC^\pm).

2. Preliminaries

For every real interval I we denote by I° its interior in R and if $I = [0, t]$ we agree that its interior is $[0, t]$.

2.1. Partitions associated

An important tool to study elements in \widehat{PC}^{\bowtie} and PC^{\bowtie} are partitions into intervals of [0, 1]. All partitions are assumed to be finite.

Definition 2.1. For every f in \widehat{PC}^{\bowtie} , a finite partition P into right-open and left-closed intervals of $[0, 1]$ is called *a partition into intervals associated with* f if and only if f is continuous on the interior of every interval of P. We denote by Π_f the set of all partitions into intervals associated with f .

We define also *the arrival partition of* f *associated with* P , denoted by $f(P)$, as the partition of $[0, 1]$ composed of all right-open and left-closed intervals such that their interior is equal to the image by f of the interior of an interval of \mathcal{P} .

Remark 2.2. For every f in \widehat{PC}^{\bowtie} there exists a unique partition \mathcal{P}_f^{\min} which has a minimal number of intervals. It is actually minimal in the set f_f^{min} associated with f which has a minimal number of intervals. It is actually minimal in the sense of refinement: Π_f consists precisely of the set of partitions refining \mathcal{P}_f^{\min} .

2.2. Decompositions

We define a family of elements which plays an important role inside our groups.

Definition 2.3. Let I be a non-empty right-open and left-closed subinterval of [0, 1]. The element $f \in \widehat{PC}^{\bowtie}$ which sends the interior of I on itself with slope -1 while fixing the rest of $[0, 1]$ is called the *I*-flip. We define *a flip* as any *I*-flip for some *I*.

From the definition we deduce a decomposition inside $\widehat{IET^{\bowtie}}$ and $\widehat{PC^{\bowtie}}$.

Proposition 2.4. *Let h be an element of* $\widehat{IET^{\bowtie}}$ *. There exist* $f, g \in \widehat{IET^{\infty}_{rc}}$ *, r, s finite products of flips, and* σ *,* τ *finitely supported permutations such that* $h = r \sigma f = g \tau s$ *. of flips, and* σ , τ *finitely supported permutations such that* $h = r \sigma f = g \tau s$.

Proof. Let h be an element of $\widehat{\operatorname{IET}^{\bowtie}}$, $n \in \mathbb{N}$, and $\mathcal{P} := \{I_1, I_2, \ldots, I_n\} \in \Pi_h$ (Section [2.1\)](#page-2-0). We denote by $h(\mathcal{P}) := \{J_1, J_2, \ldots, J_n\}$ the arrival partition of h associated with \mathcal{P} . Let g be the map that sends I_i° j° on J_j° \int_{i}^{∞} by preserving the order and acts as h for every left endpoints of I_j for every $1 \leq j \leq n$. Note that g is bijective and thus belongs to IET⁺. For $1 \le j \le n$ let r_j be the J_j -flip if h is order-reversing on I_j ; otherwise let r_j be the identity. Let r be the product of all r_j . We can notice that r fixes all endpoints of J_j for

every $1 \le j \le n$. Then it is just a verification to check that $h = rg$. Now as g belongs to IET⁺ there exists σ in \mathfrak{S}_n such that $g = \sigma f$ with f in IET⁺_{rc}.
The other decomposition follows by decomposing h^{-1 IET⁺ there exists σ in \mathfrak{S}_n such that $g = \sigma f$ with f in IET_{rc}.
The other decomposition follows by decomposing h^{-1} und

The other decomposition follows by decomposing h^{-1} under the previous decomposition.

Proposition 2.5. For every h in \widehat{PC}^{\bowtie} there exist ϕ and ψ two order-preserving homeo*morphisms of* [0, 1] *and* f, g *in* $\widehat{\text{IET}^{\bowtie}}$ *such that* $h = \psi \circ f = g \circ \phi$.

Proof. Let λ be the Lebesgue measure on [0, 1[. Let $h \in \widehat{PC}^{\bowtie}$ and $\mathcal{P} \in \Pi_h$. Then there exist $\phi, \psi \in \text{Homeo}^+([0, 1])$ such that for every $I \in \mathcal{P}, \lambda(\phi(I)) = \lambda(h(I))$ and $\lambda(\psi(h(I))) =$ $\lambda(I)$. Then $h \circ \phi$ and $\psi \circ h$ belong to IET^{\bowtie}.

3. Construction of the signature homomorphism

In our case we have that $X = [0, 1]$ and that \widehat{PC}^{\bowtie} is a subgroup of $\mathfrak{S}(X)$. We denote here $\mathfrak{S}_{fin} = \mathfrak{S}_{fin}(X)$ and by ε_{fin} the classical signature on \mathfrak{S}_{fin} taking values in $(\mathbb{Z}/2\mathbb{Z}, +)$.

3.1. Definitions

Definition 3.1. Let h be an element of \widehat{PC}^{\bowtie} , $n \in \mathbb{N}$, and $\mathcal{P} = \{I_1, I_2, \ldots, I_n\} \in \Pi_h$. For every $1 \le j \le n$, let α_j be the left endpoint of I_j and let β_j be the left endpoint of $h(I_j^{\circ})$. We define the *default of pseudo-right continuity for h about* P , denoted by $\sigma_{(h,P)}$, as the finitely supported permutation which sends $h(\alpha_j)$ to β_j for every $1 \leq j \leq n$ (this is well defined because the set of all $h(\alpha_i)$ is equal to the set of all β_i).

Definition 3.2. Let h be an element of \widehat{PC}^{\bowtie} and $\mathcal{P} \in \Pi_h$. Let k be the number of intervals of P on which h is order-reversing. We called the *flip number of h about* P the number k . We denote it by $R(h, \mathcal{P})$.

Definition 3.3. For $h \in \widehat{PC^{\bowtie}}$ and $\mathcal{P} \in \Pi_h$, define

$$
\varepsilon(h, \mathcal{P}) \in \mathbb{Z}/2\mathbb{Z} = R(h, \mathcal{P}) + \varepsilon_{\text{fin}}(\sigma_{(h, \mathcal{P})}) \pmod{2}.
$$

We define also $\varepsilon(h) = \varepsilon(h, \mathcal{P}_h^{\text{fin}}).$

Proposition 3.4. *For every* $\tau \in \mathfrak{S}_{fin}$ *and every* $\mathcal{P} \in \Pi_{\tau}$ *one has that* $\varepsilon(\tau, \mathcal{P}) = \varepsilon_{fin}(\tau)$ *.*

Proof. It is clear that for every $\tau \in \mathfrak{S}_{fin}$ and every partition $\mathcal P$ associated with τ we have that $R(\tau, \mathcal{P}) = 0$ and $\sigma_{(\tau, \mathcal{P})} = \tau$.

We deduce that ε extends the classical signature ε_{fin} . Thus we will write ε instead of ε_{fin} .

Proposition 3.5. *Every right-continuous element* f of $\widehat{PC^+}$ *satisfies that* $\varepsilon(f, \mathcal{P}) = 0$ *for every* $\mathcal{P} \in \Pi_f$ *.*

Proof. In this case, for every partition P into intervals associated with f we always have $R(f, \mathcal{P}) = 0$ and $\sigma_{(f, \mathcal{P})} = \text{Id}.$

Figure 1. Illustrations of the two cases appearing in Lemma [3.6.](#page-4-0) On the left we assume that h is order-preserving on $I \cup J$ and see that $\sigma_{(h,Q)}(h(x)) = \sigma_{(h,Q')}(h(x))$. On the right we assume that h is order-reversing on $I \cup J$ and see that $\sigma_{(h,\mathcal{Q})}(h(x)) = (h(x)\sigma_{(h,\mathcal{Q}')}(h(\alpha))) \circ \sigma_{(h,\mathcal{Q}')}(h(x)).$

3.2. Proof of Theorem [1.1](#page-1-1)

In order to prove that ε is a group homomorphism, we prove that the value of $\varepsilon(h,\mathcal{P})$ does not depend on the partition $\mathcal{P} \in \Pi_h$.

Lemma 3.6. *For every* $h \in \widehat{PC}^{\bowtie}$ *and every* $\mathcal{P} \in \Pi_h$ *one has that* $\varepsilon(h) = \varepsilon(h, \mathcal{P})$ *.*

Proof. Let h and P be as in the statement. By minimality of \mathcal{P}_h^{\min} , in terms of refinement, we deduce that there exist $n \in \mathbb{N}$ and $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n \in \Pi_h$ such that

- (i) $\mathcal{P}_1 = \mathcal{P}_h^{\min};$
- (ii) $\mathcal{P}_n = \mathcal{P}$;
- (iii) for every $2 \le i \le n$ the partition \mathcal{P}_i is a refinement of the partition \mathcal{P}_{i-1} where only one interval of \mathcal{P}_{i-1} is cut into two.

Hence it is enough to show that $\varepsilon(h, \mathcal{Q}) = \varepsilon(h, \mathcal{Q}')$ where $\mathcal{Q}, \mathcal{Q}' \in \Pi_h$ such that there exist consecutive intervals $I, J \in \mathcal{Q}$ with $I \cup J \in \mathcal{Q}'$ and $\mathcal{Q}' \setminus \{I \cup J\} = \mathcal{Q} \setminus \{I, J\}.$

Let α be the left endpoint of I and let x be the right endpoint of I (x is also the left endpoint of J). There are only two cases which are illustrated in Figure [1](#page-4-1) (but, in both cases, we know that $\sigma_{(h,\mathcal{Q})} = \sigma_{(h,\mathcal{Q}')}$ except maybe on $h(\alpha)$ and $h(x)$:

(i) The first case is when h is order-preserving on $I \cup J$. Then as $\mathcal{Q} \setminus \{I, J\} =$ $\mathcal{Q}' \setminus \{I \cup J\}$ we get that $R(h, \mathcal{Q}) = R(h, \mathcal{Q}')$. As h is order-preserving on the interior of $I \cup J$ we know that $\sigma_{(h,Q')}(h(\alpha))$ is the left endpoint of $h(I \cup J)$ which is the left endpoint of $h(I)$ and thus equal to $\sigma_{(h,Q)}(h(\alpha))$. With the same reasoning, we deduce that $\sigma_{(h,Q')}(h(x)) = \sigma_{(h,Q)}(h(x))$ and hence $\sigma_{(h,Q)} = \sigma_{(h,Q')}$. Thus in $\mathbb{Z}/2\mathbb{Z}$ we have that $R(h, \mathcal{Q}') + \varepsilon(\sigma_{(h, \mathcal{Q}')}) = R(h, \mathcal{Q}) + \varepsilon(\sigma_{(h, \mathcal{Q})}).$

(ii) The second case is when h is order-reversing on $I \cup J$. Then we get that $R(h, Q)$ = $R(h, \mathcal{Q}') + 1$. This time $\sigma_{(h, \mathcal{Q}')}(h(\alpha))$ is still the left endpoint of $h(I \cup J)$ which is the left endpoint of $h(J)$ and thus equal to $\sigma_{(h,\mathcal{Q})}(h(x))$. With the same reasoning, we deduce that $\sigma_{(h,\mathcal{Q})}(h(x)) = \sigma_{(h,\mathcal{Q})}(h(\alpha))$. Then by denoting τ the transposition $(h(x)\sigma_{(h,\mathcal{Q})}(h(\alpha)))$, we obtain that $\sigma_{(h,Q)} = \tau \circ \sigma_{(h,Q')}$. We must notice that the transposition is not the identity because $h^{-1}(\sigma_{(h,\mathcal{Q}')}(h(\alpha)))$ is an endpoint of one of the intervals of \mathcal{Q}' and x is not.

In conclusion, in $\mathbb{Z}/2\mathbb{Z}$ we have that

$$
R(h, \mathcal{Q}') + \varepsilon(\sigma_{(h, \mathcal{Q}')}) = R(h, \mathcal{Q}') + 1 + 1 + \varepsilon(\sigma_{(h, \mathcal{Q}')})
$$

= $R(h, \mathcal{Q}) + \varepsilon(\sigma_{(h, \mathcal{Q})}).$

If $\phi \in \text{Homeo}^+([0, 1])$, then it follows from Proposition [3.5](#page-3-0) that $\varepsilon(\phi) = 0$. We improve this, showing that ε is invariant by the action of Homeo⁺ ([0, 1]) on PC^{\approx}.

Lemma 3.7. *For every* $h \in \widehat{PC}^{\bowtie}$ *and every* $\phi \in$ Homeo⁺([0, 1]) *one has that* $\varepsilon(h\phi)$ = $\varepsilon(h) = \varepsilon(\phi h)$.

Proof. Let $h \in \widehat{PC^{\bowtie}}$ and $\phi \in \text{Homeo}^+([0,1])$ be as in the statement. Let $n \in \mathbb{N}$ and $\mathcal{P} := \{I_1, I_2, \ldots, I_n\} \in \Pi_h$. Then $\mathcal{Q} := \{\phi^{-1}(I_1), \phi^{-1}(I_2), \ldots, \phi^{-1}(I_n)\}\$ is in $\Pi_{h\phi}$. We know that ϕ is order-preserving. Then for every $1 \le i \le n$, $h\phi$ preserves (resp. reverses) the order on $\phi^{-1}(I_i)$ if and only if h preserves (resp. reverses) the order on I_i ; thus $R(h,\mathcal{P}) =$ $R(h\phi, \mathcal{Q})$. We can notice that the left endpoint of $\phi^{-1}(I_i)$ (denoted by α_i) is sent on the left endpoint of I_i (denoted by a_i) by ϕ ; hence $h(a_i) = h\phi(\alpha_i)$ has to be sent on $\sigma_{(h,\mathcal{P})}(h(a_i))$, so $\sigma_{(h\phi,\mathcal{Q})} = \sigma_{(h,\mathcal{P})}$. We deduce that $\varepsilon(h\phi) = \varepsilon(h)$.

The other equality has a similar proof. We denote by $h(\mathcal{P})$ the arrival partition of h associated with P. We know that ϕ is continuous. Thus $h(\mathcal{P})$ is in Π_{ϕ} and we deduce that $\mathcal{P} \in \Pi_{\phi h}$. Also ϕ is order-preserving, then $R(h, \mathcal{P}) = R(\phi h, \mathcal{P})$. We know that $\sigma_{(\phi,h(\mathcal{P}))} =$ Id, then we can notice that $\phi \circ \sigma_{(h,\mathcal{P})} \circ h$ sends the left endpoint of I_i to the left endpoint of $\phi h(I_i^{\circ})$. Then $\sigma_{(\phi h, \mathcal{P})} = \phi \sigma_{(h, \mathcal{P})} \phi^{-1}$ and we deduce that $\varepsilon(\sigma_{(\phi h, \mathcal{P})}) =$ $\varepsilon(\sigma(h, \mathcal{P}))$. Hence $\varepsilon(\phi h) = \varepsilon(h)$.

Thanks to Proposition [2.5,](#page-3-1) it is enough to prove that $\varepsilon|_{\widehat{\text{IET}^{\bowtie}}}$ is a group homomorphism.
 nma 3.8. *The map* ε is a group homomorphism.

Lemma 3.8. The map ε $\Big|_{\text{max}}$ is a group homomorphism.

IET^{i⊗}
Let *Proof.* Let $f, g \in \widehat{\operatorname{IET}^{\bowtie}}$. Let $\mathcal{P} \in \Pi_f$ and $\mathcal{Q} \in \Pi_g$. For every $I \in \mathcal{Q}$ (resp. $J \in \mathcal{P}$) we denote by α_I (resp. β_I) the left endpoint of I (resp. J). Up to refine \mathcal{P} and \mathcal{Q} denote by α_I (resp. β_J) the left endpoint of I (resp. J). Up to refine $\mathcal P$ and $\mathcal Q$ we can assume that $\mathcal{P} = g(\mathcal{Q})$. Thus $g(\{\alpha_I\}_{I \in \mathcal{Q}}) = \{\beta_J\}_{J \in \mathcal{P}}$. Then $Q \in \Pi_{f \circ g}$ and for every $K \in f \circ g(Q)$ we denote by γ_K the left endpoint of K.

In $\mathbb{Z}/2\mathbb{Z}$, we get immediately that $R(f \circ g, Q) = R(g, Q) + R(f, g(Q))$. Now we want to describe the default of pseudo-right continuity for $f \circ g$ about Q. We recall that $\sigma_{(f \circ g, Q)}$ is the permutation that sends $f \circ g(\alpha_I)$ on $\gamma_{f \circ g(I)}$ for every $I \in Q$ while fixing the rest of [0, 1[. Furthermore, $\sigma_{(g,\mathcal{Q})}(g(\alpha_I)) = \beta_{g(I)}$ and $\sigma_{(f,g(\mathcal{Q}))}(f(\beta_{g(I)})) =$ $\gamma_{f \circ g(I)}$. Then $\sigma_{(f,g(\mathcal{Q}))} \circ f \circ \sigma_{(g,\mathcal{Q})} \circ g(\alpha_I) = \gamma_{f \circ g(I)}$ and we deduce that the permutation $\sigma_{(f,g(\mathcal{Q}))} \circ f \circ \sigma_{(g,\mathcal{Q})} \circ f^{-1}$ sends $f \circ g(\alpha_I)$ on $\gamma_{f \circ g(I)}$ for every $I \in \mathcal{Q}$ while fixing the rest of [0, 1[. Thus $\sigma_{(f \circ g, \mathcal{Q})} = \sigma_{f,g(\mathcal{Q})} \circ f \circ \sigma_{(g,\mathcal{Q})} \circ f^{-1}$. Then $\varepsilon(\sigma_{(f \circ g, \mathcal{Q})}) =$ $\varepsilon(\sigma_{f,g(Q)}) + \varepsilon(\sigma_{(g,Q)})$ and we conclude that $\varepsilon(f \circ g) = \varepsilon(f) + \varepsilon(g)$.

Corollary 3.9. *The map* ε *is a group homomorphism.*

4. Normal subgroups of \widehat{PC}^{\bowtie} and some subgroups

Here we present some corollaries of Theorem [1.1.](#page-1-1) For every group G we denote by $D(G)$ its derived subgroup.

Definition 4.1. For every group H, we define $J_3(H)$ as the subgroup generated by elements of order 3.

Let \hat{G} be a subgroup of \widehat{PC}^{\bowtie} containing \mathfrak{S}_{fin} . We denote by G its projection on PC^{\bowtie}. We recall that $\mathfrak{A}_{\text{fin}}$ is a normal subgroup of \hat{G} and has a trivial centralizer. We deduce that every nontrivial normal subgroup H of \hat{G} contains $\mathfrak{A}_{\text{fin}}$.

From the short exact sequence

$$
1 \to \mathfrak{S}_{\mathrm{fin}} \to \widehat{G} \to G \to 1
$$

we deduce the next short exact sequence which is a central extension:

$$
1 \to \mathbb{Z}/2\mathbb{Z} \to \hat{G}/\mathfrak{A}_{\text{fin}} \to G \to 1.
$$

This short exact sequence splits because the signature $\varepsilon_{|\widehat{G}} : \widehat{G} \to \mathbb{Z}/2\mathbb{Z}$ constructed in Section [3](#page-3-2) is a retraction. Then we deduce that $\hat{G}/\mathfrak{A}_{\text{fin}}$ is isomorphic to the direct product $\mathbb{Z}/2\mathbb{Z} \times G$.

Corollary 4.2. The projection $\hat{G}_{ab} \rightarrow G_{ab}$ extends in an isomorphism $\hat{G}_{ab} \sim G_{ab} \times \mathbb{Z}/2\mathbb{Z}$. *Furthermore,* $D(\widehat{G}) = \text{Ker}(\varepsilon) \cap \widehat{D(G)}$ *is a subgroup of index* 2 *in* $\widehat{D(G)}$ *. In particular, if* G is a perfect group, then $\hat{G}_{ab}=\mathbb{Z}/2\mathbb{Z}$.

Corollary 4.3. Let \hat{G} be a subgroup of \widehat{PC}^{\bowtie} containing \mathfrak{S}_{fin} such that its projection G *in* PC^{\bowtie} *is simple nonabelian. Then* \widehat{G} *has exactly* 5 *normal subgroups given by the list:* $\{ \{1\}, \mathfrak{A}_{fin}, \mathfrak{S}_{fin}, \text{Ker}(\varepsilon), \widehat{G} \}.$

Proof. Let \hat{G} be as in the statement. First, we immediately check that the subgroups in the list are distinct normal subgroups of \hat{G} . In the case of Ker(ε), there exists $g \in \hat{G} \setminus \mathfrak{S}_{\text{fin}}$; thus either $g \in \text{Ker}(\varepsilon) \setminus \mathfrak{S}_{\text{fin}}$ or $\sigma g \in \text{Ker}(\varepsilon) \setminus \mathfrak{S}_{\text{fin}}$ for any transposition σ .

Second, let H be a normal subgroup of \hat{G} distinct from {1}. Then it contains $\mathfrak{A}_{\text{fin}}$. Also $H/\mathfrak{A}_{\text{fin}}$ is a normal subgroup of $\hat{G}/\mathfrak{A}_{\text{fin}} \simeq \mathbb{Z}/2\mathbb{Z} \times G$. Furthermore, G is simple. Then there are only four possibilities for $H/\mathfrak{A}_{\text{fin}}$. As two normal subgroups H, K of \hat{G} containing \mathfrak{A}_{fin} such that $H/\mathfrak{A}_{fin} = K/\mathfrak{A}_{fin}$ are equal, we deduce that \widehat{G} has at most 5 normal subgroups.

Corollary 4.4. Let \widehat{G} be a subgroup of \widehat{PC}^{\bowtie} containing \mathfrak{S}_{fin} such that its projection G in PC^{\bowtie} *is simple nonabelian. If there exists an element of order* 3 *in* $G \sim \mathfrak{A}_{fin}$ *, then* $J_3(\widehat{G}) =$ $Ker(\varepsilon) = D(\widehat{G})$.

Remark 4.5. In the context of topological-full groups, the group $J_3(G)$ appears naturally (with some mild assumptions) and is denoted by $A(G)$ by Nekrashevych in [\[8\]](#page-9-7). In some case of topological-full groups of minimal groupoids (see [\[7\]](#page-9-8)) we have the equality $A(G) = D(G)$ thanks to the simplicity of $D(G)$. In spite of the analogy, it is not clear that the corollary can be obtained as a particular case of this result.

Remark 4.6. A lot of groups satisfy the conditions of Corollary 4.4. When \hat{G} contains **Remark 4.6.** A lot of groups satisfy the conditions of Corollary [4.4.](#page-7-0) When \hat{G} contains IET⁺, there is an element of order 3 in $G \setminus \mathfrak{A}_{fin}$. We recall that IET^{\bowtie}, PC⁺, and PAff⁺ are simple (see [1,4]). IET⁺, there is an element of order 3 in $G \setminus \mathfrak{A}_{\text{fin}}$. We recall that IET^{\bowtie}, PC⁺, and PAff⁺ are simple (see $[1,4]$ $[1,4]$). Thus these groups satisfy the conditions of Corollary [4.4.](#page-7-0) The next theorem adds PC^{\bowtie} and PAff^{\bowtie} to the list of examples.

Theorem 4.7. *The groups* PC^{\bowtie} *and* $PAff^{\bowtie}$ *are simple.*

Lemma 4.8. *The group* IET^{\bowtie} *is generated by flips (= images of flips from* IET^{\bowtie} *).*

Proof. By Proposition [2.4](#page-2-1) it is enough to show that IET^+ is generated by flips.

For every consecutive, right-open, and left-closed subintervals I and J of [0, 1], we define $R_{I,J}$ as the map that exchanges I and J. They are elements of $\widehat{\operatorname{IET}^+_{\text{rc}}}$ and they formed a generating set. Then their image $r_{I,J}$ in $\operatorname{IET}^{\bowtie}$ is a generating set of IET^+ . define $R_{I,J}$ as the map that exchanges I and J. They are elements of IET_{rc} and they For every right-open and left-closed subinterval I of [0, 1], we define s_I as the I-flip. Let I and J be two consecutive, right-open, and left-closed subintervals of $[0, 1]$. Then $r_{I,J} = s_I s_J s_{I \cup J}$.

Proof of Theorem [4.7](#page-7-1) *(sketched).* Since the argument in [\[1\]](#page-9-5) could also be adapted, we only provide a sketch.

We work with elements of PC^{\bowtie} ; all intervals below are meant modulo finite subsets. Let N be a nontrivial normal subgroup of PC^{\bowtie} (resp. PAff^{\bowtie}). Let g be a nontrivial element of N. There exists a subinterval I of $[0, 1]$ such that

- (i) g is continuous (resp. affine) on I ;
- (ii) $g(I) \cap I = \emptyset$ (modulo finite subsets);
- (iii) $I \cup g(I) \neq [0, 1]$ (modulo finite subsets).

Let f be the I-flip. If g is affine on I, then $h = gfg^{-1}f^{-1}$ is the product of the I-flip with the g(I)-flip. Observe that h is conjugate to a single flip by a suitable element of IET^+ . If g is only continuous, then h is still of order 2 and it is conjugate in PC^{\bowtie} to a single flip. Conjugating by elements of PAff⁺, one obtains that N contains flips of intervals of all possible lengths, and hence contains all flips. Thanks to Lemma [4.8,](#page-7-2) we know that IET^{\bowtie} is generated by the set of flips and thus N contains IET^{\bowtie} ; in particular N intersects with PC^+ (resp. PAff⁺) nontrivially. By simplicity of PC^+ (resp. PAff⁺) we deduce that N contains $PC^{\bowtie} = \langle PC^+, IET^{\bowtie} \rangle$ (resp. PAff^{\bowtie} = $\langle PAff^+, IET^{\bowtie} \rangle$).

5. About some normalizers

Here we show that computing normalizers inside \widehat{PC}^{\bowtie} and PC^{\bowtie} may lead to a different behavior. We look at the cases of PC^+ , IET^+ and PC^+ , IET^+ . behavior. We look at the cases of PC⁺, IET⁺ and PC⁺_c, IET⁺_c.

Proposition 5.1. *The normalizer of* IET^+ *in* IET^∞ *is reduced to* IET^{\pm} *.*

Proof. Let $f \in IET^+$ and $g \in IET^{\pm}$. If $g \in IET^+$, then $gfg^{-1} \in IET^+$. We assume that $g \in \text{IET}^{-}$. Then $gfg^{-1} = (g \circ \mathcal{R}) \circ (\mathcal{R} \circ f \circ \mathcal{R}) \circ (\mathcal{R} \circ g) \in \text{IET}^{+}$.

For the inclusion from left to right, let $g \in IET^{\bowtie} \setminus IET^{\pm}$ and let \hat{g} be a representative of g in IET^{\bowtie}. Hence we can find I, J, K, L four right-open and left-closed intervals of the same length such that their images by \hat{g} are intervals and such that \hat{g} is order-reversing on I and order-preserving on J, K, and L. We define $\hat{f} \in \widehat{\mathrm{IET}^+}$ as the element which exchanges $\hat{g}(I)$ with $\hat{g}(J)$ and $\hat{g}(K)$ with $\hat{g}(L)$ while fixing the rest of [0, 1]. Then the image \hat{f} of \hat{f} in IET⁺ is not trivial and $\hat{g} \hat{f} \hat{g}^{-1} \notin \widehat{IET^+}$ implies that $gfg^{-1} \notin IET^+$.

A similar argument stands for the case of PC and thus we obtain the following result.

Proposition 5.2. *The normalizer of* PC⁺ *in* PC^{\approx} *is reduced to* PC^{\pm}.

We now take a look to inside \widehat{PC}^{\bowtie} :

Proposition 5.3. *The normalizer of* $\widehat{\operatorname{IET}^+_{\text{rc}}}$ *in* $\widehat{\operatorname{IET}^+_{\text{rc}}}$ *is* $\widehat{\operatorname{IET}^+_{\text{rc}}}$ *.*

Proof. Let g be an element of $\widehat{IET^{\bowtie}}$ which is not the identity. There are two cases:

(i) If $g \in \overline{\text{IET}^+} \setminus \overline{\text{IET}^+_{rc}}$, then $g = \sigma g'$ with $\sigma \in \mathfrak{S}_{fin} \setminus \{\text{Id}\}\$ and $g' \in \overline{\text{IET}^+_{rc}}$. Then for $f \in \overline{\text{IET}^+_{rc}}$ we have that $g f g^{-1} = \sigma g' f g'^{-1} \sigma^{-1}$. Thus it is enough to treat the case every $f \in \widehat{\text{IET}_{\text{rc}}^+}$ we have that $gf g^{-1} = \sigma g' f g'^{-1} \sigma^{-1}$. Thus it is enough to treat the case of $\mathfrak{S}_{\text{fin}}$. Let us assume that $g \in \mathfrak{S}_{\text{fin}}$. Then let x be in the support of g. There exist two conof \mathfrak{S}_{fin} . Let us assume that $g \in \mathfrak{S}_{fin}$. Then let x be in the support of g. There exist two consecutive right-open and left-closed intervals I and J of the same length such that x is the right endpoint of I (and the left endpoint of J). Up to reduce I and J we can assume that *I* does not intersect with the support of g. Then let $f \in \widehat{\operatorname{IET}^+_{\text{rc}}}$ which exchanges *I* and *J* while fixing the rest of [0, 1]. Then g $f g^{-1}$ exchanges the interior of *I* with the interior of while fixing the rest of [0, 1[. Then gfg^{-1} exchanges the interior of I with the interior of J but $gfg^{-1}(x)$ is not equal to $f(x)$ because $f(x)$ is the left endpoint of I and I does not intersect with the support of g. Then we deduce that gfg^{-1} is not right-continuous on J.

(ii) If $g \in \widehat{\operatorname{IET}^{\bowtie}} \setminus \widehat{\operatorname{IET}^+}$. Then we can find two consecutive subintervals I and J where g is continuous and order-reversing on $I \cup J$. Let a be the right endpoint of J. Let f be the element in $\widehat{\text{IET}_{\text{rc}}^+}$ which exchanges I and J. Then gfg^{-1} exchanges the interior of $g(J)$ with the interior of $g(I)$. However, the left endpoint of $g(J)$ is sent by g^{-1} on a of $g(J)$ with the interior of $g(I)$. However, the left endpoint of $g(J)$ is sent by g^{-1} on a which is fixed by f. Then gfg^{-1} fixes the left endpoint of $g(J)$ and thus gfg^{-1} is not right-continuous on $g(J)$.

A similar argument stands for the case of PC; thus we obtain the following result.

Proposition 5.4. *The normalizer of* $\widehat{PC_{rc}^+}$ *in* $\widehat{PC_{rc}^+}$ *is* $\widehat{PC_{rc}^+}$ *.*

Acknowledgments. I would like to thank Y. Cornulier, P. de la Harpe, and N. Matte Bon for corrections, remarks, and discussions on preliminary versions of this paper.

References

- [1] P. Arnoux, *Un invariant pour les echanges d'intervalles et les flots sur les surfaces*. Ph.D. thesis, Université de Reims, 1981
- [2] Y. Cornulier, Near actions. 2019, arXiv[:1901.05065](https://arxiv.org/abs/1901.05065)
- [3] Y. Cornulier, Realizations of groups of piecewise continuous transformations of the circle. *J. Mod. Dyn.* 16 (2020), 59–80 Zbl [1440.37049](https://zbmath.org/?q=an:1440.37049&format=complete) MR [4097719](https://mathscinet.ams.org/mathscinet-getitem?mr=4097719)
- [4] N. Guelman, I. Liousse, and P. Arnoux, Uniform simplicity for subgroups of piecewise continuous bijections of the unit interval. 2021, arXiv[:2109.05706](https://arxiv.org/abs/2109.05706)
- [5] C. Kapoudjian, Virasoro-type extensions for the Higman–Thompson and Neretin groups. *Q. J. Math.* 53 (2002), no. 3, 295–317 Zbl [1064.20027](https://zbmath.org/?q=an:1064.20027&format=complete) MR [1930265](https://mathscinet.ams.org/mathscinet-getitem?mr=1930265)
- [6] C. Kapoudjian and V. Sergiescu, An extension of the Burau representation to a mapping class group associated to Thompson's group T . In *Geometry and Dynamics*, pp. 141–164, Contemp. Math. 389, Amer. Math. Soc., Providence, RI, 2005 Zbl [1138.20040](https://zbmath.org/?q=an:1138.20040&format=complete) MR [2181963](https://mathscinet.ams.org/mathscinet-getitem?mr=2181963)
- [7] H. Matui, Topological full groups of one-sided shifts of finite type. *J. Reine Angew. Math.* 705 (2015), 35–84 Zbl [1372.22006](https://zbmath.org/?q=an:1372.22006&format=complete) MR [3377390](https://mathscinet.ams.org/mathscinet-getitem?mr=3377390)
- [8] V. Nekrashevych, Simple groups of dynamical origin. *Ergodic Theory Dynam. Systems* 39 (2019), no. 3, 707–732 Zbl [1421.22003](https://zbmath.org/?q=an:1421.22003&format=complete) MR [3904185](https://mathscinet.ams.org/mathscinet-getitem?mr=3904185)
- [9] G. Vitali, Sostituzioni sopra un'infinità numerabile di elementi. *Boll. Mathesis* 7 (1915), 29–31

Received 9 March 2020.

Octave Lacourte

Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France; octave.lacourte@laposte.net