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Descriptive chromatic numbers of locally finite and
everywhere two-ended graphs

Felix Weilacher

Abstract. We construct Borel graphs which settle several questions in descriptive graph combin-
atorics. These include “Can the Baire measurable chromatic number of a locally finite Borel graph
exceed the usual chromatic number by more than one?” and “Can marked groups with isomorphic
Cayley graphs have Borel chromatic numbers for their shift graphs which differ by more than one?”
We also provide a new bound for Borel chromatic numbers of graphs whose connected components
all have two ends.

1. Introduction

A graph on a set X is a symmetric irreflexive relation G � X � X . In this situation,
the elements of X are called the vertices of G. Vertices x and y are called adjacent if
.x; y/ 2 G, and in this case, the pair ¹x; yº is called an edge of G. The degree of a vertex
is the number of other vertices adjacent to it. G is called locally finite if every vertex has
finite degree, is said to have bounded degree d if every vertex has degree at most d , and is
called d -regular if every vertex has degree exactly d , where d is some natural number. A
connected component of G is an equivalence class of the equivalence relation generated
by G.

A (proper) coloring of G is a function, say, c W X ! Y to some set Y such that if x
and y are adjacent, c.x/¤ c.y/. In this situation, the elements of Y are called colors. The
sets c�1.¹yº/ for y 2 Y are called color sets. If jY j D k, c is called a k-coloring. The
chromatic number of G, denoted by �.G/, is the least k such that G admits a k-coloring.

Descriptive graph combinatorics studies these notions in the descriptive setting: Let
X now be a Polish space. A graph G on X is called Borel if G is Borel in the product
space X � X . A coloring c W X ! Y is called Borel if Y is also a Polish space and c
is a Borel function. The Borel chromatic number of G, denoted by �B.G/, is the least k
such that G admits a Borel k-coloring. Similarly, c is called Baire measurable if it is a
Baire measurable function, and the Baire measurable chromatic number of G, denoted by
�BM.G/, is the least k such that G admits a Baire measurable k-coloring. For a survey
covering this exciting emerging field, see [4].

For a Borel graph G, we of course have �.G/ � �BM.G/ � �B.G/, but it is natural to
ask just how large �BM.G/ and �B.G/ can be compared to �.G/. There are many known
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examples [4] where �.G/D 2 while �BM.G/ and �B.G/ are infinite. However, for graphs
of bounded degree d , Kechris, Solecki, and Todorcevic [6] proved �B.G/ � d C 1. We
therefore restrict our attention to bounded degree graphs for the remainder of the paper.

In [7], Marks proved that the bound �B.G/ � d C 1 is sharp, even for acyclic G (so
in particular, �.G/ D 2). Thus, �B.G/ can be arbitrarily large compared to �.G/. On
the other hand, for Baire measurable chromatic numbers, Conley and Miller proved the
following [2, Theorem B].

Theorem 1.1. LetG be a locally finite Borel graph such that �.G/<@0. Then, �BM.G/�

2�.G/ � 1.

The question “How close to this bound can we get?” still remains. Previously, not
much has been known regarding this: In fact, Kechris and Marks pose the following prob-
lem [4, Problem 4.7].

Problem 1.2. Is there a bounded degree Borel graph G for which �BM.G/ > �.G/C 1?

The graphs constructed by Marks in [7] are not hyperfinite (see Section 4 for a defin-
ition). Furthermore, an analogue of Theorem 1.1 holds for measure chromatic numbers
if the extra assumption of hyperfiniteness is added (see Theorem 4.1). This led to the
question of whether the 2�.G/� 1 bound held for Borel chromatic numbers in the hyper-
finite setting [4, Question 5.19]. In [1], though, Marks’ techniques were adapted to the
hyperfinite setting, giving a negative answer to this question.

In this paper, however, we note that a certain strengthening of the hyperfiniteness
assumption is enough to get this bound. Using techniques similar to those in [2] and some
results from [8], we prove in Section 2 the following analogue of Theorem 1.1.

Theorem 1.3. Let G be a locally finite Borel graph such that �.G/ < @0 and such that
every connected component of G has two ends. Then, �B.G/ � 2�.G/ � 1.

See Section 2 for a definition of two-endedness. Also note that this condition is indeed
a strengthening of hyperfiniteness [8].

Similarly, little has been known regarding the sharpness of this bound. In fact, one of
the goals of the project which led to this paper was to resolve the following.

Problem 1.4. Is there a bounded degree Borel graph G whose connected components all
have two ends for which �B.G/ > �.G/C 1?

In this paper, we answer Problems 1.2 and 1.4 as strongly as possible, proving the
bounds in Theorems 1.1 and 1.3 are sharp.

Theorem 1.5. Let k � 3. There is a Borel 3.k � 1/2-regular graph, say, Gk , such that all
the connected components of Gk have two ends, �.Gk/ D k, and �BM.Gk/ D �B.Gk/ D

2k � 1.

The graphs Gk will arise in the following way: A marked group (in this paper) is
a pair .�; S/, where � is a (typically infinite) finitely generated group and S is a finite
symmetric set of generators for it not containing the identity. When there is no confusion,
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we will sometimes refer to a marked group by its underlying group. Consider the group
action � Õ 2� given by

.g � x/.h/ D x.g�1h/ (1.1)

for g; h 2 � and x 2 2� . This is called the left shift action. When 2� is given the product
topology, this action is clearly continuous. Let

F.2�/ D
®
x 2 2� j 8g 2 � n ¹idº; g � x ¤ x

¯
: (1.2)

This is aGı subspace of 2� , hence a Polish space. We can therefore form a Borel graph on
F.2�/ by putting an edge between x and y exactly when s � x D y for some s 2 S . This
is called the shift graph of .�; S/. We will always refer to the shift graph by its underlying
set, F.2�/. The graphs Gk will all have the form F.2�k / for some marked group �k .

Let Cay.�/ be the Cayley graph of .�; S/. This is the graph on � given by putting
an edge between group elements g and h exactly when sg D h for some s 2 S . Clearly,
as a (discrete) graph, F.2�/ is isomorphic to a disjoint union of continuum many (if �
is infinite) copies of 2� . It is therefore natural to expect to get some information on the
descriptive combinatorics of F.2�/ from the graph Cay.�/. However, in [9, Theorem 1],
the author showed that Cay.�/ is not enough to determine �B.F.2�// or �BM.F.2

�//.

Theorem 1.6 ([9]). Let k � 3. There are marked groups � and� with isomorphic Cayley
graphs for which �B.F.2�//D�BM.F.2

�//Dk but �B.F.2�//D �BM.F.2
�//D kC1.

This led to the natural question.

Problem 1.7. Are there marked groups � and� with isomorphic Cayley graphs for which
�B.F.2

�// � �B.F.2
�// > 1? What about for Baire measurable chromatic numbers?

We answer this as well by producing for each k a marked group �k whose Cayley
graph is isomorphic to that of �k , but for which �B.F.2�k // D �BM.F.2

�k // D k C 1.
Thus we get the following result.

Corollary 1.8. Let k be a natural number. There are marked groups � and � with iso-
morphic Cayley graphs but for which

�B
�
F.2�/

�
� �B

�
F.2�/

�
D �BM

�
F.2�/

�
� �BM

�
F.2�/

�
D k:

In Section 3, we define the marked groups �k and �k and compute their various
chromatic numbers. In Section 4, we note that everything said in this paper about Baire
measurable chromatic numbers can also be said about measure chromatic numbers in the
hyperfinite setting.

2. Graphs whose connected components all have two ends

In this section, we prove Theorem 1.3. The proof uses little more than some results of
Miller from [8], but nevertheless the result seems to be new and may be of interest to
some.
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Let G be a graph on a set X . If A � X , we denote by G � A the graph G \ .A � A/
on A. We call G connected if it has one connected component, and A connected if G � A
is connected.

A path between vertices x and y is a finite sequence x D x0; : : : ; xn D y such that
.xi ; xiC1/ 2 G for all i and x0; : : : ; xn�1 are all distinct. In this situation, n is called the
length of the path. Note that a graph is connected if and only if there is a path between any
two of its vertices. The path distance between x and y is the smallest n such that there is
a path of length n between x and y, or1 if there is no path between x and y. The path
distance between two sets of vertices A and B is the smallest path distance between any
pair of vertices x 2 A and y 2 B . A graph is called acyclic if it admits no paths as above
with x0 D xn.

An independent subset of a graph is a pairwise-non-adjacent set of vertices. Thus, a
coloring is just a partition of the set of vertices into independent sets.

Now assume G is connected and locally finite. We say a subset F � X divides G into
n parts if G � .X n F / has n infinite connected components. We say G has n ends if
there is a finite set F dividing G into n parts, but no such F dividing G into m parts for
any m > n. Note that if G has n ends, we can find a finite set F dividing it into n parts
such that F is furthermore connected. It should be noted that this definition is different in
general from the one used in [8] but is equivalent in the locally finite case.

Now, let G be a locally finite Borel graph on a space X whose connected components
all have two ends. Denote by ŒG�<1 the standard Borel space of finite connected subsets
of X . Let ˆ � ŒG�<1 be the set of sets which divide their connected component into two
parts. Miller proves [8, Lemma 5.3] (see also [5, Lemma 7.3]) that there is a maximal
Borel set ‰0 � ˆ whose members are pairwise disjoint. An easy modification of their
proof shows that we can instead get a maximal Borel set‰ �ˆ such that the path distance
between any two distinct members of ‰ is at least 4. Fix such a ‰.

Let T be the set of pairs .S; T / with S; T 2 ‰ such that S ¤ T and there is a path
from S to T which avoids all other points of

S
‰. Miller proves that T is an acyclic graph

on ‰, that S and T are connected in this graph if and only if they are subsets of the same
connected component of G, and that every element of ‰ is T -adjacent to at most two
other elements [8, Lemma 5.5]. (Strictly speaking, they prove these things for ‰0, but the
proofs clearly still apply to ‰.)

Lemma 2.1. Every S 2 ‰ is T -adjacent to exactly two other elements.

Proof. Suppose some S 2 ‰ has fewer than two T -neighbors. Let C be the connected
component of S . LetC� andCC be the two infinite connected components ofG � .C nS/.
Without loss of generality, CC must contain no sets in ‰. This follows from the fact that
any T 2 ‰ with T � C must be T -connected to S .

Let N be the set of points in CC whose path distance from S is exactly 4. N is finite
since G is locally finite. We claim N divides C into 2 parts: By König’s lemma, we can
find an injective sequence ¹xn j n 2 !º of points in CC such that .xn; xnC1/ 2 G for all n.
SinceG is locally finite, there must be someM for which for all n �M , the path distance
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between xn and S is at least 5. Then, the sequence ¹xn j n � M º does not pass through
N , so it is contained in an infinite connected component of G � .C n N/. Also, C� is
contained in an infinite connected component of G � .C nN/, so it suffices to show there
is no path from C� to xM avoiding N . This is clear, though, as any path from C� to xM
must pass through S , say at the point y, since xM 2 CC. Then, since the path distance
from S to xM is greater than 4, there must be some point in CC along our path from y to
xM whose path distance from S is exactly 4.

Let D be the infinite connected component of G � .C n N/ not containing S . Let
N 0 �N be the set of elements ofN adjacent to a point inD. Then,N 0 still divides C into
2 parts. Furthermore, we can find a finite subset A � D such that N 0 [ A is connected.
Then, N 0 [ A 2 ˆ, and furthermore, since every point in D has path distance at least 5
from S , the path distance between S and N 0 [ A is 4. However, since we assumed CC

contains no sets in ‰, this contradicts the maximality of ‰.

Lemma 2.2. Every connected component of G � .X n
S
‰/ is finite.

Proof. Let x 2 .X n
S
‰/. Let C be the connected component of x in the graph G, and

let D be the connected component of x in the graph G � .C n
S
‰/. We want to show D

is finite.
By maximality, there is some element of ‰ contained in C . Then, by Lemma 2.1

along with the fact that T is acyclic, we can label the elements of ‰ contained in C
as ¹Sn j n 2 Zº, where the indices are chosen such that .Sn; Sm/ 2 T if and only if
jn � mj D 1. By definition of ˆ, for each n the graph G � .C n Sn/ has two infinite
connected components; call them Cn;� and Cn;C. By definition of T , the sets Sm for
m > nmust all lie in the same connected component ofG � .C n Sn/ and likewise for the
sets Sm for m < n. Therefore, by relabeling if necessary, we can assume Sm � Cn;C for
all m > n and Sm � Cn;� for all m < n.

Now, supposeD is infinite. Then, for each n, eitherD � Cn;C orD � Cn;�. Consider
integers n, points y 2Sn, and paths from x to y. Choose n, y, and such a path such that this
path is of minimal length among all such choices. Then, this path cannot pass through any
sets Sm form¤ n. Without loss of generality, assumeD � Cn;C. We claimD � CnC1;�.
If not then D � CnC1;C, but then D and Sn are in different connected components of
G � .C n SnC1/, so there can be no path from x to Sn avoiding SnC1, a contradiction.
Therefore,D � Cn;C \CnC1;�, so this intersection is infinite. This implies, however, that
the finite set Sn [ SnC1 divides G � C into at least three parts, a contradiction.

We can now prove Theorem 1.3.

Proof. For each S 2‰, let S�D S [ ¹x 2X j 9y 2 S .x;y/2Gº. SinceG is locally finite
and each S is finite, each S� is finite. Let B� D

S
S2‰ S

�. B� is Borel since ‰ is Borel.
Since distinct S ’s had path distances of at least 4 between them, distinct S�’s have path
distances of at least 2 between them. Thus, every connected component ofG �B� is a sub-
set of some S�. In particular, these connected components are all finite. Therefore, by the
Lusin–Novikov uniformization theorem (see [3, Lemma 18.12]), there is a Borel function
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which picks out one of the finitely many �.G/-colorings of each connected component of
G �B�. We can union these to get a Borel �.G/-coloring, say c�1 WB

�!¹1;2; : : : ;�.G/º

of G � B�. Let B D B� n c��11 .¹�.G/º/ and c1 D c�1 � B . Then, B is Borel and c1 is a
Borel .�.G/ � 1/-coloring of G � B .

We claim that the connected components of G � .X n B/ are also all finite. Suppose
to the contrary that D � .X n B/ is some infinite connected component. Let C be the
connected component of G containing D. We first claim that D must contain infinitely
many points not in B�. If not, then D contains infinitely points from B� n B and only
finitely many not in B�. By construction, though, B� n B is independent, so since D is
connected, for every y 2 .B� nB/\D, there must be some x 2D nB� with .x; y/ 2 G.
Thus, there is some x 2D nB� connected to infinitely many such y’s, contradicting local
finiteness. Therefore, by Lemma 2.2, there are x; y 2 D n B� such that x and y are in
different connected components of G � .C n

S
‰/. Let x D x0; x1; : : : ; xn D y be a

path from x to y consisting of points in D. Then, there must be some S 2 ‰ and some
0 < i < n such that xi 2 S . Then, xi�1, xi , and xiC1 are all in S�. Since there are some
edges between them, they cannot all be assigned the color �.G/ by c�1 , but this means at
least one of them is in B , a contradiction.

Therefore, again by the Lusin–Novikov uniformization theorem, there is a Borel �.G/,
coloring, say, c2 W .X n B/! ¹�.G/; : : : ; 2�.G/ � 1º, of G � .X n B/. Since c1 and c2
use disjoint sets of colors, c1 [ c2 is a Borel .2�.G/ � 1/-coloring of G.

3. The construction

Fix k � 3. In this section, we define the marked groups �k and�k promised in Section 1.
We start with a finite marked group: Let Zk denote the cyclic group of order k, which

we will identify with the integers modulo k. Consider the group Zk �Zk with generating
set S D ¹.a; b/ j 0 < a; b < kº. Let H be the Cayley graph of this finite marked group.
We will think of the vertices of H as sitting on a k by k grid, with the horizontal axis
corresponding to the first coordinate and the vertical to the second. Accordingly, by a row
ofH we mean a set of the form ¹.a; b/ j a 2 Zkº for some fixed b 2 Zk , and by a column
of H we mean a set of the form ¹.a; b/ j b 2 Zkº for some fixed a 2 Zk .

Note that any independent subset of H of size greater than one must be either com-
pletely contained in some row or completely contained in some column (and not both).
Call such sets horizontal and vertical, respectively (see Figure 1).

Lemma 3.1. Let c W Zk �Zk ! ¹1; 2; : : : ; 2k � 2º be a .2k � 2/-coloring ofH . Exactly
one of the following holds:

� Every row contains a horizontal color set.

� Every column contains a vertical color set.

Proof. Since there are k rows and k columns, for both to hold simultaneously would
require 2k colors. Therefore, at most one holds.
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Figure 1. A drawing of the graph H for k D 3. The edges shown are exactly those meeting .0; 2/.
The three types of independent sets are shown in circles and labeled: cardinality one (a), vertical (b),
and horizontal (c).

Suppose neither holds. Then, there is some column C and some row R such that C
does not contain a horizontal color set and R does not contain a vertical color set. Then,
every point in R [ C must have a different color, but jR [ C j D 2k � 1. Therefore, at
least one holds.

We call c as in the lemma a horizontal coloring if the first condition holds and a
vertical coloring if the second holds.

We can now define the marked group �k : It will be the group .Zk � Zk/ � Z, with
generating set S � ¹�1;0;1º. LetG be the Cayley graph of�k . It is easy to see �.G/D k:
A k-coloring is given by sending the element ..a;b/;n/ to a for all n 2Z and 0� a;b < k.
Also note that G has two ends, as desired.

For each n 2 Z, the restriction of G to the .Zk � Zk/-orbit .Zk � Zk/ � ¹nº can be
identified withH in the obvious way. Thus, if c W .Zk �Zk/ �Z! ¹1; 2; : : : ; 2k � 2º is
a .2k � 2/-coloring of G, the restriction of c to the orbit .Zk �Zk/ � ¹nº is, for each n,
either a horizontal coloring or a vertical coloring. In the k-coloring defined in the previous
paragraph, all these restrictions were horizontal. The next lemma states that this was no
accident.

Lemma 3.2. Let c W .Zk � Zk/ � Z! ¹1; 2; : : : ; 2k � 2º be a .2k � 2/-coloring of G.
Exactly one of the following holds:

� The restriction of c to every .Zk �Zk/-orbit is horizontal.

� The restriction of c to every .Zk �Zk/-orbit is vertical.

Proof. By symmetry, it suffices to show that if the restriction of c to .Zk � Zk/ � ¹nº
is horizontal, then so is the restriction to .Zk � Zk/ � ¹n C 1º. Suppose instead that
it is vertical. For 1 � i � k, let Ri be a horizontal color set contained in the i th row
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Figure 2. A visual explanation of the proof of Lemma 3.2 in the case kD 3. The two squares enclose
neighboring .Zk � Zk/-orbits. The circles represent color sets within each orbit. Most edges are
omitted, but some are included to show any horizontal color set from the first orbit must admit an
edge to every vertical color set from the second orbit. Others are included to show that horizontal
color sets in different rows of a single orbit always have edges between them. The same is true for
vertical color sets in different columns.

of .Zk � Zk/ � ¹nº, and let Ci be a vertical color set contained in the i th column of
.Zk � Zk/ � ¹n C 1º. Observe that, for every 1 � i , j � k, there is at least one edge
between Ri and Cj (see Figure 2). This is because Ri must contain some vertex whose
first coordinate is not j and Cj must contain some vertex whose second coordinate is not
i . Furthermore, if i ¤ j , there is at least one edge between Ri and Rj , as well as between
Ci and Cj (again see Figure 2). Therefore, each Ri and Cj must have a distinct color, but
this requires 2k colors.

This leads us to a natural definition of the marked group �k : Let ' 2 Aut.Zk � Zk/
be the coordinate swapping map: '.a; b/ D .b; a/. �k will be the semi-direct product
.Zk �Zk/ Ì17!' Z, again with generating set S � ¹�1; 0; 1º. Observe that the following
gives an isomorphism between the Cayley graphs of �k and �k :

�
.a; b/; n

�
7!

´ �
.a; b/; n

�
for n even;�

.b; a/; n
�

for n odd;
(3.1)

where a; b 2 Zk and n 2 Z. Thus, we still have �.F.2�k // D �.Cay.�k// D k, and
this Cayley graph still has two ends as desired. We now compute the Borel and Baire
measurable chromatic numbers of F.2�k /, proving Theorem 1.5.

Proposition 3.3. �B.F.2�k // D �BM.F.2
�k // D 2k � 1.
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Proof. Theorem 1.3 gives us the upper bound �B.F.2�k //� 2k � 1, so it remains to show
there is no Baire measurable .2k � 2/-coloring of F.2�k /.

Suppose first that c W .Zk �Zk/Ì17!' Z!¹1;2; : : : ; 2k � 2º is a .2k � 2/-coloring of
Cay.�k/. Note that the isomorphism (3.1) sends .Zk �Zk/-orbits to .Zk �Zk/-orbits but
preserves the notions of “horizontal” and “vertical” for those with even Z-coordinate and
flips those notions for those with odd Z-coordinate. Thus, Lemma 3.2 has the following
consequence for �k : If for some n the restriction of c to .Zk � Zk/ � ¹nº is horizontal,
the restriction to .Zk �Zk/ � ¹nC 1º must be vertical, and vice versa.

Now suppose c WF.2�k /!¹1;2; : : : ; 2k � 2º is a Baire measurable .2k � 2/-coloring.
Define the map d W F.2�k /! ¹1; 2º by sending a point x to 1 if the restriction of c to
the .Zk � Zk/-orbit of x is horizontal and 2 if it is vertical. It is clear that d is Baire
measurable since c was. By the previous paragraph, d.x/ ¤ d...0; 0/; 1/ � x/ for all x.

Thus, d is a Baire measurable 2-coloring of the graph induced by the action of
..0; 0/; 1/ (that is, the graph for which two points are adjacent exactly if one is sent to the
other by this element). In [6], it was established that �BM.F.2

Z// > 2, where Z is given
the usual generators, and we can follow the argument used there to reach a contradiction
from the existence of d : First observe that d�1.¹1º/ and d�1.¹2º/ are both invariant under
the generically ergodic action of ..0; 0/; 2/, so, since they partition the space, one must be
meager and the other comeager. The action of ..0; 0/; 1/ gives a homeomorphism sending
one of these sets to the other, though, a contradiction.

Finally, we compute the Borel and Baire measurable chromatic numbers of F.2�k /,
which gives Corollary 1.8 as promised.

Proposition 3.4. �B.F.2�k // D �BM.F.2
�k // D k C 1.

Proof. We first show there is no Baire measurable k-coloring c W F.2�k /! ¹1; 2; : : : ; kº.
Suppose we had such a coloring. Observe that all k-colorings of the Cayley graph of �k
look essentially like the one defined before Lemma 3.2: Up to a relabeling of the colors,
they assign either the color a to ..a; b/; n/ for all b and n or the color b to ..a; b/; n/ for
all a and n. In particular, the elements g and ..0; 0/; 1/ � g always have the same color.

Therefore, if we let Ci D c�1.¹iº/ for each i , each Ci is sent to itself by the action of
the element ..0; 0/; 1/. Since the order of this element is infinite, a standard argument (see
[3, Theorem 8.46]) shows each Ci is either meager or comeager. Since the Ci ’s partition
F.2�k /, at least one (in fact, all but one), say,Ci0 , must be meager. The sets ..a;b/;0/ �Ci0
for a; b 2 Zk cover F.2�k /, though, so this is a contradiction.

It remains to construct a Borel .k C 1/-coloring c W F.2�k /! ¹1; 2; : : : ; k C 1º.
A subset of x is called r-discrete, for r a natural number, if the path distance between

any two points in A is greater than r . It is an easy corollary of [6, Proposition 4.2] that if
G is a Borel graph of bounded degree, then X contains a Borel maximal r-discrete subset
for every r .

Applying this, let A � F.2�k / be a Borel maximal 3k-discrete set. Then, every
.Zk�Zk/-orbit contains at most one element of A. For every x 2A, color the .Zk�Zk/-
orbit of x by setting c...a; b/; 0/ � x/ D a for 1 � a, b � k.
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We now color the .Zk � Zk/-orbits between those meeting A. Let x 2 A with
.Zk � Zk/-orbit E, and let N be the smallest positive number such that ..0; 0/; N / � E
contains a point of A. Call that point y. Also note N > 3k by definition of A. There are
elements 1 � a0, b0 � k such that y D ..a0; b0/; N / � x. Also let En denote the orbit
..0; 0/; n/ � E for n 2 Z, so, for example, y 2 A \ EN . We need to extend c by coloring
all the En’s for 0 < n < N . We will proceed one n at a time.

Given a .Zk � Zk/-orbit E 0 colored already by c and a positive integer n, let cn.E 0/
denote the coloring on ..0; 0/; n/ � E 0 given by cn.E 0/.z/ D c...0; 0/;�n/ � z/. We could
try to extend our coloring c, by coloring E1 with c1.E/, then E2 with c1.E1/, and so on.
If we happened to have c � EN D cN .E/, this would work out, but otherwise we will
have a conflict. We can use our additional color to fix this.

Now, color E1 by using c1.E/, but then swapping the color k with the color k C 1.
Since c � E does not use the color k C 1, this does not create a conflict. Then, c � E1
does not use the color k, so we can color E2 by using c1.E1/, but then swapping the color
a0 with the color k. Then, c � E2 does not use the color a0, so we can color E3 by using
c1.E2/, but then swapping the color kC 1with the color a0. Now, c �E3 does not use the
color k C 1, and furthermore, it looks like c3.E/, but with the colors k and a0 swapped.
Note that, by performing this swap, we have arranged that cN�3.E3/ agrees with c � EN
on the a0th row.

We can repeat this process k times, so that, for each i � k, E3i will not use the color
k C 1 and cN�3i .E3i / will agree with c � EN on i rows. In particular, we will have
cN�3k.E3k/D c �EN . Thus, we can color the remaining orbitsE3kCi for 0< i <N � 3k
using ci .E3k/. Thus, we have a .k C 1/-coloring c as desired. Since A was Borel, it is
clear that c is Borel, so we are done.

4. Measure chromatic numbers

In this section, we extend our results to the measurable setting.
Let G be a Borel graph on a space X , now equipped with a Borel probability meas-

ure �. Just as we defined Borel and Baire measurable colorings, we can define �-measur-
able colorings and the �-measurable chromatic number, denoted by ��.G/. The measure
chromatic number of G, denoted by �M .G/, is the supremum of ��.G/ over all Borel
probability measures � on X .

An equivalence relationE onX is called Borel if it is Borel as a subset ofX �X .E is
called finite if its equivalence classes are all finite.E is called hyperfinite if it can be written
as E D

S
n2! En for some increasing sequence En of finite Borel equivalence relations.

G is called hyperfinite if its connected component equivalence relation is hyperfinite.
In [2, Theorem A], Conley and Miller prove an analogue of Theorem 1.1 for measure

chromatic numbers with the added assumption of hyperfiniteness.

Theorem 4.1. Let G be a hyperfinite locally finite Borel graph such that �.G/ < @0.
Then, �M .G/ � 2�.G/ � 1.
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As in the Baire measurable situation, the sharpness of this bound was previously
unknown. All of the arguments we made in Section 3 in the Baire measurable setting
still work in the measurable setting. Most crucially, we have an ergodicity argument
establishing �M .F.2Z// > 2 just as we did for the Baire measurable chromatic num-
ber, and as in the proof of Proposition 3.3, this can be adapted to give a lower bound for
�M .F.2

�k //. Also, the arguments regarding �BM.F.2
�k // in the proof of Proposition 3.4

still go through in the measure theoretic setting upon replacing “meager” and “comeager”
with “measure 0” and “measure 1,” respectively. Therefore, we have:

Proposition 4.2. For all k � 3, �M .F.2�k // D 2k � 1 and �M .F.2�k // D k C 1.

As was noted in the introduction, these graphs are hyperfinite since their connected
components all have two ends. Thus, the bound in Theorem 4.1 is indeed sharp.

Theorem 4.3. Let k � 3. There is a Borel hyperfinite 3.k � 1/2-regular graph, say, Gk ,
for which �.Gk/ D k but �M .Gk/ D 2k � 1.

Similarly, alongside Theorem 1.6, Weilacher [9] proves that there are marked groups
with isomorphic Cayley graphs can have measure chromatic numbers which differ by one
but notes that it is open whether or not these numbers can differ by more than one. By
Proposition 4.2, we have resolved this as well.

Corollary 4.4. Let k be a natural number. There are marked groups � and � with iso-
morphic Cayley graphs but for which j�M .F.2�// � �M .F.2�//j > k.
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