
Groups Geom. Dyn. 16 (2022), 225–246
DOI 10.4171/GGD/646

© 2022 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Hyperbolic quotients of projection complexes

Matt Clay and Johanna Mangahas

Abstract. This paper is a continuation of our previous work with Margalit where we studied group
actions on projection complexes. In that paper, we demonstrated sufficient conditions so that the
normal closure of a family of subgroups of vertex stabilizers is a free product of certain conjugates
of these subgroups. In this paper, we study both the quotient of the projection complex by this
normal subgroup and the action of the quotient group on the quotient of the projection complex. We
show that under certain conditions the quotient complex is ı-hyperbolic. Additionally, under certain
circumstances, we show that if the original action on the projection complex was a non-elementary
WPD action, then so is the action of the quotient group on the quotient of the projection complex.
This implies that the quotient group is acylindrically hyperbolic.

1. Introduction
Projection complexes were originally defined by Bestvina–Bromberg–Fujiwara and were
used to show that the mapping class group of an orientable surface has finite asymptotic
dimension [1]. The motivating idea behind these complexes is the following. Start with
a collection of subspaces ¹Ziº contained in some metric space X . We want these sub-
spaces to satisfy some properties akin to negative curvature; in particular, we require that
the nearest point projection from any one subset Zi to another subset Zj has uniformly
bounded diameter. For example, one could take X to be the hyperbolic plane and the col-
lection ¹Ziº to be the orbit of a geodesic in X under a discrete group of isometries of X .
The projection complex built out of this data is the graph with vertex set ¹Ziº where two
vertices Zi and Zj are joined by an edge if the diameter of the union of their projections
to any other Zk is small. A key feature of a projection complex is that, in general, it is
a quasi-tree, in other words, it is quasi-isometric to a tree [1, Theorem 3.16]. Projection
complexes have found several useful applications lately by many authors [2, 3, 8–12].

In a previous work with Margalit, we studied group actions on projection complexes
[7]. We derived a structure theorem for normal subgroups generated by elliptic elements
under some hypotheses; see Section 2.2 for the exact statement. We were able to apply our
structure theorem to produce new examples of normal subgroups of mapping class groups
of orientable surfaces that are isomorphic to right-angled Artin groups. In particular, we
produced examples that were not free.

In this paper, we work in the general setting of a group acting on a projection complex
with the same set of hypotheses as before and study both the quotients of the projection

2020 Mathematics Subject Classification. Primary 20F65; Secondary 57M07.
Keywords. Projection complex, acylindrical hyperbolicity, weak proper discontinuity, hyperbolic quotient.

https://creativecommons.org/licenses/by/4.0/


M. Clay and J. Mangahas 226

complex by such normal subgroups and the action of the quotient group on the corre-
sponding quotient complex. These appear as Theorem 1.1 and Theorem 1.2, respectively.
To state these results, we describe the set-up we studied before and continue to study in
this paper.

Briefly, a projection complex is a graph P and a collection of functions

dvW V n ¹vº � V n ¹vº ! R�0;

where V is the set of vertices of P and v 2 V . The full definition appears in Section 2.1.
Following our previous work and as explained below, our definition is a mild modification
of the original definition of Bestvina–Bromberg–Fujiwara.

Let P be a projection complex, and let G be a group that acts on P . Further, for each
vertex v of P , let Rv be a subgroup of the stabilizer of v in G. Let L > 0. We say that
the family of subgroups ¹Rvº is an equivariant L-spinning family of subgroups of G if it
satisfies the following two conditions

� Equivariance: if g lies in G and v is a vertex of P , then

gRvg
�1
D Rgv:

� Spinning: for any distinct vertices v and w of P and any nontrivial h 2 Rv we have

dv.w; hw/ � L:

By the equivariance condition, for each vertex v the subgroup Rv is normal in StabG.v/,
and the subgroup H of G generated by the Rv is normal in G. If ¹viº is a set of orbit
representatives for the action of G on the vertices of P , then H is the normal closure of
the set ¹Rvi º.

We can now state our theorem regarding the quotient complex.

Theorem 1.1. Let P be a projection complex and let G be a group acting on P . There
exists a constant Lhyp.P / with the following property. If L � Lhyp.P / and if ¹Rvº is an
equivariant L-spinning family of subgroups of G, then P=hRvi is ı-hyperbolic.

We also examine the action of the quotient group G=hRvi on the quotient space
P=hRvi. Our result on the action briefly says that certain features of the action of G
on P persist in the quotient action. Before we can state our result on this action, we need
to define a number of notions.

Let X be a geodesic metric space and let G be a group that acts on X by isometries.
An element f of G is hyperbolic if

lim
n!1

d.x; f nx/

n

is positive for some x 2 X , equivalently, for any x 2 X . Two hyperbolic elements, f1
and f2, of G are independent if d.f n11 x; f

n2
2 x/!1 as n1; n2!˙1 for some x 2 X ,

equivalently, for any x 2 X .
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An element f of G is a WPD element if f is hyperbolic and if for all points x 2 X
and for all D � 0, there is an M � 0 such that the set®

g 2 G j d.x; gx/ � D and d.f Mx; gf Mx/ � D
¯

is finite. We remark that it suffices to demonstrate finiteness of the above set at a single
point in X . The notion of a WPD element was introduced by Bestvina–Fujiwara as a
tool for constructing quasi-morphisms [5]. There are several known examples of WPD
elements: pseudo-Anosov mapping classes acting on the corresponding curve complex [5]
and fully irreducible outer automorphisms of a free group acting on the corresponding free
factor complex [4] for instance. If the action of G on X is properly discontinuous, then
any hyperbolic element is a WPD element.

The action of G on X is a non-elementary WPD action if there exist two elements in
G that are WPD elements and independent. We remark that if X is ı-hyperbolic, G is not
virtually cyclic and there is one element f in G that is a WPD element, then for some
element g in G, the elements f and gfg�1 are independent WPD elements. In fact, one
can take any g 2 G such that hf i \ ghf ig�1 is finite.

We can now state our theorem on the action of the quotient group on the quotient
complex.

Theorem 1.2. Let P be a projection complex and letG be a group with a non-elementary
WPD action on P . There exists a constant LWPD.P ; G/ with the following property. If
L � LWPD.P ; G/ and if ¹Rvº is an equivariant L-spinning family of subgroups of G,
then the action of G=hRvi on P=hRvi is a non-elementary WPD action.

Precisely, if f1 and f2 are independent WPD elements of G for its action on P , then
there is a constant LWPD.P ; f1; f2/ such that their images Nf1 and Nf2 inG=hRvi are inde-
pendent WPD elements for the action of G=hRvi on P =hRvi when L � LWPD.P ; f1; f2/

and ¹Rvº is an equivariant L-spinning family of subgroups of G.

Whereas the constant in Theorem 1.1 does not depend on G, the constant in Theo-
rem 1.2 necessarily does. Indeed, if G is equal to hRvi, then the quotient group is trivial.
Hence we must choose L after G—more precisely after choosing two independent WPD
elements—to ensure that the quotient is as claimed.

There is a strengthening of the WPD condition called acylindricity that arises in several
settings that we describe now.

Let X be a metric space and let G be a group acting on X by isometries. The action is
acylindrical if for all D � 0 there exist R � 0 and N � 0 such that for all points x and y
in X where d.x; y/ � R, the set®

g 2 G j d.x; gx/ � D and d.y; gy/ � D
¯

contains at most N elements.
A group G is acylindrically hyperbolic if it admits an acylindrical action on a hyper-

bolic space for which there exist elements f1 and f2 in G that are hyperbolic and inde-
pendent. Both the mapping class group of an orientable surface [6] and the outer auto-
morphism group of a finitely generated free group are acylindrically hyperbolic [14].
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There are several other examples and much is known about this class of groups. The
paper by Osin contains a survey of examples and results for acylindrically hyperbolic
groups [14].

Osin derived a number of conditions that are equivalent to acylindrical hyperbolicity,
one of which is that the group is not virtually cyclic and admits an action on a ı-hyperbolic
space where one element is a WPD element [14, Theorem 1.2]. Hence we obtain the
following corollary of Theorems 1.1 and 1.2.

Corollary 1.3. Let P be a projection complex and let G be a group with non-elementary
WPD action on P . There exists a constant LWPD.P ; G/ with the following property. If
L � LWPD.P ; G/ and if ¹Rvº is an equivariant L-spinning family of subgroups of G,
then G=hRvi is acylindrically hyperbolic.

In Section 8, we describe new examples of acylindrically hyperbolic groups coming
from this construction. Each of these examples is the quotient of the mapping class group
of an orientable surface by a normal subgroup we produced in our earlier work.

The strategy to prove Theorem 1.1 and Theorem 1.2 is very similar to strategy of
Dahmani–Hagen–Sisto in a recent paper [10]. In this paper, Dahmani–Hagen–Sisto con-
sider the action of the subgroup of the mapping class group generated by kth powers of
Dehn twists on the curve graph, i.e., the 1-skeleton of the curve complex, and they prove
results similar to Theorem 1.1 and Theorem 1.2. They make use of the fact shown by Dah-
mani that the curve graph has the structure of a composite projection graph [8]. That is,
there is a partition of the curve graph into finitely many pieces that behave like a projection
complex, along with certain combatility conditions on how the pieces interact. Since we
deal with a projection complex as opposed to a composite projection graph, some parts of
their strategy can be simplified.

In order to prove Theorem 1.1, we show that geodesic triangles in P=hRvi lift to
geodesic triangles in P (Proposition 4.3). As P is a quasi-tree, it is a ı-hyperbolic met-
ric space and hence geodesic triangles are ı0-thin for some ı0. As the quotient map
pW P ! P =hRvi is 1-Lipschitz, this shows that the geodesic triangles in P =hRvi are
ı0-thin as well. The proof of Theorem 1.2 is similar except that it involves lifting geodesic
quadrilaterals. A key fact needed here is that a geodesic in P for which the projection
of any two of its vertices to any other vertex in P is uniformly bounded is isometrically
embedded in the quotient (Lemma 7.1).

A closed path in P =hRvi can be lifted to a path in P with endpoints x and hx for
some h 2 hRvi. We describe a technique called path bending for replacing the lifted path
with a new lift. There is a notion of complexity for an element in hRvi. We show that
when x ¤ hx, we can bend the given lift to get a lift from x to h0x where h0 has less
complexity than that of h (Proposition 3.2). This is the technique known as shortening and
it plays a key role in understanding both lifts (Proposition 4.3) and images (Lemma 6.1).
This technique was introduced by Dahmani–Hagen–Sisto and is also essential to their
work [10].
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1.1. Outline of paper

Section 2 collects the necessary facts on projection complexes that are needed for the
remainder. Starting in Section 3, we follow the strategy of Dahmani–Hagen–Sisto [10].
In Section 3, we prove the main technical tool of the paper: Proposition 3.2. This is the
technique known as shortening and allows us to replace a lift of a path in the quotient
of the projection complex with another lift that is simpler in a precise sense. We apply
the shortening tool in Section 4 to show that geodesic quadrilaterals in the quotient of the
projection complex lift to geodesic quadrilaterals. The proof of Theorem 1.1 appears in
Section 5. In Section 6, we show that when vertices along a geodesic in the projection
complex have bounded projections, the image of the geodesic in the quotient graph is
still a geodesic. Using this, we can establish that certain WPD elements for the action of
G on P have images in G=hRvi that are still WPD elements for the action of G=hRvi
on P =hRvi. In Section 7, we prove Theorem 1.2. Finally, in Section 8 we present some
examples when G is the mapping class group of a surface.

2. Projection complexes, windmills, and pivot points

In this section, we provide the definitions of projection complexes, windmills, and pivot
points. The majority of the discussion in this section appears in our previous work with
Margalit [7]. The essential material that is needed for the sequel is recorded in Lemma 2.1.

2.1. Projection complexes

We begin with the definition of a projection complex. Let Y be a set and let � � 0 be a
constant. Assume that for each y 2 Y there is a function

dy W Y n ¹yº � Y n ¹yº ! R�0

with the following properties.

Symmetry: dy.x; z/ D dy.z; x/ for all x; y; z 2 Y .

Triangle inequality: dy.x; z/C dy.z; w/ � dy.x; w/ for all x; y; z; w 2 Y .

Inequality on triples: min¹dy.x; z/; dz.x; y/º � � for all x; y; z 2 Y .

Finiteness: #¹y 2 Y j dy.x; z/ > �º is finite for all x; z 2 Y .

These conditions are known as the projection complex axioms. When we say that a set Y
and a collection of functions ¹dyºy2Y as above satisfy the projection complex axioms, the
constant � is implicit.

For a given K � 0, we will define a graph PK.Y / with vertices corresponding to the
elements in Y . The edges are defined using the notion of modified distance functions.

Given the functions ¹dyº, Bestvina–Bromberg–Fujiwara [1] constructed another col-
lection of functions ¹d 0yºy2Y , where each d 0y shares the same domain and target as dy .
Because the definition of the d 0y is technical and because we do not use the definition
in this paper, we do not state it here. Bestvina–Bromberg–Fujiwara [1, Theorem 3.3B]
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showed that the modified functions are coarsely equivalent to the original functions: for
x ¤ y ¤ z 2 Y , d 0y.x; z/ � dy.x; z/ � d

0
y.x; z/C 2� .

FixK � 0. Then two vertices x; z of PK.Y / are connected by an edge if d 0y.x; z/�K
for all y 2 Y � ¹x; zº. Let d denote the resulting path metric on PK.Y /.

Bestvina–Bromberg–Fujiwara showed that for K large enough relative to � , there
are constants Ce, Cp, and Cg, so that the following properties hold (see [1, Proposi-
tion 3.14 and Lemma 3.18]).

Bounded edge image. If x ¤ y ¤ z are vertices of PK.Y / and d.x; z/ D 1, then
dy.x; z/� Ce.

Bounded path image. If a path in PK.Y / connects vertices x to z without passing
through the 2-neighborhood of the vertex y, then dy.x; z/ � Cp.

Bounded geodesic image. If a geodesic in PK.Y / connects vertices x to z without pass-
ing through the vertex y, then dy.x; z/ � Cg.

(The bounded edge image property follows from the definition of the edges of PK.Y /,
with Ce D K C 2� .) If K is large enough so that the graph PK.Y / satisfies the bounded
edge, path, and geodesic properties for some Ce, Cp, and Cg, then we say that PK.Y / is a
projection complex.

This is the same definition as we used in our previous work [7]. As mentioned there, we
note that our terminology is not standard; in the papers by Bestvina–Bromberg–Fujiwara
[1] and Bestvina–Bromberg–Fujiwara–Sisto [3], every PK.Y / is called a projection com-
plex.

Group actions on projection complexes. We say that a groupG acts on a projection com-
plex PK.Y / if G acts on the set Y in such a way that the associated distance functions dy
are G-invariant; i.e., dgy.gx; gz/ D dy.x; z/. We note that if the original distance func-
tions dy are G-invariant, then the modified distance functions are G-invariant as well—as
is evident from the definition [1, Definition 3.1]—and so the action of G on Y extends an
action of G on the graph PK.Y / by simplicial automorphisms.

2.2. Windmills

To understand the action of hRvi on P , in our previous work we used the notion of a
windmill. This tool is also necessary in this current work and we review the construction
now.

Given an action of a group G on a projection complex P with an equivariant family
of subgroups ¹Rvº of G, we can inductively define a sequence of subgraphs Wi of P , a
sequence of subsets Oi of the set of vertices of P , and a sequence of subgroups Hi of G
as follows.

Let v0 be some base point for P . To begin the inductive definitions at i D 0, we define

� H0 D Rv0 and

� W0 D O0 D ¹v0º.
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For i � 1, we denote by Ni the 1-neighborhood of Wi�1, we denote by Li the vertices of
Ni nWi�1, and we define

� Hi D hRv j v 2 Ni i,

� Wi D Hi �Ni , and

� Oi D a set of orbit representatives for the action of Hi�1 on Li .

The set ¹.Hi ;Wi ;Oi /º1iD0 is called a set of windmill data for the equivariant family ¹Rvº.
We observe that each Wi is connected.

The subgroup H of G generated by the Rv is the direct limit of the Hi . Let O be
the union of the sets of representatives Oi . In our previous work with Margalit [7, Theo-
rem 1.6], we proved the existence of a constant L.P / such that if L � L.P / and ¹Rvº is
an equivariant L-spinning family of subgroups, then

H Š �
v 2 O

Rv:

For the remainder, we will always assume that L � L.P / whenever we are discussing an
equivariant L-spinning family so that this free product decomposition is valid. Each of the
constants of the form L� defined in the sequel is at least L.P /.

2.3. Pivot points

In our previous work, we introduced the notion of the set of pivot points for an element h
of H in order to understand the group structure of H [7]. We review this notion now and
state Lemma 2.1 which records the necessary technical facts required for the shortening
argument in Section 3.

The level of a nontrivial element h 2 H is the minimal index i such that h 2 Hi . We
define the level of the identity element to be �1.

Each h 2 H with level i has a syllable decomposition h1 � � � hn, where each syllable
hk is either a nontrivial element of Hi�1 or a nontrivial element of Rvk with vk 2 Oi .
Moreover, no two consecutive syllables are of the first type and consecutive syllables hk
and hkC1 of the second type have distinct corresponding fixed vertices vk and vkC1. We
refer to n as the syllable length of h. As long as L � L.P /, which will be our standing
assumption, this syllable decomposition is unique for an equivariant L-spinning family
¹Rvº.

Let i � 1 and fix some element h of H with level i and with syllable decomposition
h D h1 � � �hn. For k 2 ¹1; : : : ; nº with hk … Hi�1 and with corresponding fixed vertex vk
we define a vertex wk of P as follows:

wk D h1 � � � hk�1vk :

Note that vk and wk are not defined for the syllables hk that lie in Hi�1. Let Piv.h/ be
the ordered list of points wk , and call these the pivot points for h. For h 2 H0 we define
Piv.h/ to be empty.

There are several key properties regarding windmills and pivot points that we recall
now.
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Lemma 2.1. Let P be a projection complex and let G be a group acting on P . There are
constants L0 and m with the following properties. Suppose L � L0 and suppose ¹Rvº is
an equivariant L-spinning family of subgroups of G. Let H D hRvi and choose windmill
data ¹.Hi ; Wi ;Oi /º.

(1) If h is an element of H and if w 2 Piv.h/, then dw.v0; hv0/ > L=2.

(2) If h is an element of H and if w, w0 are pivot points for h with w < w0, then

dw.v0; w
0/ > L=2 � � and dw 0.v0; w/ � �:

(3) For all i � 1, if x 2 Ni and v … Wi�1 with v ¤ x, then dv.v0; x/ � m.

(4) For all i � 1, if h has level i , then no pivot point for h lies in Wi�1.

Proof. Using the constants associated with P , we set m D 11Ce C 6Cg C 5Cp and L0 D
4.mC �/C 1. We remark that m is the same constant as in the proof of Theorem 1.6 in
our prior work [7] and that L0 � L.P / from that same theorem. The above listed facts
follow from results and arguments appearing in the proof of Theorem 1.6 in that paper as
we now explain.

Proof of (1). Fix an element h in H with syllable decomposition h D h1 � � � hn. If the
level of h is less than 1, the statement is vacuous. Hence suppose that the level of h is
at least 1. Consider a pivot point w D h1 � � � hk�1vk for h. Equation (1) in the proof of
Theorem 1.6 in our prior work states that

dw.v0; hv0/ � dw.v0; hkv0/ � 2.mC �/:

As dw.v0; hkv0/ � L and L=2 > 2.mC �/, the statement holds.

Proof of (2). Again, fix an element h in H and assume that the level of h is at least 1
as the statement is vacuous otherwise. Let w and w0 be pivot points for h with w < w0.
Statement (B) of the inductive hypothesis in the proof of Theorem 1.6 implies that there is
a geodesic from v0 to w avoiding w0. Hence we have dw 0.v0; w/ � Cg. Therefore, using
the first item, we have

dw 0.w; hv0/ � dw 0.v0; hv0/ � dw 0.v0; w/ > L=2 � Cg > �:

Thus by the inequality on triples, we find dw.w0; hv0/ � � . From this, using the first item
again, we conclude that

dw.v0; w
0/ � dw.v0; hv0/ � dw.w

0; hv0/ > L=2 � �:

As dw.v0; w0/ > L=2 � � > � , by the inequality on triples, we have dw 0.v0; w/ � � .

Proof of (3). This is statement (C) of the inductive hypothesis in the proof of Theo-
rem 1.6.

Proof of (4). Fix i � 1 and let h be an element of H with level i . The first pivot point
for h;w lies in Li by definition. As Li is disjoint from Wi�1, the statement holds for this
pivot point. Letw0 be another pivot point for h. By the second item, we have dw.v0;w0/ >
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L=2 � � > m. If w0 2 Wi�1 � Ni , then as w … Wi�1, the third item would imply that
dw.v0; w

0/ � m. This is a contradiction, hence w0 … Wi�1.

3. Shortening via pivot points
In this section, we introduce the key technical tool: shortening. The precise statement
is given in Proposition 3.2. This proposition will allow us to bend paths in P without
changing their images in the quotient P =hRvi. The bent path has a lower complexity in a
precise sense that we will explain. This will allow us to conclude that certain closed paths
in P =hRvi lift to closed paths in P .

Before we can state Proposition 3.2 we need to alter the notions of level and pivot
points so that they are better suited for conjugacy classes. Assume that ¹Rvº is an equiv-
ariant L-spinning family of subgroups of G. Let H D hRvi and choose windmill data
¹.Hi ; Wi ;Oi /º.

Complexity of an element in H . The complexity of an element h 2 H is the ordered
pair .i.h/; n.h//, where i.h/ is the minimal index of any H -conjugate of h and n.h/ is the
minimal syllable length of anyH -conjugate of h that has level i.h/. Lexicographical order
on the pair .i.h/; n.h// gives a weak order on the elements in H . The only element with
i.h/ D �1 is the trivial element. Also, we remark that if i.h/ D 0, then n.h/ D 1.

Essential pivot points. Given an element h 2 H with i.h/ D i and n.h/ D n, we can
express h as a reduced word

h D g.h1 � � � hn/g
�1;

where each hk is either a nontrivial element of Hi�1 or a nontrivial element of Rvk with
vk 2 Oi and g 2 H . If n.h/ > 1, then minimality of n.h/ implies that if h1 2 Hi�1, then
hn …Hi�1, and that if h1 2Rv1 , then hn …Rv1 . The subset of Piv.h/ corresponding to the
syllables hk that lie in Rvk for some vk 2 Oi are called essential pivot points. We denote
this subset by Piv�.h/. This set is nonempty so long as i.h/ � 1.

The following lemma, whose proof is an easy exercise from the definitions, justifies
calling these pivot points essential.

Lemma 3.1. Let P be a projection complex and let G be a group acting on P . Suppose
that ¹Rvº is an equivariant L-spinning family of subgroups of G. Let H D hRvi and
choose windmill data ¹.Hi ; Wi ;Oi /º. The following statements are true.

(1) If the syllable length of h 2H equals n.h/, then every pivot point is essential, i.e.,
Piv�.h/ D Piv.h/.

(2) If h and g are elements of H , then Piv�.ghg�1/ D g Piv�.h/.

(3) If h is an element of H and k � 1, then

Piv�.hk/ D
k�1[
jD0

hj Piv�.h/

as ordered sets.
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Items (1) and (2) imply that if the syllable length of h equals n.h/, then Piv�.ghg�1/D
g Piv.h/. We remark that items (2) and (3) of Lemma 3.1 are false for the set of all pivot
points. We now state and prove the shortening proposition.

Proposition 3.2. Let P be a projection complex and let G be a group acting on P . There
is a constant Lshort with the following properties. Suppose that L � Lshort and that ¹Rvº is
an equivariant L-spinning family of subgroups of G. Let H D hRvi and choose windmill
data ¹.Hi ;Wi ;Oi /º. Let x be a vertex in P and h 2H such that hx ¤ x. Then there exists
a vertex v of P and element hv of Rv such that

(1) either v 2 ¹x; hxº or dv.x; hx/ > L=10;

(2) hvh < h.

The first item roughly translates as stating that v lies on the geodesic from x to hx.

Proof. Let L0 and m be the constants from Lemma 2.1. Set Lshort D max¹L0; 5m; 14�º.
Take L � Lshort and suppose that G is acting on P and that ¹Rvº is an equivariant L-
spinning family of subgroups of G.

Fix a vertex x of P and an element h of H such that hx ¤ x. Let i D i.h/, n D n.h/
and express h as a reduced word:

h D gh1 � � � hng
�1;

where each hk is either a nontrivial element of Hi�1 or a nontrivial element of Rvk with
vk 2 Oi .

First, suppose that i D 0 and so h D gh1g�1 where h1 2 Rv0 . In this case, we take
vD gv0 and hv D gh�11 g

�1 2Rv . If v … ¹x;hxº, then dv.x;hx/D dv0.g
�1x;h1g

�1x/�

L > L=10. As hvh is the identity, clearly hvh < h.
Hence for the remainder, we assume that i is at least 1. In particular, the set Piv�.h/

is nonempty. Our strategy is to find an essential pivot point w for h and an integer p
such that v D hpw satisfies the first item. Given such a pivot point w D gh�vk , where
h� D h1 � � � hk�1, we take hv D hp.gh� /h�1k .gh� /

�1h�p 2 Rv . Then

hvh D
�
hp.gh� /h

�1
k .gh� /

�1h�p
�
h

D hp
�
.gh� /h

�1
k .gh� /

�1h
�
h�p

D hp.gh1 � � � hk�1hkC1 � � � hng
�1/h�p:

Hence for this element we have hvh < h, which is the second item.
If ¹x; hxº \ Piv�.h/ ¤ ;, we can take w to be an essential pivot point in this intersec-

tion and set v D w.
Thus we may assume that ¹x; hxº \ Piv�.h/ D ;. There are two cases depending on

whether x 2 gWi or x … gWi . Set Nh D h1 � � � hn so that h D g Nhg�1. We observe that Nh
has level i .

For the first case, we initially assume that x 2 gNi � gWi . Letw be a pivot point for Nh,
thus gw is an essential pivot point for h. By Lemma 2.1 (1), we have that dw.v0; Nhv0/ >
L=2. By Lemma 2.1 (4), we have that w … Wi�1. Since Nh�1w is a pivot point for Nh�1,



Hyperbolic quotients of projection complexes 235

Lemma 2.1 (4) also implies that Nh�1w … Wi�1 as well. Hence by Lemma 2.1 (3) as
g�1x 2Ni and w; Nh�1w …Wi�1 we have that dw.g�1x; v0/�m and dw. Nhg�1x; Nhv0/D
d Nh�1w.g

�1x; v0/ � m. Therefore

dgw.x; hx/ D dw.g
�1x; Nhg�1x/ � dw.v0; Nhv0/ � dw.v0; g

�1x/ � dw. Nhv0; Nhg
�1x/

> L=2 � 2m � L=10:

Hence we may set v D gw.
Now suppose that x 2 gWi � gNi . Then there is an h0 2 Hi such that h0x 2 gNi .

Let h0 D h0hh�10 and x0 D h0x. We have h0x0 ¤ x0. Fix some pivot point w for Nh and
so gw is an essential pivot point for h. By Lemma 3.1 (1), we have h0gw 2 Piv�.h0/. As
x; hx … Piv�.h/, we have that h0gw ¤ x0; h0x0. Thus as x0 2 gNi , the above case applies
and we have that

dgw.x; hx/ D dh0gw.x
0; h0x0/ > L=10:

Hence we may set v D gw.
Lastly, we deal with the second case that x … gWi . In this case, we will be considering

the projection of x to various points of the form hjw, where w is an essential pivot point
for h and j is an integer. As w lies in gWi by definition and Wi is Hi -invariant, we have
that hjw lies in gWi . In particular, x ¤ hjw for any essential pivot point w for h and any
integer and therefore projections of x to such points are always defined.

Fix any essential pivot point w for h. By Lemma 3.1 (2) we have that hjw is an
essential pivot point for hk whenever 0 � j < k and additionally, such points are ordered
hj1w < hj2w if j1 < j2. By Lemma 2.1 (2), we have that for 1 � j1 < j2

dhj1w.w; h
j2w/ � dhj1w.v0; h

j2w/ � dhj1w.v0; w/ � L=2 � 2�:

By a similar argument we have dhj1w.h
j0w;hj2w/�L=2�2� for all integers j0<j1<j2.

Claim. There is an integer J such that

dhjw.h
j�1w; x/ > � for j � J and dhjw.h

j�1w; x/ � � for all j > J:

We first show that the set ¹j 2 Z j dhjw.h
j�1w; x/ � �º has the form .J;C1/

for some J 2 Z [ ¹�1;C1º. To this end, we suppose that dhjw.hj�1w; x/ � � . If
dhjC1w.h

jw; x/ > � , then by the inequality on triples we have dhjw.hjC1w; x/ � � . In
this case, we find that

L=2 � 2� � dhjw.h
j�1w; hjC1w/ � dhjw.h

j�1w; x/C dhjw.h
jC1w; x/ � 2�:

This is a contradiction as L > 8� and therefore dhjC1w.hjw; x/ � � too.
If J D �1, then dhjw.hj�1w;x/ � � for all integers j . Thus for all j � �1 we find

that
dhjw.w; x/ � dhjw.h

j�1w;w/ � dhjw.h
j�1w; x/ � L=2 � 3� > �:

This contradicts the finiteness axiom.
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If J D C1, then by the inequality on triples we have dhjw.hjC1w; x/ � � for all
integers j . Thus for all j � 1 we find that

dhjw.w; x/ � dhjw.h
jC1w;w/ � dhjw.h

jC1w; x/ � L=2 � 3� > �:

Again, this contradicts the finiteness axiom. This completes the proof of the claim.
Let J be as defined in the claim. To complete the proof of the proposition, there are

two cases based on dhJw.hJ�1w; x/. We will show that we can take v to be either hJw
or hJC1w.

First, suppose that dhJw.hJ�1w;x/� L=4. We have dhJw.hJ�1w;x/ > � and by the
inequality on triples and invariance we have dhJw.hJC1w; hx/ D dhJ�1w.hJw; x/ � � .
Thus

dhJw.x; hx/ � dhJw.h
J�1w; hJC1w/ � dhJw.h

J�1w; x/ � dhJw.h
JC1w; hx/

� L=2 � � � L=4 � � � L=4 � 2� > L=10:

Hence we can set v D hJw.
Else, we have that

dhJw.h
J�1w; x/ D dhJC1w.h

Jw; hx/ > L=4:

As dhJC1.hJw; x/ � � , we have

dhJC1w.x; hx/ � dhJC1w.h
Jw; hx/ � dhJC1w.h

Jw; x/ � L=4 � � > L=10:

Hence we can set v D hJC1w.

4. Lifting quadrilaterals

In this section, we apply the shortening argument of Proposition 3.2 to show that geodesic
quadrilaterals in the quotient of the projection complex P=hRvi lift to geodesic quadri-
laterals in the projection complex P . This is stated in Proposition 4.3. As mentioned in
Section 1, the strategy to show that P=hRvi is ı-hyperbolic is to lift geodesic triangles
in P =hRvi to geodesic triangles in P . As a triangle is a degenerate quadrilateral where
one side has length 0, Proposition 4.3 applies to geodesic triangles as well. The reason
we work with quadrilaterals is to show that the action of G=hRvi on P=hRvi is a non-
elementary WPD action, so long as the action of G on P is and L, the spinning constant,
is large enough.

There are two items we need to discuss before stating and proving Proposition 4.3.

Lifting geodesics. Throughout this section we will be lifting geodesics from P=hRvi to
P and modifying the lifts. It will be important to have a way of certifying that these
lifts and their modifications are geodesics. This is the content of the following lemma.
Throughout the rest of the paper, we will always assume that paths are 1-Lipschitz.
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v˛1

˛2

hv˛2

hv

Figure 1. The paths ˛ and ˛ _v hv .

Lemma 4.1. Let P be a projection complex and let G be a group acting on P . Suppose
that H is a subgroup of G and let pW P ! P=H be the quotient map. The following
statements are true.

(1) If x̨W Œ0; n�! P=H is a path and x is a point in P that satisfies p.x/ D x̨.0/,
then there exists a path ˛W Œ0; n�! P such that p ı ˛ D x̨ and ˛.0/ D x.

(2) If ˛W Œ0; n�!P is a path and nD dP=H .p.˛.0//;p.˛.n///, then ˛ is a geodesic.

Proof. The first statement is obvious.
The second statement follows as the map pW P ! P =H is 1-Lipschitz. Indeed, if ˛ is

not a geodesic, then there is a geodesic ˛0W Œ0;n0�!P , where ˛0.0/D˛.0/, ˛0.n0/D˛.n/,
and n0 < n. As p is 1-Lipschitz, we find that

n D dP=H

�
p.˛0.0//; p.˛0.n0//

�
� n0:

This a contradiction and hence ˛ is a geodesic.

Bending paths. Let v be a vertex in P . Suppose that ˛W Œ0; n�! P is a path and that v D
˛.n0/ for some n0 2 ¹0; : : : ;nº. For any hv 2Rv we define a new path ˛ _v hvW Œ0;n�!P

by

.˛ _v hv/.t/ D

´
˛.t/; if 0 � t � n0; or

hv˛.t/; if n0 � t � n:

As ˛.n0/ D hv˛.n0/, this does define a path. We say that ˛ _v hv is obtained by bending
˛ at v using hv . Writing ˛ as the concatenation of two paths ˛1 and ˛2 where ˛1 ends at v
and ˛2 begins at v, the bent path ˛ _v hv is the concatenation of ˛1 and hv˛2; see Figure 1.

Lemma 4.2. Let P be a projection complex and let G be a group acting on P . Suppose
that ¹Rvº is an equivariant family of subgroups ofG. LetH D hRvi and let pW P !P=H

be the quotient map. Let ˛W Œ0; n�! P be a path and let v be a vertex in the image of ˛.
Then for any hv 2 Rv the following statements are true.

(1) The paths p ı ˛ and p ı .˛ _v hv/ are equal.

(2) For any 0 � t1 < t2 � n, if p ı ˛jŒt1; t2� is a geodesic, then so is .˛ _v hv/jŒt1; t2�.

Proof. The first statement follows immediately from the definitions.
The second statement follows from the first statement and Lemma 4.1 (2).
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Let X be a graph considered as a metric space where every edge has length one. A
geodesic quadrilateral Q in X consists of four geodesics and four points: ˛k from xk to
xkC1 mod 4 for k D 0; 1; 2; 3. We write Q D

S3
kD0 ˛k .

Proposition 4.3. Let P be a projection complex and let G be a group acting on P .
For any B � 0, there is a constant Llift.B/ with the following properties. Suppose that
L � Llift.B/ and that ¹Rvº is an equivariant L-spinning family of subgroups of G. Let
H D hRvi and let pW P ! P =H be the quotient map. For each geodesic quadrilateral
xQ D

S3
kD0 x̨k in P=H there exists a geodesic quadrilateral Q D

S3
kD0 ˛k in P so that

p.˛k/ D x̨k for k D 0; 1; 2; 3.
Additionally, Q satisfies the following property. If there are lifts z̨0 from Qx0 to Qx1 and

z̨2 from Qx2 to Qx3 of x̨0 and x̨2, respectively, such that dv. Qx0; Qx1/ � B and dv. Qx2; Qx3/ � B
when defined, then the geodesics ˛0 and ˛2 in Q are H -translates of z̨0 and z̨2, respec-
tively.

Proof. Fix B � 0 and set Llift.B/ D max¹Lshort; 40B; 40Cgº. Take L � Llift.B/ and sup-
pose thatG is acting on P and that ¹Rvº is an equivariantL-spinning family of subgroups
of G.

Let Nx0, Nx1, Nx2, and Nx3 be the vertices of the geodesic quadrilateral xQ in P =H . By
Lemma 4.1 (1), for any point x0 2p�1. Nx0/, we can iteratively lift the geodesics x̨k to paths
˛k from xk to xkC1 where p.xk/ D Nxk . By Lemma 4.1 (2), the paths ˛k are geodesics.
If ˛0 and ˛2 as in the statement of the proposition exists, then we can ensure that ˛0 and
˛2 are H -translates of these geodesics. We denote the concatenation of the paths ˛k by ˛
and we say that ˛ is a special lift of xQ.

For each special lift ˛ of xQ, with endpoints denoted by x0 and x4, there is an element
h.˛/ 2H with minimal complexity such that x4 D h.˛/x0. Let ˛ be a special lift of xQ so
that h.˛/ has minimal complexity among all special lifts of xQ.

We claim that x0 D x4, which shows that ˛ defines a geodesic quadrilateral Q as in
the statement of the proposition. Indeed, if not we will show that we can bend ˛ to a new
path ˛0 that is a special lift with h.˛0/ < h.˛/. This contradicts the minimality of h.˛/.

To this end, suppose that x0 ¤ x4 D h.˛/x0. Apply Proposition 3.2 to x D x0 and
h D h.˛/ and let v be the corresponding vertex of P and hv 2 Rv the corresponding
element. We have that hvh.˛/ < h.˛/.

We claim that v lies in the image of ˛. Indeed, if v … ¹x0; x4º, then dv.x0; x4/ > L=10.
If further v … ¹x1; x2; x3º, then, by the triangle inequality, we have that

dv.xn; xnC1/ > L=40 for some n:

As L=40 � Cg, there is an n0 such that ˛n.n0/ D v. Moreover, as L=40 � B , if lifts z̨0
and z̨2 as in the statement of the proposition exist, we must have that nD 1 or nD 3. This
shows that v lies in the image of ˛. We consider the path ˛0 D ˛ _v hv .

By Lemma 4.2 (2), ˛0 consists of four geodesic segments ˛0
k

for k D 0; 1; 2; 3. More-
over, we observe that ˛0 is a special lift of xQ as if lifts z̨0 and z̨2 as in the statement of the
proposition exist, then the segments ˛00 and ˛02 are H -translates of the segments ˛0 and
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˛2, respectively. Letting x04 denote the terminal point of ˛0 we find

x04 D hvx4 D hvh.˛/x0

so that h.˛0/ � hvh.˛/ < h.˛/. This contradicts the minimality of h.˛/.

5. Proof of Theorem 1.1

In this section, we prove the first of the two main results of this paper. Theorem 1.1 states
that if a group G acts on a projection complex P , then there exists a constant Lhyp.P / so
that if L � Lhyp.P / and if ¹Rvº is an equivariant L-spinning family of subgroups of G,
then P=hRvi is ı-hyperbolic. The proof proceeds by showing that geodesic triangles in
P=hRvi can be lifted to geodesic triangles in P .

Proof of Theorem 1.1. Let P be a projection complex and set Lhyp.P / D Llift.0/. Bestv-
ina–Bromberg–Fujiwara proved the P is a quasi-tree [1, Theorem 3.16]. Let ı be such
that P is ı-hyperbolic. Take L � Lhyp.P / and suppose that G is acting on P and that
¹Rvº is an equivariant L-spinning family. Let H D hRvi.

Let x̨0, x̨1, and x̨2 be the three sides of a geodesic triangle in P=H . We set x̨3 to
be the trivial path at the endpoint of x̨2. This gives a (degenerate) geodesic quadrilateral
xQD

S3
kD0 x̨k . By Proposition 4.3, there is a geodesic quadrilateralQD

S3
kD0 ˛k so that

p.˛k/D x̨k for k D 0; 1; 2; 3. As ˛3 is a trivial path,Q is in fact a geodesic triangle in P .
As the map pW P ! P =H is 1-Lipschitz and as Q is ı-thin, the geodesic triangle xQ

is ı-thin as well. Hence P=H is ı-hyperbolic.

6. Bounded projections

There are two key results in this section. First, we show that geodesics ˛W Œ0; n� ! P

with bounded projections are mapped by p to geodesics in P =hRvi. This appears as
Lemma 6.1. The proof of this lemma is very similar to the proof of Proposition 4.3 as
it involves bending and shortening. Secondly, we apply Lemma 6.1 to show that given a
WPD element in G where the orbit of some point has bounded projections, its image in
G=hRvi acts as a WPD element on P=hRvi. This appears as Lemma 6.2. The proof of
this lemma uses Proposition 4.3.

Lemma 6.1. Let P be a projection complex and let G be a group acting on P . For
any B � 0, there is a constant Lpro.B/ with the following property. Suppose that L �
Lpro.B/ and that ¹Rvº is an equivariant L-spinning family of subgroups of G. Let H D
hRvi and let pW P ! P=H be the quotient map. If ˛W Œ0; n� ! P is a geodesic, and
dv.˛.0/; ˛.n// � B for all vertices v of P other than ˛.0/ and ˛.n/, then p ı ˛W Œ0; n�!
P=H is a geodesic.

Proof. Set Lpro.B/ D max¹Lshort; 10B C 10Cgº. Take L � Lpro.B/ and suppose that G
is acting on P and that ¹Rvº is an equivariant L-spinning family.
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Let x̌W Œ0; n0� ! P=H be a geodesic from p.˛.0// to p.˛.n//. We will argue that
n D n0, showing that p ı ˛ is a geodesic.

For eachH -translate h˛W Œ0; n�!P of ˛, we say a lift ˇW Œ0; n0�!P of x̌ is compat-
ible with h˛ if h˛.0/ D ˇ.0/. In this situation, there is an element h.h˛; ˇ/ with minimal
complexity such that ˇ.n0/ D h.h˛; ˇ/h˛.n/. We replace ˛ by an H -translate and let
ˇW Œ0; n0�! P be a compatible lift of x̌ so that h.˛; ˇ/ minimizes complexity among all
H -translates of ˛ and compatible lifts.

We claim that ˛.n/ D ˇ.n0/, which shows that n D n0 as both ˛ and ˇ are geodesics.
Indeed, if not we will show that we can find a translate ˛0 of ˛ and a compatible lift ˇ0 with
h.˛0; ˇ0/ < h.˛; ˇ/. The path ˇ0 is obtained by translating or bending ˇ. This contradicts
the minimality of h.˛; ˇ/.

To this end, suppose that ˛.n/ ¤ ˇ.n0/. Apply Proposition 3.2 to x D ˛.n/ and h D
h.˛;ˇ/ and let v be the corresponding vertex and hv 2 Rv the corresponding element. We
have that hvh.˛; ˇ/ < h.˛; ˇ/.

There are two cases now depending on v.
If v D ˛.n/, then for the H -translate hv˛ and compatible lift hvˇ, we have

hvˇ.n
0/ D hvh.˛; ˇ/˛.n/ D hvh.˛; ˇ/hv˛.n/

so that h.hv˛; hvˇ/ � hvh.˛; ˇ/ < h.˛; ˇ/. This contradicts the minimality of h.˛; ˇ/.
Else, we claim that v lies in the image of ˇ. Indeed, if v ¤ ˇ.n/, then

dv
�
˛.n/; ˇ.n0/

�
> L=10:

If further v ¤ ˇ.0/, then as dv.˛.0/; ˛.n// � B and ˛.0/ D ˇ.0/, we have that

dv
�
ˇ.0/; ˇ.n0/

�
� dv

�
˛.n/; ˇ.n0/

�
� dv

�
˛.0/; ˛.n/

�
> L=10 � B > Cg:

This shows that v lies in the image of ˇ.
We define ˇ0 D ˇ _v hv . By Lemma 4.2, ˇ0 is a compatible lift. Next, we find that

ˇ0.n0/ D hvˇ.n
0/ D hvh.˛; ˇ/˛.n/

so that h.˛; ˇ0/ � h.˛; ˇ/ < h.˛; ˇ/. This contradicts the minimality of h.˛; ˇ/.

Lemma 6.2. Let P be a projection complex, G a group acting on P , and B � 0. Sup-
pose that L � max¹Llift.B/; Lpro.B/º and that ¹Rvº is an equivariant L-spinning family
of subgroups of G. Let H D hRvi. If f 2 G is a hyperbolic isometry of P so that
dv.x0; f

nx0/ � B for all n 2 Z when defined, then its image Nf 2 G=H is a hyperbolic
isometry of P=H . Additionally, if f is a WPD element, then so is Nf .

Proof. Fix B � 0 and suppose that G is acting on P and that ¹Rvº is an equivariant L-
spinning family where L � max¹Llift.B/; Lpro.B/º. Suppose that f 2 G is a hyperbolic
isometry of P and x0 is a vertex of P so that dv.x0; f nx0/ � B for all n 2 Z when
defined.
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Let Nx0 D p.x0/. As L � Lpro.B/, by Lemma 6.1, we have that

dP=H . Nx0; Nf
n
Nx0/ D dP .x0; f

nx0/:

Hence as f is hyperbolic, Nf is also hyperbolic.
Now assume further that f is a WPD element. Fix D � 0 and let M � 0 be such that

the set ®
g 2 G j dP .x0; gx0/ � D and dP .f

Mx0; gf
Mx0/ � D

¯
is finite. Let K denote the cardinality of this set.

Suppose that ¹ Ng1; : : : ; NgK0º is a set of elements of G=H so that

dP=H . Nx0; Ngj Nx0/ � D and dP=H . Nf
M
Nx0; Ngj Nf

M
Nx0/ � D:

Fix elements gj 2 G whose images are the Ngj s.
We consider the geodesic quadrilateral xQj D

S3
kD0 x̨k , where x̨0 is a geodesic from

Nx0 to Nf M Nx0, x̨1 is a geodesic from Nf M Nx0 to Ngj Nf M Nx0, x̨2 is a geodesic from Ngj Nf M Nx0
to Ngj Nx0, and x̨3 is a geodesic from Ngj Nx0 to Nx0.

As L� Llift.B/ for each 1� j �K 0, there is a geodesic quadrilateralQj D
S3
kD0 ˛k

so that p.˛k/ D x̨k . Moreover, there are elements h0; h2 2 H such that ˛0 is a geodesic
from h0 Nx0 to h0f Mx0 and ˛2 is a geodesic from h2gjf

Mx0 to h2gjx0. In particular, for
each 1 � j � K 0 we find that

dP .x0; h
�1
0 h2gj / � D and dP .f

Mx0; h
�1
0 h2gjf

Mx0/ � D:

This shows that K 0 � K.
As it suffices to check finiteness at a single point, this shows that Nf is a WPD ele-

ment.

7. Proof of Theorem 1.2

In this section, we give the proof of the second of the main results in this paper. The-
orem 1.2 states that if a group G admits a non-elementary WPD action on a projection
complex P , then there exists a constant LWPD.P ; G/ so that if L � LWPD.P ; G/ and if
¹Rvº is an equivariant L-spinning family of subgroups of G, then the action of G=hRvi
on P =hRvi is a non-elementary WPD action.

Isometries have bounded projections. In order to apply the results of Section 6, we need
to know that hyperbolic isometries of a projection complex have bounded projections.
This is an application of the finiteness axiom of a projection complex as we now show.

Lemma 7.1. Let P be a projection complex and let f be a hyperbolic isometry of P .
Then for any vertex x0 of P , there is a constant Bf such that dv.x0; f nx0/ � Bf for all
n 2 Z when defined.
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Proof. Let M1 D max¹dv.x0; f x0/ j v … ¹x0; f x0ºº and M2 D dx0.f
�1x0; f x0/. We

remark that M1 is finite by the finiteness axiom. Set M D max¹M1;M2º. Fix a geodesic
˛ from x0 to f x0. Let N be such that d.x; f ny/ > 4 if x and y lie on ˛, and n � N .
Define Bf D NM C 2Cp.

By equivariance, it suffices to prove the lemma for non-negative integers. Fix an n 2N
and suppose that v … ¹x0; f nx0º. If v does not lie in the 2-neighborhood of the path
˛ [ f ˛ [ � � � [ f n�1˛, then dv.x0; f nx0/ � Cp � Bf .

Else, there are indices 0 � i0 � i1 � n � 1 such that i1 � i0 < N and v lies in the
2-neighborhood of f j˛ only if i0 � j � i1. Thus as v does not lie in the 2-neighborhood
of ˛ [ � � � [ f i0�1˛ nor in the 2-neighborhood of f i1C1˛ [ � � � [ f n˛, we have
dv.x0; f

i0x0/ � Cp and dv.f i1C1x0; f nx0/ � Cp.
Suppose that v ¤ f jx0 for any i0 < j � i1 (by the definition of i0 and i1 these are

the only possible indices). Then we find that

dv.f
i0x0; f

i1C1x0/�

i1X
jDi0

dv.f
jx0; f

jC1x0/D

i1X
jDi0

df �j vd.x0; f x0/�NM1 �NM:

Else, we have that v D f j0x0 for some i0 < j0 � i1. In this case, we find

dv.f
i0x0; f

i1C1x0/ �

j0�2X
jDi0

dv.f
jx0; f

jC1x0/C df j0x0.f
j0�1x0; f

j0C1x0/

C

i1X
jDj0C1

dv.f
jx0; f

jC1x0/

� .j0 � 1 � i0/M1 CM2 C .i1 � j0/M1

� .N � 2/M1 CM2 � NM:

Therefore

dv.x0; f
nx0/ � dv.x0; f

i0x0/C dv.f
i0x0; f

i1C1x0/C dv.f
i1C1x0; f

nx0/

� NM C 2Cp D Bf :

Proof of Theorem 1.2. Let P be a projection complex and let G be a group with a non-
elementary WPD action on P .

Let f1 and f2 be independent WPD elements in G. Fix some point x0 in P and
let Bf1 and Bf2 be the constants from Lemma 7.1. Let B0 D max¹dv.f1x0; f2x0/ j
v … ¹f1x0; f2x0ºº. Set B D B0 C Bf1 C Bf2 . Let v be a vertex of P and suppose that
dv.f

n1
1 x0; f

n2
2 x0/ is defined for some integers n1 and n2. If v ¤ x0, then

dv.f
n1
1 x0; f

n2
2 x0/ � dv.f

n1
1 x0; x0/C dv.x0; f

n2
2 x0/ � Bf1 C Bf2 � B:

Else, if v D x0, then

dv.f
n1
1 x0; f

n2
2 x0/ � dv.f

n1
1 x0; f1x0/C dv.f1x0; f2x0/C dv.f2x0; f

n2
2 x0/

� Bf1 C B0 C Bf2 D B:
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Let LWPD.P ; G/ D max¹Llift.B/; Lpro.B/º. Suppose that ¹Rvº is an equivariant L-
spinning family of subgroups of G where L � LWPD.P ; G/. Let H D hRvi.

By Lemma 6.2, the images Nf1 and Nf2 are WPD elements of G=H acting on P=H .
Additionally, by Lemma 6.1, we have that dP=H . Nf

n1
1 Nx0;

Nf
n2
2 Nx0/ D dP .f

n1
1 x0; f

n2
2 x0/

for integers n2 and n2. As f1 and f2 are independent, this shows that Nf1 and Nf2 are
independent as well.

8. Examples

In this final section, we present two examples whenG is Mod.S/, the mapping class group
of an orientable surface S . In the first example, the subgroup H is the normal closure of
a pseudo-Anosov mapping class; in the second example the subgroup H is the normal
closure of a partial pseudo-Anosov defined on an orbit-overlapping subsurface. The first
example in fact applies more generally, whenever G is a group acting on a ı-hyperbolic
metric space and g is a WPD element for this action. The relevant background material
and definitions relating to the mapping class group that appear in this section can be found
in our previous paper with Margalit [7].

Before we give the examples, we first recall the criteria of Bestvina–Bromberg–Fuji-
wara for showing that an element g of G acts on a projection complex P as a WPD
element.

WPD criterion. Suppose that P is a projection complex. Bestvina–Bromberg–Fujiwara
proved the existence of a constant CWPD which can be used to ensure that an element
acting on P is a WPD element [1, Proposition 3.27]. The set-up is as follows. Assume
that G is a group that acts on P and that g is an element of G that satisfies the following
two conditions.

(1) There is a vertex v in P and n > 0 such that dv.g�nv; gnv/ > CWPD.

(2) There is an m > 0 such that the subgroup of G that fixes v; gv; : : : ; gmv is finite.

Then g is a WPD element of G.

8.1. First example

Let S be an orientable surface where �.S/ < 0 and let f be a pseudo-Anosov mapping
class of S . There is a projection complex P built using f and its action on the curve
complex C.S/. We briefly recall this construction here; full details can be found in our
previous paper [7, Section 3.2].

Fix a point x in C.S/ and consider the quasi-axis bundle ˇ D EC.f / � x, where
EC.f / is the elementary closure of f . In this context, EC.f / is the stabilizer of the set
of transverse measured foliations associated to f considered in the space of projectivized
measured foliations on S .

The vertex set of P consists of the Mod.S/-translates of ˇ. Next we define the distance
functions. Given three vertices ˛1, ˛2, and ˇ of P , we define dˇ .˛1; ˛2/ to be diameter
of the union of the projections of ˛1 and ˛2 to ˇ.
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Let g be a mapping class of S that does not lie in EC.f /. We claim that gf n is a WPD
element for the action on P for n sufficiently large. As g does not lie in EC.f /, we have
that ˇ … ¹gˇ; g�1ˇº. Next, we have that

dˇ
�
.gf n/�1ˇ; gf nˇ

�
D dˇ .g

�1ˇ; f ngˇ/ � dˇ .gˇ; f
ngˇ/ � dˇ .gˇ; g

�1ˇ/

and thus dˇ ..gf n/�1ˇ;gf nˇ/ is bounded below byAn�B for some constantsA;B > 0.
In particular, dˇ ..gf n/�1ˇ;gf nˇ/ > CWPD for sufficiently large n. Further, as g does not
stabilize the measured foliations associated to f , the stabilizer of ˇ and gˇ is finite. By the
Bestvina–Bromberg–Fujiwara WPD criterion we have that f1 D gf n is a WPD element
for some fixed sufficiently large enough n.

Given an element h that does not lie in EC.f1/, the element f2 D hf1h�1 is a WPD
element and f1 and f2 are independent. Thus the action of Mod.S/ on P is a non-
elementary WPD action.

As explained in the proof of Theorem 1.7 in our previous work, for each L � 0, there
is an p > 0 such that the collection of subgroups Rhˇ D hhf ph�1i is an equivariant L-
spinning family of subgroups. Therefore, by Theorem 1.2, the elements of Nf1 and Nf2 in
Mod.S/=hhf pii are independent WPD elements for its action on P=hhf pii for a certain
large enough p.

As mentioned at the beginning of this section, this above discussion works in the larger
context of a group G acting on a ı-hyperbolic space using a WPD element f of G.

8.2. Second example

Again, let S be an orientable surface where �.S/ < 0. Let X be a connected subsurface
of S so that for all h 2 Mod.S/, either X D hX or X and hX have nontrivial intersec-
tion (what is called an orbit-overlapping subsurface in our previous work [7]). There is a
projection complex P built using X and the curve complex C.S/. We briefly recall this
construction here; full details can be found in our previous paper [7, Section 3.3].

The vertices of P are the Mod.S/-translates of X . Given three vertices Y1, Y2, and X
of P , the distance dX .Y1; Y2/ is the diameter in C.X/ of the Masur–Minsky subsurface
projections of Y1 and Y2 to X [13].

There is a well-defined map Mod.X/!Mod.S/; fix an element f in Mod.S/ that is
the image of a pseudo-Anosov element on X . Let g be a mapping class of S such that @X
and g@X fill S . We claim that gf n is a WPD element for the action on P for sufficiently
large n. The proof is similar to the first example and left to the reader.

Hence, as above, there are elements f1 and f2 in Mod.S/ that are independent WPD
elements for the action on P . By taking certain p sufficiently large, we can ensure that
the equivariant family of subgroups RhX D hhhf ph�1iiStab.hX/ is L-spinning for arbitrary
L. Hence we can ensure that the images Nf1 and Nf2 are independent WPD elements for the
action of Mod.S/=hhf pii on P=hhf pii.

Similar arguments apply to the other subgroups of Mod.S/ constructed in our previous
work.
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