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Hyperbolic groups with almost finitely presented
subgroups

Robert Kropholler
(with an appendix by Robert Kropholler and Federico Vigolo)

Abstract. In this paper, we create many examples of hyperbolic groups with subgroups satisfying
interesting finiteness properties. We give the first examples of subgroups of hyperbolic groups which
are of type FP2 but not finitely presented. We give uncountably many groups of type FP2 with
similar properties to those subgroups of hyperbolic groups. Along the way we create more subgroups
of hyperbolic groups which are finitely presented but not of type FP3.

1. Introduction

Given a class of groups C , it is natural to ask what finitely generated subgroups of C -
groups are like. One may hope that these are already C -groups as is the case for the classes
of free groups, surface groups, and 3-manifold groups. One can also ask if groups in the
class are coherent; i.e., every finitely generated subgroup is finitely presented. For the class
of Artin groups, coherency fails [2] and the subgroups form an interesting class [19].

A very well studied class of interest in geometric group theory is the class of hyper-
bolic groups. For special subclasses of hyperbolic groups we obtain no new information.
However, in [16] it is shown that there are finitely generated subgroups of hyperbolic
groups which are not finitely presented and therefore not hyperbolic. One could then ask
whether finitely presented subgroups behave in a nicer way although this is shown to not
be the case [3, 12, 15].

Finite generation was not enough to guarantee that subgroups were finitely presented.
One could look for a stronger property between finite generation and finite presentability.
One such property is being of typeFP2. For simplicity, in this paper we shall only consider
type FP2 over Z.

Definition 1.1. A group G is of type FP2 if there is a partial resolution

P2 ! P1 ! P0 ! Z;

where each Pi is a finitely generated projective ZG module.

One can think of this as a homological version of finite presentability. Indeed, it is
equivalent to finite generation of the relation module. Until [2] it was unknown whether
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being of type FP2 was equivalent to finite presentation. It was shown that in subgroups of
RAAGs one could obtain groups which were of type FP2 but not finitely presented.

One can attempt to find such groups inside hyperbolic groups. A result showing this
may not be possible is the following:

Theorem 1.2 ([9]). LetG be a hyperbolic group of cohomological dimension 2. IfH <G

is of type FP2, then H is hyperbolic. In particular, H is finitely presented.

In this paper, we show that this phenomenon is special to cohomological dimension
2. We find hyperbolic groups of cohomological dimension 3 containing subgroups which
are of type FP2 but not finitely presented. Namely, we prove the following.

Theorem A. There exists a hyperbolic group G and a homomorphism �WG ! Z such
that ker.�/ is of type FP2 but not finitely presented.

It should be noted that the subgroups constructed here are not of type FP3. We leave
the following as an open question.

Question 1. Let n > 2 be an integer or 1. Is there a subgroup of a hyperbolic group
which is of type FPn but is not finitely presented?

One could attempt this problem in reverse; i.e., one could look for groups which have
interesting properties and attempt to embed them in hyperbolic groups. To do this one
would need to start with a full list of obstructions to embedding in a hyperbolic group.
For instance, subgroups of hyperbolic groups cannot contain Baumslag–Solitar groups or
infinite torsion groups.

Definition 1.3. Let m;n be non-zero integers. The Baumslag–Solitar group is defined by
the presentation BS.m; n/ D hx; y j y�1xmy D xni.

We see that BS.1; 1/ is isomorphic to Z2.
Using techniques from [14] we construct uncountably many groups which do not con-

tain BS.m; n/ for any m, n.

Theorem B. There are uncountably many groups which are of type FP2 and do not con-
tain any subgroups isomorphic to BS.m; n/ or infinite torsion groups.

These groups are created by using a specific group H constructed for the proof of
Theorem A. This group is finitely generated but infinitely presented and has a presentation
of the form hS j U i, where S is finite and U is infinite. To each Z � U we associate the
group H.Z/ D hS j Zi. We show that for each Z0 � U there are only countably many
groups H.Z/ which are isomorphic to H.Z0/. We show that among these isomorphism
classes uncountably many are of type FP2.

Only countably many of the above groups can be embedded into finitely presented
groups, hence only countably many of the above groups can be embedded into hyperbolic
groups. However, these groups contain none of the above-mentioned obstructions.

Question 2. Which of the groups H.Z/ embed into hyperbolic groups?
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2. Preliminaries

2.1. CAT.0/ cube complexes

Here we discuss the cube complexes we are interested in. For full details on cube com-
plexes see [18].

We use the construction from [13]. In [13], cube complexes are constructed using two
flag complexes �A and �B with n-partite structures.

Definition 2.1. An n-partite structure on a flag complex L is a partition of the vertices
of L into sets V1; : : : ; Vn such that the natural map V.L/! V1 � � � � � Vn extends to an
embedding of L! V1 � � � � � Vn.

A flag complex with an n-partite structure has dimension at most n� 1. For n D 2 we
recover the definition of a bipartite graph. In this paper, we will focus on the case n D 3
when the structure is tripartite. In this case, we give an account of the required material
from [13].

Let �A � A1 � A2 � A3 and �B � B1 � B2 � B3 be flag complexes with tripartite
structures. SetK equal to the non-positively curved cube complex

Q3
iD1Ai �Bi . Given a

vertex vD .v1; v2; v3/ 2K, we can assign two sets,�A D ¹vi 2Aiº and�B D ¹vi 2Biº.
Let

V D ¹v 2 K j �A is a simplex of �A; �B is a simplex of �Bº:

We define X�A;�B to be the maximal subcomplex of K with vertex set V .
The following can be found in [13].

Lemma 2.2. The link of the vertex .v1; v2; v3/ in X�A;�B is the join of the links of�A and
�B ; i.e.,

Lk
�
.v1; v2; v3/;X�A;�B

�
D Lk.�A; �A/ � Lk.�B ; �B/:

Since links of simplices in a flag complex are flag complexes and the join of two flag
complexes is a flag complex, Lemma 2.2 shows that the link of a vertex in X�A;�B is a flag
complex and we obtain the following.

Corollary 2.3. X�A;�B is a non-positively curved cube complex.

These complexes form the base of our construction. We take branched covers to elim-
inate any isometrically embedded flat planes. To show that there are no flat planes in the
universal cover, we use the notion of fly maps. The details are included in the appendix.

We require the following key result from the appendix.

Corollary A.15. A fly map f x induces for every cube c 2 N .i.Ek// an embedding
Lk.c;N .i.E2///! S0 � S0 � S0.

Fly maps allow us to better understand flat planes in CAT.0/ cube complexes, which
by Bridson’s flat plane theorem are the only obstruction to hyperbolicity.

Theorem 2.4 ([4]). A compact CAT.0/ spaceX has hyperbolic fundamental group if and
only if there are no isometric embeddings of E2 to zX .
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2.2. Branched covers

To obtain hyperbolic cube complexes, we begin with a cube complex containing flat planes
and take branched covers. In the setting of CAT.0/ cube complexes, this was achieved by
Brady [3] and used to create subgroups of hyperbolic groups with interesting finiteness
properties. It has also been used in [11,12] to create other groups with interesting finiteness
properties.

Definition 2.5. A branching locus L in a non-positively curved cube complex K is a
subcomplex satisfying the following two conditions.

• L is a locally isometrically embedded subcomplex of K.

• Lk.c;K/ X Lk.c; L/ is non-empty and connected for all cubes c 2 L.

The first condition is required to prove that non-positive curvature is preserved when
taking branched covers. The second is a reformulation of the classical requirement that
the branching locus has codimension 2 in the theory of branched covers of manifolds; it
ensures that the trivial branched covering of K is K.

Definition 2.6. A branched cover yK of a non-positively curved cube complexK over the
branching locus L is the result of the following process.

(1) Take a finite covering K X L of K X L.

(2) Lift the piecewise Euclidean metric locally and consider the induced path metric
on K X L.

(3) Take the metric completion yK of K X L.

We require two key results from [3].

Lemma 2.7 (Brady [3, Lemma 5.3]). There is a natural surjection yK ! K and yK is a
piecewise Euclidean cube complex.

Lemma 2.8 (Brady [3, Lemma 5.5]). If L is a finite graph, then yK is non-positively
curved.

2.3. Bestvina–Brady Morse theory

While Bestvina–Brady Morse theory is defined in the more general setting of affine cell
complexes, we shall restrict to the case of CAT.0/ cube complexes.

For the remainder of this section, let X be a CAT.0/ cube complex and let G be a
group which acts freely, cellularly, properly, and cocompactly on X . Let �WG ! Z be a
homomorphism and let Z act on R by translations.

Let �c be the characteristic map of the cube c.

Definition 2.9. We say that a function f WX ! R is a �-equivariant Morse function if it
satisfies the following three conditions.

• For every cube c � X of dimension n, the map f�c W Œ0; 1�n ! R extends to an affine
map Rn ! R and f�c W Œ0; 1�n ! R is constant if and only if n D 0.
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• The image of the 0-skeleton of X is discrete in R.

• f is �-equivariant; i.e., f .g � x/ D �.g/ � f .x/.

Definition 2.10. For a non-empty closed subset I � R we denote by XI the preimage of
I . The sets XI are known as level sets. Also for any real number t we simply write Xt for
X¹tº.

The kernel H of � acts on the cube complex X preserving each level set XI . The
topological properties of the level sets allow us to gain information about the finiteness
properties of the kernel. We need to examine the topology of the level sets and how they
vary as we pass to larger level sets.

Theorem 2.11 (Bestvina–Brady [2, Lemma 2.3]). If I � I 0 �R are connected andXI 0 X
XI contains no vertices of X , then the inclusion XI ,! XI 0 is a homotopy equivalence.

If XI 0 XXI contains vertices of X , then the topological properties of XI 0 can be very
different from those of XI . This difference is encoded in the ascending and descending
links.

Definition 2.12. The ascending link of a vertex is

Lk".v;X/ D
[®

Lk.w; c/ j �c.w/ D v and w is a minimum of f�c
¯
� Lk.v;X/:

The descending link of a vertex is

Lk#.v;X/ D
[®

Lk.w; c/ j �c.w/ D v and w is a maximum of f�c
¯
� Lk.v;X/:

Theorem 2.13 (Bestvina–Brady [2, Lemma 2.5]). Let f be a Morse function. Suppose
that I � I 0 � R are connected and closed with min I D min I 0 (resp. max I D max I 0),
and assume that I 0 X I contains only one point r of f .X .0//. Then XI 0 is homotopy
equivalent to the space obtained from XI by coning off the descending (resp. ascending)
links of v for each v 2 f �1.r/.

We can now deduce a lot about the topology of the level sets. We know how they
change as we pass to larger intervals and so we have the following.

Corollary 2.14 (Bestvina–Brady [2, Corollary 2.6]). Let I , I 0 be as above.

(1) If each ascending and descending link is homologically .n � 1/-connected, then
the inclusion XI ,! XI 0 induces an isomorphism on Hi for i � n � 1 and is
surjective for i D n.

(2) If the ascending and descending links are connected, then the inclusionXI ,!XI 0

induces a surjection on �1.

(3) If the ascending and descending links are simply connected, then the inclusion
XI ,! XI 0 induces an isomorphism on �1.

Knowing that the direct limit of this system is a contractible space allows us to com-
pute the finiteness properties of the kernel of �.
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Theorem 2.15 (Bestvina–Brady [2, Theorem 4.1]). Let f WX ! R be a �-equivariant
Morse function and let H D ker.�/. If all ascending and descending links are simply
connected, then H is finitely presented (i.e., is of type F2).

We would also like to have conditions which allow us to deduce thatH does not satisfy
certain other finiteness properties. The following is a rephrasing of the argument in [6].

Lemma 2.16. Let f be a �-equivariant Morse function. Assume all ascending and des-
cending links are connected. Assume further that there is a vertex v such that the Lk.v;X/
retracts onto Lk".v;X/ and �1.Lk".v;X// ¤ 0. Then H D ker.�/ is not finitely presen-
ted.

Proof. Assume thatH is finitely presented. By Corollary 2.14, the level setX0 is connec-
ted, so there are finitely many H orbits of loops which generate �1.X0/. We can find an
interval I such that each of these loops is trivial in XI . Once again by Corollary 2.14 we
see that that the inclusionX0!XI induces a surjection on fundamental groups. However,
this map is also trivial. Thus, XI is simply connected.

Let l be such that I � Œ�l; l �. Let k0 be the height of the vertex v form the hypothesis.
Using the action of Z onX , we can find g 2G such that f .g � v/ > l . Letw D g � v. Then
there is a k > l such that f .w/D k and �1.Lk#.w;X//¤ 0. LetLD Œ�l;k � "�, since this
contains J and the map �1.XJ /! �1.XL/ is surjective, we see that �1.XL/ D 0. There
is a retraction ofX X ¹wº onto Lk.w;X/which further retracts onto the space Lk#.w;X/.
Restricting this retraction to XL � X X ¹wº we get a retraction from XL ! Lk#.w;X/.
This gives a surjection �1.XL/!�1.Lk#.w;X//. However, �1.Lk#.w;X// is non-trivial
by assumption giving the required contradiction.

3. Main construction
We detail a construction of several new hyperbolic groups which have subgroups with
interesting finiteness properties. These examples come in two flavours; we can construct
groups of type F2 not F3 giving more examples similar to those in [3, 12, 15]. We also
give the first construction of groups of type FP2 which are not finitely presented that are
contained in hyperbolic groups.

We only detail the construction of groups of type FP2 not F2. To create groups which
are of type F2 not F3 one should construct �B by starting with a simply connected com-
plex L that has no local cut points. One also requires the stated strengthening of Lemma
3.5. The proof then runs in exactly the same way, however, S.L0/will be simply connected
throughout.

We build the hyperbolic groups by taking appropriate branched covers of X�A;�B . As
such we must begin by describing the flag complexes �A and �B .

Let Vn be a discrete set with n points. Set �A D V4 � V4 � V4 which is a join of discrete
sets.

Remark 3.1. We take V4 for concreteness and this construction works for Vn as long as
n � 4. We shall not give the proof in this general case as it obfuscates some details.
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The complex �B is a little more delicate and the procedure for obtaining it is described
below.

Definition 3.2. For a simplicial complex L the octahedralisation S.L/ is defined as fol-
lows. For each vertex v ofL, let S0v D ¹v

C; v�º be a copy of S0. For every simplex � ofL
take S� D �v2�S0v . If � < � , then there is a natural map S� ! S� . S.L/D

S
�<L S�=�,

where the equivalence relation � is generated by the inclusions S� ! S� .

Remark 3.3. The map defined by S0v ! ¹vº extends to a retraction of S.L/ to L (not a
deformation retraction). In particular, ifL is connected and �1.L/¤0, then �1.S.L//¤0.

It is proved in [2] that if L is a flag complex, then S.L/ is a flag complex.

Definition 3.4. A connected simplicial complex L has no local cut points, abbreviated to
nlcp, if Lk.v; L/ is connected and not equal to a point for all vertices v 2 L.

The following lemma can be found in [11, 14].

Lemma 3.5. Assume that L has nlcp. If H1.L/ D 0, then H1.S.L// D 0.

Remark 3.6. For the F2 not F3 case of the main theorem a stronger version of this the-
orem is required. Namely, using the argument proving [11, Lemma 6.2], one can show
that in the above case if �1.L/ D 0, then �1.S.L// D 0.

Given a connected simplicial complex L, there is a homotopy equivalent complex K
with no local cut points. One way of obtaining such a complex is to take the mapping
cylinder of the inclusion of the 1-skeleton. For details see [14].

Remark 3.7. Given a tripartite complex L, there is a natural tripartite structure on S.L/.

We are now ready to define the tripartite complex �B . Given a simplicial complex L,
let L0 denote the barycentric subdivision of L.

Let L be a 2-dimensional simplicial complex with no local cut points. Let �B D
S.S.L0//. Note that L0 has a natural tripartite structure, that is L0 � B1 � B2 � B3 where
Bi is the set of vertices that are barycenters of .i � 1/-cells of L. Also given a tripartite
structure on a complex K � K1 �K2 �K3, there is a natural tripartite structure on S.K/
given by viewing S.K/ as a subspace of S.K1/ � S.K2/ � S.K3/.

Before moving on, it will be useful to understand the links of vertices in X�A;�B .
The vertices in X�A;�B are of the form .v1; v2; v3/, where vi 2 Ai [ Bi . Let ai 2 Ai

and bi 2 Bi . We will use Lemma 2.2 to compute Lk..v1; v2; v3/;X�A;�B /.
The first case is that of a vertex of the form .a1; a2; a3/ where we obtain

Lk
�
.a1; a2; a3/;X�A;�B

�
D Lk.;; �B/ � Lk

�
Œa1; a2; a3�; �A

�
D �B � ; D �B :

Similarly, Lk..b1; b2; b3/;X�A;�B / D �A.
We now examine the intermediate vertices. For vertex of the form .a1; b2; b3/ we have

Lk
�
.a1; b2; b3/;X�A;�B

�
D Lk.a1; �A/ � Lk

�
Œb2; b3�; �B

�
:
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By retracting onto L0, we can see that Lk.Œb2; b3�; �B/ D S.S.Lk.Œb2; b3�; L0///. Since
Œb2; b3� is an edge joining the barycenter of a 1-cell to the barycenter of a 2-cell, we see
that Lk.Œb2; b3�;L0/D S0. Also, Lk.a1; �A/D V4 � V4. Thus, Lk..a1; b2; b3/;X�A;�B /D
V4 � V4 � S.S.S

0//.
Making a similar analysis we obtain that

Lk
�
.b1; a2; b3/;X�A;�B

�
D V4 � V4 � S

�
S.S0/

�
:

Considering a vertex of the form .b1; b2; a3/, we have

Lk
�
.b1; b2; a3/;X�A;�B

�
D Lk.a3; �A/ � Lk

�
Œb1; b2�; �B

�
:

We can still retract to show that Lk.Œb1; b2�; �B/ D S.S.Lk.Œb1; b2�; L0///, the latter is a
discrete set and is non-empty since L0 has nlcp. Thus,

Lk
�
.b1; b2; a3/;X�A;�B

�
D V4 � V4 � S

�
S.Vn/

�
;

where the n depends on the vertices b1 and b2.
For a vertex of the form .a1; a2; b3/ we obtain that

Lk
�
.a1; a2; b3/;X�A;�B

�
D V4 � S

�
S.Lk

�
b3; L

0/
��
:

Since b3 is the barycenter of a 2-cell, we obtain that Lk.b3; L0/ D , where is a copy
of S1 triangulated with 6 vertices. Thus,

Lk
�
.a1; a2; b3/;X�A;�B

�
D V4 � S

�
S. /

�
:

For a vertex of the form .a1; b2; a3/ we similarly obtain that

Lk
�
.a1; b2; a3/;X�A;�B

�
D V4 � S

�
S
�

Lk.b2; L0/
��
:

In this case, b2 is the barycenter of a 1-cell and thus Lk.b2; L0/ D Vn � S0. Since L0 has
nlcp, we see that n � 1 and depends on the chosen vertex b2.

Finally, a vertex of the form .b1; a2; a3/ has link

Lk
�
.b1; b2; b3/;X�A;�B

�
D V4 � S

�
S
�

Lk.b1; L0/
��
:

The vertex b1 is a vertex of the original complex L and thus Lk.b1; L0/ D Lk.b1; L/0. Set
ƒ D Lk.b1; L/. Thus,

Lk
�
.b1; b2; b3/;X�A;�B

�
D V4 � S

�
S.ƒ0/

�
:

These links are summarised in Table 1.

3.1. The Morse theory

To define a Morse function on the complex X�A;�B we begin by defining a Morse function
on each of the graphs Ai � Bi . We do this by putting an orientation on each edge.
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Vertex of X�A;�B Link of the vertex in X�A;�B
.a1; a2; a3/ �B D S.S.L

0//

.a1; a2; b3/ Lk.b3; �B/ � V4 D S.S. // � V4

.a1; b2; a3/ Lk.b2; �B/ � V4 D S.S.Vn � S0// � V4

.a1; b2; b3/ Lk.Œb2; b3�; �B/ � V4 � V4 D S.S.S0// � V4 � V4

.b1; a2; a3/ Lk.b1; �B/ � V4 D S.S.ƒ0// � V4

.b1; a2; b3/ Lk.Œb1; b3�; �B/ � V4 � V4 D S.S.S0// � V4 � V4

.b1; b2; a3/ Lk.Œb1; b2�; �B/ � V4 � V4 D S.S.Vn// � V4 � V4

.b1; b2; b3/ �A D V4 � V4 � V4

Table 1. The links of various vertices in X�A;�B . Here ƒ0 is the barycentric subdivision of the link
of the vertex corresponding to b1 in L. Also, is a copy of S1 triangulated with six vertices. It
should be noted that, since L has nlcp, the graph ƒ is connected and Vn contains at least one point.

Given �A;�B as above, consider the cube complex X�A;�B . This is naturally contained
in X D

Q3
iD1Ai � Bi .

There is a bipartion of the vertex set of S.�/ for any complex � extending the bipar-
tition of S0. Thus, we can bipartition the sets Bi from the final application of octahedral-
isation. Take any bipartition of Ai D ACi t A

�
i such that jACi j D 2.

Let v 2 Ai and w 2 Bi be two vertices.

• Orient the edge from v to w if v 2 ACi and w 2 BCi or if v 2 A�i and w 2 B�i .

• Orient the edge from w to v if v 2 ACi and w 2 B�i or if v 2 A�i and w 2 BCi .

We can then use this to define a Morse function on X and restricting this we get a
Morse function f on X�A;�B .

The ascending (resp. descending) link is the full subcomplex of the link spanned by
vertices corresponding to those edges oriented towards (resp. away from) the vertex. Let
a1 2 Ai and bi 2 Bi . An edge emanating from the vertex .v1; v2; v3/ corresponds to
changing a coordinate of the form ai to a coordinate of the form bi or vice versa.

In the case that the coordinate ai was in ACi , the outgoing edges correspond to BCi ,
similarly if ai 2 A�i , then the outgoing edges correspond to B�i .

The ascending and descending links are the full subcomplexes of the link spanned by
vertices corresponding to edges oriented towards or away from the vertex respectively.
The ascending and descending links for this Morse function are in Table 2.

We can see that the ascending and descending links of f are simply connected with
the exception of S.L0/; cf. Table 2.

3.2. The branched cover

We are now ready to take the branched cover of X�A;�B . Consider the subcomplex Z ofQ3
iD1Ai � Bi :

Z D .A1 � B1/ � B2 � A3 t A1 � .A2 � B2/ � B3 t B1 � A2 � .A3 � B3/:
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Vertex Ascending link/descending link

.a1; a2; a3/ S.L0/

.a1; a2; b3/ S. / � S0

.a1; b2; a3/ S.Vn � S
0/ � S0

.a1; b2; b3/ S.S0/ � S0 � S0

.b1; a2; a3/ S.ƒ0/ � S0

.b1; a2; b3/ S.S0/ � S0 � S0

.b1; b2; a3/ S.Vn/ � S
0 � S0

.b1; b2; b3/ S0 � S0 � S0

Table 2. Ascending and descending links for the Morse function f .

We take as our branching locus Y D Z \ X�A;�B . We now check that this satisfies
Definition 2.5.

Since the link of each vertex in X�A;�B is tripartite, there is an embedding

Lk.v;X�A;�B /! C1 � C2 � C3:

Considering each of the complexes with the CAT.1/ metric, this map is distance non-
increasing. The vertices corresponding to the branching locus Y form one of the sets Ci .
The distance between any two points in Ci is � in C1 � C2 � C3. Thus, the distance is at
least � in Lk.v;X�A;�B /. Thus, the subcomplex Y is locally isometrically embedded.

We must now check that Lk.c;X�A;�B /X Lk.c; Y / is non-empty and connected for all
cubes c 2 Y . Since Lk.e; Y / D ; for all edges e, we see that we only need to check the
vertices of Y .

Let v be a vertex of Y . We will examine the case that v D .a1; a2; b3/, the other cases
are similar. Then Lk.v;X�A;�B / is a join Lk.Œa1; a2�; �A/ � Lk.b3; �B/. Since �B has no
local cut points, we see that Lk.b3; �B/ is a connected graph. Thus, Lk.Œa1; a2�; �A/ �
Lk.b3; �B/ has no local cut points and removing a discrete set from a space with no local
cut points preserves connectivity.

Thus, Y is a branching locus in the sense of Definition 2.5.
To take a branched cover we use a similar procedure to that detailed in [3, 11].
Define �Aij to be the subcomplex of �A obtained by taking the full subcomplex on the

vertices in Ai [Aj . Define �Bij similarly. Since �A and �B have no local cut points, both
of them are connected bipartite graphs.

We project X�A;�B X Y to the 2-dimensional complexes X�Aij ;�Bij X .Ai � Bj / for
.i; j / 2 ¹.3; 2/; .2; 1/; .1; 3/º. These are restrictions of the maps

�k W

3Y
lD1

Al � Bl ! .Ai � Bi / � .Aj � Bj /

projecting away from the kth coordinate. Since we have removed the setAi�Bj�.Ak�Bk/,
we can see that there are no vertices in the image of the form .a; b/ for a 2 Ai , b 2 Bj .
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Vertex Link Link container Branch set

.a1; a2; b3/ S.S. // � V4 B1 � B2 � A3 B2

.a1; b2; a3/ S.S.Vn// � V4 � S.S.S
0// B1 � A2 � B3 B1 D S.S.Vn//

.a1; b2; b3/ S.S.S0// � V4 � V4 B1 � A2 � A3 A2 D V4

.b1; a2; a3/ S.S.ƒ0// � V4 A1 � B2 � B3 B3

.b1; a2; b3/ V4 � S.S.S
0// � V4 A1 � B2 � A3 A3 D V4

.b1; b2; a3/ V4 � V4 � S.S.Vn// A1 � A2 � B3 A1 D S.S.Vn//

Table 3. Links in X�A;�B and their branch sets. The link container is the natural tripartite complex
which contains the link. The branch sets are in bold in the link. In the first row, the branch set is
S.S.W //, where W is the three bold vertices of the hexagon. In the fourth row, the branch set is
S.S.B//, where B are the barycenters of edges in ƒ0.

Each of the complexes X�Aij ;�Bij X .Ai � Bj / deformation retracts onto a graph ƒij .
Indeed, each square of X�Aij ;�Bij has exactly one corner in Ai �Bj and we can homotope
radially from this corner. Thus, ƒij is a subgraph of „ij , where „ij is the subgraph of
.Ai �Bi /� .Aj �Bj / spanned by vertices not in Ai �Bj , i.e.,„ij D ..Ai �Bi /�Aj /[
.Bi � .Aj � Bj //.

We will take a cover by giving a representation of the fundamental group to Sp , where
Sp is the symmetric group on p letters. We briefly outline the key points that this cover
will satisfy before delving into the details.

Lemma 3.8. Let v be a vertex of Y . The space Lk.v;X�A;�B / X Lk.v; Y / deformation
retracts onto a complete bipartite graph �v .

Proof. We have already seen that Lk.v;X�A;�B / is the join of a bipartite graph and a
discrete set. We will carefully examine the case that v D .a1; a2; b3/, the analysis for the
other cases is the same.

From Table 3, we see that Lk.v;X�A;�B / � B1 �B2 �A3 and Lk.v; Y / � B2. By the
definition of Y , we see that B2 \ Lk.v;X�A;�B / D Lk.v; Y /. Let C2 D Lk.v; Y /. We can
see that Lk.v;X�A;�B / � B1 � C2 � A3.

There is a deformation retraction .B1 � C2 � A3/ X C2 ! B1 � A3. To see this, note
that each triangle of B1 � C2 � A3 has a single vertex in C2. We can push radially out
from this vertex to achieve the desired deformation retraction.

For any subcomplex † of B1 � C2 � A3 we still have that each triangle has a single
vertex in C2. Thus, we can push out radially in each triangle from this vertex and gain a
deformation retraction † X C2 ! † \ B1 � A3.

In the case of v, we see, from Table 1, that Lk.v;X�A;�B / D S.S. // � V4, where
is a copy of S1 triangulated with 6 vertices. Thus, in this case we have that Lk.v; X/ \
B1 �A3 is S.S.W // � V4, where W is a set of three vertices corresponding to alternating
vertices of . This is a complete bipartite graph, which we label �v .
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Examining Table 3 shows that the same result holds for all other vertices of the branch-
ing locus.

When taking our cover, we will be particularly interested in loops of length 4 in �v .
These correspond to commutators in the fundamental group of X�A;�B X Y .

These loops play a large role in both proving Theorems 3.11 and 3.18. Let Nv be a
vertex in the preimage of v. In the link of this vertex, there is a cover x�v of �v; we will
require the following two properties.

• x�v has no loops of length 4.

• For each loop of length 4 in �v its preimage is connected in x�v .

Under the map of X�A;�B X Y ! ƒij , these loops of length 4 map to certain loops of
length 8. We will be particularly intereseted in the image of these loops of length 8 under
the representation. With these properties in mind, we give a formal definition of the cover
used.

Let qij be a prime to be determined later. Let ˛ be a permutation of order qij and
let ˇ be a permutation such that ˇ˛ˇ�1 D ˛l , where l is a generator of Z�qij . Note that
Œ˛a; ˇb� D ˛a.l

b�1/; this is a non-trivial power of ˛ if 0 < a < qij and 0 < b < qij � 1
and is hence an element of order qij .

We define a homomorphism �ij W�1.ƒij /! Sqij by labeling the graph „ij with ele-
ments of Sqij . We label the edges of .Ai �Bi /�Bj by powers of ˛ such that no two edges
oriented towards a vertex have the same label. We label the edges of Ai � .Aj � Bj / by
powers of ˇ with the same condition. This required us to pick qij larger than the valence
of any vertex in Aj � Bj or Ai � Bi .

This gives us three representations of �1.X�A;�B XY / in the symmetric groups Sqij for
.i; j / 2 ¹.1; 2/; .2; 3/; .3; 1/º. We can combine these to get a representation into Sq12q23q31
and take the cover corresponding to the stabiliser of 1 in this subgroup. We then lift the
metric and complete to obtain the branched cover xX. This is a non-positively curved cube
complex by Lemma 2.8.

3.2.1. The links in the branched cover. Throughout, we will consider the link of a
vertex v to be the 1

4
-sphere centered at v. Shortly, we will look at the ascending and

descending links for a new Morse function. We first compute the link of each vertex in xX.
The link of a vertex in xX is a branched cover of a link in X�A;�B .

Recall that there are 8 vertex types in X�A;�B ; we will examine each type in turn. The
vertices which are of the form .a1; a2; a3/ or .b1; b2; b3/ are disjoint from the branching
locus, thus the link of such a vertex lifts to the cover xX.

Let v be a vertex on the branching locus Y . Let w be a vertex in xX mapping to v. We
get a branched covering Lk.w; xX/! Lk.v;X�A;�B /. The points at which this map is not a
local isometry are the vertices corresponding to Y in Lk.v;X�A;�B /. We call these vertices
the branch set. We will denote Lk.v;X�A;�B / X Y by Lk.v;X�A;�B /.

To understand the covering of each link we look at the three projections. We will
examine the case of the vertex v D .a1; b2; a3/. Under the projection �2, this vertex is
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mapped to .a1; a3/ 2 X�A13 ;�B13 X A1 � B3. Thus, the link of v is mapped into the 1
4

-
neighbourhood of .a1; a3/. This neighbourhood is contractible. Thus, the composition

�1
�
Lk.v;X�A;�B /

�
! �1.X�A;�B X Y /! �1

�
X�A13 ;�B13 X .A1 � B3/

�
is trivial; the same holds for �3. Thus, both of these representations leave Lk.v;X�A;�B /
unchanged.

By Lemma 3.8, there is a deformation retraction from Lk.v;X�A;�B / to the subgraph
�v spanned by the vertices not in the branch set. This is a join of two discrete sets.

In the case of v D .a1; b2; a3/, we see that �1 gives an isometric inclusion �v into
Lk..b2; a3/;X�A23 ;�B23 /. Further under the composition

�v ! X�A;�B X Y ! X�A23 ;�B23 X .A2 � B3/! „23

each loop ! of length 4 in �v is sent to a loop � of length 8 in „23.
Under the representation to Sq23 , the element corresponding to  is sent to a non-

trivial power of ˛. Thus, this is a q23-cycle and under the covering the preimage of ! is
connected and is a loop of length 4q23.

Each vertex in the branch set cones off a subgraph �0 of �v . When we complete the
cover, each vertex in the completion of the link will cone off the corresponding lift of �0.

Remark 3.9. Since all the loops of length 4 have connected preimage, the cover of �v
will have no loops of length 4.

This will be useful in proving the hyperbolicity of the branched cover shortly.
There is a naturally defined Morse function Nf on xX by composing the Morse function

on X�A;�B with the branched covering map. The ascending and descending links of Nf are
the preimages of the ascending and descending links of f under the branched covering
map.

We now examine these ascending and descending links. We can see the ascending and
descending links in xX as branched covers of the ascending and descending links in X�A;�B
over the branch set. Since a neighbourhood of any point not on the branching locus lifts to
the branched cover, the ascending and descending links of vertices of the form .a1; a2; a3/

and .b1; b2; b3/ remain unchanged.
The other links change under this branched covering map. We must show that these

branched covers are simply connected. For what follows the branch set will be referred to
as V . See Table 3 for a description of the branch set in each vertex.

Lemma 3.10. In all the complexes � in Table 2, there is an ordering v1; v2; : : : on the set
V such that Lk.vi ; �/ \

S
j<i St.vj ; �/ is connected and covered by loops of length 4.

Furthermore, Lk.v;X�A;�B / is covered by the stars of links in the branch set.

Proof. For the cases of vertices of type .b1;a2;b3/, .b1;b2;a3/, .a1;b2;a3/, and .a1;b2;b3/
this is clear since Lk.vi /\ St.vj /D Lk.vi / and Lk.vi / is the suspension of a discrete non-
empty set with at least 2 elements.

We provide the proof for the complex S.ƒ0/ � S0, the proof for S. / � S0 being the
special case that ƒ is a triangle.
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The key element of the proof is that given a connected bipartite graph there is an
ordering on the vertices in one part such that the star of vertex intersects the star of a
previous vertex in a non-empty set.

LetW D¹w1; : : : ;wnº be the vertices inƒ0 coming from the barycenters of edges inƒ.
Assume that under this ordering the star ofwi intersects the star ofwj for some j < i . The
set V is the octahedralisation ofW . We claim that the ordering w�1 ;w

C
1 ;w

�
2 ;w

C
2 ; : : : ;w

C
n

is the desired ordering.
The link of each of the vertices is non-empty. Also the star of each vertex intersects the

star of a previous vertex. Since we are taking the octahedralisation, then we can see that
Lk.vi ; �/ \

S
j<i St.vj ; �/ is the suspension of a discrete set. This set contains at least

two elements, so it will be connected and can be covered by loops of length 4 as desired.
The second statement follows since the branch is one part of the tripartite structure

and the complex has no local cut points.

We are now ready to prove that the ascending and descending links of these vertices
will still be simply connected.

Theorem 3.11. Let xX be the cube complex constructed above as a branched cover of
X�A;�B . Then there is an S1 valued Morse function f on xX such that the ascending and
descending links are simply connected or S.L0/.

Proof. We need only check that we preserve simple connectedness in the ascending and
descending links of vertices in Y .

Let v be a vertex of Y . In Lk.v;X�A;�B /, we are removing the branch set and taking
a cover. For each vertex w in the branch set, Lk.w;Lk.v;X�A;�B // is a graph which can
be covered by loops of length 4. We can order these loops of length 4 such that each suc-
cessive loop has a non-trivial intersection with one of the previous loops. The preimage of
each of the loops of length 4 is a single loop. Thus, the preimage of Lk.w;Lk.v;X�A;�B //
is a connected graph. When we replace the preimages of w, we cone off this graph.

With the ordering of the vertices from Lemma 3.10 we are gluing a sequence of con-
tractible sets along connected subspaces. The result of this procedure is simply connected.
Thus, the ascending and descending links are simply connected for any vertex in the
branching locus.

For vertices not on the branching locus, the ascending and descending links remain
unchanged. Thus, they are all either simply connected or S.L0/.

Corollary 3.12. Let L be a simplicial complex with nlcp whose fundamental group is
perfect. Let xX be the cube complex constructed above with �B D S.S.L0//. Then the
kernel of f� is of type FP2 but not finitely presented.

Proof. By Lemma 2.16, the finiteness properties of the kernel are controlled by the homo-
topy type of S.L0/. Thus, if L0 has non-trivial perfect fundamental group, then the kernel
of f� is of type FP2 but not finitely presented.
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.b1; a2; b3/ .b1; b2; b3/

.b1; a2; a3/ .b1; b2; a3/

.a1; a2; b3/ .a1; b2; b3/

.a1; a2; a3/ .a1; b2; a3/

Figure 1. The branching locus in one cube. The edges of the branching locus are depicted in red.

Remark 3.13. If L is simply connected, then the above kernel is finitely presented but
not of type FP3.

3.3. The cover is hyperbolic

We are now left to prove that �1.xX/ is hyperbolic. We appeal to Theorem 2.4. To show
that there is no flat plane in the universal cover, we use the fly maps from Definition A.1.
The technique is similar to the techniques used in [3, 12, 15]

Let zX be the universal cover of zX. Begin by assuming for a contradiction that i WE2!
zX is an isometric embedding of a flat plane.

Remark 3.14. The cubical complex X�A;�B has 3 directions coming from the tripartite
structure of �A and �B . There is a choice of 3 directions on zX given by pulling back the
partition of hyperplanes from X�A;�B . Thus, we obtain fly maps f x W zX! R3 for each
point x on i.E2/.

Recall the following definition from [3].

Definition 3.15. Given a CAT.0/ cube complex X and an isometric embedding i WE2 !
X , we say that a subsetD of X intersects E2 transversally at a point p if there is an " > 0
such that N".p/ \D \ i.E2/ D ¹pº.

Let xY be the preimage of the branching locus under the branched covering map.

Theorem 3.16. There is a transverse intersection point of i.E2/ and xY .

Proof. We start by finding at least one point in i.E2/ \ xY . To find such a point, note that
there is a cube c in which i.E2/ has 2-dimensional intersection. This intersection can be
seen as the intersection of an affine plane in R3 with a cube in the standard cubulation.
The branching locus in this cube is depicted in Figure 1. If i.E2/ does not intersect xY in c,
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v

Figure 2. The union of 8 cubes with the branching locus shown in red.

then it intersects c in the neighbourhood of a vertex v disjoint from the branching locus.
Using the fly map from Remark 3.14, we see by Corollary A.15 that Lk.v;N .E2// is
contained in S0 � S0 � S0. We can now develop into some of 8 cubes around this vertex.
These 8 cubes form together as in Figure 2, however we note that not all these cubes need
exist. Within these 8 cubes there is an intersection with the branching locus.

In one of these 8 cubes, i.E2/ has a single point of intersection with xY . We denote this
cube by c. Note that if this point is not a transverse point of intersection, then there is an
edge of xY contained in i.E2/.

Since the intersection with c is that of an affine plane. We can see that if the intersec-
tion point is in the interior of an edge, then it is a transverse intersection.

We are now left in the case that the intersection point is a vertex of the cube c. We
begin with the case that the intersection point is a vertex which maps to .a1; b2; a3/,
.b1; a2; b3/, .a1; b2; b3/ or .b1; b2; a3/. The link of any of these vertices is a join of a
graph and a discrete set. The vertices in the discrete set correspond to xY . Thus, if i.E2/
contains an edge e of xY at the vertex in question, then there is a cube c0 sharing a face
with c which contains the edge e. This cannot happen as i is an isometric embedding.

Let O be the interior points of edges together with vertices mapping to .a1; b2; a3/,
.b1; a2; b3/, .a1; b2; b3/ or .b1; b2; a3/. We will show that i.E2/ has a point of intersection
O . This will complete the proof by the above.

We are now reduced to the case of studying planes which contain a full edge of xY and
the intersection with c is not contained inO . The remainder of the proof is summarised in
Figure 3.

We begin with the case of an edge between vertices that map to .a1; b2; a3/ and
.b1; b2; a3/. There is a continuous family of embedded planes in the cube which con-
tain this edge. However, all but one of the planes in this family intersect the cube in a
point contained in O , this gives a transverse intersection point.
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.a1; a2; a3/

.b1; b2; b3/

.a1; b2; a3/

.b1; b2; a3/

.a1; a2; a3/ .a1; b2; a3/

.b1; b2; a3/
.b1; a2; a3/

.b1; b2; b3/

.a1; a2; a3/

.b1; a2; a3/

.b1; b2; b3/.b1; a2; b3/

.a1; a2; a3/

.b1; a2; a3/

.b1; b2; b3/.b1; a2; b3/

.a1; a2; b3/

.a1; a2; a3/

.b1; b2; b3/

.a1; a2; b3/ .b1; a2; b3/

H)

H
)

H)

H)

Figure 3. This figure depicts the final stages of the proof of hyperbolicity. In each stage, the red part
of the picture is contained in the plane. In the final figure, we find that containing the red line forces
the plane to contain points of O .
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The exceptional plane is the plane containing a square with vertices mapping to
.b1; a2; a3/, .a1; a2; a3/, .a1; b2; a3/, and .b1; b2; a3/. This intersects the edge with ver-
tices mapping to .b1; a2; a3/ and .b1; a2; b3/ in the vertex mapping to .b1; a2; a3/.

If this is not a transverse intersection point, then there is an adjacent cube in which
i.E2/ \ xY contains an edge of xY with vertices mapping to .b1; a2; a3/ and .b1; a2; b3/.

Once again there is a continuous family of flat planes containing this edge and all of
them, except one, intersect in a point in O , giving a transverse intersection point.

The exceptional plane is the plane containing a square with vertices mapping to
.b1; a2; a3/, .a1; a2; a3/, .b1; a2; b3/, and .a1; a2; b3/. This intersects the edge with ver-
tices mapping to .a1; a2; b3/ and .a1; b2; b3/ in the vertex mapping to .a1; a2; b3/. If this
is not a transverse intersection point, then there is an adjacent cube in which i.E2/ \ xY
contains an edge of xY with vertices mapping to .a1; a2; b3/ and .a1; b2; b3/.

There is a continuous family of flat planes in this cube which contain an edge with
vertices mapping to .a1; a2; b3/ and .a1; b2; b3/. All of these flat planes will intersect in
the cube in a point in O . This gives us a transverse point of intersection.

Lemma 3.17. There cannot be a transverse intersection of i.E2/ and the preimage of the
branching locus.

Proof. Assume that there is a transverse intersection point p. By Corollary A.15, there
is an inclusion of Lk.p;N .i.E2///! S0 � S0 � S0. However, this would give a loop
of length 4 in the transverse direction which contradicts the choice of branched cover; cf.
Remark 3.9.

Combining Lemma 3.17 and Theorem 3.16 we reach our desired contradiction. To-
gether with Theorem 2.4 we arrive at the following.

Theorem 3.18. Let xX be one of the branched covers constructed in Section 3.2. Then
�1.xX/ is a hyperbolic group.

Putting all of this together, we have the following theorem.

Theorem A. There exists a hyperbolic group G such that G D H Ì Z and H is of type
FP2 but not finitely presented.

Proof. The fundamental group of xX is hyperbolic by Theorem 3.18. Also by Corol-
lary 3.12, this hyperbolic group has a subgroup which is of type FP2 but not finitely
presented.

4. Uncountably many groups of type FP2 which do not contain Z2

We begin by defining an invariant similar to that of [14].

Definition 4.1. Let T be a set of words in x1; : : : ; xn. Let G be a group and S D
.g1; : : : ; gn/ an n-tuple of elements in G.
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Define
R.G; S; T / D

®
r 2 T j r.S/ D 1 in G

¯
:

Proposition 4.2. For a fixed set T and fixed countable G. The invariant R.G; S; T / can
only take countably many values.

Proof. There are only countably many n-tuples of group elements. Thus once G and T
are fixed, we only have countably many possibilities.

Now, set L to be a complex with nlcp such that �1.L/ D A5.
We apply the proof of the preceding section to obtain a non-positively cube complex

X such that �1.X/ is hyperbolic and contains a subgroup H of type FP2 which is not
finitely presented.

Let zX be the universal cover of X and let xX be the cover of X corresponding to the
subgroup H .

The Morse function on X gives a real valued Morse function on xX . All of the ascend-
ing and descending links are connected. Hence the inclusion of xX 1

2
! xX gives a surjection

on the level of fundamental groups. Since xX 1
2

is a compact space, we see that its funda-

mental group is finitely presented. Let P D hS jRi be a presentation for �1. xX 1
2
/, as stated

S is also a generating set for H .
All the vertices of xX map to integers, thus xX 1

2
contains no vertices of xX . Let V be the

set of vertices in xX .

Lemma 4.3. The inclusion xX 1
2
! xX XV induces an isomorphism on fundamental groups.

Proof. Let U be the universal cover of xX X V . Let v 2 V be a vertex of xX . Since xX is
a locally CAT.0/ cube complex, we can see that N".v/ X ¹vº deformation retracts onto
Lk.v; xX/. Thus in the case that Lk.v; xX/ is simply connected, the neighbourhood lifts to
U . We are now concerned with the case where Lk.v; xX/ D S.S.L0//. In this case, we see
that the cover of Lk.v; xX/ is a copy of CS.S.L0// which by [14] is equal to S.AS.L0//.

We can complete U to a CAT.0/ cube complex which inherits a height function from
xX . The ascending and descending links of this height function are all simply connected.

Thus, the 1
2

-level set is connected and simply connected. So we see that the inclusion
xX 1
2
! xX X V induces an isomorphism on fundamental groups.

Adding the vertices in V back to xX adds relations. Each time we add a vertex with link
S.S.L0// we are adding a new relation. Since A5 is normally generated by one relation
we can assume that we add one relation for each such vertex, namely, the relation obtained
by coning off a normal generator of A5 in S.S.L0//.

We now have a presentation for �1. xX/ of the form hS j R [ T i, where relations in
T are in one-to-one correspondence with vertices in xX with link S.S.L0//. Let Y be the
collection of these vertices.

Given a subset Z � Y , let TZ be the subset of T given by the relations corresponding
to those vertices in Z. Let H.Z/ be the group given by the presentation hS j A [ TZi.
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Proposition 4.4. If Z � Y , then R.H.Z/; S; T / D TZ .

Proof. By definition of H.Z/ we can see that TZ � R.H.Z/; S; T /.
To prove the other direction we will show that for all t 2 T , we have that t …

hhT X ¹tºii:

The relation t corresponds to a vertex v in xX . Since the loop representing t is trivial
and normally generates �1.S.S.L0///, we see that a small neighbourhood of v lifts to the
universal cover U . We can complete this cover by adding in the missing vertices; let w be
one of these vertices. Since this cover is CAT.0/, we see that U retracts onto Lk.w;U / D
S.S.L0// and thus t is non-trivial. This gives us the required contradiction.

Proposition 4.5. The groups H.Z/ are of type FP2.

Proof. The group H.Z/ is the fundamental group of xX X W , where W is the set of
vertices not corresponding to elements of Z. Taking the universal cover of this space and
completing we obtain a CAT.0/ cube complex AX.Z/ upon which H.Z/ acts. The Morse
function lifts to this space. The ascending and descending links of this Morse function are
simply connected, S.L0/ or AS.L0/. We can now apply Theorem 2.15 to see that H.Z/ is
of type FP2.

Proposition 4.6. The groups H.Z/ do not contain any copies of Z2.

Proof. The action of H.Z/ on AX.Z/ is proper. The action is free away from the vertices
with link CS.S.L0//; at these vertices the group acts like A5 and thus the action is proper.
We can now appeal to the flat torus theorem [5] to see that were there a copy of Z2 in H ,
then there would be an isometrically embedded flat plane in AX.Z/. Applying the proof of
Theorem 3.18, we can see that no flat plane exists.

Theorem B. There are uncountably many groups of type FP2 none of which contains a
Baumslag–Solitar group or infinite torsion subgroups.

Proof. Since T is infinite, there are uncountably many subsets TZ . By Propositions 4.2
and 4.4 we see that there are uncountably many groups in this family.

All of these groups are of type FP2 by Proposition 4.5. They also do not contain a
copy of Z2 by Proposition 4.6.

We are now left in the case that these groups contain BS.1; n/ for n ¤ ˙1. By
[5, p. 439] groups acting properly and semi-simply on CAT.0/ spaces do not contain
BS.m; n/ for jnj ¤ jmj.

We now prove the statement about infinite torsion subgroups. Each of the groups con-
structed acts on a locally finite CAT.0/ cube complex. Thus, any torsion group fixes a
point by [17, Theorem 5.1]. However, the group action is proper, so point stabilisers are
finite.
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A. Embedding cube complexes into products of trees and fly maps
(by Robert Kropholler and Federico Vigolo)

This appendix is devoted to justify the construction of fly maps used in Section 2.1. Many
parts of this appendix are well known; we include them to give the reader a better under-
standing of how fly maps are defined. The definition of a cube complex with n directions
is given in Definition A.4.

Definition A.1. Let X be a cube complex with n directions. A fly map f WX ! Rn for an
embedded flat i WEk ! X is a map f WX ! Rn obtained as a composition

X
�
�! T1 � � � � � Tn

f1�����fn
�������! Rn;

where the maps fj W Tj ! R are cubical maps that restrict to isometries on Lj D

pj .�.i.Ek///.

In this appendix, we will define all the relevant terms and show that these maps always
exist.

LetX be a CAT.0/ cube complex. A hyperplane Oh ofX is an equivalence class of par-
allel edges of X . We can identify a hyperplane Oh with the CAT.0/ cube complex spanned
by the midpoints of the edges in Oh (i.e., the smallest convex set containing them). Every
hyperplane Oh disconnects X into two half spaces h and h�. We denote the set of hyper-
planes in X by yH .X/ and the set of half spaces by H .X/.

A pocset is a partially ordered set .S;</ with an involution �WS ! S such that

(1) s ¤ s� for all s 2 S and s and s� are incomparable,

(2) if s < t, then t� < s�.

We will denote the pocset simply by S if the ordering < is clear by the context.
The set of half spaces H .X/ of a CAT.0/ cube complex comes naturally equipped

with a pocset structure, where the involution sends a half space h to its complement h�

and the partial ordering is given by the inclusion.
Generalising the idea of ultrafilters on the subsets of an index set, an ultrafilter on a

pocset S is a subset U � S such that

(1) for each s 2 S exactly one of s or s� is in U (completeness),

(2) if s 2 U and s < t, then t 2 U (consistency).

An ultrafilter satisfies the descending chain condition (DCC) if every descending chain
s1 > s2 > : : : must terminate in finitely many steps.

Given a pocset S , we can construct a cube complex X.S/ as follows: the vertices
of X.S/ are the ultrafilters satisfying the DCC; two ultrafilters U1;U2 are joined by an
edge if and only if they differ by precisely two elements: U14U2 D ¹s; s

�º. The graph
thus obtained is the 1-skeleton of X.S/, and we then add higher-dimensional cubes to this
graph whenever their 1-skeleton is present. The following is well known.

Theorem A.2 (Sageev [17]). The cube complex X.S/ is CAT.0/.
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Hyperplanes of the cube complex X.S/ are in one-to-one correspondence with pairs
of conjugated elements of S ; i.e., fixed sets ¹s; s�º � S . All the edges determined by
U14U2 D ¹s; s

�º are parallel and determine a hyperplane Os of X.S/. The (vertices of
the) half spaces determined by Os can be described as

s WD
®
U j U � S ultrafilter with DCC; s 2 U

¯
;

s� WD
®
U j U � S ultrafilter with DCC; s� 2 U

¯
:

In particular, the pocset of hyperspaces H .X.S// is equal to S itself.
Vice versa, since H .X/ is a pocset, one can apply Sageev’s construction to it and one

can prove the following theorem.

Theorem A.3 (Roller duality [18]). Let X be a CAT.0/ cube complex. Then

X
�
H .X/

�
D X:

A subpocset of S is a subset A � S with A D A� equipped with the partial ordering
induced by S . We say that a pocset S splits, denoted by S D A �t B , if there exist two
non-empty subpocsets A;B 2 S such that

(1) the set S is the disjoint union A t B ,

(2) every a 2 A is incomparable with every b 2 B .

It is proved in [7] that X.S/ D X.A/ �X.B/ if and only if S D A �t B .
We need to study `1-isometric embeddings of cubes complexes into finite products of

trees (see also [1,8]). It is shown in [10] that the `1-distance between two vertices v;w 2X
is equal to the number of hyperplanes separating them. That is,

d`1.v; w/ D
ˇ̌®

h 2 H .X/ j v 2 h; w … h
¯ˇ̌
:

Definition A.4. A choice of n directions on a CAT.0/ cube complexX is a decomposition
of the set of hyperplanes as a disjoint union yH D yH1 t � � � t

yHn such that for every
i D 1; : : : ; n any two hyperplanes in yHi are disjoint. Equivalently, a choice of n directions
is a decomposition of the pocset of half-spaces H as a disjoint union of n subpocsets
H D H1 t � � � tHn such that for all h1; h2 2 Hi either h1 � h2 or h�1 � h�2 or h�1 � h2
or h1 � h�2 .

Remark A.5. If �A and �B are n-coloured flag complexes, then the universal cover of
the associated cube complex with coupled links X�A;�B (as defined in [13]) is CAT.0/
and has a natural choice of n directions. Namely, yHi is the family of hyperplanes that are
perpendicular to edges in the i th coordinate.

Remark A.6. The decomposition H D H1 t � � � tHn does not need to be a splitting of
the pocset H . Indeed, in general there will be comparable half spaces h 2Hi and h0 2Hj

for some i ¤ j .

Remark A.7. Recall that the crossing graph of a CAT.0/ cube complex is the graph
whose vertices are the hyperplanes and where two vertices are joined by an edge if the
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corresponding hyperplanes intersect. Choosing n directions onX is equivalent to choosing
an n-colouring for the crossing graph.

We define a map to a product of trees as follows. Let X be a cube complex with n
directions. Let Ti WDX.Hi / be the cube complex obtained applying Sageev’s construction
to the pocset Hi . It is easy to show that Ti is a tree for each i .

Let Y D
Qn
iD1 Ti . Then H .Y / D H1 �t � � � �t Hn. In particular, H .X/ and H .Y /

coincide as sets. We will show that the map defined by the identity from H .X/! H .Y /

induces a cubical map �WX ! Y .

Lemma A.8. An ultrafilter U on H.X/ satisfying the descending chain conditions defines
an ultrafilter on H .Y / satisfying the descending chain condition.

Proof. When seen as a subset of H .Y /, the set U will still satisfy the completeness axiom
as the complementation structure on H .X/ is the same as that on H .Y /. We must check
the consistency axiom, but it is clear that being comparable is weaker in the set H .Y /

than in H .X/, so the consistency of U in H .Y / is trivially implied by the consistency of
U in H .X/.

The above argument also implies that any descending chain in U terminates, as the
descending chains in H .Y / are descending chains in H .X/ as well.

It follows from the above that the identity map H .X/! H .Y / induces an injection
between the vertex sets of the associated cube complexes �WV.X/ ,! V.Y /—here we are
implicitly using Roller’s duality on Sageev’s construction X D X.H .X//. The injection
� extends to a cubical injection �WX ! Y . In fact, something stronger is true.

Proposition A.9. The map �W V.X/ ,! V.Y / extends to an `1-embedding of cube com-
plexes �WX ,! Y . Moreover, taking the preimage ��1 induces a bijective correspondence
between hyperplanes of Y and X .

Proof. The key fact is that in Sageev’s construction hyperplanes of X.S/ correspond to
pairs of conjugate elements ¹s; s�º. In our setting, the pocsets H .X/ and H .Y / do not
just coincide as sets: they also have the same involution operation. It follows that there is
a natural correspondence between the hyperplanes of X and Y as they are given in both
cases by couples ¹h; h�º.

Recall that, according to Sageev’s construction, two ultrafilters U and U0 with the
DCC are linked by an edge if and only if they differ by two elements U4UD ¹h;h�º (i.e.,
two points are linked by an edge if and only if they are separated by a unique hyperplane).
From the discussion above, this condition is independent of whether we are looking at the
pocset H .X/ or H .Y /, therefore the map � extends to a cubical map.

The map � is an `1-embedding, because the `1-metric is equal to the number of
hyperplanes separating them (a hyperplane ¹h; h�º separates two points U and U0 in
X D X.H .X// if and only if ¹h; h�º � U4U0). This condition is again preserved when
passing from H .X/ to H .Y /.
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Let OhX be the hyperplane of X corresponding to the pair ¹h; h�º (seen as the span
of middle points of parallel edges) and let OhY be the hyperplane of Y determined by the
same couple ¹h; h�º. To prove the “Moreover” part of the statement we need to show
that the preimage ��1. OhY / coincides with OhX . This is another easy consequence of the
above discussion. Indeed, an edge e between two vertices in X uniquely determines a
hyperplane OhX D ¹h; h�º and its image �.e/ will uniquely determine the corresponding
hyperplane OhY D ¹h; h�º. As OhY is the hyperplane spanned by the midpoints of all (and
only) the edges crossing it, it follows that the pre-image ��1. OhY / intersects all (and only)
the edges crossing OhX and it hence coincides with the hyperplane OhX .

Remark A.10. More concretely, the map � is obtained as follows: the choice of n direc-
tions yH1 t � � � t

yHn identifies n trees T1; : : : ; Tn, and � is then defined by sending a point
x 2X to the point in Y D T1 � � � � � Tn whose i th coordinate is determined by the relative
position of x with respect to the hyperplanes in yHi . This can be visualised by seeing that
crossing a hyperplane in yHi corresponds to crossing the corresponding edge of Ti . The
fact that this procedure is well defined depends on the fact that the cube complex X is
CAT.0/. Sageev’s construction is a useful tool to formalise this argument.

Recall that the cubical neighbourhood N.A/ of a set A in a cube complex X is the
smallest subcomplex of X containing A. Given a hyperplane Oh � X , its cubical neigh-
bourhood N. Oh/ is isometric to Oh � Œ0; 1�. We will denote by VN. Oh/ the interior of the
cubical neighbourhood N. Oh/.

Let X be a cube complex with n directions. Let Y D T1 � � � � � Tn be the associated
product of trees and let pi W Y ! Ti be the projection to the i th tree. Every edge in Ti
identifies a hyperplane OhTi in yH .Ti / D yHi and hence a hyperplane OhX in X . We have the
following.

Lemma A.11. Let Ve be the interior of an edge of Ti and let Ohi 2 yHi be the corresponding
hyperplane in X . Then .pi ı �/�1. Ve/ D VN . Oh/.

In particular, for every x 2 Ve the pre-image .pi ı �/�1.x/ is a convex subset of X
isometric to Oh.

Proof. Since Y is a direct product, it is clear that p�1i . Ve/ coincides with VN. OhY / � Y .
Now the lemma follows easily from Proposition A.9 because we proved that the pre-image
��1. OhY / coincides with OhX .

Remark A.12. In Lemma A.11, it is important to restrict to the interior of the edge e.
Indeed, the pre-image of the extremal points will not be contained in N. OhX / in general.

Lemma A.13. Let i WEk ,! X be an isometric embedding of a Euclidean flat. Then pj ı
� ı i.Ek/! Tj has image contained in a geodesic.

Proof. If the image is not contained in a geodesic, then it contains a branching point.
That is, pj ı � ı i.Ek/! Tj must intersect the interior three edges e1, e2, and e3 of Ti
sharing a vertex v 2 Ti . Let xr be a point in Ver \ .pj ı � ı i.Ek// for r D 1; 2; 3. Then, by
Lemma A.11, the pre-image .pj ı �/�1.xr / will be a convex subset of X that separates X
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in two half spaces. It follows that .pj ı � ı i/�1.xr / is a convex subset of Ek that separates
Ek and it must hence contain a hyperplane Er Š Ek�1—here Er is a hyperplane in the
usual Euclidean sense: not as a cube complex. (Since .pj ı �/�1.xr / is a parallel copy of
a hyperplane Ohr in VN. Ohr /, it is actually easy to show that .pj ı � ı i/�1.xr / is itself a
hyperplane in Ek .)

For every r D 1; 2; 3 we can consider the component Hr of Ek X Er not containing
the pre-image of the vertex v, and this yields to a contradiction because the spaces Hr
would form a facing triple. That is, they would be three disjoint halfspaces in Ek , and it is
easy to see that there is no such triple in the Euclidean space.

The existence of fly maps as by Definition A.1 follows easily from Lemma A.13. The
last claim we have to prove is the following.

Proposition A.14. Let N .i.Ek//�X be the cubical neighbourhood of an embedded flat,
then any fly map f restricts to a cubical `1-embedding N .i.Ek// ,! Rn.

Proof. Recall that Lj D pj .�.i.Ek///. Enlarging it if necessary, we can assume that Lj
is a subcomplex of Tj for every j D 1; : : : ; n. It is clear from the definition that any fly
map f induces a cubical isometric embedding

Qn
jD1 Lj ! Rn with respect to both the

Euclidean and `1-metrics induced by their cubical structures.
Note that

Qn
jD1 Lj �

Qn
jD1 Tj is a convex subset with respect to both the Euclidean

and the `1-metric, therefore the metric induced on
Qn
jD1Lj from the Euclidean (resp. `1)

metric of
Qn
jD1 Tj coincides with the Euclidean (resp. `1) metric induced from its cube

complex structure.
It follows that the map induced from f on

Qn
jD1 Lj is an `1-embedding also with

respect to the subspace metric. The statement now follows trivially from Proposition A.9
by noting that the image of N .i.Ek// under � is contained in

Qn
jD1Lj .

Corollary A.15. A fly map f x induces for every cube c 2 N .i.Ek// an embedding
Lk.c;N .i.Ek///! S0 � � � � � S0.
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