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Hyperbolic geometry of shapes of convex bodies
Clément Debin and Francois Fillastre

Abstract. We use the intrinsic area to define a distance on the spacenafthety classes of con-
vex bodies in the:-dimensional Euclidean space, which makes it isometric twravex subset

of the infinite dimensional hyperbolic space. The ambientehtzian structure is an extension of
the intrinsic area form of convex bodies, and Alexandrowdkel inequality is interpreted as the
Lorentzian reversed Cauchy—Schwarz inequality. We dethatethe space of similarity classes of
convex bodies has a proper geodesic distance with curvatwreded from below by-1 (in the
sense of Alexandrov). In dimensid this space is homeomorphic to the space of distances with
non-negative curvature on tResphere, and this latter space contains the space of flatmetr the
2-sphere considered by W. P. Thurston. Both Thurston’s amditba distances rely on the area form.
So the latter may be considered as a generalization of tia¢ gest” of Thurston’s construction.

1. Introduction

Let P be a non-empty space of flat metrics on 2hgphere, withh > 3 prescribed angles
0 < a; < 27 at the cone singularities, up to orientation-preservinglarities, and with a
labeling of the cone points. In a celebrated artiélg [W. P. Thurston uses the area of the
flat metrics to endowP with a complexhyperbolic structure. Among the multitude gen-
eralizations and adaptations of this construction, letarsitler subspaces & endowed
with an isometric involution, studied ir2]. They are isometric to spaces of homothety
classes of plane convex polygons with fixed direction of sgdgadowed with real hyper-
bolic distances. This latter point of view was then extendezhy dimension, using mixed
volumes to hyperbolize some spaces of convex polytopR$ ifForn = 3, some of these
spaces, which are isometric to (real!) hyperbolic polylaedometrically embed int®
[8,9].

In the first part of the present article, we bring this realdnWgwlization process to its
full generality, by endowing the space of convex bodie®ihwith an “area distance,”
which appears to be hyperbolic in a sense clarified below.i@ba behind the defini-
tion of the area distance is quite natural. Consider the @onembinationk, = tK; +
(1 — 1)K, of two convex bodieg, € [0, 1]. In general, by Alexandrov—Fenchel inequality,
there existsy, 11 € R, tp < 0 < 1 < t; such that the formal area &, is zero. We then
have two points@{ and1) on the segmerity, #1], and, heuristically, andz; belong to the
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Figure 1. The convex segment between the disc and the square is edtantdewe arrive at two
objects of zero (formal) area. The hyperbolic distance betwthe disc and the square is half of the
logarithm of the cross-ratio of the four points.

isotropic cone of a quadratic form (the area). Mimicking dledinition of the distance of
the Klein model of the hyperbolic space, we define the ardamtie as half of the log of
the cross-ratio ofy, 0, 1, #1; see Figurel and also Figur@. The precise definition of the
area distance will be given in Secti@riL

Recall that two subsetd and B of R" arehomothetidf they differ by a translation
and a positive scaling. IK is a convex body, we denote p¥| its homothety class and by
FHom™* the space of homothety classes of all the convex bodiRé jwvhich are different
from points and segments. The area distance introducecabalearly invariant under
homotheties. Let us denote ldy» the induced area distance Bfom™*. Note that it is
not obvious that this is actually a distance.

Theorem 1.1. (Hom**, dg») is a metric space which

(1) is uniquely geodesic, and the unique shortest path betj&ghand K] is the
class of the convex combination &f and K,

(2) is of infinite Hausdorff dimension and infinite diameter,

(3) is proper,

(4) has curvature bounded from below and above-iyin the sense of Alexandrov,
(5) has boundary homeomorphic to the real projective spaceroédsionn — 1),

(6) any pointin itis the endpoint of a shortest path that is naéesable beyond this
point,

(7) is homeomorphic to the space of convex bodies of intringa aqual to one and
Steiner point at the origin, endowed with the Hausdorffatise.

As some definitions may depend on the authors, let us recallatimetric space is
geodesidf any two points are joined by a shortest pathyisquely geodesiif the short-
est path is unique, and @oper if every bounded closed subset is compact. A proper
metric space is locally compact and complete. A shortestig@xtendabléf it is strictly
contained in another shortest path. The boundary of a negtece is the set of equiva-
lence classes of geodesic rays at bounded distance, enddthesinatural topology; see
[5] for details. In the present article, the definition of boaddurvature in the sense of
Alexandrov is global.
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Figure 2. The minus sign outside of the polygons indicate§ edges vdtfative algebraic length,
while the minus sign inside a polygon indicates a negatiea ' .

The property (6) is proved in Sectidn5. The topological properties in Theoreliml
are consequences of a theorem of R. A. Vitale and the Bla&ch&kection theorem; see
Section2.6. The other assertions in Theordni are either straightforward or they come
from the following extrinsic description afflom™*, dgcn).

Theorem 1.2. (Hom'**, dqn) is isometric to an infinite dimensional, unbounded, closed,
convex subset, with empty interior, of the infinite dimemsidyperbolic space.

Here, “the” infinite dimensional hyperbolic space is defifretn a separable Hilbert
space. The isometry in Theoreh® is obtained by considering the support function of
convex bodies. Under this identification, the area of corlvedies will give a bilin-
ear form, that appears to have a Lorentzian signature. Shestually very natural as,
for example, Alexandrov—Fenchel inequality for mixed aiethen given by a reversed
Cauchy—Schwarz inequality.

We say that the distanek¢» is hyperbolic, because it is isometric to a totally geodesic
subspace of a hyperbolic space, or because of the curvatypenpy (4) in Theoreni..1
(the latter being an immediate consequence of the formete Nhat for metric spaces, it
is meaningless to speak about “curvature equaltd

It was pointed out by Nicolas Monod to the second author thafresent construc-
tion for n = 2 gives an explicit example of an exotic action of RSLR) on the infinite
dimensional hyperbolic spacid).

In the second part of the present article, we investi§hgpd™*, the quotient ofonT*
by linear isometries of the Euclidean sp&R& Shapé™ is the space of convex bodies in
R” (not reduced to points or segments) up to Euclidean sirtidar{such an equivalence
class is the “shape” of the convex body). It is endowed withghotient distancés». We
obtain the following.
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Theorem 1.3. (Shapé™, ds») is a proper geodesic metric space with curvatare-1
and with boundary reduced to a single point. It is not uniguetodesic. It contains many
totally geodesic hyperbolic surfaces.

There is another complex hyperbolic orbifold consideredrbyrston, which is de-
fined similarly to the spac® introduced at the beginning of the present article, but eher
the singular points are not labeled. It is a subspaca(df,(S?), the space of metrics
of non-negative curvature on the sphere, up to isometrieswath unit area. A natural
generalization of Thurston construction would be to useatlea of the metrics to endow
ML, (S?) with a distance, and look at its properties. For example roag look at curva-
ture properties, or possible complex structure. Fréhafd (7) in Theoren..1, it follows
that Shape* and M1, (S?) are homeomorphic if the latter space is endowed with the
topology of uniform convergence of distanceSo Theoreni..3 for n = 3, may be seen
as a “real hyperbolization” oM ,(S?) with its natural topology. Here the word “hyper-
bolization” is used in a wide sense: @hapé*, ds«) is not uniquely geodesic, it is not of
non-positive curvature, hence not with curvatgre-1. However that is an open question
to know if it is locally of non-positive curvature.

We conclude the present article by a question about the sgat@pes oall convex
bodies (regardless of the dimension of the ambient space).

As we pointed out, the idea to consider convex bodies in anerhhyperbolic space
came from the observation that the Alexandrov—Fencheliakty for the mixed area of
convex bodies looks like the reversed Cauchy—Schwarz adigyin a Lorentzian vector
space (see Rematk19. In dimensior2, Alexandrov—Fenchel inequality coincides with
the Minkowski inequality. Also, mixed volumes were intragual by Minkowski. He also
introduced Lorentzian vector spaces, which are now callgdkdvski spaces. We are not
aware if Minkowski knew a relation between the inequality éime spaces that both bear
his name. But as far as we know, it seems that, in the meantiiseglation between the
fundamental inequality of the theory of convex bodies argidiaorentzian geometry was
forgotten.

2. The area distance

2.1. Intrinsic area of convex bodies

A convex bodys a non-empty compact convex subseRdf In the present article, we set
n > 1. For a plane convex body (i.e., a convex body ilR?), speaking about the “area”
of K usually means to look at its volume (two-dimensional Lebesmeasure). Note
that the area of plane convex bodies is positively homogenebdegree: for A > 0,
vol,(AK) = A2 vol,(K). For a convex body ifR3, the “area” usually refers to its surface

1Forn > 3, the induced inner distance on the boundary of a convex bod®iis (isometric to) a
distance of non-negative curvature SA~! in the sense of Alexandrov. But not every such distance of
non-negative curvature @ ~! can arise in this way {[7], [1, Section 1.9]).
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area, i.e., the two-dimensional total Hausdorff measuits dfoundandk . Here also, the
surface area is positively homogeneous of degree two.

Forn > 3, there are two ways to generalize the notion of “area” to earbodies in
R”". Both are coming from the Steiner formula. LBt be the closed unit ball centered at
the origin inR”, and letx, be its volume. Let us s&f = 1 andk; = 2. If K is a convex
body inR”, then there exist non-negative real numbérsX),i =0, ..., n, such that, for
anye > 0,

n
vol, (K +&B") = > " &" " icni Vi(K). (2.1)
i=0
Here vo}, is the Lebesgue measure Bf*, and the sum is the Minkowski addition:
A+ B ={a+b|ac A, be B} ltappearsthaty(K) = 1andV,(K) = vol,(K).

The first way to generalize the notion of surface area of comaglies inR?3 is to
considerV,,_;(K) as the “area,” given by the first-order variation of M& + ¢B"), seen
as a function ok. Note that this “area” is homogeneous of degfee- 1), and that for
n = 2, this is related to the perimeter of the convex body and nitstarea.

In the present article, we consider another way to genertiiz notion of surface area
of convex bodies ilR3, and we callV»(K) given by @.1) theintrinsic areaof K. Let us
mention some relevant properties. The property (A6) ergltie terminology “intrinsic.”

(A1) Foranyd > 0, Vo(AK) = A2V, (K).

(A2) V2(K) = 0.

(A3) K1 C Ky = Va(Ky) < Va(K»).

(A4) V,(K) = 0ifand only if K is a point or a segment.

(A5) ForanyA € O(n) andp € R", V,(A(K) + {p}) = Vo(K).

(AB) Let:: R® — R"*! be a linear isometric embedding. ThEN(:(K)) = V2(K).

The (intrinsic) area can be “polarized,” in the sense thatdlexists a function called
the (intrinsic)mixed areal» (-, -), that can be defined as

Va(Kr. K2) = 3 (Va(Ki + Ka) = Va(KD) = Va((Ka) (2.2)

and satisfies the following properties:
(M1) V5(K1, K1) = Va(Ky);
(M2) V2(K1, K2) = V2(Ka2, K1);
(M3) 1V2(K1 + K2, K3) = Va(K1, K3) + Va(K2, K3);
(M4) for A > 0, Vo(AK1, K») = AVa(Ky, K»);
(M5) K C Kz = Va(Ky, K3) < Va(Ka, K3);
(M6) K is a point if and only if for any convex bod@, V»>(K, Q) = 0;

(M7) V2(K1, K3) = 0; andV,(Ky, K2) = 0if and only if K; or K5 is a point, or both
are segments with the same direction;
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(M8) we have
§(K1, K2) = Va(K1, K2)? — Va(K1)Va(K3) = 0 (2.3)

and if K1 and K, are not points, then equality occurs if and onlkif and K,
are homothetic.

All those properties are classical, & is a particular case of mixed volume:
Va(Ky, K2)=V (K1, K>, B",...,B")[20. Property (M8) is Alexandrov—Fenchelinequal-
ity. In the present article, we will generalize the propesiisted above, using some simple
analysis of functions on the sphere. Before that, let usthice the area distance on the
space of homothety classes of convex bodies. We will givesedvalent definitions, both
using Alexandrov—Fenchel inequality (M8).

In the sequel, we denote " the set of convex bodies IR”, and by.X"* the subset
of convex bodies of positive intrinsic area. In other terlns(A2) and (A4),K™* is K"
minus points and segments. By property (M8) of the mixed,dogany K1, K, € K"*,
the quantity

dh‘l (Kl 5 K2) = argch( V2(K17 K2) )

VV2(K1)V2(K2)

is well defined. This is also clear th&i(Kl, K>) is invariant under positive scaling &f;
andK,. Moreover, by (A5) and4.2), for all p € R”,

Va(K1 + {p}. K2) = Va(K1. K2 + {p}) = V2(K1. K>),

henced; is invariant under translations éf; or K. By the case of equality in property
(M8), d1 (K1, K») = 0if and only if K; differ from K, by a homothety.

Let us define the spackonT” (resp.Hom"*) as the quotient ofK” (resp.X"**) by
homotheties. For a convex bod§, we denote byK] the set of homothetic copies &f.
For any[K ], [K2] € Hom™"* we set

di([K:1). [K2]) = di (K1, K).

Let us do it in a differentway. LeK, K, € KX"*. Assume that,(K;) = V>(K3) =
a > 0 and thaf K] # [K:]. Consider the following equation:

Vz((l —-1)K;, + le) =0. (24)

By properties of the mixed area, the left-hand side is a pmtyial in¢, and the coefficient
of 2 is2a — 2V» (K1, K»). Since[K] # [K»], by Alexandrov—Fenchel inequality (M8),
we havel, (K1, K,) > a: the coefficient of? is negative, in particular this is a second-
order polynomial. An easy calculation shows that its dieamantis equal td§(K, K3) >

0 (see R.3). Letr; <0 < 1 < 1, be the two real solutions 0£(4), and let us define

~ 1
dz(Kl, K2) = 5 In[O, l,ll,lz],

where[0, 1,11, 1] = %}:—Z is the cross-ratio.
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By (2.4), itis clear thatd, is invariant by translation oK, or K5. Let [K1], [K2] €
Hom™* and letK, K, be two representatives having the same intrinsic area. Weéhea
define

d>([K1]. [K2]) = d2(K1. K>)

if [K1] # [K2], and zero otherwise.
Classical trigonometry computations from hyperbolic getm showd; = d,. We
define thearea distanceon Hon"* as

dg.cn = dl = d2.

(Note that we have not proved yet that it is a distance.)

Even if the space of convex bodies is not a vector space, fiopraperties the mixed
area resembles a symmetric bilinear form, whose kernegisplace of points, and whose
isotropic cone is the space of points and segments. MorgAilexandrov—Fenchel in-
equality (M8) resembles a reversed Cauchy—Schwarz iniggudd defined; and d,
above, we mimicked the definitions of the hyperboloid modal ¢the Klein model of
the hyperbolic space. It is actually the way we will prove dtem1.L

2.2. Spaces of support functions

The support functiorSup K) of a convex bodyk in R” gives, at the poink € S"71,
the distance from the origin &” to the support hyperplane &f with outward normak.
More precisely, SupX) : S"~! — R is defined as

SuppK)(x) = prealg(x, p).

where(-, -) is the usual scalar product Bf".

Let us denote by - |2 the L2 norm on the round sphe&#~!. Let H!(S"!) be the
Sobolev space d§" !, i.e., the space of functior&~! — R which are inL2(S" 1), as
well as their first-order derivatives in the weak sense. ThraesH ! (S"1) is implicitly
endowed with the norm

1/2
il = (i -+ 19813 = ([ 2 19m2)

where the gradier¥ is the one of the round sphere.
If K is contained in the ball centered at the origin and with radiuthen Suppk) is
R-Lipschitz. Hence we get a map

Supp: X" — HY(S"™Y).

Let us recall some basic propertid9)]11, 20].

o Afunctionh : S"! — R is the support function of a convex bodylitt if and only
if its one homogeneous extensibnR” \ {0} — R, h(x) = ||lx||2(x/|x]), #(0) = 0,
is a convex function.
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e SuppKi + K3) = Supf K1) + SuppKz), SUpgAK) = A SupgK), A > 0; in par-
ticular, SuppX") is a convex cone i 1 (S"1).

» Supp is a bijection onto its image.

e If K; C K3, then SuppK;) < SuppKz).

o If (SupfK;)); converges pointwise to Su@), then the convergence is uniform.

o If (SupfK;)); converges to Sugi), then almost everywher€v Supk;)); —
V SupfK).

Remark 2.1. Let us warn the reader that if Su&X) = A SupgK), A > 0, we do not
have Supp-K) = — SupgK) in general, where-K = {—x | x € K}. Indeed, both
Supg—K) and SuppK) are positive if the origin ofR” is in the interior of K. Actu-

ally, Suppg—K)(v) = Supfg K)(—v) and— SupfK) is like the support function ok, but

with the support planes defined by theiward unit normals.

Let us sefl; = n — 1 andc, be a given positive constant. Fore H1(S*™!), let us
consider the quadratic form

V3(h) = cen(IR172 = AT IVAIT,). (2.5)
that comes from the following bilinear form: fac k € H'(S*™ 1),
V3'(h,k) = cn((h. k)2 — AT (VR V) 2).

To avoid confusion, let us emphasize th_/gt(h, h) = 172” (h). Itis known (see, e.g. 1,
Theorem 4.2a],40, p. 298] or [LO, Proposition 2.4.2]) that for any there is a unique,
such that, for any, K, € X"

Va(K1, K2) = c, V3 (Supi(K1), SuppK2)).

Let us first restrict/)* to a subspace where it is not degenerate. Hopefully, theekern
of V' is exactly the image of points by Supp. Indeed, the supparttian of the point
p € R” is the restriction to the sphere of the linear map> (p, x). But the space of
such maps is the eigenspace of the first non-zero eigenvithe baplacian on the round
sphere, and this eigenvalue is thein (2.5, so we deduce easily the following fact.

Fact 2.2. The kernel o/J'(-,-) on H'(S"!) is the eigenspace df; .

Proof. Leth € H'(S"~'). The functionk belongs to the kernel df;' (-, -) if and only if
foranyk € H'(S*!) we have

/ hk = A7! (Vh, Vk).
Sn—1 Sn—1

By density of smooth functions d#*~! for the H!-norm and by Green formula, this is
equivalent to the following property: for any smooth fuoctk on S”~! we have

/ hk = A7! hAK,
Sn—1 Sn—1

and this meand = A7 ! Ak in the weak (hence smooth) sense. [
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We will denote byH ' (S*~1), the subspace dff ! (S"~!) of functionsL2-orthogonal
to the eigenspace dfy, i.e.,

H'(S" i ={he H'(S"") | (h,x")2=0,i =1,....n}

= {h e H'(S" Y| / h(x)x dS" ! (x) = 0}.
Sn—1

In turn, V' is non-degenerate ol ! (S"~!);. This space has a clear geometric meaning
for convex bodies. Recall that the Steiner point of a conveytX is the following point
of R™:
stein(K) = KL/ 1 Supp(K)(x)x dS" !,
sn-

so that
stein(K) = 0 < SupK) € H(S"™!);.

We have that for any € R”, stein(K + {p}) = stein(K) + {p}, hence a convex body
with Steiner point at the origin is a representative of thesslof this convex body up to
translations.

Now we prove thaﬂ72” has a Lorentzian signature d#!(S"~!);: it is positive in
one direction, and negative definite on the orthogonal (fgivan scalar product, here
the Sobolev one). Let L be the line of constant functiongZih(S*~!);. We denote by
H'(S" 1), the subspace a1 (S"~!); of elementsH ! (or, equivalently,.?) orthogo-
nalto L.

Lemma2.3. Forh € H'(S" 1o,

Ar—A —

e (LA 26)
Ay — A — 1

on (2 Yl < 7200 < ol @7)

Proof. The space L is exactly the eigenspace of the zero eigenvdltige cspherical
Laplacian. If we denote by, (> A;) the second positive eigenvalue, then by Rayleigh’s
theorem, forh € H'(S" 1) \ {0} we have

- IIVh!iz.
172117 2

Az (2.8)
Now (2.6) is immediate fromZ.8), and the right-hand side inequality i&.() follows
from B
—V3' () < cadTHIVAIZ2 < cadT IR Z -

The left-hand side inequality ir2(7) follows by adding the two following inequalities: as
Ar> A =n—1>1,(2.6) gives

1 (A=A .
e Gl AR
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Kleiny® vr =1

Hl(Sn71)01 Vln =0
L

Figure 3. Notations for subspaces &f ! (S*~1);.
and on the other hand, using againdj, the equality 2.5) gives
1 1 _
on( 5 = 3 ) IV = =72 . .

Clearly 172” is positive definite on L, and we have the following.
Proposition 2.4. (H'(S" 1)o1, —V}(-,-)) is a separable Hilbert space.

Proof. By (2.6) or (2.7), =V} is a scalar product o }(S"1)o1. As H}(S" 1) is
orthogonal to a vector subspace, it is a closed subspaces lsemplete and separable for
the H'! norm. The result follows fromX.7). |

Note that ag’}" is Lorentzian onf 1 (S"~!),, we obtain the reversed Cauchy—Schwarz
inequality that generalizes Alexandrov—Fenchel inequéiil8):

V3 (h.k)? = V3 (V5 (k) (2.9)
for h, k € €, with (see Figure)
€ =1{he HY(S"™Y | VI(h) >0, V]'(h) > 0},

1
fut
Kn—1 Jsn—1

and equality occurs in2(9) if and only if h = Ak, A > 0.
Let us mention that it is known that, for a convex badyc R”, if V;(K) is given by
(2.2), then

and where
Vi'(h) =

Vi(K) = V' (SuppK)).

2.3. Infinite dimensional hyperbolic space

Let us introduce
K ={het,| Vyi(h) = 1}.

As the Hilbert structure o 1 (S"~1)o; is given byV}, the mapl} is smooth, and
it is easy to see tha¥#® is the graph of a smooth map ovéf!(S"~!)e;, hence an
infinite dimensional smooth manifold. We implicitly enda#>° with the restriction of
—172" (-,-) on its tangent spaces. The intersectiot#fP with any vector subspace of finite
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dimensionp of H!(S"~!); containing a vector ot, is clearly a hyperboloid model
of the hyperbolic space of dimensigp — 1). In turn, #° is a Riemannian manifold
of constant sectional curvaturel. Moreover, it is not hard to see that the map :
HX — HY(S" Vo1, pae(h) = h — I‘;l,,g’; is a bijection and locally bi-Lipschitz, so by
Proposition2.4, #° is complete. '

Let us denote byl the distance induced by the Riemannian structure, and we, hav
in the same way as in the finite dimensional case,

dg (h, k) = argchV)' (h, k).
We will also need the pull-back of the distance on the hypleit@nto
Klein® = {h € €, | V'(h) = 1}
via a central projection, i.e., the hyperbolic distancékdein;° is defined by
di (h, k) := dge (V3 ()20, V3 (k)" %k). (2.10)

Of course, itis possible to writég in an intrinsic way, as we did in Secti@nlfor the
area distance, using@ @) instead of (M8). For future references let us note the Vuithg
non-surprising facts, whose proofs are left to the reader.

Fact 2.5. On J°, dz and dg: induce the same topology, whefg: is the distance
induced by - || g1 -

Fact2.6. Leth;, k € Klein;°. Then

VI(hi) — 0 & dx(hi, k) — +oo.
Fact 2.7. Let (h;); converge td: in (Klein;°, dk). Thenl72"(h — h;j) — 0.
Fact 2.8. OnKlein;°, dx anddg: induce the same topology.

2.4. Spaces of convex bodies

Recall thatK" (resp.X"*) is the set of convex bodies iR” (resp. convex bodies with
positive intrinsic area). We denote By the space of convex bodies with Steiner point
at the origin, andKg* = K¢ N K",

up to positive scaling withV, =1 with V; =1
up to translations Hom"*, Hom™™*
with Steiner point at the origin Ksv, Ksv, Ky, Ksy,

Table 1. Convex bodies ifR”.

In the sequel, a star as upper-script means that we congitiecanvex bodies with
positive intrinsic area (that is, we exclude points and says). In Tablel, it is obvious
that all the sets without a star are in bijection, as well bthalsets with a star.
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We have
SUPKG*) C €y, SUppKgy,) C #,.°,  SuppKsy,) C Kleiny®.

Clearly, ch}“,z (resp.JCg”{,l) is in bijection withHom"*, and we denote bysy, (resp.
dsv,) the pull-back ot/s¢» on ch}“,z (resp.ch}“,l). By construction, the map Supp defines
isometries

(K5, dsv,) — (SUPIKET,). doe).
(g, dsv) — (SUPIKET,). dk),

as all these sets are isometric(ffon™*, dscn). We immediately obtain some parts of
Theoremsl.1and1.2 (Hom™*, dq¢n) is @ metric space, isometric to a convex subset of
HS®. Inturn, it has curvatures —1 and> —1, as this is clearly true for its isometric image
in the hyperbolic space, and it is a uniquely geodesic mgrace, as the hyperbolic space
is uniquely geodesic. The unique shortest path is the coomebination, as the property
occurs inKleing°.

Let us check two easy facts that give other parts of Theoflefrend1.2. The first one
implies that SuppXg;; ) is unbounded.

Fact 2.9. SupX¢7,) contains an entire geodesic HE°.

Proof. In the plane, consider the following segmenks; = [—1, 1] x {0} and K, =
{0} x [-1,1]. For0 <t < 1, the convex combinationl — ¢)K; + tK; is the rectan-
gle[—-(1 —1),1 —1] x [-t, t], whose Steiner point i8. This gives an entire geodesic of
HS° contained in Sup@3y,). m

The following fact implies tha{Hom™*, ds¢») has infinite Hausdorff dimension.

Fact 2.10. For anys € N, there is an open ball of the finite dimensional hyperbolacsp
H* that isometrically embeds in{@{om™*, dg¢n).

Proof. The convex hyperbolic polyhedra constructed #h parametrize the similarity
classes of convex polygons with fixed angles; by constractimey isometrically embed
into (Hom™™, dg¢»). The dimension of the hyperbolic polyhedrdis- 3) if the polygons
haves edges. [

Fact 2.11. The boundary ofom™*, ds») is homeomorphic to the real projective space
of dimension(n — 1).

Proof. The boundary is the space of segments, up to homothetiezdnfbr example by
looking at the isometric modéBupp( Ky, ), dk), we see that the convex bodi&son
the boundary are the one for whi¢h(K) = 0 (see FacR.6) andV;(K) = 1, and these
are exactly unit length segments. HerdcEon™* is in bijection with P"~1(R), the real
projective space of dimension— 1 (that is, the space of lines R").
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Figure 4. If a plane convex bodyk has a non-smooth point, then for any> 0, SupgK) +
e Supp(B2) is the support function of a convex body, while SUEpP — ¢ Supg(B?) is not.

QO

Figure 5. The disc and the square are both terminal points of the segoirimg them.

We can endow) Hom™* with the visibility metric from[B"]: the distance between
a,b € d Hon'"*, denoted by<g (a, b), is the angle (with value if0, =]) between the
two linesc, andc; from [B"] and with endpointg andb, respectively. But clearly, the
element ofO(n) sending the line to the lineb is also ads-isometry sending, to cp.

In turn, d Hom™ endowed with the visibility metric is isometric t8”~!(R) endowed
with its round metric. Fromd, Proposition 11.9.2],<p: 8 Hom"* xd Hom"* — R is
continuous for the classical topology éiom™*. Hence for this topology) Hom** is
homeomorphic taP”~ 1 (R). n

In the two following sections we will prove the two remainipgrts of Theorem&.1
and1.2 the assertion about terminal points of segments, and greddgical properties.

2.5. Terminal points of segments

LetK,,K;> € *ngl . ThesegmenbetweenK; andK, is{(1 —t)K; +tK», t €[0,1]}. We
say thatk; € Kg,, is aterminal pointof the segment if for any < 0, (1 —¢) Sup( K1) +

1 SuUpp(K2) ¢ SUpKy, ). An extreme poinK of Kg,, is such that there does not exist
K1, K> € Kgy,, Ki # K, andt € (0, 1) such that SupiX) = (1 —7) Sup(K1) +

t SupfK>). In the plane, extreme points df§V1 are segments and triangleéX)] Theo-
rem 3.2.14]. Fom > 3, extreme points ofK,, are dense for the Hausdorff distance
[20, Theorem 3.2.18].

Clearly, an extreme point is a terminal point for all the segis ending at this point.
But there are much more terminal points. For example, ondicdrtonvex bodies with a
non-smooth point on the boundary (i.e., a point of the cotngly contained in more than
one support plane) which are terminal points for the segistarting at the unit ball—this
idea is illustrated in Figuré.

In this section, we will use a different argument to prove tivay convex body is the
terminal point of some segment (Propositibi?); see Figuré for an example.
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If a function’ € Klein;® belongs to Sup@gj, ), then its one-homogeneous exten-
sion’ is convex, hence has non-negative Laplacian in the weales&hs means that for
every non-negative functiop € C°(R”), we have

/ ﬁ(x)Aego(x)dx >0,
Rn

whereC(R") is the set of smooth functions with compact suppotkih

For1 < p < n, we will denote byB, , the p-dimensional ball with radius; (p) in R”,
which is the set of points € R” with x7 +--- + x> < ri(p)*> andx, 41 =--- = x, = 0.
The number; (p) is such that a ball with such radius hids= 1. We haveV; (B, ) = 1,
henceB, , € Ky, (note thatB, , € ch";,l ifand only if p > 2). Letb,, , = SUPABp,») €
Supp K5y, ) and let

by (x) = r1(p) /X7 + -+ x2

be thel-homogeneous extensionlyf , (if p = 1, thenb, (x) = ri(1)|x:| = Z1).
Proposition 2.12. Let p € N such thatl < p < n. Then anyK € X%, is the terminal
point of a segment id(g”{,l , Which starts at some embeddedlimensional ball inR”.

Actually the proof will show that there are infinitely manycsusegments. Ip = 1,
this ball is in fact a segment and lies on the boundariglein’°.
To prove Propositior2.12 we need the following theorem due to Alexandrov (see

[4))-

Theorem 2.13. A convex functiory : R” — R is twice differentiable at almost every
x € R", which means that for almost everye R”, there exists a quadratic polynomial
0%, and a functionRz, such that

F(x) = 05(x) + Rz(x) and @0% _

Proof of Propositior2.12 Letk = Supp(K) € Supf(K§y, ), and letk be its1-homoge-
neous extension. Lét € R” be a point at whiclt is twice differentiable, and lePz and

Rz be asin Theorerf.13 Sincen > p, the vector spacgx; =--- = x, = 0} has positive
dimension, hence, up to a rotation&f we may assume that the first components afe
Xp=-=X=0.

Let ¢ € C(R") be a non-negative function, with support in the unit ballRf,
positive in a neighborhood @, and with [z, ¢ = 1. Fore > 0, letg, € C2°(R") be the
functiong,(x) = Ei,,go(";’_‘): this function is non-negative, has supportife, x) (the ball
centered at and with radiug), anden e = 1.

Lets <0. We wantto show thatl —¢)k +tb, , ¢ Supp(JCf;’{,l). We argue by contradic-
tion: assume thatl —7)k +1bp,» € SUPHKY, ). Then(1—1)k + by » is a convex func-
tion onR”, hence its Laplacian is non-negative in the weak sense, pariicular we
have

/ ((1 =0k + thp.n) Aege = 0. (2.11)
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We will first show that we always have
kAope ——> +o0. (2.12)
R” e—0
Sincer is negative, with Z.11) it is sufficient to show that
/ bpnDeps —> +00. (2.13)
R~ e—0

Now we need to argue depending whethes 1 or p > 2.
e If p>2,we have

— r -1
Aebpn(x) = M
/_x% + cee + _xg
and sincer; =--- =X, =0we have,/x? + --- + xp < lx = x|, henceﬁeg;;,(x) >
(P)(p—1) =
eBlP—2 for everyx € B(e, X), so we have (by Green formula)
— — T -1 r -1
/ B ey = / vy > PP =D e = PP =1
R~ B(e,%) € B(&,X) €
and this gives4.13.
e |If p =1, then we have
— 1
bpn(X)Ae@e(x)dx = = [x1]Ae@e(x)dx
R~ 2 R~

/ 1 ©e(0,x2,...,x,)dxs ... dx,
Rr=

1 )Cz—)_Cz Xp — X
— ¢l o0, R ” )dx, ...dx,
e Jrn—1 e &

1
_/ (/’(O,yz,,yn)dyzdyn
& JRn—-1

The second equality is a classical computation, the thitdiis becauseé; = 0, and
for the last one we use the change of variagle= *—*. Sinceg is positive in a
neighborhood of zero, we hayg,_; ¢(0, y2...., yn)dy2...dy, > 0, and this gives
(2.13.

Moreover, sinc& = Q3 + Rz, we have

n

]gAeﬁas = Q)_CAe(pa +/ Rz Acps.
Rn Rn

The functionQ5 is a quadratic polynomial, hence its Laplacian is equal t@m@stant
C € R, which gives/p, 0z Acps = [ga Cpe = C. And SiNCeA ¢e(xX) = iz Acp(X2),

15



C. Debin and F. Fillastre 16

with the change of variablg = % we have

1 -
| rswacmdr = o [ Resep(S Ja
R "2 JB(e.x) e

1 )
== Rxz(X + &y)Acp(y)dy.
& B(1,0)

SinceRf”(,f“Jg") — 0asu — 0, there existd/ > 0 such thatRz (¥ + u)| < M ||u| for ||u|

small enough, hence fersmall enough we have, for eveyye B(1,0), |Rz(X + ey)| <
M 2| y||?, hence we obtain

‘ / R () Aegs (x)dx
Rﬂ

< Mf 1717 Aeg()dy.
B(1,0)

The integral/g. Rz A, does not go ta+-oco whene goes to zero, and by2(19) this is a
contradiction. n

2.6. Comparison of topologies

We want to compare the topologies givendyy andde, on SuppgXgy, ), wherede is the
distance given by the sup norm. As a tool, we will use the distad; » andd: induced
by the L? and H'! norms respectively o/ ! (S"~!);, as well as the following theorem;
see P3] and [10, Proposition 2.3.1].

Theorem 2.14 (Vitale). The distancesd,, and d;: induce the same topology on
SupgK") c CO(S" ).

The result is weaker than saying that the two norms are elgunivan the space of
convex bodies, that is not true; se&] for details.

Corollary 2.15. The distance8.., d; 2, anddg: induce the same topology SupgX").

Proof. We prove that/;» anddg: induce the same topology. A — & for || - || g1, then
obviouslyh; — h for || - ||z2. And if h; — h for || - ||z, then by Theorem2.14we have
h; — h for do. Let us check that this implies the convergencedgt. This is obvious
thath; — h in L2. Moreover, letR > 0 be such that;; < R for everyi. Then(Vh;);
almost everywhere converges pointwise\s, hence the convergence holds/is via
Lebesgue’s dominated convergence theorem: these fus@ieruniformly bounded bg
as theh; are R-Lipschitz. Hencéy; — hfor || - || g1. [

A direct consequence of FaZi8and Corollary2.15is the following corollary, which
relates the distanceb, anddy.

Proposition 2.16. On Suqucg’{,l), deo and dk (as well asd;» and dg1) induce the
same topology.
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As d clearly induces the same topology on sgmg;l) and Suppkg*;z), we obtain
the last point of Theorerh.1, as the Hausdorff distance for convex bodies is exatily
for the support functions.

Remark 2.17. Even if d, anddk induce the same topology, their behavior is quite dif-
ferent. First, similarly to the comparison between Eudidand hyperbolic metric on the
disc, we can see théBupf K5y, ). doo) is bounded an@Supp( K5y, ), dk) is not. Also, if
segments are also shortest paths for the Hausdorff distdregeare not unique in general;
see note 11 in40, Section 1.8].

Let us now check thaSupp( Ky, ). dk) is a proper metric space. It will be an imme-
diate consequence of Blaschke’s selection theorem togeitteProposition2.16

Proposition 2.18. (Sup;{ch*I;l), dg) is a proper metric space.

Proof. Let A be a closed bounded subset(Sﬂpr(Kg*I;l), dk). We want to show thal
is compact fordk ; by Proposition2.1§ it suffices to show that it is compact fdg,. As
(Sup(Ky, ). ds) is compact (seeZ, p. 165]), it suffices to show that is closed in
(SUPHKYy,), do)-

So assume thdt;); is a sequence of elements #fconverging toh € SuppKXgy,)
for doo; we want to show thak € A. If h € Sup;{ch*;l), then this is true, because
Proposition2.16 implies thatA4 is a closed subset QBupqxg’;l), doo). Otherwise,
h € SupfKgy,) \ SupKXgy, ), hencelJ'(h) = 0 and it follows from Corollary2.15
that V}*(h;) — 0. Then by Fac®.6, the distance inKlein(°, dx) betweeni; and any
given pointk € Kleini° goes to infinity, and that contradicts the fact tHais a bounded
subset of SUpH KT, ), di ). m

Theoreml.1is now proved.
The two following facts conclude the proof of Theoréna.

 Since(Hom'"*, dg) is proper, it is complete, hen¢8up KX ¢},). du) is also com-
plete, so Sup@Kgy;) C Hy° is a closed subspace.

» Now, let us prove that Sugis;,) has empty interior. If this is not true, then there
exists a ballB in (H}°, dg) such thatB C Sup K%y, ); we can even assume that
B (the closure ofB) satisfiesB C SuppK§y;). Since(Supg K<y, ). du) is proper,
closed balls are compact, henBeis compact. Hence there exists a non-empty rel-
atively compact open set ifKlein;°, dk). But that would be true for the infinite-
dimensional Banach spa¢éf ' (S"1)o1, do1), and that is impossible: a closed ball
would be compact.

Remark 2.19. As far as we know, the idea to associate a hyperbolic metspaxes of
convex bodiesia the area form and support function was more or less exptithe 90s,

for spaces of convex polygones. The main referencgisée [7] for detailed references.
This construction was extended to spaces of convex polgtopé].
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The smallest vector space containing SUf§f}) as a convex cone is the vector space
spanned by the cone:

Sonid = {h—k | h, k € SupgX™)},

the space ofi-dimensional hedgehogsee PO, Section 9.6], 21] and the references
therein for more information. Let us say that the name wasezbin [L2], although they
previously appeared in the literature under different ngreee 19. If 42 € Sonid, there

is a way to associate a geometric objecRih (see [L6, 21]) that is illustrated in most of
the figures of the present article. A description of SémicC°(S?!) is contained in 16].
But Soni® is not complete for any reasonable norm on it—it contaiif§S”~!), so it

is dense in boti 1 (S*~!) andC°(S"~1) endowed with their classical norms. Particular
cases of the results of the present article were achievédsisdtting (mostly in the regular
case) in [L3-15].

3. The space of shapeShap€e'*

3.1. Immediate properties

LetShapé™ be the quotient af{om™* by linear isometries of the Euclidean spdt the
action ofO(n) on Hom™* is defined by®[K] := [®K]. For K € K"*, we will denote by
[K] the set of convex bodies differing fro by positive scaling and Euclidean isome-
tries.

SinceV; is O(n)-invariant,ds« (®[K1], ®[K2]) andds ([K1], [K2]) are equal, so
O(n) acts by isometries ofiCom™*. Moreover, the action oD (n) is clearly continu-
ous on support functions fef,,, hence by Propositiof.16 the action is continuous on
(Shapd™, ds¢n). Let us introduce

dgn ([[Klﬂ, [[Kz]]) = <I>,<I>i’re]f0(n) dgn ((D[Kl], (D’[Kz]), (31)

Noting that by continuity and compactness, the infimum isi@gt a minimum, it is not
hard to deduce thafs» is a distance.

Proposition 3.1. (Shapé&*, ds») is a proper geodesic metric space with curvatetre-1.

Proof. It is a general fact that the quotient will be geodesic andhwiirvature> —1;
see for exampled, Proposition 10.2.4]. The fact that the quotient is progeailso very
general. Indeed, suppose thipK;]);en is a bounded sequence(®hapé*, ds»). There
are ®; € O(n) such that(®;[K;]);en is a bounded sequence (fion™*, d4cn). Since
(Honm'™*, dsn) is proper, up to extract a subsequence, there epfi§ts Hom"* such that
dyen (P [Ki], [K]) — 0. Asdsn ([K;]. [K]) = d3cn(P:[Ki], [K]), we have

dsn ([K:]. [K]) — o. n
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3.2. Non-uniqueness of shortest paths i8hapée**

The aim of this section is to prove that shortest paths aramiqtie inShapé&*. Obviously,
sinceShapé* isometrically embeds int8hapé&* for n > 2, it is sufficient to prove this
property forn = 2. Hence, in this section, we consider convex bodie®f We will
produce a handmade example.

Let K be the intersection of the half-spaj@ecc) x R with the ellipse with cented,
width 2+/2, and helght} The support function oK is a function orS!, and with the
parametrizationr = (coss, sins) € S, fors € [0,2x], we will actually define the support
functionk of K on|0, 2x]. Namely,

1 . T T

k(S)=\/2coszs+§sm2s forse[—z 5]
1 ; T 3w

k(S)—ﬁ|Slns| forse[?_z]

Let(B,0) be the Steiner point ok, and lete = V1 (K) = %foz k ~2.4. Then the convex
bodyK; = ™' K + (™' 8,0) has Steiner poiri, andV; (K1) = 1: hencek; € X3}, .
Its support functiork; € Sup;{JC ) is given by

kl(S)=a_1(\/2co§s+%sin2s—ﬁ003s) forse[% z],
- [ n 3w
ki(s) =« 1(E|sms| —ﬁcos;) fors e [ —]

Let K, be the rectangl{e— ] X [——0 —] Obviously,0 is the Steiner point oK.
Its support function is defined for anye [0, 2] by

2 1 .
ka(s) = g|coss| + 1—O|SIns|,

and sincek> = [-2, 2] x {0} + {0} x [ 1. &1, we haveV; (K>) = length([-2. 2]) +
length([— 5. 75]) = 1. Hencek, € X3}, andk, € SupK3},).

Let [K;] and[K>] be the correspondmg equivalent classe8hapé*. Sincek, is
invariant by the symmetry with respect to the horizontatithe distance betwedik |
and[ K] is given by

ds2([K1]. [K2]) = gneiﬂg dae2 ([K1]. Ro[K2]),
where we denote bR, the rotation of anglé in RZ. We will prove the following.
Proposition 3.2. The minimum is obtained fér = 0 and® = 7; that is one has

ds2 ([K1]. [K2]) = dge2([K1]. [K2]) = doe2([K1l, R%[Kz])-
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Let us state the following fact. Note that in general, thisas true that every shortest
path in a quotient space is obtained as the projection of dedigath.

Lemma 3.3. Let[K], [K2] € Hom™™, and let® € O(n) be such thatls» ([K1], [K2]) =
dsen ([K1], ®[K2]). Suppose thay] is the shortest path betweék;] and ®[K;]. Then
the projection]y] is a shortest path betwediX ;] and[K,]. Moreover, the projection is
an isometry fronjy] to [y].

Proof. Let us suppose thdy] : [0, 1] — X is affinely parametrized. Then, for afy<
s<t<l1,
dsn ([y ], [y ®]) < dsen ([¥()]. [y(®])
= (t — s)dsen ([K1]. P[K2])
= (l — S)dsn([[Kl]], [[Kzﬂ)

Using three times this inequality, we obtain

dsn ([K1]. [K2]) < ds([yO]. [y()]) + ds» ([y()]. [y®O]) + ds» ([y (] [y (1))]
< (s+ @ —s)+ 1 —0)ds([x]. [y])
= dsn ([x]. [¥])-

All these inequalities are equalities, so in particular

dsn ([y®)]. [y®]) = (¢ — s)ds» ([K1]. [K2]). n

Proposition3.2is sufficient to prove the non-uniqueness of shortest patBhape™.
Indeed, Lemma.3 shows that the projections of the shortest path$(om?* between
[K1] and[K>], and betweeriK;] and Rz [K>], are again shortest paths$hapé*. But
these two shortest paths are different: the first shorteht gantains the poinE%Kl +
5 K], and this point is not on the second shortest path [(1 — 1)K + Rz (K>)]:
5 K1 + 5 K» is notthe image by arotation ¢f — 1) K; + Rz (K»), whichis equivalentto
say thatia ™' K + 1 K; is not the image by a rotation and a translatiofilof 7)o K +
1Rz (K>); see Figure.

SinceR;[K>] = [K>], to compute the minimum it is sufficient to consides [-7, 7 ].
Moreover, letl" be the symmetry with respect to theaxis: we have'[K;] = [K1], hence
we have

dge2([K1], Rg[K2]) = d3e2(T[K1]. Rg[K2])
= dy2([K1]. T o Rg[K>])
= dye2([K1]. R—g[K2]).
This shows that in fact we need only to consides [0, 5 ].
Let k§ be the support function a®y[K>], that isk§ (s) = k(s — 6). We have

0
cosh(dse ([K1), Re[Ka])) = Vatki,ky) f(6)

Vi Vakd) 2V V2kn)Vaka)
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Figure 6. The convex body,a~! K + 1 K (middle of the upper line) is not the image by a rotation
and a translation ofl — 7)o" 1K + tRz (K>) (represented on the bottom line foe 0, i3

where we denote by (6) the function defined by

2m
£(60) = /0 (k1 (s)ka(s — 0) — K} (s)k3 (s — 0))ds.

Proposition3.2is a direct consequence of the following lemma.

Lemma 3.4. On|0, 7], f attains its minimum at the points= 0 andf = 7.

Proof. Fix & € (0, ) and consider the function— k;(s)k’(s — 6). This function is
piecewiseC! but is not continuous: the functidd (s — 6) has jumps, with heighsi atthe
pointss = 6 ands = 7 + 6, and with heigh at the points = Z + 6 ands = 3Z + 6.
Hence we have

2
/O (k1 (5) (s — 0))’ds=—ék1(9) - ékl(nw)—gkl (%w)—gkl (%”w)

1 1 4 1
=——\/200329+—sin20——\/2$in20+—co§0
S5a 2 S5a 2

. 4
sind — ——— cosh.

1
- 5V2a 53 2a
The equality(k k%) = kik} + kikj gives—kk;, = kik} — (k1k3)', so
2m

2w
— | K(s)ky(s — 6)ds = /0 (k1(s)ky (s — 0) — (k1 ()k5 (s — 0))")ds,

0

and since, (s — 0) + k5 (s — 6) = 0 for almost every € [0, 27], we finally obtain
2n
f() = / (k1 (s)ka(s — 0) — K (s)k3(s — 6))ds
0

2w
= /0 (kl(s)(kz(s —0)+ky(s — 9)) — (k1 (s)k5 (s — 9))/)ds
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1 1 . 4 . 1
=5\/2008294-53"‘1294—5\/25"‘129—}—500829

+ ! sinfd + 4 cosf
520 542 .
We easily check thaf'(0) = f(5) = ‘/75 (the parameters of the ellipse and the seg-
ment have been chosen so that this property holds). And etadioenputation shows that

f(0) = 5}2“ >0andf'(3) = —ﬁ < 0. Moreover, lefg : [0, 1] — [0, 00) be defined
by

1 3 1 4 3 1 4
U)=—/zu+-+—/2—su+ V1—u+ Ju.
800 =5V Tt 5V T s A 5V2a

With the identity co3 + sin* = 1, we easily check thag(cos 0) = f(#) for any 6 e
[0, Z]. Hencef'(0) = —2g’'(co 9) sinf cosh. But g is strictly concave, hengg has at
most one zero of, 1], hencef” has also at most one zero @ 7). And this ends the
proof: if the minimum of / on [0, 7] was attained at a poirit £ {0, 7}, since f'(0) > 0
and f'(3) <0, f’ would have at least zeros on(0, %), and that is impossible. |

3.3. Embedding of hyperbolic planes

Trivially, for any ® € O(n) we have®[B"] = [B"]. Apart from the fact that the action of
O(n) onHom™* is not proper, this says that for ap¥] € Hom"**,

ds» ([K].[B"]) = daer (K] [B"]). (3:2)
From this we first deduce the following fact.
Fact 3.5(Uniqueness of shortest paths starting frBff). Let[K] € Shapé*. Then there

is a unique shortest path frofiB”] to [ K, which is the projection of the shortest path in
Hom™* betweer] B"] and[K].

Proof. Let§ : [0, dsn (IB™],[K])] — Shapé&™* be an arc-length parametrized shortest path
betweer[B"] and[K], and let[§(¢)] € Hom"* be such thad(r) = [§(z)]. Lets > [y(1)]
be the (unique) arc-length parametrized shortest pafliam™* between[B"] and [K]:
we want to show thas(1)] = [y (©)].
For anyr € [0,ds» ([B"], [K])], let ®; € O(n) be such that

dsn ([K], [8(]) = dsen ([K], @2 [3(0)])-

Sincer — [§(¢)] is a geodesic iShapé&™*, we have

dyen ([B"], @¢[8(1)]) + daen (P [6(1)], [K]) = dsn ([B"]. [6)]) + dsn ([§()], [K])
= ds»([B"]. [K])dse» ([B"]. [K]).
Hence®,[§(¢)] is on the shortest path betweps”] and[K] in Hom™*. Moreover, we
havedse ([B"], @:[8(2)]) = ds»([B"], [6()]) = ¢ (the geodesic — [§(¢)] is arc-length
parametrized), s@®;[§(¢)] = [y(¢)] (remember that the geodesie—> [y(¢)] is also arc-
length parametrized). Finally, this givg¥?)] = [y (¢)]- [
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In turn, we can construct totally geodesic hyperbolic stefainShapé*. Interest-
ingly, many properties in this section are very general,thig one uses Alexandrov—
Fenchel inequality.

Proposition 3.6. Let [P], [Q] € Shap&™ be such thaf P], [Q], and [B"] are three
different points. Le#d € O(n) be such that/s-([P], [Q]) = dsc ([P], A[Q]). Then the
projectionHom™* — Shapé*, when restricted to the (plain) geodesic triangle with ver-
tices[B"], [P], and A[Q], is an isometry onto its image.

Proof. Without loss of generality, we may assume thétis the identity (that is,
dsn([P], [Q]) = dse([P], [Q)])). Let [K;] and [K>] be in the geodesic triangle with
vertices[B"], [P], and[Q]: since geodesics ifton”* are convex combinations, we can
write

[Ki] =1 B" + B1 P +y1Q] and [Kz] = [@2aB" + B2P + y20],

where thex;, B;, y; are non-negative real numbers, with+ 81 + y1 = a2 + B2 + y2 =
1. We want to prove thads« ([K1], [K2]) = dsen ([K1], [K2]), which means that for any
® € O(n) we have

dyen ([K1]. [K2]) < dyen ([K1], P[K2]).

SinceV, is O(n)-invariant, we only need to show that
Va(K1, K2) < Va(K1, ©(K2)) (3.3)
(K1 and K, denote two convex bodies in the equivalent clag&g$ and[K]). We have
Va(K1, K2) = a102Va(B™) + a1 82Va(B”, P) + a1 y2Va(B”, Q)

+ B102Va(P, B™) + B1B2Va(P) + B1y2Va(P. Q)
+ y102V2(Q, B") + y182V2(Q., P) + y1y2V2(Q).

Moreover,®(K3) = ax B" + B2 P(P) + y>P(Q), hence
V2(K1, ®(K32)) = a2 Va(B") 4+ a1 B2V2(B", @(P)) + a1y2V2(B", 9(Q))

+ B1a2Va (P, B") + B1B2V2 (P, ®(P)) + B1y2V2 (P, 2(Q))
+ y102V2(Q, B") 4+ y182V2(Q. ©(P)) + y172V2(Q, ®(0Q)).

And we obviously havé’, (B", P) = V,(B", ®(P)) andV2(B", Q) = Vo(B", ®(Q)).
Moreover, Alexandrov—Fenchel inequali}.§) gives

V2(P) = V/V2(P)V2(®(P)) = V2(P. ®(P)),
V2(0) = V12(0)V2(2(0)) = V2(Q, ©(Q)).

And ds« ([P, [Q]) = dsc ([P]. [Q)) givesVa(P, Q) < V2(P, ®(Q)) andV2(Q, P) <
V2(Q, ®(P)). Since all the real numbews, f;, y; are non-negative, this gives inequality

(3.3. |
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3.4. Proof of Theorem1.3

Proposition3.1and Section8.2and3.3give part of Theorem.3, It remains to prove the
assertion about the boundarySsfapé&™*. It obviously contains only one point: indeed, the
boundary ofHonT"* is the set of segments up to homotheties, so the bound&iyap&*

is the set of segments, up to translations, positive scadind rotations oR”, and there
is only one equivalence class.

4. The space of all the (oriented) shapes

This section is an opening to the study of spaces of conveiebpdonsidered without
making distinction between dimensions. o 0, let us denote by, , the canonical
isometric embedding d&” into R" 2 which is given byR" ~ R” x {0}? C R"*7. Due
to the intrinsic nature of,, we have that the map

tn.p : (HOM™  dyn) — (Hom"TP* dycniy)

defined by, ,([K]) = [tn,p(K)] is an isometry. Let{lom™* be the union overn of
Hom™*, quotiented by the following equivalence relatidik;] is equivalent to[K>]

if and only if there existi, j < p such thatk; C R, K, C R/, and [i;, ,—i (K1)] =
[tj,p—j (K2)]. We will denote by{K] an element offom™*. For two representatives of
[K1]oos [K2]oo € HOmM™®* in R™, let us define

dy ([Kiloos [K2]oo) = daen ([K1]. [K2]).

It is easy to see thaty~ is well defined and that it is actually a distancedJom™*. The
isometric embeddings , induce isometric maps fror§hapé*, ds») to (Shapd™+»)*,
dgn+p), SO in the same way we can define theS$etp€°* and the metric spaq@hapé®”,
dseo).

It follows from Theoremsl.1 and 1.3 that (HHom™*, dy¢~) and(Shap€°*, ds«) are
geodesic metric spaces. But two facts occur:

(1) it may happen that a sequence of convex bodies with nqutyemterior in R?
converges to a convex bodyfiom> when p goes to infinity. Actually, fole,),
a sequence of real numbers such thats, — 0, one can check that the sequence
([tn,p(K) + €5 B""P] ), cOnverges if{om™* to [K]eo. In particular, there may
exist other shortest paths than the convex combinations;

(2) one can checkthat the sequence of (@B% | ), (resp.([B"] o)) is a diverging
Cauchy sequence.

So we address the following.
Question 1. Describe the completion ¢f{om*™*, dsc~) and (Shapé®*, ds«).
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