Signature for piecewise continuous groups

Octave Lacourte

Abstract. Let \widehat{PC}^{\bowtie} be the group of bijections from [0, 1] to itself which are continuous outside a finite set. Let \widehat{PC}^{\bowtie} be its quotient by the subgroup of finitely supported permutations. We show that the Kapoudjian class of \widehat{PC}^{\bowtie} vanishes. That is, the quotient map $\widehat{PC}^{\bowtie} \rightarrow \widehat{PC}^{\bowtie}$ splits modulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group homomorphism, called signature, from \widehat{PC}^{\bowtie} to $\mathbb{Z}/2\mathbb{Z}$. Then we use this signature to list normal subgroups of every subgroup \widehat{G} of \widehat{PC}^{\bowtie} which contains \mathfrak{S}_{fin} such that G, the projection of \widehat{G} in \widehat{PC}^{\bowtie} , is simple.

1. Introduction

Let X be the right-open and left-closed interval [0, 1[. We denote by $\mathfrak{S}(X)$ the group of bijections of X to X. This group contains the subgroup composed of all finitely supported permutations, denoted by \mathfrak{S}_{fin} . The classical signature is well defined on \mathfrak{S}_{fin} and its kernel, denoted by \mathfrak{A}_{fin} , is the only subgroup of index 2 in \mathfrak{S}_{fin} . An observation, originally due to Vitali [9], is that the signature does not extend to $\mathfrak{S}(X)$.

For every subgroup G of $\mathfrak{S}(X)/\mathfrak{S}_{fin}$, we denote by \widehat{G} its inverse image in $\mathfrak{S}(X)$. The cohomology class of the central extension

$$0 \to \mathbb{Z}/2\mathbb{Z} = \mathfrak{S}_{\text{fin}}/\mathfrak{A}_{\text{fin}} \to \widehat{G}/\mathfrak{A}_{\text{fin}} \to G \to 1$$

is called the Kapoudjian class of *G*; it belongs to $H^2(G, \mathbb{Z}/2\mathbb{Z})$. It appears in the works of Kapoudjian and Kapoudjian–Sergiescu [5, 6]. The vanishing of this class means that the above exact sequence splits; this means that there exists a group homomorphism from the preimage of *G* in $\mathfrak{S}(X)$ onto $\mathbb{Z}/2\mathbb{Z}$ which extends the signature on $\mathfrak{S}_{\text{fin}}$ (for more on the Kapoudjian class, see [2, §8.C]). This implies in particular that $\hat{G}/\mathfrak{A}_{\text{fin}}$ is isomorphic to the direct product $G \times \mathbb{Z}/2\mathbb{Z}$. One can notice that for $G = \mathfrak{S}(X)/\mathfrak{S}_{\text{fin}}$ we have that $\hat{G} = \mathfrak{S}(X)$; in this case Vitali's observation implies that the Kapoudjian class does not vanish.

The set of all permutations of X continuous outside a finite set is a subgroup denoted by \widehat{PC}^{\bowtie} . Then we denote by PC^{\bowtie} its image in $\mathfrak{S}(X)/\mathfrak{S}_{fin}$. The aim here is to show the following theorem.

²⁰²⁰ Mathematics Subject Classification. Primary 37E05; Secondary 20F65, 20J06.

Keywords. Permutations groups, interval exchange transformations, signature, Kapoudjian class.

Theorem 1.1. There exists a group homomorphism $\varepsilon : \widehat{PC}^{\bowtie} \to \mathbb{Z}/2\mathbb{Z}$ that extends the classical signature on \mathfrak{S}_{fin} .

Corollary 1.2. Let G be a subgroup of PC^{\bowtie} . Then the Kapoudjian class of G is zero.

This solves a question asked by Y. Cornulier [3, Question 1.15].

The subgroup of PC^{\bowtie} consisting of all permutations of X that are piecewise isometric elements is denoted by $\widetilde{IET^{\bowtie}}$ and the one consisting of all piecewise affine permutations of X is denoted by $\widetilde{PAff^{\bowtie}}$. We also consider for each of these groups the subgroup composed of all piecewise orientation-preserving elements by replacing the symbol " \bowtie " by the symbol "+." Then each of these groups without the hat is the image of the group in $\mathfrak{S}(X)/\mathfrak{S}_{fin}$; for instance $\operatorname{IET^+}$ is the image in $\mathfrak{S}(X)/\mathfrak{S}_{fin}$ of the group $\operatorname{IET^+}$.

Let us observe that when $G \subset PC^+$, Corollary 1.2 is trivial. Indeed, in this case G can be lifted inside PC^+ itself. However, such a lift does not exist for PC^{\bowtie} or even IET^{\bowtie} , as was proved in [3].

The idea of proof of Theorem 1.1 is to associate two numbers for every $f \in \overrightarrow{PC}^{\bowtie}$ and every finite partition \mathscr{P} of [0, 1] into intervals associated with f. The first is the number of interval of \mathscr{P} where f is order-reversing and the second is the signature of a particular finitely supported permutation. The next step is to prove that the sum modulo 2 of these two numbers is independent from the choice of partition. Then we show that it is enough to prove that $\varepsilon|_{\text{IET}^{\bowtie}}$ is a group homomorphism. For this we show that it is additive when we look at the composition of two elements of $\overrightarrow{\text{IET}^{\bowtie}}$ by calculating the value of the signature with a particular partition.

In Section 4, we apply these results to the study of normal subgroups of PC^{\bowtie} and certain subgroups. More specifically we prove the following theorem.

Theorem 1.3. Let \hat{G} be a subgroup of \widehat{PC}^{\bowtie} containing \mathfrak{S}_{fin} and such that its projection G in PC^{\bowtie} is simple nonabelian. Then \hat{G} has exactly five normal subgroups given by the list: {{1}, $\mathfrak{A}_{fin}, \mathfrak{S}_{fin}, Ker(\varepsilon), \hat{G}$ }.

We denote by $\widehat{IET_{rc}^+}$ the subgroup of $\widehat{IET^+}$ composed of all right-continuous elements. We know that it is naturally isomorphic to IET^+ . The same is true when we replace IET^+ by PAff⁺ or PC⁺. This allows us to use the work of P. Arnoux [1] and the one of N. Guelman and I. Liousse [4] where they prove that IET^{\bowtie} , PC⁺, and PAff⁺ are simple. From this we deduce the following result.

Theorem 1.4. The groups PC^{\bowtie} and $PAff^{\bowtie}$ are simple.

This gives us some examples of groups that satisfy the conditions of Theorem 1.3.

Finally, Section 5 is independent and we study some normalizers; in particular, we show that the behavior when we look inside the group \widehat{PC}^{\bowtie} or \mathbb{PC}^{\bowtie} may not be the same. We denote by $\mathcal{R} \in \operatorname{IET}^{\bowtie}$ the map $x \mapsto 1 - x$. Then we define IET^- as the coset $\mathcal{R} \cdot \operatorname{IET}^+$ and \mathbb{PC}^- as the coset $\mathcal{R} \cdot \mathbb{PC}^+$. Then the groups $\operatorname{IET}^{\pm} := \operatorname{IET}^+ \cup \operatorname{IET}^+$ and $\mathbb{PC}^{\pm} := \mathbb{PC}^+ \cup \mathbb{PC}^-$ are well defined.

Proposition 1.5. The subgroup $\widehat{\operatorname{IET}}_{\operatorname{rc}}^+$ (resp. $\widehat{\operatorname{PC}}_{\operatorname{rc}}^+$) is its own normalizer in $\widehat{\operatorname{IET}}^{\bowtie}$ (resp. $\widehat{\operatorname{PC}}_{\operatorname{rc}}^+$). The normalizer of IET^+ (resp. PC^+) in $\operatorname{IET}^{\bowtie}$ (resp. $\operatorname{PC}^{\bowtie}$) is IET^{\pm} (resp. PC^{\pm}).

2. Preliminaries

For every real interval I we denote by I° its interior in \mathbb{R} and if I = [0, t] we agree that its interior is [0, t].

2.1. Partitions associated

An important tool to study elements in \widehat{PC}^{\bowtie} and PC^{\bowtie} are partitions into intervals of [0, 1[. All partitions are assumed to be finite.

Definition 2.1. For every f in \widehat{PC}^{\bowtie} , a finite partition \mathcal{P} into right-open and left-closed intervals of [0, 1] is called *a partition into intervals associated with* f if and only if f is continuous on the interior of every interval of \mathcal{P} . We denote by Π_f the set of all partitions into intervals associated with f.

We define also the arrival partition of f associated with \mathcal{P} , denoted by $f(\mathcal{P})$, as the partition of [0, 1] composed of all right-open and left-closed intervals such that their interior is equal to the image by f of the interior of an interval of \mathcal{P} .

Remark 2.2. For every f in \widehat{PC}^{\bowtie} there exists a unique partition \mathscr{P}_{f}^{\min} associated with f which has a minimal number of intervals. It is actually minimal in the sense of refinement: Π_{f} consists precisely of the set of partitions refining \mathscr{P}_{f}^{\min} .

2.2. Decompositions

We define a family of elements which plays an important role inside our groups.

Definition 2.3. Let *I* be a non-empty right-open and left-closed subinterval of [0, 1[. The element $f \in \widehat{PC}^{\bowtie}$ which sends the interior of *I* on itself with slope -1 while fixing the rest of [0, 1[is called the *I*-flip. We define *a flip* as any *I*-flip for some *I*.

From the definition we deduce a decomposition inside $\widehat{\operatorname{IET}}^{\bowtie}$ and $\widehat{\operatorname{PC}}^{\bowtie}$.

Proposition 2.4. Let h be an element of $\widehat{\operatorname{IET}}^{\bowtie}$. There exist $f, g \in \widehat{\operatorname{IET}}^+_{\operatorname{rc}}$, r, s finite products of flips, and σ, τ finitely supported permutations such that $h = r\sigma f = g\tau s$.

Proof. Let *h* be an element of $\widehat{\operatorname{IET}}^{\bowtie}$, $n \in \mathbb{N}$, and $\mathcal{P} := \{I_1, I_2, \ldots, I_n\} \in \Pi_h$ (Section 2.1). We denote by $h(\mathcal{P}) := \{J_1, J_2, \ldots, J_n\}$ the arrival partition of *h* associated with \mathcal{P} . Let *g* be the map that sends I_j° on J_j° by preserving the order and acts as *h* for every left endpoints of I_j for every $1 \le j \le n$. Note that *g* is bijective and thus belongs to $\widehat{\operatorname{IET}}^+$. For $1 \le j \le n$ let r_j be the J_j -flip if *h* is order-reversing on I_j ; otherwise let r_j be the identity. Let *r* be the product of all r_j . We can notice that *r* fixes all endpoints of J_j for

every $1 \le j \le n$. Then it is just a verification to check that h = rg. Now as g belongs to $\widehat{\operatorname{IET}^+}$ there exists σ in \mathfrak{S}_n such that $g = \sigma f$ with f in $\widehat{\operatorname{IET}_{rc}^+}$.

The other decomposition follows by decomposing h^{-1} under the previous decomposition.

Proposition 2.5. For every h in $\overrightarrow{PC}^{\bowtie}$ there exist ϕ and ψ two order-preserving homeomorphisms of [0, 1[and f, g in $\overrightarrow{IET}^{\bowtie}$ such that $h = \psi \circ f = g \circ \phi$.

Proof. Let λ be the Lebesgue measure on [0, 1[. Let $h \in \widehat{PC}^{\bowtie}$ and $\mathcal{P} \in \Pi_h$. Then there exist $\phi, \psi \in \operatorname{Homeo}^+([0, 1[) \text{ such that for every } I \in \mathcal{P}, \lambda(\phi(I)) = \lambda(h(I)) \text{ and } \lambda(\psi(h(I))) = \lambda(I)$. Then $h \circ \phi$ and $\psi \circ h$ belong to $\widehat{\operatorname{IET}^{\bowtie}}$.

3. Construction of the signature homomorphism

In our case we have that X = [0, 1[and that \widehat{PC}^{\bowtie} is a subgroup of $\mathfrak{S}(X)$. We denote here $\mathfrak{S}_{fin} = \mathfrak{S}_{fin}(X)$ and by ε_{fin} the classical signature on \mathfrak{S}_{fin} taking values in $(\mathbb{Z}/2\mathbb{Z}, +)$.

3.1. Definitions

Definition 3.1. Let *h* be an element of $\overrightarrow{PC}^{\bowtie}$, $n \in \mathbb{N}$, and $\mathscr{P} = \{I_1, I_2, \dots, I_n\} \in \Pi_h$. For every $1 \leq j \leq n$, let α_j be the left endpoint of I_j and let β_j be the left endpoint of $h(I_j^\circ)$. We define the *default of pseudo-right continuity for h about* \mathscr{P} , denoted by $\sigma_{(h,\mathscr{P})}$, as the finitely supported permutation which sends $h(\alpha_j)$ to β_j for every $1 \leq j \leq n$ (this is well defined because the set of all $h(\alpha_j)$ is equal to the set of all β_j).

Definition 3.2. Let *h* be an element of \widehat{PC}^{\bowtie} and $\mathcal{P} \in \Pi_h$. Let *k* be the number of intervals of \mathcal{P} on which *h* is order-reversing. We called the *flip number of h about* \mathcal{P} the number *k*. We denote it by $R(h, \mathcal{P})$.

Definition 3.3. For $h \in \widehat{PC}^{\bowtie}$ and $\mathcal{P} \in \Pi_h$, define

$$\varepsilon(h, \mathcal{P}) \in \mathbb{Z}/2\mathbb{Z} = R(h, \mathcal{P}) + \varepsilon_{\text{fin}}(\sigma_{(h, \mathcal{P})}) \pmod{2}.$$

We define also $\varepsilon(h) = \varepsilon(h, \mathcal{P}_h^{\text{fin}}).$

Proposition 3.4. For every $\tau \in \mathfrak{S}_{fin}$ and every $\mathcal{P} \in \Pi_{\tau}$ one has that $\varepsilon(\tau, \mathcal{P}) = \varepsilon_{fin}(\tau)$.

Proof. It is clear that for every $\tau \in \mathfrak{S}_{fin}$ and every partition \mathscr{P} associated with τ we have that $R(\tau, \mathscr{P}) = 0$ and $\sigma_{(\tau, \mathscr{P})} = \tau$.

We deduce that ε extends the classical signature ε_{fin} . Thus we will write ε instead of ε_{fin} .

Proposition 3.5. Every right-continuous element f of $\widehat{PC^+}$ satisfies that $\varepsilon(f, \mathcal{P}) = 0$ for every $\mathcal{P} \in \Pi_f$.

Proof. In this case, for every partition \mathcal{P} into intervals associated with f we always have $R(f, \mathcal{P}) = 0$ and $\sigma_{(f, \mathcal{P})} = \text{Id}$.

Figure 1. Illustrations of the two cases appearing in Lemma 3.6. On the left we assume that *h* is order-preserving on $I \cup J$ and see that $\sigma_{(h,Q)}(h(x)) = \sigma_{(h,Q')}(h(x))$. On the right we assume that *h* is order-reversing on $I \cup J$ and see that $\sigma_{(h,Q)}(h(x)) = (h(x)\sigma_{(h,Q')}(h(\alpha))) \circ \sigma_{(h,Q')}(h(x))$.

3.2. Proof of Theorem 1.1

In order to prove that ε is a group homomorphism, we prove that the value of $\varepsilon(h, \mathcal{P})$ does not depend on the partition $\mathcal{P} \in \Pi_h$.

Lemma 3.6. For every $h \in \widehat{PC}^{\bowtie}$ and every $\mathcal{P} \in \Pi_h$ one has that $\varepsilon(h) = \varepsilon(h, \mathcal{P})$.

Proof. Let *h* and \mathcal{P} be as in the statement. By minimality of \mathcal{P}_h^{\min} , in terms of refinement, we deduce that there exist $n \in \mathbb{N}$ and $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n \in \Pi_h$ such that

- (i) $\mathcal{P}_1 = \mathcal{P}_h^{\min};$
- (ii) $\mathcal{P}_n = \mathcal{P};$
- (iii) for every $2 \le i \le n$ the partition \mathcal{P}_i is a refinement of the partition \mathcal{P}_{i-1} where only one interval of \mathcal{P}_{i-1} is cut into two.

Hence it is enough to show that $\varepsilon(h, \mathcal{Q}) = \varepsilon(h, \mathcal{Q}')$ where $\mathcal{Q}, \mathcal{Q}' \in \Pi_h$ such that there exist consecutive intervals $I, J \in \mathcal{Q}$ with $I \cup J \in \mathcal{Q}'$ and $\mathcal{Q}' \setminus \{I \cup J\} = \mathcal{Q} \setminus \{I, J\}$.

Let α be the left endpoint of I and let x be the right endpoint of I (x is also the left endpoint of J). There are only two cases which are illustrated in Figure 1 (but, in both cases, we know that $\sigma_{(h,Q)} = \sigma_{(h,Q')}$ except maybe on $h(\alpha)$ and h(x)):

(i) The first case is when *h* is order-preserving on $I \cup J$. Then as $\mathcal{Q} \setminus \{I, J\} = \mathcal{Q}' \setminus \{I \cup J\}$ we get that $R(h, \mathcal{Q}) = R(h, \mathcal{Q}')$. As *h* is order-preserving on the interior of $I \cup J$ we know that $\sigma_{(h,\mathcal{Q}')}(h(\alpha))$ is the left endpoint of $h(I \cup J)$ which is the left endpoint of h(I) and thus equal to $\sigma_{(h,\mathcal{Q})}(h(\alpha))$. With the same reasoning, we deduce that $\sigma_{(h,\mathcal{Q}')}(h(x)) = \sigma_{(h,\mathcal{Q})}(h(x))$ and hence $\sigma_{(h,\mathcal{Q})} = \sigma_{(h,\mathcal{Q}')}$. Thus in $\mathbb{Z}/2\mathbb{Z}$ we have that $R(h,\mathcal{Q}') + \varepsilon(\sigma_{(h,\mathcal{Q}')}) = R(h,\mathcal{Q}) + \varepsilon(\sigma_{(h,\mathcal{Q})})$.

(ii) The second case is when *h* is order-reversing on $I \cup J$. Then we get that R(h, Q) = R(h, Q') + 1. This time $\sigma_{(h,Q')}(h(\alpha))$ is still the left endpoint of $h(I \cup J)$ which is the left endpoint of h(J) and thus equal to $\sigma_{(h,Q)}(h(x))$. With the same reasoning, we deduce that $\sigma_{(h,Q')}(h(x)) = \sigma_{(h,Q)}(h(\alpha))$. Then by denoting τ the transposition $(h(x)\sigma_{(h,Q')}(h(\alpha)))$, we obtain that $\sigma_{(h,Q)} = \tau \circ \sigma_{(h,Q')}$. We must notice that the transposition is not the identity because $h^{-1}(\sigma_{(h,Q')}(h(\alpha)))$ is an endpoint of one of the intervals of Q' and *x* is not.

In conclusion, in $\mathbb{Z}/2\mathbb{Z}$ we have that

$$R(h, \mathcal{Q}') + \varepsilon(\sigma_{(h, \mathcal{Q}')}) = R(h, \mathcal{Q}') + 1 + 1 + \varepsilon(\sigma_{(h, \mathcal{Q}')})$$
$$= R(h, \mathcal{Q}) + \varepsilon(\sigma_{(h, \mathcal{Q})}).$$

If $\phi \in \text{Homeo}^+([0, 1[), \text{ then it follows from Proposition 3.5 that } \varepsilon(\phi) = 0$. We improve this, showing that ε is invariant by the action of $\text{Homeo}^+([0, 1[) \text{ on } \mathbf{PC}^{\bowtie}])$.

Lemma 3.7. For every $h \in \widehat{PC}^{\bowtie}$ and every $\phi \in \text{Homeo}^+([0, 1[) \text{ one has that } \varepsilon(h\phi) = \varepsilon(h) = \varepsilon(\phi h).$

Proof. Let $h \in \widehat{PC}^{\bowtie}$ and $\phi \in \operatorname{Homeo}^+([0, 1[) \text{ be as in the statement. Let } n \in \mathbb{N}$ and $\mathcal{P} := \{I_1, I_2, \ldots, I_n\} \in \Pi_h$. Then $\mathcal{Q} := \{\phi^{-1}(I_1), \phi^{-1}(I_2), \ldots, \phi^{-1}(I_n)\}$ is in $\Pi_{h\phi}$. We know that ϕ is order-preserving. Then for every $1 \le i \le n, h\phi$ preserves (resp. reverses) the order on $\phi^{-1}(I_i)$ if and only if h preserves (resp. reverses) the order on I_i ; thus $R(h, \mathcal{P}) = R(h\phi, \mathcal{Q})$. We can notice that the left endpoint of $\phi^{-1}(I_i)$ (denoted by α_i) is sent on the left endpoint of I_i (denoted by a_i) by ϕ ; hence $h(a_i) = h\phi(\alpha_i)$ has to be sent on $\sigma_{(h,\mathcal{P})}(h(a_i))$, so $\sigma_{(h\phi,\mathcal{Q})} = \sigma_{(h,\mathcal{P})}$. We deduce that $\varepsilon(h\phi) = \varepsilon(h)$.

The other equality has a similar proof. We denote by $h(\mathcal{P})$ the arrival partition of h associated with \mathcal{P} . We know that ϕ is continuous. Thus $h(\mathcal{P})$ is in Π_{ϕ} and we deduce that $\mathcal{P} \in \Pi_{\phi h}$. Also ϕ is order-preserving, then $R(h, \mathcal{P}) = R(\phi h, \mathcal{P})$. We know that $\sigma_{(\phi,h(\mathcal{P}))} = \text{Id}$, then we can notice that $\phi \circ \sigma_{(h,\mathcal{P})} \circ h$ sends the left endpoint of I_i to the left endpoint of $\phi h(I_i^\circ)$. Then $\sigma_{(\phi h,\mathcal{P})} = \phi \sigma_{(h,\mathcal{P})} \phi^{-1}$ and we deduce that $\varepsilon(\sigma_{(\phi h,\mathcal{P})}) = \varepsilon(\sigma_{(h,\mathcal{P})})$. Hence $\varepsilon(\phi h) = \varepsilon(h)$.

Thanks to Proposition 2.5, it is enough to prove that $\varepsilon|_{i \in T^{\bowtie}}$ is a group homomorphism.

Lemma 3.8. The map $\varepsilon|_{i\in T^{\bowtie}}$ is a group homomorphism.

Proof. Let $f, g \in \widehat{\operatorname{IET}}^{\bowtie}$. Let $\mathcal{P} \in \Pi_f$ and $\mathcal{Q} \in \Pi_g$. For every $I \in \mathcal{Q}$ (resp. $J \in \mathcal{P}$) we denote by α_I (resp. β_J) the left endpoint of I (resp. J). Up to refine \mathcal{P} and \mathcal{Q} we can assume that $\mathcal{P} = g(\mathcal{Q})$. Thus $g(\{\alpha_I\}_{I \in \mathcal{Q}}) = \{\beta_J\}_{J \in \mathcal{P}}$. Then $Q \in \Pi_{f \circ g}$ and for every $K \in f \circ g(Q)$ we denote by γ_K the left endpoint of K.

In $\mathbb{Z}/2\mathbb{Z}$, we get immediately that $R(f \circ g, Q) = R(g, Q) + R(f, g(Q))$. Now we want to describe the default of pseudo-right continuity for $f \circ g$ about Q. We recall that $\sigma_{(f \circ g, Q)}$ is the permutation that sends $f \circ g(\alpha_I)$ on $\gamma_{f \circ g(I)}$ for every $I \in Q$ while fixing the rest of [0, 1[. Furthermore, $\sigma_{(g,Q)}(g(\alpha_I)) = \beta_{g(I)}$ and $\sigma_{(f,g(Q))}(f(\beta_{g(I)})) =$

 $\gamma_{f \circ g(I)}$. Then $\sigma_{(f,g(\mathcal{Q}))} \circ f \circ \sigma_{(g,\mathcal{Q})} \circ g(\alpha_I) = \gamma_{f \circ g(I)}$ and we deduce that the permutation $\sigma_{(f,g(\mathcal{Q}))} \circ f \circ \sigma_{(g,\mathcal{Q})} \circ f^{-1}$ sends $f \circ g(\alpha_I)$ on $\gamma_{f \circ g(I)}$ for every $I \in \mathcal{Q}$ while fixing the rest of [0, 1[. Thus $\sigma_{(f \circ g,\mathcal{Q})} = \sigma_{f,g(\mathcal{Q})} \circ f \circ \sigma_{(g,\mathcal{Q})} \circ f^{-1}$. Then $\varepsilon(\sigma_{(f \circ g,\mathcal{Q})}) = \varepsilon(\sigma_{f,g(\mathcal{Q})}) + \varepsilon(\sigma_{(g,\mathcal{Q})})$ and we conclude that $\varepsilon(f \circ g) = \varepsilon(f) + \varepsilon(g)$.

Corollary 3.9. The map ε is a group homomorphism.

4. Normal subgroups of $\overrightarrow{PC}^{\bowtie}$ and some subgroups

Here we present some corollaries of Theorem 1.1. For every group G we denote by D(G) its derived subgroup.

Definition 4.1. For every group H, we define $J_3(H)$ as the subgroup generated by elements of order 3.

Let \widehat{G} be a subgroup of \widehat{PC}^{\bowtie} containing \mathfrak{S}_{fin} . We denote by G its projection on PC^{\bowtie} . We recall that \mathfrak{A}_{fin} is a normal subgroup of \widehat{G} and has a trivial centralizer. We deduce that every nontrivial normal subgroup H of \widehat{G} contains \mathfrak{A}_{fin} .

From the short exact sequence

$$1 \to \mathfrak{S}_{fin} \to \widehat{G} \to G \to 1$$

we deduce the next short exact sequence which is a central extension:

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \widehat{G}/\mathfrak{A}_{\mathrm{fin}} \to G \to 1.$$

This short exact sequence splits because the signature $\varepsilon_{|\hat{G}} : \hat{G} \to \mathbb{Z}/2\mathbb{Z}$ constructed in Section 3 is a retraction. Then we deduce that $\hat{G}/\mathfrak{A}_{\text{fin}}$ is isomorphic to the direct product $\mathbb{Z}/2\mathbb{Z} \times G$.

Corollary 4.2. The projection $\widehat{G}_{ab} \to G_{ab}$ extends in an isomorphism $\widehat{G}_{ab} \sim G_{ab} \times \mathbb{Z}/2\mathbb{Z}$. Furthermore, $D(\widehat{G}) = \text{Ker}(\varepsilon) \cap \widehat{D(G)}$ is a subgroup of index 2 in $\widehat{D(G)}$. In particular, if *G* is a perfect group, then $\widehat{G}_{ab} = \mathbb{Z}/2\mathbb{Z}$.

Corollary 4.3. Let \hat{G} be a subgroup of $\overrightarrow{PC}^{\bowtie}$ containing \mathfrak{S}_{fin} such that its projection G in $\overrightarrow{PC}^{\bowtie}$ is simple nonabelian. Then \hat{G} has exactly 5 normal subgroups given by the list: {{1}, $\mathfrak{A}_{fin}, \mathfrak{S}_{fin}, \operatorname{Ker}(\varepsilon), \hat{G}$ }.

Proof. Let \hat{G} be as in the statement. First, we immediately check that the subgroups in the list are distinct normal subgroups of \hat{G} . In the case of Ker(ε), there exists $g \in \hat{G} \setminus \mathfrak{S}_{fin}$; thus either $g \in \text{Ker}(\varepsilon) \setminus \mathfrak{S}_{fin}$ or $\sigma g \in \text{Ker}(\varepsilon) \setminus \mathfrak{S}_{fin}$ for any transposition σ .

Second, let H be a normal subgroup of \hat{G} distinct from {1}. Then it contains $\mathfrak{A}_{\text{fin}}$. Also $H/\mathfrak{A}_{\text{fin}}$ is a normal subgroup of $\hat{G}/\mathfrak{A}_{\text{fin}} \simeq \mathbb{Z}/2\mathbb{Z} \times G$. Furthermore, G is simple. Then there are only four possibilities for $H/\mathfrak{A}_{\text{fin}}$. As two normal subgroups H, K of \hat{G} containing $\mathfrak{A}_{\text{fin}}$ such that $H/\mathfrak{A}_{\text{fin}} = K/\mathfrak{A}_{\text{fin}}$ are equal, we deduce that \hat{G} has at most 5 normal subgroups. **Corollary 4.4.** Let \hat{G} be a subgroup of \widehat{PC}^{\bowtie} containing \mathfrak{S}_{fin} such that its projection G in PC^{\bowtie} is simple nonabelian. If there exists an element of order 3 in $G \sim \mathfrak{A}_{fin}$, then $J_3(\hat{G}) = \operatorname{Ker}(\varepsilon) = D(\hat{G})$.

Remark 4.5. In the context of topological-full groups, the group $J_3(G)$ appears naturally (with some mild assumptions) and is denoted by A(G) by Nekrashevych in [8]. In some case of topological-full groups of minimal groupoids (see [7]) we have the equality A(G) = D(G) thanks to the simplicity of D(G). In spite of the analogy, it is not clear that the corollary can be obtained as a particular case of this result.

Remark 4.6. A lot of groups satisfy the conditions of Corollary 4.4. When \hat{G} contains $\widehat{\text{IET}^+}$, there is an element of order 3 in $G \sim \mathfrak{A}_{\text{fin}}$. We recall that $\widehat{\text{IET}^{\bowtie}}$, PC^+ , and PAff^+ are simple (see [1,4]). Thus these groups satisfy the conditions of Corollary 4.4. The next theorem adds PC^{\bowtie} and PAff^{\bowtie} to the list of examples.

Theorem 4.7. The groups PC^{\bowtie} and $PAff^{\bowtie}$ are simple.

Lemma 4.8. The group $\operatorname{IET}^{\bowtie}$ is generated by flips (= images of flips from $\operatorname{IET}^{\bowtie}$).

Proof. By Proposition 2.4 it is enough to show that IET⁺ is generated by flips.

For every consecutive, right-open, and left-closed subintervals I and J of [0, 1[, we define $R_{I,J}$ as the map that exchanges I and J. They are elements of IET_{rc}^+ and they formed a generating set. Then their image $r_{I,J}$ in IET^{\bowtie} is a generating set of IET^+ . For every right-open and left-closed subinterval I of [0, 1[, we define s_I as the I-flip. Let I and J be two consecutive, right-open, and left-closed subintervals of |0, 1[. Then $r_{I,J} = s_I s_J s_{I \cup J}$.

Proof of Theorem 4.7 (*sketched*). Since the argument in [1] could also be adapted, we only provide a sketch.

We work with elements of PC^{\bowtie} ; all intervals below are meant modulo finite subsets. Let N be a nontrivial normal subgroup of PC^{\bowtie} (resp. $PAff^{\bowtie}$). Let g be a nontrivial element of N. There exists a subinterval I of [0, 1] such that

- (i) g is continuous (resp. affine) on I;
- (ii) $g(I) \cap I = \emptyset$ (modulo finite subsets);
- (iii) $I \cup g(I) \neq [0, 1]$ (modulo finite subsets).

Let *f* be the *I*-flip. If *g* is affine on *I*, then $h = gfg^{-1}f^{-1}$ is the product of the *I*-flip with the g(I)-flip. Observe that *h* is conjugate to a single flip by a suitable element of IET⁺. If *g* is only continuous, then *h* is still of order 2 and it is conjugate in PC^{\bowtie} to a single flip. Conjugating by elements of PAff⁺, one obtains that *N* contains flips of intervals of all possible lengths, and hence contains all flips. Thanks to Lemma 4.8, we know that IET^{\bowtie} is generated by the set of flips and thus *N* contains IET^{\bowtie}; in particular *N* intersects with PC⁺ (resp. PAff⁺) nontrivially. By simplicity of PC⁺ (resp. PAff⁺) we deduce that *N* contains PC^{\bowtie} = (PC⁺, IET^{\bowtie}) (resp. PAff⁺, IET^{\bowtie})).

5. About some normalizers

Here we show that computing normalizers inside $\widehat{PC^{\bowtie}}$ and PC^{\bowtie} may lead to a different behavior. We look at the cases of PC^+ , IET^+ and $\widehat{PC^{\bowtie}_{rc}}$, $\widehat{IET^+_{rc}}$.

Proposition 5.1. The normalizer of IET^+ in IET^{\bowtie} is reduced to IET^{\pm} .

Proof. Let $f \in IET^+$ and $g \in IET^{\pm}$. If $g \in IET^+$, then $gfg^{-1} \in IET^+$. We assume that $g \in IET^-$. Then $gfg^{-1} = (g \circ \mathcal{R}) \circ (\mathcal{R} \circ f \circ \mathcal{R}) \circ (\mathcal{R} \circ g) \in IET^+$.

For the inclusion from left to right, let $g \in \operatorname{IET}^{\bowtie} \setminus \operatorname{IET}^{\pm}$ and let \hat{g} be a representative of g in $\operatorname{IET}^{\bowtie}$. Hence we can find I, J, K, L four right-open and left-closed intervals of the same length such that their images by \hat{g} are intervals and such that \hat{g} is order-reversing on I and order-preserving on J, K, and L. We define $\hat{f} \in \operatorname{IET}^+$ as the element which exchanges $\hat{g}(I)$ with $\hat{g}(J)$ and $\hat{g}(K)$ with $\hat{g}(L)$ while fixing the rest of [0, 1[. Then the image f of \hat{f} in IET^+ is not trivial and $\hat{g}\hat{f}\hat{g}^{-1} \notin \operatorname{IET}^+$ implies that $gfg^{-1} \notin \operatorname{IET}^+$.

A similar argument stands for the case of PC and thus we obtain the following result.

Proposition 5.2. The normalizer of PC^+ in PC^{\bowtie} is reduced to PC^{\pm} .

We now take a look to inside \widehat{PC}^{\bowtie} :

Proposition 5.3. The normalizer of $\widehat{\operatorname{IET}}_{\operatorname{rc}}^+$ in $\widehat{\operatorname{IET}}^{\bowtie}$ is $\widehat{\operatorname{IET}}_{\operatorname{rc}}^+$.

Proof. Let g be an element of $\widehat{\operatorname{IET}}^{\bowtie}$ which is not the identity. There are two cases:

(i) If $g \in \widehat{\operatorname{IET}^+} \setminus \widehat{\operatorname{IET}^+_{\operatorname{rc}}}$, then $g = \sigma g'$ with $\sigma \in \mathfrak{S}_{\operatorname{fin}} \setminus \{\operatorname{Id}\}$ and $g' \in \widehat{\operatorname{IET}^+_{\operatorname{rc}}}$. Then for every $f \in \widehat{\operatorname{IET}^+_{\operatorname{rc}}}$ we have that $gfg^{-1} = \sigma g'fg'^{-1}\sigma^{-1}$. Thus it is enough to treat the case of $\mathfrak{S}_{\operatorname{fin}}$. Let us assume that $g \in \mathfrak{S}_{\operatorname{fin}}$. Then let x be in the support of g. There exist two consecutive right-open and left-closed intervals I and J of the same length such that x is the right endpoint of I (and the left endpoint of J). Up to reduce I and J we can assume that I does not intersect with the support of g. Then let $f \in \widehat{\operatorname{IET}^+_{\operatorname{rc}}}$ which exchanges I and J while fixing the rest of [0, 1[. Then gfg^{-1} exchanges the interior of I with the interior of J but $gfg^{-1}(x)$ is not equal to f(x) because f(x) is the left endpoint of I and I does not intersect with the support of g. Then we deduce that gfg^{-1} is not right-continuous on J.

(ii) If $g \in \widehat{\operatorname{IET}}^{\bowtie} \setminus \widehat{\operatorname{IET}}^+$. Then we can find two consecutive subintervals I and J where g is continuous and order-reversing on $I \cup J$. Let a be the right endpoint of J. Let f be the element in $\widehat{\operatorname{IET}}^+_{\operatorname{rc}}$ which exchanges I and J. Then gfg^{-1} exchanges the interior of g(J) with the interior of g(I). However, the left endpoint of g(J) is sent by g^{-1} on a which is fixed by f. Then gfg^{-1} fixes the left endpoint of g(J) and thus gfg^{-1} is not right-continuous on g(J).

A similar argument stands for the case of PC; thus we obtain the following result.

Proposition 5.4. The normalizer of \widehat{PC}_{rc}^+ in \widehat{PC}^{\bowtie} is \widehat{PC}_{rc}^+ .

Acknowledgments. I would like to thank Y. Cornulier, P. de la Harpe, and N. Matte Bon for corrections, remarks, and discussions on preliminary versions of this paper.

References

- [1] P. Arnoux, *Un invariant pour les echanges d'intervalles et les flots sur les surfaces*. Ph.D. thesis, Université de Reims, 1981
- [2] Y. Cornulier, Near actions. 2019, arXiv:1901.05065
- [3] Y. Cornulier, Realizations of groups of piecewise continuous transformations of the circle. J. Mod. Dyn. 16 (2020), 59–80 Zbl 1440.37049 MR 4097719
- [4] N. Guelman, I. Liousse, and P. Arnoux, Uniform simplicity for subgroups of piecewise continuous bijections of the unit interval. 2021, arXiv:2109.05706
- [5] C. Kapoudjian, Virasoro-type extensions for the Higman–Thompson and Neretin groups. Q. J. Math. 53 (2002), no. 3, 295–317 Zbl 1064.20027 MR 1930265
- [6] C. Kapoudjian and V. Sergiescu, An extension of the Burau representation to a mapping class group associated to Thompson's group *T*. In *Geometry and Dynamics*, pp. 141–164, Contemp. Math. 389, Amer. Math. Soc., Providence, RI, 2005 Zbl 1138.20040 MR 2181963
- [7] H. Matui, Topological full groups of one-sided shifts of finite type. J. Reine Angew. Math. 705 (2015), 35–84 Zbl 1372.22006 MR 3377390
- [8] V. Nekrashevych, Simple groups of dynamical origin. Ergodic Theory Dynam. Systems 39 (2019), no. 3, 707–732
 Zbl 1421.22003 MR 3904185
- [9] G. Vitali, Sostituzioni sopra un'infinità numerabile di elementi. Boll. Mathesis 7 (1915), 29-31

Received 9 March 2020.

Octave Lacourte

Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France; octave.lacourte@laposte.net