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Hyperbolic geometry of shapes of convex bodies

Clément Debin and François Fillastre

Abstract. We use the intrinsic area to define a distance on the space of homothety classes of con-
vex bodies in the n-dimensional Euclidean space, which makes it isometric to a convex subset
of the infinite dimensional hyperbolic space. The ambient Lorentzian structure is an extension of
the intrinsic area form of convex bodies, and Alexandrov–Fenchel inequality is interpreted as the
Lorentzian reversed Cauchy–Schwarz inequality. We deduce that the space of similarity classes of
convex bodies has a proper geodesic distance with curvature bounded from below by �1 (in the
sense of Alexandrov). In dimension 3, this space is homeomorphic to the space of distances with
non-negative curvature on the 2-sphere, and this latter space contains the space of flat metrics on the
2-sphere considered by W. P. Thurston. Both Thurston’s and the area distances rely on the area form.
So the latter may be considered as a generalization of the “real part” of Thurston’s construction.

1. Introduction

Let P be a non-empty space of flat metrics on the 2-sphere, with n > 3 prescribed angles
0 < ˛i < 2� at the cone singularities, up to orientation-preserving similarities, and with a
labeling of the cone points. In a celebrated article [22], W. P. Thurston uses the area of the
flat metrics to endow P with a complex hyperbolic structure. Among the multitude gen-
eralizations and adaptations of this construction, let us consider subspaces of P endowed
with an isometric involution, studied in [2]. They are isometric to spaces of homothety
classes of plane convex polygons with fixed direction of edges, endowed with real hyper-
bolic distances. This latter point of view was then extended to any dimension, using mixed
volumes to hyperbolize some spaces of convex polytopes in R

n. For n D 3, some of these
spaces, which are isometric to (real!) hyperbolic polyhedra, isometrically embed into P

[8, 9].
In the first part of the present article, we bring this real hyperbolization process to its

full generality, by endowing the space of convex bodies in R
n with an “area distance,”

which appears to be hyperbolic in a sense clarified below. The idea behind the defini-
tion of the area distance is quite natural. Consider the convex combination Kt D tK1 C
.1 � t/K2 of two convex bodies, t 2 Œ0; 1�. In general, by Alexandrov–Fenchel inequality,
there exists t0; t1 2 R, t0 � 0 < 1 � t1 such that the formal area of Kt is zero. We then
have two points (0 and 1) on the segment Œt0; t1�, and, heuristically, t0 and t1 belong to the
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Figure 1. The convex segment between the disc and the square is extended until we arrive at two
objects of zero (formal) area. The hyperbolic distance between the disc and the square is half of the
logarithm of the cross-ratio of the four points.

isotropic cone of a quadratic form (the area). Mimicking the definition of the distance of
the Klein model of the hyperbolic space, we define the area distance as half of the log of
the cross-ratio of t0; 0; 1; t1; see Figure 1 and also Figure 2. The precise definition of the
area distance will be given in Section 2.1.

Recall that two subsets A and B of R
n are homothetic if they differ by a translation

and a positive scaling. If K is a convex body, we denote by ŒK� its homothety class and by
Homn� the space of homothety classes of all the convex bodies in R

n, which are different
from points and segments. The area distance introduced above is clearly invariant under
homotheties. Let us denote by dHn the induced area distance on Homn�. Note that it is
not obvious that this is actually a distance.

Theorem 1.1. .Homn�; dHn/ is a metric space which

(1) is uniquely geodesic, and the unique shortest path between ŒK1� and ŒK2� is the

class of the convex combination of K1 and K2,

(2) is of infinite Hausdorff dimension and infinite diameter,

(3) is proper,

(4) has curvature bounded from below and above by �1 in the sense of Alexandrov,

(5) has boundary homeomorphic to the real projective space of dimension .n � 1/,

(6) any point in it is the endpoint of a shortest path that is not extendable beyond this

point,

(7) is homeomorphic to the space of convex bodies of intrinsic area equal to one and

Steiner point at the origin, endowed with the Hausdorff distance.

As some definitions may depend on the authors, let us recall that a metric space is
geodesic if any two points are joined by a shortest path, is uniquely geodesic if the short-
est path is unique, and is proper if every bounded closed subset is compact. A proper
metric space is locally compact and complete. A shortest path is extendable if it is strictly
contained in another shortest path. The boundary of a metric space is the set of equiva-
lence classes of geodesic rays at bounded distance, endowed with a natural topology; see
[5] for details. In the present article, the definition of bounded curvature in the sense of
Alexandrov is global.
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Figure 2. The minus sign outside of the polygons indicates edges with negative algebraic length,
while the minus sign inside a polygon indicates a negative area xV n

2 .

The property (6) is proved in Section 2.5. The topological properties in Theorem 1.1
are consequences of a theorem of R. A. Vitale and the Blaschke’s selection theorem; see
Section 2.6. The other assertions in Theorem 1.1 are either straightforward or they come
from the following extrinsic description of .Homn�; dHn/.

Theorem 1.2. .Homn�; dHn/ is isometric to an infinite dimensional, unbounded, closed,

convex subset, with empty interior, of the infinite dimensional hyperbolic space.

Here, “the” infinite dimensional hyperbolic space is defined from a separable Hilbert
space. The isometry in Theorem 1.2 is obtained by considering the support function of
convex bodies. Under this identification, the area of convex bodies will give a bilin-
ear form, that appears to have a Lorentzian signature. This is actually very natural as,
for example, Alexandrov–Fenchel inequality for mixed area is then given by a reversed
Cauchy–Schwarz inequality.

We say that the distance dHn is hyperbolic, because it is isometric to a totally geodesic
subspace of a hyperbolic space, or because of the curvature property (4) in Theorem 1.1
(the latter being an immediate consequence of the former). Note that for metric spaces, it
is meaningless to speak about “curvature equal to �1.”

It was pointed out by Nicolas Monod to the second author that the present construc-
tion for n D 2 gives an explicit example of an exotic action of PSL.2; R/ on the infinite
dimensional hyperbolic space [18].

In the second part of the present article, we investigate Shapen�, the quotient ofHomn�

by linear isometries of the Euclidean space R
n: Shapen� is the space of convex bodies in

R
n (not reduced to points or segments) up to Euclidean similarities (such an equivalence

class is the “shape” of the convex body). It is endowed with the quotient distance dSn . We
obtain the following.
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Theorem 1.3. .Shapen�; dSn/ is a proper geodesic metric space with curvature � �1

and with boundary reduced to a single point. It is not uniquely geodesic. It contains many

totally geodesic hyperbolic surfaces.

There is another complex hyperbolic orbifold considered by Thurston, which is de-
fined similarly to the space P introduced at the beginning of the present article, but where
the singular points are not labeled. It is a subspace of M

1
�0.S2/, the space of metrics

of non-negative curvature on the sphere, up to isometries, and with unit area. A natural
generalization of Thurston construction would be to use the area of the metrics to endow
M

1
�0.S2/ with a distance, and look at its properties. For example, one may look at curva-

ture properties, or possible complex structure. From [3] and (7) in Theorem 1.1, it follows
that Shape3� and M

1
�0.S2/ are homeomorphic if the latter space is endowed with the

topology of uniform convergence of distances.1 So Theorem 1.3, for n D 3, may be seen
as a “real hyperbolization” of M

1
�0.S2/ with its natural topology. Here the word “hyper-

bolization” is used in a wide sense: as .Shapen�; dSn/ is not uniquely geodesic, it is not of
non-positive curvature, hence not with curvature � �1. However that is an open question
to know if it is locally of non-positive curvature.

We conclude the present article by a question about the space of shapes of all convex
bodies (regardless of the dimension of the ambient space).

As we pointed out, the idea to consider convex bodies in an ambient hyperbolic space
came from the observation that the Alexandrov–Fenchel inequality for the mixed area of
convex bodies looks like the reversed Cauchy–Schwarz inequality in a Lorentzian vector
space (see Remark 2.19). In dimension 2, Alexandrov–Fenchel inequality coincides with
the Minkowski inequality. Also, mixed volumes were introduced by Minkowski. He also
introduced Lorentzian vector spaces, which are now called Minkowski spaces. We are not
aware if Minkowski knew a relation between the inequality and the spaces that both bear
his name. But as far as we know, it seems that, in the meantime, this relation between the
fundamental inequality of the theory of convex bodies and basic Lorentzian geometry was
forgotten.

2. The area distance

2.1. Intrinsic area of convex bodies

A convex body is a non-empty compact convex subset of R
n. In the present article, we set

n > 1. For a plane convex body K (i.e., a convex body in R
2), speaking about the “area”

of K usually means to look at its volume (two-dimensional Lebesgue measure). Note
that the area of plane convex bodies is positively homogeneous of degree 2: for � > 0,
vol2.�K/ D �2 vol2.K/. For a convex body in R

3, the “area” usually refers to its surface

1For n � 3, the induced inner distance on the boundary of a convex body in Rn is (isometric to) a
distance of non-negative curvature on Sn�1 in the sense of Alexandrov. But not every such distance of
non-negative curvature on Sn�1 can arise in this way ([17], [1, Section 1.9]).
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area, i.e., the two-dimensional total Hausdorff measure of its boundary @K . Here also, the
surface area is positively homogeneous of degree two.

For n > 3, there are two ways to generalize the notion of “area” to convex bodies in
R

n. Both are coming from the Steiner formula. Let Bn be the closed unit ball centered at
the origin in R

n, and let �n be its volume. Let us set �0 D 1 and �1 D 2. If K is a convex
body in R

n, then there exist non-negative real numbers Vi .K/, i D 0; : : : ; n, such that, for
any " > 0,

voln.K C "Bn/ D
nX

iD0

"n�i�n�i Vi .K/: (2.1)

Here voln is the Lebesgue measure of R
n, and the sum is the Minkowski addition:

A C B D ¹a C b j a 2 A; b 2 Bº. It appears that V0.K/ D 1 and Vn.K/ D voln.K/.
The first way to generalize the notion of surface area of convex bodies in R

3 is to
consider Vn�1.K/ as the “area,” given by the first-order variation of voln.K C "Bn/, seen
as a function of ". Note that this “area” is homogeneous of degree .n � 1/, and that for
n D 2, this is related to the perimeter of the convex body and not to its area.

In the present article, we consider another way to generalize the notion of surface area
of convex bodies in R

3, and we call V2.K/ given by (2.1) the intrinsic area of K . Let us
mention some relevant properties. The property (A6) explains the terminology “intrinsic.”

(A1) For any � > 0, V2.�K/ D �2V2.K/.

(A2) V2.K/ � 0.

(A3) K1 � K2 ) V2.K1/ � V2.K2/.

(A4) V2.K/ D 0 if and only if K is a point or a segment.

(A5) For any A 2 O.n/ and p 2 R
n, V2.A.K/ C ¹pº/ D V2.K/.

(A6) Let � W R
n ! R

nC1 be a linear isometric embedding. Then V2.�.K// D V2.K/.

The (intrinsic) area can be “polarized,” in the sense that there exists a function called
the (intrinsic) mixed area V2.�; �/, that can be defined as

V2.K1; K2/ D 1

2

�
V2.K1 C K2/ � V2.K1/ � V2.K2/

�
(2.2)

and satisfies the following properties:

(M1) V2.K1; K1/ D V2.K1/;

(M2) V2.K1; K2/ D V2.K2; K1/;

(M3) V2.K1 C K2; K3/ D V2.K1; K3/ C V2.K2; K3/;

(M4) for � > 0, V2.�K1; K2/ D �V2.K1; K2/;

(M5) K1 � K2 ) V2.K1; K3/ � V2.K2; K3/;

(M6) K is a point if and only if for any convex body Q, V2.K; Q/ D 0;

(M7) V2.K1; K2/ � 0; and V2.K1; K2/ D 0 if and only if K1 or K2 is a point, or both
are segments with the same direction;
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(M8) we have
ı.K1; K2/ D V2.K1; K2/2 � V2.K1/V2.K2/ � 0 (2.3)

and if K1 and K2 are not points, then equality occurs if and only if K1 and K2

are homothetic.

All those properties are classical, as V2 is a particular case of mixed volume:
V2.K1;K2/DV.K1;K2;Bn; : : : ;Bn/ [20]. Property (M8) is Alexandrov–Fenchel inequal-
ity. In the present article, we will generalize the properties listed above, using some simple
analysis of functions on the sphere. Before that, let us introduce the area distance on the
space of homothety classes of convex bodies. We will give two equivalent definitions, both
using Alexandrov–Fenchel inequality (M8).

In the sequel, we denote by K
n the set of convex bodies in R

n, and by K
n� the subset

of convex bodies of positive intrinsic area. In other terms, by (A2) and (A4), K
n� is K

n

minus points and segments. By property (M8) of the mixed area, for any K1; K2 2 K
n�,

the quantity

Qd1.K1; K2/ D argch

�
V2.K1; K2/p
V2.K1/V2.K2/

�

is well defined. This is also clear that Qd1.K1; K2/ is invariant under positive scaling of K1

and K2. Moreover, by (A5) and (2.2), for all p 2 R
n,

V2

�
K1 C ¹pº; K2

�
D V2

�
K1; K2 C ¹pº

�
D V2.K1; K2/;

hence Qd1 is invariant under translations of K1 or K2. By the case of equality in property
(M8), Qd1.K1; K2/ D 0 if and only if K1 differ from K2 by a homothety.

Let us define the space Homn (resp. Homn�) as the quotient of K
n (resp. K

n�) by
homotheties. For a convex body K , we denote by ŒK� the set of homothetic copies of K .
For any ŒK1�; ŒK2� 2 Homn� we set

d1

�
ŒK1�; ŒK2�

�
D Qd1.K1; K2/:

Let us do it in a different way. Let K1; K2 2 K
n�. Assume that V2.K1/ D V2.K2/ D

a > 0 and that ŒK1� ¤ ŒK2�. Consider the following equation:

V2

�
.1 � t/K1 C tK2

�
D 0: (2.4)

By properties of the mixed area, the left-hand side is a polynomial in t , and the coefficient
of t2 is 2a � 2V2.K1; K2/. Since ŒK1� ¤ ŒK2�, by Alexandrov–Fenchel inequality (M8),
we have V2.K1; K2/ > a: the coefficient of t2 is negative, in particular this is a second-
order polynomial. An easy calculation shows that its discriminant is equal to 4ı.K1;K2/ >

0 (see (2.3)). Let t1 < 0 < 1 < t2 be the two real solutions of (2.4), and let us define

Qd2.K1; K2/ D 1

2
lnŒ0; 1; t1; t2�;

where Œ0; 1; t1; t2� D t1
t2

1�t2
1�t1

is the cross-ratio.
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By (2.4), it is clear that Qd2 is invariant by translation of K1 or K2. Let ŒK1�; ŒK2� 2
Homn� and let K1; K2 be two representatives having the same intrinsic area. We can then
define

d2

�
ŒK1�; ŒK2�

�
D Qd2.K1; K2/

if ŒK1� ¤ ŒK2�, and zero otherwise.
Classical trigonometry computations from hyperbolic geometry show d1 D d2. We

define the area distance on Homn� as

dHn WD d1 D d2:

(Note that we have not proved yet that it is a distance.)
Even if the space of convex bodies is not a vector space, from its properties the mixed

area resembles a symmetric bilinear form, whose kernel is the space of points, and whose
isotropic cone is the space of points and segments. Moreover, Alexandrov–Fenchel in-
equality (M8) resembles a reversed Cauchy–Schwarz inequality. To define d1 and d2

above, we mimicked the definitions of the hyperboloid model and the Klein model of
the hyperbolic space. It is actually the way we will prove Theorem 1.1.

2.2. Spaces of support functions

The support function Supp.K/ of a convex body K in R
n gives, at the point x 2 S

n�1,
the distance from the origin of R

n to the support hyperplane of K with outward normal x.
More precisely, Supp.K/ W S

n�1 ! R is defined as

Supp.K/.x/ D max
p2K

hx; pi;

where h�; �i is the usual scalar product of R
n.

Let us denote by k � kL2 the L2 norm on the round sphere S
n�1. Let H 1.Sn�1/ be the

Sobolev space of S
n�1, i.e., the space of functions S

n�1 ! R which are in L2.Sn�1/, as
well as their first-order derivatives in the weak sense. The space H 1.Sn�1/ is implicitly
endowed with the norm

khkH 1 D
�
khk2

L2 C krhk2
L2

�1=2 D
� Z

Sn�1

h2 C krhk2

�1=2

;

where the gradient r is the one of the round sphere.
If K is contained in the ball centered at the origin and with radius R, then Supp.K/ is

R-Lipschitz. Hence we get a map

Supp W K
n ! H 1.Sn�1/:

Let us recall some basic properties [10, 11, 20].

� A function h W S
n�1 ! R is the support function of a convex body in R

n if and only
if its one homogeneous extension Qh W R

n n ¹0º ! R, Qh.x/ D kxkh.x=kxk/, Qh.0/ D 0,
is a convex function.
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� Supp.K1 C K2/ D Supp.K1/ C Supp.K2/, Supp.�K/ D � Supp.K/, � > 0; in par-
ticular, Supp.Kn/ is a convex cone in H 1.Sn�1/.

� Supp is a bijection onto its image.

� If K1 � K2, then Supp.K1/ � Supp.K2/.

� If .Supp.Ki //i converges pointwise to Supp.K/, then the convergence is uniform.

� If .Supp.Ki //i converges to Supp.K/, then almost everywhere .r Supp.Ki //i !
r Supp.K/.

Remark 2.1. Let us warn the reader that if Supp.�K/ D � Supp.K/, � > 0, we do not
have Supp.�K/ D � Supp.K/ in general, where �K D ¹�x j x 2 Kº. Indeed, both
Supp.�K/ and Supp.K/ are positive if the origin of R

n is in the interior of K . Actu-
ally, Supp.�K/.v/ D Supp.K/.�v/ and � Supp.K/ is like the support function of K , but
with the support planes defined by their inward unit normals.

Let us set �1 D n � 1 and cn be a given positive constant. For h 2 H 1.Sn�1/, let us
consider the quadratic form

xV n
2 .h/ D cn

�
khk2

L2 � ��1
1 krhk2

L2

�
; (2.5)

that comes from the following bilinear form: for h; k 2 H 1.Sn�1/,

xV n
2 .h; k/ D cn

�
.h; k/L2 � ��1

1 .rh; rk/L2

�
:

To avoid confusion, let us emphasize that xV n
2 .h; h/ D xV n

2 .h/. It is known (see, e.g., [11,
Theorem 4.2a], [20, p. 298] or [10, Proposition 2.4.2]) that for any n there is a unique cn

such that, for any K1; K2 2 K
n

V2.K1; K2/ D cn
xV n

2

�
Supp.K1/; Supp.K2/

�
:

Let us first restrict xV n
2 to a subspace where it is not degenerate. Hopefully, the kernel

of xV n
2 is exactly the image of points by Supp. Indeed, the support function of the point

p 2 R
n is the restriction to the sphere of the linear map x 7! hp; xi. But the space of

such maps is the eigenspace of the first non-zero eigenvalue of the Laplacian on the round
sphere, and this eigenvalue is the �1 in (2.5), so we deduce easily the following fact.

Fact 2.2. The kernel of xV n
2 .�; �/ on H 1.Sn�1/ is the eigenspace of �1.

Proof. Let h 2 H 1.Sn�1/. The function h belongs to the kernel of xV n
2 .�; �/ if and only if

for any k 2 H 1.Sn�1/ we have
Z

Sn�1

hk D ��1
1

Z

Sn�1

hrh; rki:

By density of smooth functions on S
n�1 for the H 1-norm and by Green formula, this is

equivalent to the following property: for any smooth function k on S
n�1 we have

Z

Sn�1

hk D ��1
1

Z

Sn�1

h�k;

and this means h D ��1
1 �h in the weak (hence smooth) sense.
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We will denote by H 1.Sn�1/1 the subspace of H 1.Sn�1/ of functions L2-orthogonal
to the eigenspace of �1, i.e.,

H 1.Sn�1/1 D
®
h 2 H 1.Sn�1/ j .h; xi /L2 D 0; i D 1; : : : ; n

¯

D
²

h 2 H 1.Sn�1/ j
Z

Sn�1

h.x/x dS
n�1.x/ D 0

³
:

In turn, xV n
2 is non-degenerate on H 1.Sn�1/1. This space has a clear geometric meaning

for convex bodies. Recall that the Steiner point of a convex body K is the following point
of R

n:

stein.K/ D 1

�n

Z

Sn�1

Supp.K/.x/x dS
n�1;

so that
stein.K/ D 0 , Supp.K/ 2 H 1.Sn�1/1:

We have that for any p 2 R
n, stein.K C ¹pº/ D stein.K/ C ¹pº, hence a convex body

with Steiner point at the origin is a representative of the class of this convex body up to
translations.

Now we prove that xV n
2 has a Lorentzian signature on H 1.Sn�1/1: it is positive in

one direction, and negative definite on the orthogonal (for a given scalar product, here
the Sobolev one). Let L be the line of constant functions in H 1.Sn�1/1. We denote by
H 1.Sn�1/01 the subspace of H 1.Sn�1/1 of elements H 1 (or, equivalently, L2) orthogo-
nal to L.

Lemma 2.3. For h 2 H 1.Sn�1/01,

cn

�
�2 � �1

�1

�
khk2

L2 � � xV n
2 .h/; (2.6)

cn

�
�2 � �1

�1�2

�
khk2

H 1 � � xV n
2 .h/ � cn

1

�1

khk2
H 1 : (2.7)

Proof. The space L is exactly the eigenspace of the zero eigenvalue of the spherical
Laplacian. If we denote by �2.> �1/ the second positive eigenvalue, then by Rayleigh’s
theorem, for h 2 H 1.Sn�1/01 n ¹0º we have

�2 �
krhk2

L2

khk2
L2

: (2.8)

Now (2.6) is immediate from (2.8), and the right-hand side inequality in (2.7) follows
from

� xV n
2 .h/ � cn��1

1 krhk2
L2 � cn��1

1 khk2
H 1 :

The left-hand side inequality in (2.7) follows by adding the two following inequalities: as
�2 > �1 D n � 1 � 1, (2.6) gives

cn

1

�2

�
�2 � �1

�1

�
khk2

L2 � � xV n
2 .h/;
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Cn

Klein1
n

H1
n

H 1.Sn�1/01

L

xV n
1 D 1

xV n
1 D 0

Figure 3. Notations for subspaces of H 1.Sn�1/1.

and on the other hand, using again (2.8), the equality (2.5) gives

cn

�
1

�1

� 1

�2

�
krhk2

L2 � � xV n
2 .h/:

Clearly xV n
2 is positive definite on L, and we have the following.

Proposition 2.4. .H 1.Sn�1/01; � xV n
2 .�; �// is a separable Hilbert space.

Proof. By (2.6) or (2.7), � xV n
2 is a scalar product on H 1.Sn�1/01. As H 1.Sn�1/01 is

orthogonal to a vector subspace, it is a closed subspace, hence complete and separable for
the H 1 norm. The result follows from (2.7).

Note that as xV n
2 is Lorentzian on H 1.Sn�1/1, we obtain the reversed Cauchy–Schwarz

inequality that generalizes Alexandrov–Fenchel inequality (M8):

xV n
2 .h; k/2 � xV n

2 .h/ xV n
2 .k/; (2.9)

for h; k 2 Cn with (see Figure 3)

Cn D
®
h 2 H 1.Sn�1/1 j xV n

2 .h/ > 0; xV n
1 .h/ > 0

¯
;

and where
xV n

1 .h/ D 1

�n�1

Z

Sn�1

h;

and equality occurs in (2.9) if and only if h D �k, � > 0.
Let us mention that it is known that, for a convex body K � R

n, if V1.K/ is given by
(2.1), then

V1.K/ D xV n
1

�
Supp.K/

�
:

2.3. Infinite dimensional hyperbolic space

Let us introduce
H

1
n D

®
h 2 Cn j xV n

2 .h/ D 1
¯
:

As the Hilbert structure on H 1.Sn�1/01 is given by xV n
2 , the map xV n

2 is smooth, and
it is easy to see that H

1
n is the graph of a smooth map over H 1.Sn�1/01, hence an

infinite dimensional smooth manifold. We implicitly endow H
1
n with the restriction of

� xV n
2 .�; �/ on its tangent spaces. The intersection of H

1
n with any vector subspace of finite
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dimension p of H 1.Sn�1/1 containing a vector of Cn is clearly a hyperboloid model
of the hyperbolic space of dimension .p � 1/. In turn, H

1
n is a Riemannian manifold

of constant sectional curvature �1. Moreover, it is not hard to see that the map pH W
H

1
n ! H 1.Sn�1/01, pH .h/ D h � xV n

1 .h/

xV n
1 .1/

is a bijection and locally bi-Lipschitz, so by
Proposition 2.4, H

1
n is complete.

Let us denote by dH the distance induced by the Riemannian structure, and we have,
in the same way as in the finite dimensional case,

dH .h; k/ D argch xV n
2 .h; k/:

We will also need the pull-back of the distance on the hyperboloid onto

Klein1
n D

®
h 2 Cn j xV n

1 .h/ D 1
¯

via a central projection, i.e., the hyperbolic distance on Klein1
n is defined by

dK.h; k/ WD dH

� xV n
2 .h/�1=2h; xV n

2 .k/�1=2k
�
: (2.10)

Of course, it is possible to write dK in an intrinsic way, as we did in Section 2.1 for the
area distance, using (2.9) instead of (M8). For future references let us note the following
non-surprising facts, whose proofs are left to the reader.

Fact 2.5. On H
1
n , dH and dH 1 induce the same topology, where dH 1 is the distance

induced by k � kH 1 .

Fact 2.6. Let hi , k 2 Klein1
n . Then

xV n
2 .hi / ! 0 , dK.hi ; k/ ! C1:

Fact 2.7. Let .hi /i converge to h in .Klein1
n ; dK/. Then xV n

2 .h � hi / ! 0.

Fact 2.8. On Klein1
n , dK and dH 1 induce the same topology.

2.4. Spaces of convex bodies

Recall that K
n (resp. K

n�) is the set of convex bodies in R
n (resp. convex bodies with

positive intrinsic area). We denote by K
n
S the space of convex bodies with Steiner point

at the origin, and K
n�
S D K

n
S \ K

n�.

up to positive scaling with V2 D 1 with V1 D 1

up to translations Homn, Homn�

with Steiner point at the origin K
n
SV2

, K
n�
SV2

K
n
SV1

, K
n�
SV1

Table 1. Convex bodies in R
n.

In the sequel, a star as upper-script means that we consider only convex bodies with
positive intrinsic area (that is, we exclude points and segments). In Table 1, it is obvious
that all the sets without a star are in bijection, as well as all the sets with a star.
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We have

Supp.Kn�
S / � Cn; Supp.Kn�

SV2
/ � H

1
n ; Supp.Kn�

SV1
/ � Klein1

n :

Clearly, K
n�
SV2

(resp. K
n�
SV1

) is in bijection with Homn�, and we denote by dSV2 (resp.
dSV1) the pull-back of dHn on K

n�
SV2

(resp. K
n�
SV1

). By construction, the map Supp defines
isometries

.Kn�
SV2

; dSV2/
���! .Supp.Kn�

SV2
/; dH /;

.Kn�
SV1

; dSV1/
���! .Supp.Kn�

SV1
/; dK/;

as all these sets are isometric to .Homn�; dHn/. We immediately obtain some parts of
Theorems 1.1 and 1.2: .Homn�; dHn/ is a metric space, isometric to a convex subset of
H

1
n . In turn, it has curvatures � �1 and � �1, as this is clearly true for its isometric image

in the hyperbolic space, and it is a uniquely geodesic metric space, as the hyperbolic space
is uniquely geodesic. The unique shortest path is the convex combination, as the property
occurs in Klein1

n .
Let us check two easy facts that give other parts of Theorems 1.1 and 1.2. The first one

implies that Supp.Kn�
SH / is unbounded.

Fact 2.9. Supp.Kn�
SH / contains an entire geodesic of H

1
n .

Proof. In the plane, consider the following segments: K1 D Œ�1; 1� � ¹0º and K2 D
¹0º � Œ�1; 1�. For 0 � t � 1, the convex combination .1 � t/K1 C tK2 is the rectan-
gle Œ�.1 � t/; 1 � t � � Œ�t; t �, whose Steiner point is 0. This gives an entire geodesic of
H

1
2 contained in Supp.K2�

SH /.

The following fact implies that .Homn�; dHn/ has infinite Hausdorff dimension.

Fact 2.10. For any s 2 N , there is an open ball of the finite dimensional hyperbolic space

H
s that isometrically embeds into .Homn�; dHn/.

Proof. The convex hyperbolic polyhedra constructed in [2] parametrize the similarity
classes of convex polygons with fixed angles; by construction, they isometrically embed
into .Homn�; dHn/. The dimension of the hyperbolic polyhedra is .s � 3/ if the polygons
have s edges.

Fact 2.11. The boundary of .Homn�; dHn/ is homeomorphic to the real projective space

of dimension .n � 1/.

Proof. The boundary is the space of segments, up to homotheties: indeed, for example by
looking at the isometric model .Supp.Kn�

SV1
/; dK/, we see that the convex bodies K on

the boundary are the one for which V2.K/ D 0 (see Fact 2.6) and V1.K/ D 1, and these
are exactly unit length segments. Hence @Homn� is in bijection with P n�1.R/, the real
projective space of dimension n � 1 (that is, the space of lines in R

n).
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K

"
K C "B2

Figure 4. If a plane convex body K has a non-smooth point, then for any " > 0, Supp.K/ C
" Supp.B2/ is the support function of a convex body, while Supp.K/ � " Supp.B2/ is not.

Figure 5. The disc and the square are both terminal points of the segment joining them.

We can endow @ Homn� with the visibility metric from ŒBn�: the distance between
a; b 2 @ Homn�, denoted by <B .a; b/, is the angle (with value in Œ0; ��) between the
two lines ca and cb from ŒBn� and with endpoints a and b, respectively. But clearly, the
element of O.n/ sending the line a to the line b is also a dHn-isometry sending ca to cb .
In turn, @ Homn� endowed with the visibility metric is isometric to P n�1.R/ endowed
with its round metric. From [5, Proposition II.9.2], <B W @ Homn� �@ Homn� ! R is
continuous for the classical topology on @Homn�. Hence for this topology, @Homn� is
homeomorphic to P n�1.R/.

In the two following sections we will prove the two remaining parts of Theorems 1.1
and 1.2: the assertion about terminal points of segments, and the topological properties.

2.5. Terminal points of segments

Let K1;K2 2 K
n
SV1

. The segment between K1 and K2 is ¹.1 � t/K1 C tK2; t 2 Œ0;1�º. We
say that K1 2 K

n
SV1

is a terminal point of the segment if for any t < 0, .1 � t/Supp.K1/ C
t Supp.K2/ … Supp.Kn

SV1
/. An extreme point K of K

n
SV1

is such that there does not exist
K1; K2 2 K

n
SV1

, K1 ¤ K2, and t 2 .0; 1/ such that Supp.K/ D .1 � t/ Supp.K1/ C
t Supp.K2/. In the plane, extreme points of K

2
SV1

are segments and triangles [20, Theo-
rem 3.2.14]. For n � 3, extreme points of K

n
SV1

are dense for the Hausdorff distance
[20, Theorem 3.2.18].

Clearly, an extreme point is a terminal point for all the segments ending at this point.
But there are much more terminal points. For example, one can find convex bodies with a
non-smooth point on the boundary (i.e., a point of the convex body contained in more than
one support plane) which are terminal points for the segment starting at the unit ball—this
idea is illustrated in Figure 4.

In this section, we will use a different argument to prove that any convex body is the
terminal point of some segment (Proposition 2.12); see Figure 5 for an example.
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If a function h 2 Klein1
n belongs to Supp.Kn�

SV1
/, then its one-homogeneous exten-

sion Qh is convex, hence has non-negative Laplacian in the weak sense. This means that for
every non-negative function ' 2 C 1

c .Rn/, we have
Z

Rn

Qh.x/�e'.x/dx � 0;

where C 1
c .Rn/ is the set of smooth functions with compact support in R

n.
For 1 � p < n, we will denote by Bp;n the p-dimensional ball with radius r1.p/ in R

n,
which is the set of points x 2 R

n with x2
1 C � � � C x2

p � r1.p/2 and xpC1 D � � � D xn D 0.
The number r1.p/ is such that a ball with such radius has V1 D 1. We have V1.Bp;n/ D 1,
hence Bp;n 2 K

n
SV1

(note that Bp;n 2 K
n�
SV1

if and only if p � 2). Let bp;n D Supp.Bp;n/ 2
Supp.Kn

SV1
/ and let

ebp;n.x/ D r1.p/

q
x2

1 C � � � C x2
p

be the 1-homogeneous extension of bp;n (if p D 1, then ebp.x/ D r1.1/jx1j D jx1j
2

).

Proposition 2.12. Let p 2 N such that 1 � p < n. Then any K 2 K
n�
SV1

is the terminal

point of a segment in K
n�
SV1

, which starts at some embedded p-dimensional ball in R
n.

Actually the proof will show that there are infinitely many such segments. If p D 1,
this ball is in fact a segment and lies on the boundary of Klein1

n .
To prove Proposition 2.12, we need the following theorem due to Alexandrov (see

[4]).

Theorem 2.13. A convex function f W R
n ! R is twice differentiable at almost every

Nx 2 R
n, which means that for almost every Nx 2 R

n, there exists a quadratic polynomial

Q Nx , and a function R Nx , such that

f .x/ D Q Nx.x/ C R Nx.x/ and lim
u!0

R Nx. Nx C u/

kuk2
D 0:

Proof of Proposition 2.12. Let k D Supp.K/ 2 Supp.Kn�
SV1

/, and let Qk be its 1-homoge-

neous extension. Let Nx 2 R
n be a point at which Qk is twice differentiable, and let Q Nx and

R Nx be as in Theorem 2.13. Since n > p, the vector space ¹x1 D � � � D xp D 0º has positive
dimension, hence, up to a rotation of K , we may assume that the first components of Nx are
Nx1 D � � � D Nxp D 0.

Let ' 2 C 1
c .Rn/ be a non-negative function, with support in the unit ball in R

n,
positive in a neighborhood of 0, and with

R
Rn ' D 1. For " > 0, let '" 2 C 1

c .Rn/ be the
function '".x/ D 1

"n '. x� Nx
"

/: this function is non-negative, has support in B."; Nx/ (the ball
centered at Nx and with radius "), and

R
Rn '" D 1.

Let t <0. We want to show that .1�t/kCtbp;n…Supp.Kn�
SV1

/. We argue by contradic-
tion: assume that .1� t/kCtbp;n 2Supp.Kn�

SV1
/. Then .1�t/ Qk C t ebp;n is a convex func-

tion on R
n, hence its Laplacian is non-negative in the weak sense, so in particular we

have Z

Rn

�
.1 � t/ Qk C t ebp;n

�
�e'" � 0: (2.11)
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We will first show that we always have
Z

Rn

Qk�e'" ����!
"!0

C1: (2.12)

Since t is negative, with (2.11) it is sufficient to show that
Z

Rn

ebp;n�e'" ����!
"!0

C1: (2.13)

Now we need to argue depending whether p D 1 or p � 2.

� If p � 2, we have

�e
ebp;n.x/ D r1.p/.p � 1/q

x2
1 C � � � C x2

p

;

and since Nx1 D � � � D Nxp D 0 we have
q

x2
1 C � � � C x2

p � kx � Nxk, hence �e
ebp;n.x/ �

r1.p/.p�1/
"

for every x 2 B."; Nx/, so we have (by Green formula)

Z

Rn

ebp;n�e'" D
Z

B."; Nx/

'"�e
ebp;n � r1.p/.p � 1/

"

Z

B."; Nx/

'" D r1.p/.p � 1/

"
;

and this gives (2.13).

� If p D 1, then we have
Z

Rn

ebp;n.x/�e'".x/dx D 1

2

Z

Rn

jx1j�e'".x/dx

D
Z

Rn�1

'".0; x2; : : : ; xn/dx2 : : : dxn

D 1

"n

Z

Rn�1

'

�
0;

x2 � Nx2

"
; : : : ;

xn � Nxn

"

�
dx2 : : : dxn

D 1

"

Z

Rn�1

'.0; y2; : : : ; yn/dy2 : : : dyn:

The second equality is a classical computation, the third is true because Nx1 D 0, and
for the last one we use the change of variable yi D xi � Nxi

"
. Since ' is positive in a

neighborhood of zero, we have
R

Rn�1 '.0; y2; : : : ; yn/dy2 : : : dyn > 0, and this gives
(2.13).

Moreover, since Qk D Q Nx C R Nx , we have
Z

Rn

Qk�e'" D
Z

Rn

Q Nx�e'" C
Z

Rn

R Nx�e'":

The function Q Nx is a quadratic polynomial, hence its Laplacian is equal to a constant
C 2 R, which gives

R
Rn Q Nx�e'" D

R
Rn C '" D C . And since �e'".x/ D 1

"nC2 �e'. x� Nx
"

/,
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with the change of variable y D x� Nx
"

, we have

Z

Rn

R Nx.x/�e'".x/dx D 1

"nC2

Z

B."; Nx/

R Nx.x/�e'

�
x � Nx

"

�
dx

D 1

"2

Z

B.1;0/

R Nx. Nx C "y/�e'.y/dy:

Since R Nx. NxCu/

kuk2 ! 0 as u ! 0, there exists M > 0 such that jR Nx. Nx C u/j � M kuk2 for kuk
small enough, hence for " small enough we have, for every y 2 B.1; 0/, jR Nx. Nx C "y/j �
M"2kyk2, hence we obtain

ˇ̌
ˇ̌
Z

Rn

R Nx.x/�e'".x/dx

ˇ̌
ˇ̌ � M

Z

B.1;0/

kyk2
ˇ̌
�e'.y/

ˇ̌
dy:

The integral
R

Rn R Nx�e'" does not go to C1 when " goes to zero, and by (2.12) this is a
contradiction.

2.6. Comparison of topologies

We want to compare the topologies given by dK and d1 on Supp.Kn�
SV1

/, where d1 is the
distance given by the sup norm. As a tool, we will use the distances dL2 and dH 1 induced
by the L2 and H 1 norms respectively on H 1.Sn�1/1, as well as the following theorem;
see [23] and [10, Proposition 2.3.1].

Theorem 2.14 (Vitale). The distances d1 and dL2 induce the same topology on

Supp.Kn/ � C 0.Sn�1/.

The result is weaker than saying that the two norms are equivalent on the space of
convex bodies, that is not true; see [23] for details.

Corollary 2.15. The distances d1, dL2 , and dH 1 induce the same topology on Supp.Kn/.

Proof. We prove that dL2 and dH 1 induce the same topology. If hi ! h for k � kH 1 , then
obviously hi ! h for k � kL2 . And if hi ! h for k � kL2 , then by Theorem 2.14 we have
hi ! h for d1. Let us check that this implies the convergence for dH 1 . This is obvious
that hi ! h in L2. Moreover, let R > 0 be such that hi � R for every i . Then .rhi /i

almost everywhere converges pointwise to rh, hence the convergence holds in L2 via
Lebesgue’s dominated convergence theorem: these functions are uniformly bounded by R

as the hi are R-Lipschitz. Hence hi ! h for k � kH 1 .

A direct consequence of Fact 2.8 and Corollary 2.15 is the following corollary, which
relates the distances d1 and dK.

Proposition 2.16. On Supp.Kn�
SV1

/, d1 and dK (as well as dL2 and dH 1) induce the

same topology.
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As d1 clearly induces the same topology on Supp.Kn�
SV1

/ and Supp.Kn�
SV2

/, we obtain
the last point of Theorem 1.1, as the Hausdorff distance for convex bodies is exactly d1
for the support functions.

Remark 2.17. Even if d1 and dK induce the same topology, their behavior is quite dif-
ferent. First, similarly to the comparison between Euclidean and hyperbolic metric on the
disc, we can see that .Supp.Kn�

SV1
/;d1/ is bounded and .Supp.Kn�

SV1
/;dK/ is not. Also, if

segments are also shortest paths for the Hausdorff distance, they are not unique in general;
see note 11 in [20, Section 1.8].

Let us now check that .Supp.Kn�
SV1

/; dK/ is a proper metric space. It will be an imme-
diate consequence of Blaschke’s selection theorem together with Proposition 2.16.

Proposition 2.18. .Supp.Kn�
SV1

/; dK/ is a proper metric space.

Proof. Let A be a closed bounded subset of .Supp.Kn�
SV1

/; dK/. We want to show that A

is compact for dK; by Proposition 2.16, it suffices to show that it is compact for d1. As
.Supp.Kn

SV1
/; d1/ is compact (see [20, p. 165]), it suffices to show that A is closed in

.Supp.Kn
SV1

/; d1/.
So assume that .hi /i is a sequence of elements of A converging to h 2 Supp.Kn

SV1
/

for d1; we want to show that h 2 A. If h 2 Supp.Kn�
SV1

/, then this is true, because
Proposition 2.16 implies that A is a closed subset of .Supp.Kn�

SV1
/; d1/. Otherwise,

h 2 Supp.Kn
SV1

/ n Supp.Kn�
SV1

/, hence xV n
2 .h/ D 0 and it follows from Corollary 2.15

that xV n
2 .hi / ! 0. Then by Fact 2.6, the distance in .Klein1

n ; dK/ between hi and any
given point k 2 Klein1

n goes to infinity, and that contradicts the fact that A is a bounded
subset of .Supp.Kn�

SV1
/; dK/.

Theorem 1.1 is now proved.
The two following facts conclude the proof of Theorem 1.2.

� Since .Homn�; dHn/ is proper, it is complete, hence .Supp.Kn�
SH /; dH/ is also com-

plete, so Supp.Kn�
SH / � H

1
n is a closed subspace.

� Now, let us prove that Supp.Kn�
SH / has empty interior. If this is not true, then there

exists a ball B in .H1
n ; dH/ such that B � Supp.Kn�

SH /; we can even assume that
xB (the closure of B) satisfies xB � Supp.Kn�

SH /. Since .Supp.Kn�
SH /; dH/ is proper,

closed balls are compact, hence xB is compact. Hence there exists a non-empty rel-
atively compact open set in .Klein1

n ; dK/. But that would be true for the infinite-
dimensional Banach space .H 1.Sn�1/01; d01/, and that is impossible: a closed ball
would be compact.

Remark 2.19. As far as we know, the idea to associate a hyperbolic metric to spaces of
convex bodies via the area form and support function was more or less explicit in the 90s,
for spaces of convex polygones. The main reference is [2]; see [7] for detailed references.
This construction was extended to spaces of convex polytopes in [9].
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The smallest vector space containing Supp.Kn/ as a convex cone is the vector space
spanned by the cone:

Sonicn D
®
h � k j h; k 2 Supp.Kn/

¯
;

the space of n-dimensional hedgehogs; see [20, Section 9.6], [21] and the references
therein for more information. Let us say that the name was coined in [12], although they
previously appeared in the literature under different names; see [19]. If h 2 Sonicn, there
is a way to associate a geometric object in R

n (see [16, 21]) that is illustrated in most of
the figures of the present article. A description of Sonic2 in C 0.S1/ is contained in [16].
But Sonicn is not complete for any reasonable norm on it—it contains C 2.Sn�1/, so it
is dense in both H 1.Sn�1/ and C 0.Sn�1/ endowed with their classical norms. Particular
cases of the results of the present article were achieved in this setting (mostly in the regular
case) in [13–15].

3. The space of shapes Shapen�

3.1. Immediate properties

Let Shapen� be the quotient of Homn� by linear isometries of the Euclidean space R
n: the

action of O.n/ on Homn� is defined by ˆŒK� WD ŒˆK�. For K 2 K
n�, we will denote by

JKK the set of convex bodies differing from K by positive scaling and Euclidean isome-
tries.

Since V2 is O.n/-invariant, dHn.ˆŒK1�; ˆŒK2�/ and dHn.ŒK1�; ŒK2�/ are equal, so
O.n/ acts by isometries on Homn�. Moreover, the action of O.n/ is clearly continu-
ous on support functions for d1, hence by Proposition 2.16, the action is continuous on
.Shapen�; dHn/. Let us introduce

dSn

�
JK1K; JK2K

�
D inf

ˆ;ˆ02O.n/
dHn

�
ˆŒK1�; ˆ0ŒK2�

�
: (3.1)

Noting that by continuity and compactness, the infimum is actually a minimum, it is not
hard to deduce that dSn is a distance.

Proposition 3.1. .Shapen�; dSn / is a proper geodesic metric space with curvature � �1.

Proof. It is a general fact that the quotient will be geodesic and with curvature � �1;
see for example [6, Proposition 10.2.4]. The fact that the quotient is proper is also very
general. Indeed, suppose that .JKi K/i2N is a bounded sequence in .Shapen�; dSn/. There
are ˆi 2 O.n/ such that .ˆi ŒKi �/i2N is a bounded sequence in .Homn�; dHn/. Since
.Homn�; dHn/ is proper, up to extract a subsequence, there exists ŒK� 2 Homn� such that
dHn.ˆi ŒKi �; ŒK�/ ! 0. As dSn.JKi K; JKK/ � dHn.ˆi ŒKi �; ŒK�/, we have

dSn

�
JKi K; JKK

�
! 0:
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3.2. Non-uniqueness of shortest paths in Shapen�

The aim of this section is to prove that shortest paths are not unique in Shapen�. Obviously,
since Shape2� isometrically embeds into Shapen� for n � 2, it is sufficient to prove this
property for n D 2. Hence, in this section, we consider convex bodies in R

2. We will
produce a handmade example.

Let K be the intersection of the half-space Œ0; 1/ � R with the ellipse with center 0,
width 2

p
2, and height 2p

2
. The support function of K is a function on S

1, and with the
parametrization x D .cos s; sin s/ 2 S

1, for s 2 Œ0; 2��, we will actually define the support
function k of K on Œ0; 2��. Namely,

k.s/ D
r

2 cos2 s C 1

2
sin2 s for s 2

h
� �

2
;

�

2

i
;

k.s/ D 1p
2

j sin sj for s 2
h�

2
;

3�

2

i
:

Let .ˇ;0/ be the Steiner point of K , and let ˛ D V1.K/ D 1
2

R 2�

0
k ' 2:4. Then the convex

body K1 D ˛�1K C .�˛�1ˇ; 0/ has Steiner point 0, and V1.K1/ D 1: hence K1 2 K
2�
SV1

.
Its support function k1 2 Supp.K2�

SV1
/ is given by

k1.s/ D ˛�1

�r
2 cos2 s C 1

2
sin2 s � ˇ cos s

�
for s 2

h��

2
;

�

2

i
;

k1.s/ D ˛�1

�
1p
2

jsin sj � ˇ cos s

�
for s 2

h�

2
;

3�

2

i
:

Let K2 be the rectangle Œ� 2
5
; 2

5
� � Œ� 1

10
; 1

10
�. Obviously, 0 is the Steiner point of K2.

Its support function is defined for any s 2 Œ0; 2�� by

k2.s/ D 2

5
jcos sj C 1

10
jsin sj;

and since K2 D Œ� 2
5
; 2

5
� � ¹0º C ¹0º � Œ� 1

10
; 1

10
�, we have V1.K2/ D length.Œ� 2

5
; 2

5
�/ C

length.Œ� 1
10

; 1
10

�/ D 1. Hence K2 2 K
2�
SV1

and k2 2 Supp.K2�
SV1

/.

Let JK1K and JK2K be the corresponding equivalent classes in Shape2�. Since K2 is
invariant by the symmetry with respect to the horizontal line, the distance between JK1K

and JK2K is given by

dS2

�
JK1K; JK2K

�
D min

�2R

dH2

�
ŒK1�; R� ŒK2�

�
;

where we denote by R� the rotation of angle � in R
2. We will prove the following.

Proposition 3.2. The minimum is obtained for � D 0 and � D �
2

; that is one has

dS2

�
JK1K; JK2K

�
D dH2

�
ŒK1�; ŒK2�

�
D dH2

�
ŒK1�; R �

2
ŒK2�

�
:
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Let us state the following fact. Note that in general, this is not true that every shortest
path in a quotient space is obtained as the projection of a shortest path.

Lemma 3.3. Let ŒK1�; ŒK2� 2 Homn�, and let ˆ 2 O.n/ be such that dSn.JK1K; JK2K/ D
dHn.ŒK1�; ˆŒK2�/. Suppose that Œ
� is the shortest path between ŒK1� and ˆŒK2�. Then

the projection J
K is a shortest path between JK1K and JK2K. Moreover, the projection is

an isometry from Œ
� to J
K.

Proof. Let us suppose that Œ
� W Œ0; 1� ! X is affinely parametrized. Then, for any 0 �
s � t � 1,

dSn

�
J
.s/K; J
.t/K

�
� dHn

��

.s/

�
;
�

.t/

��

D .t � s/dHn

�
ŒK1�; ˆŒK2�

�

D .t � s/dSn

�
JK1K; JK2K

�
:

Using three times this inequality, we obtain

dSn

�
JK1K; JK2K

�
� dSn

�
J
.0/K; J
.s/K

�
C dSn

�
J
.s/K; J
.t/K

�
C dSn

�
J
.t/K; J
.1/

�
K

�
�
s C .t � s/ C .1 � t/

�
dSn

�
JxK; JyK

�

D dSn

�
JxK; JyK

�
:

All these inequalities are equalities, so in particular

dSn

�
J
.s/K; J
.t/K

�
D .t � s/dSn

�
JK1K; JK2K

�
:

Proposition 3.2 is sufficient to prove the non-uniqueness of shortest paths in Shape2�.
Indeed, Lemma 3.3 shows that the projections of the shortest paths in Hom2� between
ŒK1� and ŒK2�, and between ŒK1� and R �

2
ŒK2�, are again shortest paths in Shape2�. But

these two shortest paths are different: the first shortest path contains the point J1
2
K1 C

1
2
K2K, and this point is not on the second shortest path t 7! J.1 � t/K1 C tR �

2
.K2/K:

1
2
K1 C 1

2
K2 is not the image by a rotation of .1 � t/K1 C tR �

2
.K2/, which is equivalent to

say that 1
2
˛�1K C 1

2
K2 is not the image by a rotation and a translation of .1 � t/˛�1K C

tR �
2
.K2/; see Figure 6.

Since R� ŒK2� D ŒK2�, to compute the minimum it is sufficient to consider � 2 Œ� �
2

; �
2

�.
Moreover, let T be the symmetry with respect to the x axis: we have T ŒK1� D ŒK1�, hence
we have

dH2

�
ŒK1�; R� ŒK2�

�
D dH2

�
T ŒK1�; R� ŒK2�

�

D dH2

�
ŒK1�; T ı R� ŒK2�

�

D dH2

�
ŒK1�; R�� ŒK2�

�
:

This shows that in fact we need only to consider � 2 Œ0; �
2

�.
Let k�

2 be the support function of R� ŒK2�, that is k�
2 .s/ D k2.s � �/. We have

cosh
�
dH2

�
ŒK1�; R� ŒK2�

��
D V2.k1; k�

2 /q
V2.k1/V2.k�

2 /

D f .�/

2
p

V2.k1/V2.k2/
;
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Figure 6. The convex body 1
2 ˛�1K C 1

2 K2 (middle of the upper line) is not the image by a rotation

and a translation of .1 � t/˛�1K C tR �
2

.K2/ (represented on the bottom line for t D 0; 1
4 ; 1

2 ; 3
4 ; 1).

where we denote by f .�/ the function defined by

f .�/ D
Z 2�

0

�
k1.s/k2.s � �/ � k0

1.s/k0
2.s � �/

�
ds:

Proposition 3.2 is a direct consequence of the following lemma.

Lemma 3.4. On Œ0; �
2

�, f attains its minimum at the points � D 0 and � D �
2

.

Proof. Fix � 2 .0; �
2

/ and consider the function s 7! k1.s/k0
2.s � �/. This function is

piecewise C
1 but is not continuous: the function k0

2.s � �/ has jumps, with height 1
5

at the
points s D � and s D � C � , and with height 4

5
at the points s D �

2
C � and s D 3�

2
C � .

Hence we have
Z 2�

0

�
k1.s/k0

2.s � �/
�0

ds D�1

5
k1.�/ � 1

5
k1.�C�/� 4

5
k1

�
�

2
C�

�
� 4

5
k1

�
3�

2
C�

�

D� 1

5˛

r
2 cos2 � C 1

2
sin2 � � 4

5˛

r
2 sin2 � C 1

2
cos2 �

� 1

5
p

2˛
sin � � 4

5
p

2˛
cos �:

The equality .k1k0
2/0 D k0

1k0
2 C k1k00

2 gives �k0
1k0

2 D k1k00
2 � .k1k0

2/0, so

�
Z 2�

0

k0
1.s/k0

2.s � �/ds D
Z 2�

0

�
k1.s/k00

2.s � �/ �
�
k1.s/k0

2.s � �/
�0�

ds;

and since k2.s � �/ C k00
2.s � �/ D 0 for almost every s 2 Œ0; 2��, we finally obtain

f .�/ D
Z 2�

0

�
k1.s/k2.s � �/ � k0

1.s/k0
2.s � �/

�
ds

D
Z 2�

0

�
k1.s/

�
k2.s � �/ C k00

2.s � �/
�

�
�
k1.s/k0

2.s � �/
�0�

ds
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D 1

5˛

r
2 cos2 � C 1

2
sin2 � C 4

5˛

r
2 sin2 � C 1

2
cos2 �

C 1

5
p

2˛
sin � C 4

5
p

2˛
cos �:

We easily check that f .0/ D f . �
2

/ D
p

2
˛

(the parameters of the ellipse and the seg-
ment have been chosen so that this property holds). And a direct computation shows that
f 0.0/ D 1

5
p

2˛
> 0 and f 0. �

2
/ D � 4

5
p

2˛
< 0. Moreover, let g W Œ0; 1� ! Œ0; 1/ be defined

by

g.u/ D 1

5˛

r
3

2
u C 1

2
C 4

5˛

r
2 � 3

2
u C 1

5
p

2˛

p
1 � u C 4

5
p

2˛

p
u:

With the identity cos2 C sin2 D 1, we easily check that g.cos2 �/ D f .�/ for any � 2
Œ0; �

2
�. Hence f 0.�/ D �2g0.cos2 �/ sin � cos � . But g is strictly concave, hence g0 has at

most one zero on Œ0; 1�, hence f 0 has also at most one zero on .0; �
2

/. And this ends the
proof: if the minimum of f on Œ0; �

2
� was attained at a point � … ¹0; �

2
º, since f 0.0/ > 0

and f 0. �
2

/ < 0, f 0 would have at least 3 zeros on .0; �
2

/, and that is impossible.

3.3. Embedding of hyperbolic planes

Trivially, for any ˆ 2 O.n/ we have ˆŒBn� D ŒBn�. Apart from the fact that the action of
O.n/ on Homn� is not proper, this says that for any ŒK� 2 Homn�,

dSn

�
JKK; JBnK

�
D dHn

�
ŒK�; ŒBn�

�
: (3.2)

From this we first deduce the following fact.

Fact 3.5 (Uniqueness of shortest paths starting from Bn). Let JKK 2 Shapen�. Then there

is a unique shortest path from JBnK to JKK, which is the projection of the shortest path in

Homn� between ŒBn� and ŒK�.

Proof. Let xı W Œ0;dSn.JBnK; JKK/� ! Shapen� be an arc-length parametrized shortest path
between JBnK and JKK, and let Œı.t/� 2 Homn� be such that xı.t/ D Jı.t/K. Let t 7! Œ
.t/�

be the (unique) arc-length parametrized shortest path in Homn� between ŒBn� and ŒK�:
we want to show that Jı.t/K D J
.t/K.

For any t 2 Œ0; dSn .JBnK; JKK/�, let ˆt 2 O.n/ be such that

dSn

�
JKK; Jı.t/K

�
D dHn

�
ŒK�; ˆt Œı.t/�

�
:

Since t 7! Jı.t/K is a geodesic in Shapen�, we have

dHn

�
ŒBn�; ˆt

�
ı.t/

��
C dHn

�
ˆt

�
ı.t/

�
; ŒK�

�
D dSn

�
JBnK; Jı.t/K

�
C dSn

�
Jı.t/K; JKK

�

D dSn

�
JBnK; JKK

�
dHn

�
ŒBn�; ŒK�

�
:

Hence ˆt Œı.t/� is on the shortest path between ŒBn� and ŒK� in Homn�. Moreover, we
have dHn.ŒBn�; ˆt Œı.t/�/ D dSn.JBnK; Jı.t/K/ D t (the geodesic t 7! Jı.t/K is arc-length
parametrized), so ˆt Œı.t/� D Œ
.t/� (remember that the geodesic t 7! Œ
.t/� is also arc-
length parametrized). Finally, this gives Jı.t/K D J
.t/K.



Hyperbolic geometry of shapes of convex bodies 137

In turn, we can construct totally geodesic hyperbolic surfaces in Shapen�. Interest-
ingly, many properties in this section are very general, but this one uses Alexandrov–
Fenchel inequality.

Proposition 3.6. Let JP K; JQK 2 Shapen� be such that JP K, JQK, and JBnK are three

different points. Let A 2 O.n/ be such that dSn.JP K; JQK/ D dHn.ŒP �; AŒQ�/. Then the

projection Homn� ! Shapen�, when restricted to the (plain) geodesic triangle with ver-

tices ŒBn�, ŒP �, and AŒQ�, is an isometry onto its image.

Proof. Without loss of generality, we may assume that A is the identity (that is,
dSn.JP K; JQK/ D dHn.ŒP �; ŒQ�/). Let ŒK1� and ŒK2� be in the geodesic triangle with
vertices ŒBn�, ŒP �, and ŒQ�: since geodesics in Homn� are convex combinations, we can
write

ŒK1� D Œ˛1Bn C ˇ1P C 
1Q� and ŒK2� D Œ˛2Bn C ˇ2P C 
2Q�;

where the ˛i , ˇi , 
i are non-negative real numbers, with ˛1 C ˇ1 C 
1 D ˛2 C ˇ2 C 
2 D
1. We want to prove that dSn .JK1K; JK2K/ D dHn.ŒK1�; ŒK2�/, which means that for any
ˆ 2 O.n/ we have

dHn

�
ŒK1�; ŒK2�

�
� dHn

�
ŒK1�; ˆŒK2�

�
:

Since V2 is O.n/-invariant, we only need to show that

V2.K1; K2/ � V2

�
K1; ˆ.K2/

�
(3.3)

(K1 and K2 denote two convex bodies in the equivalent classes ŒK1� and ŒK2�). We have

V2.K1; K2/ D ˛1˛2V2.Bn/ C ˛1ˇ2V2.Bn; P / C ˛1
2V2.Bn; Q/

C ˇ1˛2V2.P; Bn/ C ˇ1ˇ2V2.P / C ˇ1
2V2.P; Q/

C 
1˛2V2.Q; Bn/ C 
1ˇ2V2.Q; P / C 
1
2V2.Q/:

Moreover, ˆ.K2/ D ˛2Bn C ˇ2ˆ.P / C 
2ˆ.Q/, hence

V2

�
K1; ˆ.K2/

�
D ˛1˛2V2.Bn/ C ˛1ˇ2V2

�
Bn; ˆ.P /

�
C ˛1
2V2

�
Bn; ˆ.Q/

�

C ˇ1˛2V2.P; Bn/ C ˇ1ˇ2V2

�
P; ˆ.P /

�
C ˇ1
2V2

�
P; ˆ.Q/

�

C 
1˛2V2.Q; Bn/ C 
1ˇ2V2

�
Q; ˆ.P /

�
C 
1
2V2

�
Q; ˆ.Q/

�
:

And we obviously have V2.Bn; P / D V2.Bn; ˆ.P // and V2.Bn; Q/ D V2.Bn; ˆ.Q//.
Moreover, Alexandrov–Fenchel inequality (2.3) gives

V2.P / D
p

V2.P /V2.ˆ.P // � V2

�
P; ˆ.P /

�
;

V2.Q/ D
p

V2.Q/V2.ˆ.Q// � V2

�
Q; ˆ.Q/

�
:

And dSn.JP K; JQK/ D dHn.ŒP �; ŒQ�/ gives V2.P; Q/ � V2.P; ˆ.Q// and V2.Q; P / �
V2.Q; ˆ.P //. Since all the real numbers ˛i , ˇi , 
i are non-negative, this gives inequality
(3.3).
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3.4. Proof of Theorem 1.3

Proposition 3.1 and Sections 3.2 and 3.3 give part of Theorem 1.3. It remains to prove the
assertion about the boundary of Shapen�. It obviously contains only one point: indeed, the
boundary of Homn� is the set of segments up to homotheties, so the boundary of Shapen�

is the set of segments, up to translations, positive scaling, and rotations of R
n, and there

is only one equivalence class.

4. The space of all the (oriented) shapes

This section is an opening to the study of spaces of convex bodies, considered without
making distinction between dimensions. For p � 0, let us denote by �n;p the canonical
isometric embedding of R

n into R
nCp which is given by R

n ' R
n � ¹0ºp � R

nCp . Due
to the intrinsic nature of V2, we have that the map

�n;p W .Homn�; dHn/ ! .Hom.nCp/�; dHnCp /

defined by �n;p.ŒK�/ D Œ�n;p.K/� is an isometry. Let Hom1� be the union over n of
Homn�, quotiented by the following equivalence relation: ŒK1� is equivalent to ŒK2�

if and only if there exist i; j � p such that K1 � R
i , K2 � R

j , and Œ�i;p�i .K1/� D
Œ�j;p�j .K2/�. We will denote by ŒK�1 an element of Hom1�. For two representatives of
ŒK1�1; ŒK2�1 2 Hom1� in R

n, let us define

dH1
�
ŒK1�1; ŒK2�1

�
D dHn

�
ŒK1�; ŒK2�

�
:

It is easy to see that dH1 is well defined and that it is actually a distance on Hom1�. The
isometric embeddings �n;p induce isometric maps from .Shapen�; dSn/ to .Shape.nCp/�;

dSnCp /, so in the same way we can define the set Shape1� and the metric space .Shape1�;

dS1/.
It follows from Theorems 1.1 and 1.3 that .Hom1�; dH1/ and .Shape1�; dS1/ are

geodesic metric spaces. But two facts occur:

(1) it may happen that a sequence of convex bodies with non-empty interior in R
p

converges to a convex body in Hom1 when p goes to infinity. Actually, for ."p/p
a sequence of real numbers such that

p
p"p ! 0, one can check that the sequence

.Œ�n;p.K/ C "pBnCp�1/p converges in Hom1� to ŒK�1. In particular, there may
exist other shortest paths than the convex combinations;

(2) one can check that the sequence of balls .ŒBn�1/n (resp. .JBnK1/n) is a diverging
Cauchy sequence.

So we address the following.

Question 1. Describe the completion of .Hom1�; dH1/ and .Shape1�; dS1/.
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