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Superrigidity, measure equivalence,
and weak Pinsker entropy

Lewis Bowen and Robin D. Tucker-Drob

Abstract. We show that the class B, of discrete groups which satisfy the conclusion of Popa’s
cocycle superrigidity theorem for Bernoulli actions, is invariant under measure equivalence. We
generalize this to the setting of discrete probability measure preserving (p.m.p.) groupoids, and as a
consequence we deduce that any nonamenable lattice in a product of two noncompact, locally com-
pact second countable groups must belong to B. We also introduce a measure-conjugacy invariant
called weak Pinsker entropy and show that, ifG is a group in the class B, then weak Pinsker entropy
is an orbit-equivalence invariant of every essentially free p.m.p. action of G.

1. Introduction

Throughout this article all measure spaces are standard � -finite measure spaces, i.e., stan-
dard Borel spaces equipped with a � -finite Borel measure. We will suppress the given
measure from our notation, e.g., stating that X , Y , and Z are measure spaces. In this case
we write �X , �Y , and �Z for the given measures on X , Y , and Z, respectively. We write
X ˝ Y for the independent product of the measure spacesX and Y . We use the adjectives
“Borel” and “measurable” interchangeably, with both meaning “Borel measurable.”

1.1. Superrigidity and measure equivalence

Two countable discrete groups G and H are said to be measure equivalent if there exist
commuting, essentially free measure preserving actions ofG andH on a standard � -finite
nonzero measure space, such that each of the actions admits a measurable fundamental
domain of finite measure. The example driving this definition, introduced by Gromov in
[15], is that of two groups G andH which are lattices in the same locally compact second
countable group; in this situation, the measure equivalence is witnessed by the left and
right translation actions, of G and H respectively, on the ambient locally compact group
equipped with Haar measure.

Measure equivalence may also be characterized ergodic theoretically as follows [12]:
G and H are measure equivalent if and only if there exist probability measure preserving
(p.m.p.) actionsG ÕX andH Õ Y whose translation groupoids are reduction equivalent
(see Definition 3.30).
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For a countable group G and a probability space K, we let G Õ KG denote the stan-
dard Bernoulli action (a.k.a. Bernoulli shift) of G with base K, i.e., the p.m.p. action of
G on KG given by .gx/.h/ WD x.g�1h/ for x 2 KG , g; h 2 G, where KG is equipped
with product measure �KG WD �GK . We let Œ0; 1� denote the unit interval equipped with
Lebesgue measure �Œ0;1�.

Definition 1.1. Let C be a class of Polish groups and let G be a countable group.

� An extension p W X ! Y of p.m.p. actions of G is called relatively C-superrigid if
every measurable cocycle w W G � X ! L taking values in a group L 2 C is coho-
mologous to a cocycle which descends to Y .

� The group G is said to be Bernoulli C-superrigid if for every p.m.p. action G Õ Y of
G, the associated Bernoulli extension Y ˝ Œ0; 1�G ! Y is relatively C-superrigid.

We are now ready to state the main theorem of the first part of this article.

Theorem 1.2. Let C be a class of Polish groups contained in the class Ginv of Polish groups
admitting a bi-invariant metric, and let G and H be countable groups which are measure
equivalent. Then G is Bernoulli C-superrigid if and only if H is Bernoulli C-superrigid.

In practice, C will often be a subclass of the class Ufin � Ginv of Polish groups which
are isomorphic to a closed subgroup of the unitary group of a finite von Neumann algebra.
This class was isolated by Popa in [27] as a class of target groups to which his deforma-
tion/rigidity techniques naturally apply, and it includes all countable discrete groups and
all compact metrizable groups.

Conveniently, Definition 1.1 was already anticipated by Popa in the groundbreaking
articles [27, 28]. It follows directly from [27, Theorem 0.1] and [28, Theorem 4.1], for
example, that a group G is Bernoulli Ufin-superrigid whenever it contains an infinite nor-
mal subgroup N such that either (i) the pair .G; N / has relative property (T) or (ii) N
is generated by (element-wise) commuting subgroups H and K, with H nonamenable
and K infinite. Theorem 1.2 now implies that any group which is measure equivalent to
such a group G is also Bernoulli Ufin-superrigid. For example, the simple groups con-
structed by Burger and Mozes in [9], being lattices in a product of automorphism groups
of regular trees, are measure equivalent to a product of free groups, hence are Bernoulli
Ufin-superrigid. More generally, by applying the groupoid version of Theorem 1.2 (Theo-
rem 4.5), we obtain the following corollary.

Corollary 1.3. Let G D G0 � G1 be a product of locally compact second countable
groups, with G0 nonamenable and G1 noncompact. Then any lattice in G is Bernoulli
Ufin-superrigid.

Remark 1.4. Corollary 1.3 does not follow naively from Theorem 1.2 and Popa’s Theo-
rem, since even thoughG contains a lattice, one of the groupsG0 orG1 may fail to contain
a lattice. This can be seen in the example G0 WD SLn.Z/ Ë Rn and G1 WD SLn.Zp/ Ë Qnp .
The group G1 does not contain a lattice, but G0 � G1 contains the lattice SLn.Z/ Ë
.ZŒ 1

p
�/n via the diagonal embedding '0 � '1, where 'i W SLn.Z/ Ë .ZŒ 1

p
�/n ! Gi is the
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natural inclusion into Gi . However, as pointed out by P. Wesolek, if both G0 and G1 are
totally disconnected locally compact groups, andG0 �G1 contains a lattice, then bothG0
and G1 contain a lattice as well.

Theorem 1.2 is related to, and largely inspired by, a theorem of Peterson and Sinclair
stating that the class of groups G, whose group von Neumann algebra LG is L2-rigid, is
closed under orbit equivalence [26]. It also follows from [26, 27] that if LG is L2-rigid,
then G is Bernoulli Ufin-superrigid. The converse is unclear; for example, a standard rel-
ativization of the proof of [39, Theorem 11] shows that any nonamenable inner amenable
group is Bernoulli Ufin-superrigid, although it is unclear at the moment whether the group
von Neumann algebra of any such group is necessarily L2-rigid. (We note that it follows
from [19, 25], and the aforementioned orbit equivalence invariance theorem from [26],
that the group von Neumann algebra of Vaes’s group from [40] is L2-rigid.) Part of the
motivation for investigating Theorem 1.2 was to find a natural invariant of measure equiv-
alence which applies to nonamenable inner amenable groups, and which implies cocycle
superrigidity for Bernoulli actions.

While the results of [26–28, 39] provide many examples of Bernoulli Ufin-superrigid
groups, the extent of this class of groups remains unclear. It follows from [26] that the
first `2-Betti number of a nonamenable group which is Bernoulli Ufin-superrigid must
vanish. The converse—whether every nonamenable group with vanishing first `2-Betti
number is Bernoulli Ufin-superrigid—is an open problem, a version of which appears in
[29]. Note that, by [13], vanishing of the first `2-Betti number is also an invariant of
measure equivalence, so Theorem 1.2 at least puts these two properties on equal footing.

Many of the ideas going into the proof of Theorem 1.2 are already contained in A.
Furman’s article [11] and S. Popa’s article [27]. In fact, not one of the three main ingre-
dients involved in the proof of Theorem 1.2 is particularly new. Specifically, these main
ingredients are (1) the definition of Bernoulli C-superrigidity, which was already implicitly
considered in [27], (2) Lemma 3.20, which is essentially already contained in [11, Theo-
rem 3.4], and (3) Proposition 3.25, which is more or less well known (and, in any case,
trivial). The main new contribution of the first part of this article is the observation that
these three ingredients play well together in order to produce Theorem 1.2.

The most natural setting for the proof of Theorem 1.2 is that of discrete p.m.p.
groupoids. However, we first present a “quick and dirty” direct proof of Theorem 1.2
for the special case of orbit equivalence in Section 2. The proof of Theorem 1.2 in gen-
eral, given in Section 4, boils down to many of the same ideas, although the need to
handle restrictions to positive measure sets makes it much more convenient to work in
the groupoid context. This also has the benefit of producing Corollary 1.3. We therefore
gather the necessary background in Section 3, and generalize Theorem 1.2 to the setting
of discrete p.m.p. groupoids in Theorem 4.5, deducing Theorem 1.2 as a special case.

1.2. When is entropy an orbit equivalence invariant?

The second part of this article explores consequences of Theorem 1.2 for entropy, orbit
equivalence, and their interaction.
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1.2.1. What is entropy? Kolmogorov and Sinai introduced entropy as a measure-conju-
gacy invariant for measure-preserving actions of the integers [20, 21, 34]. Kolmogorov
showed that the entropy of a Bernoulli shift action Z ÕKZ is the Shannon entropyH.K/
of the base probability space K. The latter is defined as follows: if �K has countable
support, then

H.K/ WD �
X
k2K

�K
�
¹kº

�
log

�
�K
�
¹kº

��
:

Otherwise, H.K/ WD C1.
Later, Ornstein proved a converse: if K and L are probability spaces with the same

Shannon entropy, then the corresponding Bernoulli shifts Z Õ KZ and Z Õ LZ are mea-
surably conjugate [23]. Building on work of the first author [3], Seward has recently
generalized this result to arbitrary countably infinite groups [30].

Sinai proved that an ergodic p.m.p. action Z ÕX of Z factors onto any Bernoulli shift
Z Õ KZ for which h.Z Õ X/ �H.K/ [35]. Since entropy of a Z-action cannot increase
under a factor, the condition h.Z ÕX/�H.K/ is necessary. So entropy could have been
defined as the supremum, over all Bernoulli shifts Z ÕKZ onto which the system factors,
of the Shannon entropy H.K/ of the base space.

1.2.2. Generalizations of classical entropy. There are two main generalizations of clas-
sical entropy: sofic entropy and Rokhlin entropy. The sofic entropy of a p.m.p. action
G Õ X is defined in [2, 18] (see also [4, 6] for an introduction and survey) in terms of
counting approximations to the action relative to a given sofic approximation of the group.
Rokhlin entropy was developed in a series of papers [31, 32]. The Rokhlin entropy of a
p.m.p. action G Õ X is always well defined, unlike the sofic entropy which requires the
group to be sofic (it is unknown whether all groups are sofic). In fact, the Rokhlin entropy
of an action is the infimum of the Shannon entropies of generating partitions. By [31],
Rokhlin entropy upper bounds sofic entropy. It is unknown whether they are equal (except
when the sofic entropy is �1 in which case they cannot be equal). By [31], if G is sofic,
then the sofic and Rokhlin entropies agree on Bernoulli shifts: they both equal the Shannon
entropy of the base. However, if G is not assumed to be sofic, then the Rokhlin entropy is
only known to be upper-bounded by the Shannon entropy of the base.

1.2.3. Factors. In recent spectacular work, Seward generalized Sinai’s factor theorem to
all countable groups using Rokhlin entropy in place of Kolmogorov–Sinai entropy [33].
This suggests another generalization of entropy as follows. LetG ÕX be a p.m.p. action.
Consider the supremum, over all Bernoulli shiftsG ÕKG onto whichG Õ X factors, of
the Shannon entropyH.K/ of the base space of the Bernoulli factor. By work of Ornstein–
Weiss, this gives the usual notion of entropy when G is amenable [24]. However, it fails
badly whenG is non-amenable because then all Bernoulli shifts factor onto each other [5].
To amend this situation, we restrict our attention to direct Bernoulli factors, as explained
next.

1.2.4. Weak Pinsker entropy. Fix a countable discrete group G. Let ˛ W G Õ X be an
ergodic p.m.p. action ofG on a standard probability spaceX . If ˛ is measurably conjugate
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to a direct product ˛ Š ˛0˝ ˛1, of two actions ˛0 and ˛1, then each of the actions ˛0 and
˛1 is called a direct factor of ˛. If ˇ is a direct factor of ˛ which is measurably conjugate
to a Bernoulli shift of G, then we say that ˇ is a direct Bernoulli factor of ˛. We define
the weak Pinsker entropy hWP.G ÕX/ of the actionG ÕX to be the supremum, over all
direct Bernoulli factors G Õ KG of G Õ X , of the base space Shannon entropy H.K/.
Symbolically,

hWP.G Õ X/ WD sup
®
H.K/ W G Õ KG is a direct Bernoulli factor of G Õ X

¯
:

It is immediate that weak Pinsker entropy is invariant under measure conjugacy. Note that
the trivial Bernoulli shift G Õ ¹�ºG , over a one point base space ¹�º, is just the trivial
action of G on a one point space, and hence every action has the trivial one point action
as a direct Bernoulli factor. In particular, hWP.G Õ X/ � 0 for any ergodic p.m.p. action
G Õ X . It follows immediately from the fact that the sofic entropy of a direct product of
a Bernoulli shift with an arbitrary action is the sum of the sofic entropies [2] that weak
Pinsker entropy is bounded from above by sofic entropy whenever the latter is not minus
infinity. In particular, this implies that if G is a sofic group, then the weak Pinsker entropy
of a Bernoulli shift is the Shannon entropy of its base.

This definition is motivated by Thouvenot’s problem, described next.

1.2.5. The weak Pinsker property. Suppose for now that G is amenable. An ergodic
action ˛ of G is said to have the weak Pinsker property if for every " > 0, the action ˛
is measurably conjugate to a direct product ˛ Š ˇ ˝ ˛0, where ˇ is a Bernoulli shift of
G, and the Kolmogorov–Sinai entropy of ˛0 is at most ". Since the Kolmogorov–Sinai
entropy of a direct product action is the sum of the Kolmogorov–Sinai entropies of the
corresponding direct factors, it follows that if ˛ has the weak Pinsker property, then the
weak Pinsker entropy and Kolmogorov–Sinai entropy of ˛ coincide.

Resolving a long-standing question due to Jean–Paul Thouvenot [38], Tim Austin
recently proved that all ergodic essentially free actions of amenable groups have the weak
Pinsker property [1]. This is a major advance in classical entropy theory. The weak Pinsker
property can be generalized beyond the class of amenable groups by employing either
sofic entropy or Rokhlin entropy in place of Kolmogorov–Sinai entropy. However, the
paper [7] gives an example of an ergodic free group action that does not have the weak
Pinsker property (with respect to either generalization). In particular, for this action, the
weak Pinsker entropy is strictly less than both sofic and Rokhlin entropies. It would be
interesting to obtain sufficient criteria for weak Pinsker entropy to equal Rokhlin entropy,
perhaps by determining when Seward’s Factor Theorem [33] produces a direct factor.

1.2.6. Invariance under orbit equivalence. We let Gdsc denote the class of all discrete
countable groups. We propose the following ambiguous conjecture.

Conjecture. Whenever G is Bernoulli Gdsc-superrigid, the entropy of any ergodic essen-
tially free action of G is an orbit-equivalence invariant.
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The ambiguity here is in the notion of entropy. The conjecture remains open for sofic
and Rokhlin entropy. However, we prove this conjecture for weak Pinsker entropy below.
More generally, we prove that under a stable orbit equivalence, the expected scaling
occurs. Recall that two ergodic essentially free p.m.p. actions G Õ X and H Õ Y of
countable groups G and H are said to be stably orbit equivalent if there exist positive
measure sets A � X and B � Y such that the groupoids .G Ë X/A and .H Ë Y /B are
isomorphic.

Theorem 1.5. LetG ÕX andH Õ Y be ergodic essentially free p.m.p. actions of count-
able groups G and H , and assume that G is Bernoulli Gdsc-superrigid. Suppose that the
actions are stably orbit equivalent, so that there exist positive measure sets A � X and
B � Y such that .G ËX/A and .H Ë Y /B are isomorphic. Then

hWP.G Õ X/ D
�X .A/

�Y .B/
hWP.H Õ Y /:

Theorem 1.5 suggests a way of defining weak Pinsker entropy directly and intrinsically
for an ergodic discrete p.m.p. groupoid, as we now describe.

1.2.7. Groupoid weak Pinsker entropy. Given an ergodic discrete p.m.p. groupoid G,
we define the groupoid weak Pinsker entropy of G, denoted by hgWP.G/, to be the supre-
mum of H.K/, where the supremum is taken over all pairs .H; K/ for which there exists
an isomorphism between G and the translation groupoid H Ë K˝H associated to the
Bernoulli action of H with baseK (see Section 3 for the definition of Bernoulli actions of
groupoids):

hgWP.G/ WD sup
®
H.K/ W G Š H ËK˝H for some discrete p.m.p. groupoid H

¯
:

It is clear from the definition that 0 � hgWP.G/ � C1. What is not obvious is whether
hgWP.G/ can take values other than 0 and C1. For example, if G is periodic, or if G

is not principal, then hgWP.G/ D 0, since any ergodic groupoid which can be expressed
nontrivially as a Bernoulli extension must be (by ergodicity) aperiodic and principal. On
the other hand, if we let R0 denote the ergodic hyperfinite type-II1 equivalence relation,
then we have hgWP.R0/ D C1, since R0 is isomorphic to the translation groupoid Z Ë
Œ0; 1�Z associated to the infinite entropy Bernoulli shift of Z. The fact that hgWP.G/ can
take finite nonzero values is a consequence of Theorem 6.7 below, which shows that the
groupoid weak Pinsker entropy of a translation groupoid associated to an ergodic action of
a Bernoulli Gdsc-superrigid group coincides with the weak Pinsker entropy of the action.

Remark 1.6. Throughout the article, when working in any measure theoretic context,
such as that of discrete p.m.p. groupoids, we are only interested in properties which are not
sensitive to changes on a null set. With this in mind, we will identify two sets when their
symmetric difference has measure zero, we will identify two maps when their domains and
values agree almost everywhere, and we will often ignore null sets when it is convenient
and appropriate.
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2. The case of orbit equivalence

Recall that two countable groupsG andH are said to be orbit equivalent if they admit free
ergodic p.m.p. actions G Õ X and H Õ Y which generate isomorphic orbit equivalence
relations, i.e., for which the translation groupoids G ËX and H Ë Y are isomorphic.

Let G Õ X and G Õ Y be two p.m.p. actions of a countable group G. An extension
of p.m.p. actions of G, from G Õ X to G Õ Y , is a measure preserving map q W X ! Y

such that q.gx/ D gq.x/ for all g 2 G and a.e. x 2 X . If X0 ! Y and X1 ! Y are two
extensions of p.m.p. actions ofG, then we consider the p.m.p. action ofG on the relatively
independent product X0 ˝Y X1 (see Section 3.3), given by g.x0; x1/ WD .gx0; gx1/. This
action is then naturally viewed as an extension X0 ˝Y X1 ! Y , of Y .

An extension q W X ! Y of p.m.p. actions ofG is called relatively ergodic if for every
G-invariant measurable subset A of X , there is some measurable subset B of Y such that
�X .A4q

�1.B// D 0. The extension q is called relatively weakly mixing if the relatively
independent extension X ˝Y X ! Y is relatively ergodic.

We will need the following “asymmetric” generalization of the cocycle untwisting
result [11, Theorem 3.4], [27, Theorem 3.1]. A complete proof is provided (in groupoid
language) in Lemma 3.20 below.

Lemma 2.1 (Untwisting lemma, asymmetric version). Let q0 WX0! Y and q1 WX1! Y

be two extensions of a p.m.p. actionG Õ Y ofG, and assume that the extension q1 WX1!
Y is relatively weakly mixing. Let L be a Polish group with a bi-invariant metric, and let
w0 W G � X0 ! L and w1 W G � X1 ! L be measurable cocycles. Let X D X0 ˝Y X1
be the relatively independent joining over Y . Suppose that F W X ! L is a measurable
map satisfying, for �X -a.e. .x0; x1/ 2 X and all g 2 G,

w0.g; x0/ D F.gx0; gx1/w1.g; x1/F.x0; x1/
�1: (2.1)

Then there exist measurable maps '0 W X0! L, '1 W X1! L, and a measurable cocycle
w W G � Y ! L such that for �X -a.e. .x0; x1/ 2 X and all g 2 G we have

F.x0; x1/ D '0.x0/
�1'1.x1/;

w
�
g; q0.x0/

�
D '0.gx0/w0.g; x0/'0.x0/

�1;

w
�
g; q1.x1/

�
D '1.gx1/w1.g; x1/'1.x1/

�1:

Proof sketch. The assumption that q1 is relatively weakly mixing ensures that the exten-
sion .X0 ˝Y X0/˝Y X1 ! X0 ˝Y X0 is relatively weakly mixing. We then define the
mapˆ W .X0 ˝Y X0/˝Y X1! L byˆ..x0; x00/; x1/ WD F.x0; x1/F.x

0
0; x1/

�1. The rest
of the proof of Lemma 2.1 is exactly analogous to that of [11, Theorem 3.4].

We can now prove that, for C � Ginv, Bernoulli C-superrigidity is an orbit equivalence
invariant.

Proof of Theorem 1.2 in the case of orbit equivalence. Suppose that G and H are orbit
equivalent. Assuming that H is Bernoulli C-superrigid, we must show that G is Bernoulli
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C-superrigid as well. Towards this goal, let G Õ Y be a p.m.p. action of G, let L 2 C,
and let w1 W G � .Y ˝ Œ0; 1�G/ ! L be a measurable cocycle for the product action
G Õ Y ˝ Œ0; 1�G . We must show that w1 is cohomologous to a cocycle which descends
to Y . This is clear if G is finite, so we may assume that G is infinite.

Since G and H are orbit equivalent, we may find free ergodic p.m.p. actions G Õ Z

and H Õ Z which generate the same orbit equivalence relation. Let u W H � Z ! G

and v W G �Z!H be the associated rearrangement cocycles, so that u.h; z/z D hz and
v.g; z/z D gz for all g 2G, h 2H , z 2Z. LetX0 WDZ˝ Y , letG ÕX0 be the diagonal
product action, and letH ÕX0 be the action defined by h � .z;y/D .hz;u.h; z/y/. These
actions of G and H then generate the same orbit equivalence relation on X0.

LetXG WDX0˝ Œ0; 1�G and letG ÕXG be the diagonal product ofG ÕX0 with the
standard Bernoulli action of G. Likewise, let XH WD X0 ˝ Œ0; 1�H , and let H Õ XH be
the diagonal product of H Õ X0 with the standard Bernoulli action of H . There is then a
natural orbit equivalence between these actions of G and H , which we now describe (and
which is essentially the same fact underlying [8, Proposition 3.2] and Proposition 3.25
below). For each z 2 Z define ˆz W Œ0; 1�G ! Œ0; 1�H by ˆz.b/.h/ D b.u.h; h�1z//, and
define ˆ W XG ! XH by ˆ.z; y; b/ WD .z; y;ˆz.b//.

Claim 2.2. ˆ is an orbit equivalence.

Proof of Claim 2.2. Since for each z 2Z the map h 7! u.h;h�1z/ is a bijection fromH to
G, it follows thatˆz is a measure space isomorphism from Œ0;1�G to Œ0;1�H , and therefore
ˆ is a measure space isomorphism fromXG toXH . Moreover, the cocycle identity implies
that ˆgz.gb/ D v.g; z/ˆz.b/ and hence ˆ.g.z; y; b// D v.g; z/ˆ.z; y; b/ for all g 2 G
and .z; y; b/ 2 XG . Since for each z 2 Z the map g 7! v.g; z/ is a bijection from G to
H , it follows that ˆ maps the G-orbit of each .z; y; b/ 2 XG bijectively onto the H -orbit
of ˆ.z; y; b/ 2 XH , and hence ˆ is an orbit equivalence.

Let zw1 W G � XG ! L be the lift of the cocycle w1 to XG , i.e., zw1.g; .z; y; b// WD
w1.g; .y; b//. Then the map zwˆ1 W H �XH ! L, defined by

zwˆ1
�
h; .z; y; c/

�
WD zw1

�
u.h; z/;ˆ�1.z; y; c/

�
D w1

�
u.h; z/;

�
y;ˆ�1z .c/

��
;

is a cocycle ofH ÕXH . SinceH is Bernoulli C-superrigid, there exists a map F 0 WXH !
L and a cocycle w00 W H � X0 ! L such that for a.e. .z; y; c/ 2 XH and all h 2 H we
have

F 0
�
h.z; y; c/

�
w00
�
h; .z; y/

�
F 0.z; y; c/�1 D zwˆ1

�
h; .z; y; c/

�
;

i.e.,

F 0
�
h.z; y; c/

�
w00
�
h; .z; y/

�
F 0.z; y; c/�1 D w1

�
u.h; z/;

�
y;ˆ�1z .c/

��
: (2.2)

Let F D F 0 ıˆ and define the cocycle w0 W G �X0 ! L by

w0
�
g; .z; y/

�
WD w00

�
v.g; z/; .z; y/

�
:
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Then for a.e. .z; y; b/ 2 XG , for all g 2 G, by applying (2.2) to h WD v.g; z/ (so that
g D u.h; z/) and c WD ˆz.b/ we obtain

F
�
g.z; y; b/

�
w0
�
g; .z; y/

�
F.z; y; b/�1 D w1

�
g; .y; b/

�
: (2.3)

Let X1 WD Y ˝ Œ0; 1�G . Since G is infinite, the Bernoulli action G Õ Œ0; 1�G is weakly
mixing, and hence the extension X1 ! Y is relatively weakly mixing. It now follows
from (2.3) and Lemma 2.1 that w1 is cohomologous to a cocycle which descends to Y .
This completes the proof.

3. Groupoid preliminaries

3.1. Discrete p.m.p. groupoids

Given a groupoid G, we denote its unit space by G0 and its source and range maps by
sG W G! G0 and rG W G! G0, respectively, or simply by s and r when G is clear from the
context. We always view G0 as a subset of G, so that G0 D ¹g 2 G W s.g/D g D r.g/º, and
we will often denote elements of G0 by the letters x, y, and z. Given subsets A; B � G,
we let AB D ¹gh W g 2 A; h 2 B; s.g/D r.h/º, and we let A�1 D ¹g�1 W g 2 Aº. Given
g 2 G and A � G, we write gA for ¹gºA. Thus, for x 2 G0 we have Gx D s�1.x/ and
xG D r�1.x/.

Given A � G0, we let GA WD AGA, so that GA is itself a groupoid, called the reduction
of G to A, with unit space G0A WD A, and groupoid operations inherited from G. A complete
unit section of G is a subset A of G0 satisfying GAG D G; equivalently, A � G0 is a com-
plete unit section of G if and only if A meets every equivalence class of the equivalence
relation

RG WD
®�
r.g/; s.g/

�
W g 2 G

¯
on G0, associated to G. The groupoid G is said to be principal if the map G! RG, g 7!
.r.g/; s.g//, is injective; i.e., G is principal if G is isomorphic to an equivalence relation.
A subset A of G0 is G-invariant if it is RG-invariant, i.e., if A is a union of RG-classes.
A subset � of G is called a bisection of G if the source and range maps are both injective
on �. If � is a bisection of G, then for each g 2 Gr.�/ (resp. g 2 s.�/G) the set g� (resp.
�g) consists of a single element of G, and by abuse of notation we will also denote this
element by g� (resp. �g). Likewise, if g 2 Gr.�/, then we identify ��1g� with an element
of Gs.�/; the map g 7! ��1g� is then a groupoid isomorphism from Gr.�/ to Gs.�/.

Let H and G be groupoids. A groupoid homomorphism q WH! G is said to be locally
bijective if for each y 2 H0 the restriction qy W Hy ! Gq.y/, of q to Hy, is a bijection
from Hy to Gq.y/. Since for each y 2 H the inverse map h 7! h�1 provides a bijection
from Hy to yH, this is equivalent to requiring that, for each y 2 H0, the restriction
qy W yH ! q.y/G, of q to yH, is a bijection from yH to q.y/G. If p W H ! G is a
groupoid homomorphism, then we let p0 W H0 ! G0 denote the restriction of p to H0.

A discrete Borel groupoid is a groupoid G, equipped with the structure of a standard
Borel space, such that G0 is a Borel subset of G, the source and range maps s and r are
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Borel and countable-to-one, and the multiplication and inversion maps are both Borel.
In the category of discrete Borel groupoids, an isomorphism from G to H is a groupoid
isomorphism ' W G! H, from G to H, which is Borel (i.e., ' is a Borel map). We will
often make use of the Lusin–Novikov uniformization theorem [16, Theorem 18.10], which
implies that if f W A! Y is a countable-to-one Borel function from a Borel subset A of
a standard Borel space X into a standard Borel space Y , then f .A/ is Borel and there is a
countable partition of A into Borel sets on each of which f is in injective.

A discrete p.m.p. groupoid is a discrete Borel groupoid G, along with a Borel proba-
bility measure �G0 on G0 satisfyingZ

G0
jxDj d�G0.x/ D

Z
G0
jDxj d�G0.x/ (3.1)

for all Borel subsets D of G, where jDj denotes the cardinality of a set D. We let �G

denote the associated � -finite Borel measure on G, i.e., with �G.D/ given by (3.1) for
D � G Borel. A discrete p.m.p. groupoid G is called aperiodic if xG is infinite for a.e.
x 2 G0, and G is called periodic if xG is finite for a.e. x 2 G0. We say that G is ergodic if
every G-invariant Borel subsets of G0 is either �G0 -null or �G0 -conull. We will frequently
make use of the fact that if G is an ergodic discrete p.m.p. groupoid, and if A and B are
Borel subsets of G0 having the same measure then, after discarding a null set, there exists a
Borel bisection � of G with s.�/DA and r.�/DB; this follows from the case of principal
groupoids (see [17, Lemma 7.10]) by the Lusin–Novikov uniformization theorem.

We call a measure preserving groupoid homomorphism G
p
�! H between discrete

p.m.p. groupoids G and H a groupoid extension. Equivalently, a groupoid extension from
G to H is a Borel homomorphism p from G to H such that (i) p takes �G0 to �H0 and
(ii) p is locally bijective a.e.; i.e., p maps xG bijectively onto p.x/H for �G0 -a.e. x 2 G0.

As indicated by Remark 1.6, we will identify two extensions G
p
�!H and G

q
�!H if they

agree on a �G-conull set. Section 3.6 discusses extensions in more detail.
An isomorphism from the discrete p.m.p. groupoid G to the discrete p.m.p. groupoid H

is a measure preserving Borel groupoid isomorphism between conull subgroupoids G0 � G

and H0 � H. Given such an isomorphism from G to H, after discarding null sets from G0

and H0 we can always assume that G0 D GA and H0 D HB for some �G0 -conull subset
A of G0 and some �H0 -conull subset B of H0. Since we identify maps which agree a.e.,
this definition of isomorphism coincides with isomorphism in the category DPG, whose
objects are discrete p.m.p. groupoids, and whose morphisms are given by (equality-a.e.
equivalence classes of) groupoid extensions.

3.2. Fibered Borel spaces

Let X be a standard Borel space.
A fibered Borel space over X is a standard Borel space Z, along with a Borel map

p W Z ! X from Z to X . We write Zx for the fiber p�1.x/ over x 2 X . We will often
leave the fibering map implicit, e.g., stating that Z is a fibered Borel space over X , or that
Z! X is a fibered Borel space. A fibered Borel space Z is called discrete if each fiber is
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countable. If G is a discrete Borel groupoid, then the source and range maps each make G

into a discrete fibered Borel space over G0.
Let Y be a countable collection of fibered Borel spaces over X . Then the fibered prod-

uct over X of the collection Y, denoted by
N
X Y, is the fibered Borel space whose fiber

over x 2 X is the direct product .
N
X Y/x WD

Q
¹Yx W Y 2 Yº. We equip

N
X Y with the

standard Borel structure which it inherits as a Borel subset of the direct product
Q

Y. In the
case where Y D ¹Y; Zº consists of two spaces, we denote the associated fibered product
by Y ˝X Z.

If G is a discrete Borel groupoid and Y is a fibered Borel space over G0, then we
let G ˝G0 Y denote the fibered product with respect to the fibering s W G! G0, so that
G˝G0 Y D ¹.g; y/ 2 G � Y W y 2 Ys.g/º.

3.3. Fibered measure spaces

Let X be a standard � -finite measure space.
A fibered measure space over X is a fibered Borel space Z over X , together with an

assignment, x 7! �Zx , where

(i) �Zx is a � -finite Borel measure onZ which concentrates onZx for each x 2X ,

(ii) the map x 7! �Zx .B/ is Borel whenever B � Z is Borel.

If Z! X is a fibered measure space over X , then we will naturally consider Z itself as a
measure space by equipping it with the measure �Z WD

R
X
�Zx d�X . A fibered measure

space Z over X is called discrete if each fiber Zx is countable and �Zx is counting
measure on Zx . For example, a discrete p.m.p. groupoid G is naturally a discrete fibered
measure space over G0 with respect to each of the fibering maps s W G! G0 and r W G! G0.
In this case, both fiberings induce the same measure on G, namely �G.

A fibered probability space over X is a fibered measure spaceZ over X in which �Zx
is a probability measure for a.e. x 2X ; in this case the fibering map is measure preserving,
taking �Z to �X . Conversely, by the measure disintegration theorem, if p W Z ! X is a
measure preserving map between standard � -finite measure spaces Z and X , then there
is an essentially unique integral representation, �Z D

R
X
�Zx d�X , of �Z that makes Z

a fibered probability space over X .
Let Y and Z be fibered measure spaces over X . Then Y ˝X Z is naturally a fibered

measure space over X , where the fiber .Y ˝X Z/x D Yx � Zx over x 2 X is equipped
with the product measure �.Y˝XZ/x WD �Yx ˝ �Zx . In this setting, we call Y ˝X Z the
relatively independent product over X of Y and Z. Let Y be a countable collection of
fibered probability spaces over X . Then

N
X Y is naturally a fibered probability space

over X , where the fiber .
N
X Y/x D

Q
¹Yx W Y 2 Yº over x 2 X is equipped with the

product measure �.NX Y/x WD
Q
¹�Yx W Y 2 Yº. We call the resulting fibered probability

space
N
X Y the relatively independent product over X of the collection Y.

Let Y and Z be two fibered measure spaces over X . A fiberwise measure preserving
map over X from Y to Z is a Borel map ' W Y ! Z satisfying '��Yx D �Zx for a.e.
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x 2 X . We identify two such maps if they agree on a �Y -conull set. We call such a map '
a fiberwise isomorphism overX if there is a�Y -conull subset of Y on which ' is injective.

3.4. Actions of groupoids

Let G be a discrete Borel groupoid. A Borel action of G consists of a fibered Borel space
Y over G0, along with an assignment, g 7! ˛.g/, of a Borel isomorphism ˛.g/ W Ys.g/ !

Yr.g/ to each g 2 G, such that ˛.g/˛.h/ D ˛.gh/ whenever s.g/ D r.h/, and the associ-
ated map .g; y/ 7! ˛.g/y is Borel from G˝G0 Y to Y . We denote such an action by ˛, or
˛ W G Õ Y , or G Õ Y , depending on the context.

Suppose now that G is a discrete p.m.p. groupoid. A measure preserving action of G
is a Borel action ˛ W G Õ Y , in which Y is a fibered measure space over G0, and for each
g 2 G the transformation ˛.g/ W Ys.g/ ! Yr.g/ is a measure space isomorphism. We call
such an action G Õ Y a discrete action of G if Y is a discrete fibered measure space over
G0, and we call G Õ Y a p.m.p. action of G if Y is a fibered probability space over G0.

Two measure preserving actions ˛ W G Õ Y and ˇ W G Õ Z of G are isomorphic,
denoted by ˛ Š ˇ, if there exists a fiberwise isomorphism ' W Y ! Z over G0 which is
G-equivariant, i.e., which satisfies '.˛.g/y/ D ˇ.g/'.y/ for a.e. .g; y/ 2 G˝G0 Y .

The product of two measure preserving actions ˛ W G Õ Y and ˇ W G Õ Z of G is the
measure preserving action ˛ ˝ ˇ W G Õ Y ˝G0 Z defined by

.˛ ˝ ˇ/.g/ WD ˛.g/˝ ˇ.g/ W Ys.g/ ˝Zs.g/ ! Yr.g/ ˝Zr.g/

for each g 2 G, i.e., .˛ ˝ ˇ/.g/.y; z/ D .˛.g/y; ˇ.g/z/ for .y; z/ 2 Ys.g/ � Zs.g/. The
product of a countable collection ¹˛i W G Õ Yiºi2I of p.m.p. actions of G is the p.m.p.
action

N
i2I ˛i W G Õ

N
G0¹Yi W i 2 I º, defined by .

N
i2I ˛i /.g/ WD

Q
¹˛i .g/ W i 2 I º

for each g 2 G; i.e., .
N
i2I ˛i /.g/ maps .yi /i2I 2

Q
¹.Yi /s.g/ W i 2 I º to .˛i .g/yi /i2I 2Q

¹.Yi /r.g/ W i 2 I º.

3.5. Bernoulli actions of groupoids

Let X be a standard probability space and let V be a discrete fibered measure space
over X . Given another standard probability space K, we define the fibered probability
space K˝V over X as follows: for each x 2 X , the fiber K˝Vx over x is the prod-
uct space K˝Vx WD KVx , equipped with the product measure �

K˝Vx
WD �

Vx
K . We equip

K˝V WD
F
x2X K

Vx with the � -algebra generated by the fibering map p W K˝V ! X

along with all maps K˝V ! K of the form f 7! f .t.p.f ///, where t W X ! V ranges
over all Borel sections of V ! X . As a consequence of the Lusin–Novikov uniformiza-
tion theorem, the resulting measurable space is standard Borel, and henceK˝V is a fibered
probability space over X .

Definition 3.1 (Bernoulli actions). Let G be a discrete p.m.p. groupoid. Let a W G Õ V be
a discrete action of G and letK be a standard probability space. The generalized Bernoulli
action associated to a with baseK is the p.m.p. action ˇaK W G Õ K˝V defined by taking,
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for each g 2 G, the transformation ˇaK.g/ W K
Vs.g/ ! KVr.g/ to be given by

ˇaK.g/.f /.v/ WD f
�
a.g/�1v

�
for f 2 KVs.g/ , v 2 Vr.g/. In the special case where V D G, with fibering Vx WD xG for
x 2G0, and where aD `G is the left translation action `G WGÕG given by `G.g/.h/ WD gh,
we write ˇG

K for the p.m.p. action ˇ`GK , and we call the p.m.p. action

ˇG
K W G Õ K˝G

the standard Bernoulli action of G with base K. If A is a Borel subset of G0, then GA

fibers over G0 via .GA/x WD xGA for x 2 G0, and we let `GA W G Õ GA denote the left
translation action of G on GA, and write ˇGA

K for the action ˇ`GAK . If no base space K is
specified, then we will always take the base space to be the unit interval Œ0; 1�, equipped
with Lebesgue measure �Œ0;1�. For example, we will write ˇGA for ˇGA

Œ0;1�
.

It is clear that ˇaK and ˇaM are isomorphic whenever the probability spaces K and M
are isomorphic, and that ˇaK and ˇbK are isomorphic whenever the discrete actions a and b
are isomorphic. We also have the following isomorphisms, whose proof is straightforward.

Proposition 3.2. Let a W G Õ V be a discrete action of the discrete p.m.p. groupoid G.

(1) Let ¹Viºi2I be a countable partition of V into a-invariant Borel sets, and for each
i 2 I let ai W G Õ Vi denote the action of G restricted to Vi . Then ˇaK Š

N
i2I ˇ

ai
K

for any standard probability space K.

(2) Let ¹Kiºi2I be a countable collection of standard probability spaces and letK DQ
¹Ki W i 2 I º be the product space. Then

N
i2I ˇ

a
Ki
Š ˇaK .

Lemma 3.3. Let G be a discrete p.m.p. groupoid and let A be a measurable subset of G0

which is a complete unit section for G. Then the actions ˇG and ˇGA are isomorphic.

Proof. Assume first that G is ergodic. Then the hypothesis that the measurable set A is
a complete unit section for G is equivalent, modulo a null set, to assuming that A has
positive measure.

Case 1. �G.A/D 1=n for some positive integer n. In this case we may find a measurable
partition A0; A1; : : : ; An�1 of G0 with �G.Ai / D �G.A/ for all i < n. The set G decom-
poses `G-invariantly as the disjoint union of the sets GAi , 0 � i < n. Since G is ergodic
and �G.Ai / D �G.A/, each of the actions `GAi is isomorphic to `GA. This is because, by
ergodicity of G, we can find a measurable bisection �i with s.�i /DA and r.�i /DAi , and
hence an isomorphism from `GAi to `GA is given by the map GAi ! GA, g 7! g� . These
isomorphisms of discrete actions yield isomorphisms ˇGAi

Œ0;1�
Š ˇGA

Œ0;1�
, of p.m.p. actions, for

all 0 � i < n. We therefore have the following isomorphisms of p.m.p. actions:

ˇG
Œ0;1�
Š

O
i<n

ˇ
GAi
Œ0;1�
Š

O
i<n

ˇGA
Œ0;1�
Š ˇGA

Œ0;1�n
Š ˇGA

Œ0;1�
;
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where the first and third isomorphisms follow from (1) and (2) respectively of Proposi-
tion 3.2, and the last isomorphism holds since the probability spaces Œ0; 1�n and Œ0; 1� are
isomorphic.

Case 2. The general ergodic case. We may find some finite or countably infinite partition
.Ai /i2I of A into measurable sets, such that for each i 2 I we have �G.Ai / D 1=ni for
some integer ni � 1. By Case 1, we have ˇGAi

Œ0;1�
Š ˇG

Œ0;1�
for each i 2 I and hence

ˇGA
Œ0;1�
Š

O
i2I

ˇ
GAi
Œ0;1�
Š

O
i2I

ˇG
Œ0;1�
Š ˇG

Œ0;1�I
Š ˇG

Œ0;1�
;

where the first and third isomorphisms once again follow from (1) and (2) respectively of
Proposition 3.2, and the last isomorphism holds since the probability spaces Œ0; 1�I and
Œ0; 1� are isomorphic.

Case 3. The general case. Let � W G! W be an ergodic decomposition map for G; i.e.,
� is a G-invariant (�.g/ D �.s.g// D �.r.g// for all g 2 G) Borel map to a standard
Borel space W , and for each w 2 W the fiber Gw , equipped with the groupoid operations
inherited from G, is an ergodic discrete p.m.p. groupoid with respect to the probability
measure �G0w

coming from the disintegration of �G0 over W via the restriction of � to
G0. For each w 2 W the Borel set Aw WD A \ Gw is then a complete unit section for Gw .
We view Œ0; 1�˝GA as a fibered probability space overW via the composition Œ0; 1�˝GA!
G0!W , and likewise for Œ0; 1�˝G. For eachw 2W , by restricting the p.m.p. actions ˇGA

and ˇG to the fiber over w, we obtain p.m.p. actions .ˇGA/w W Gw Õ .Œ0; 1�˝GA/w and
.ˇG/w W Gw Õ .Œ0; 1�˝G/w of Gw which are seen to coincide with the actions ˇGwAw and
ˇGw , respectively.

Thus, by Case 2, for each w 2 W we can find an isomorphism Tw W .Œ0; 1�
˝GA/w !

.Œ0; 1�˝G/w of Gw -actions .ˇGA/w and .ˇG/w . By a standard measurable selection argu-
ment, we can choose the assignment w 7! Tw in such a way that, after discarding a null
set, the disjoint union T WD

F
W Tw is measurable, and hence gives an isomorphism of

the p.m.p. G-actions ˇGA and ˇG. Alternatively, an inspection of the proof of the ergodic
case shows that one may choose the isomorphisms Tw , w 2 W , systematically to ensure
that their union is measurable.

3.6. Groupoid extensions and translation groupoids

Definition 3.4 (Groupoid extensions). We call a measure preserving groupoid homo-
morphism G

p
�! H between discrete p.m.p. groupoids G and H a groupoid extension.

Equivalently, a groupoid extension from G to H is a Borel homomorphism p from G to H

such that (i) p takes �G0 to �H0 and (ii) p is locally bijective; i.e., p maps xG bijectively

onto p.x/H for �G0 -a.e. x 2 G0. We identify two extensions G
p
�!H and G

q
�!H if they

agree on a �G-conull set.

If G
p
�! H is a groupoid extension, then we write p0 for the restriction of p to G0.

By disintegrating �G via p, we will also view G as a fibered probability space over H.
Likewise, we will also view G0 as a fibered probability space over H0.
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Definition 3.5 (Translation groupoids). Let ˛ W H Õ Z be a Borel action of a discrete
Borel groupoid H. The associated translation groupoid, denoted by H ËZ, is the discrete
Borel groupoid on the set H ËZ WDH˝H0 Z with unit space .H ËZ/0 WDH0 ˝H0 Z,
source and range maps

s.h; z/ WD
�
sH.h/; z

�
and r.h; z/ WD

�
rH.h/; ˛.h/z

�
;

and multiplication and inversion defined by .h1; ˛.h0/z/.h0; z/ WD .h1h0; z/ and
.h; z/�1 WD .h�1; ˛.h/z/. This makes H ËZ a discrete Borel groupoid, whose unit space
.H Ë Z/0, viewed as a fibered Borel space over H0, is naturally isomorphic to Z via
the right projection map .H ËZ/0 ! Z. The left projection map H ËZ ! H is then a
locally bijective Borel groupoid homomorphism

If H is a discrete p.m.p. groupoid and ˛ WH Õ Z is a p.m.p. action, then we naturally
view the translation groupoid H Ë Z as a discrete p.m.p. groupoid by equipping it with
the measure �HËZ WD �H ˝H0 �Z , so that �.HËZ/0 D �H0 ˝H0 �Z . This makes the
left projection map H ËZ ! H an extension of discrete p.m.p. groupoids.

Remark 3.6 (Category theoretic remark). We obtain a category DPG, whose objects are
discrete p.m.p. groupoids, and whose morphisms are given by (equality-a.e. equivalence
classes of) groupoid extensions. We let DPG2 denote the associated arrow category, i.e.,
whose objects are groupoid extensions and whose morphisms are commuting squares;
i.e., a morphism from G0

p0
��! H0 to G1

p1
��! H1 is a pair .G0

pG

��! G1;H0

pH
���! H1/ of

extensions with p1 ıpGDpH ıp0. We will also be interested in the slice category DPGH

over a fixed discrete p.m.p. groupoid H, whose objects are extensions G ! H of H,
and whose morphisms from G0

p0
��! H to G1

p1
��! H are given by groupoid extensions

G0
p
�! G1 satisfying p1 ı p D p0. When we wish to indicate this context, we will call an

object of DPGH an H-extension, and a morphism of DPGH a morphism of H-extensions.
There is a straightforward equivalence between the category DPGH, of H-extensions,

and the category of p.m.p. actions of H (with H-equivariant fiberwise measure preserving
maps as morphisms) which, at the level of objects, is implemented by the translation
groupoid construction together with the following proposition, whose proof may be found
in [14, Lemma 3.27].

Proposition 3.7. Let G and H be discrete Borel groupoids and let p W G!H be a locally
bijective Borel groupoid homomorphism. Then there exists a unique Borel action p̨ WHÕ
G0, of H on the fibered Borel space p0 W G0!H0, satisfying p̨.p.g//sG.g/D rG.g/ for
all g 2 G.

If G and H are discrete p.m.p. groupoids and G
p
�! H is an H-extension, then the

action p̨ WH Õ G0 is a p.m.p. action on the fibered probability space p0 W G0!H0, and
the map p ˝ sG: g 7! .p.g/; sG.g// is an isomorphism of H-extensions:

G

p
��

p˝sG

Š
// H Ë G0

��

H
id // H
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3.7. Products and relatively independent products of extensions

Let G, H, and K be discrete Borel groupoids and let p W G!H and q W K!H be Borel
measurable groupoid homomorphisms. The fibered product G˝H K is naturally endowed
with the structure of a discrete Borel groupoid, by taking the unit space to be the fibered
product .G˝H K/0 WD G0 ˝H0 K0, and performing all groupoid operations coordinate-
wise, i.e., defining the source, range, multiplication, and inversion maps respectively by
s.g;k/ WD .sG.g/;sK.k// and r.g;k/ WD .rG.g/;rK.k//, .g1;k1/.g0;k0/ WD .g1g0;k1k0/,
and .g; k/�1 WD .g�1; k�1/.

Definition 3.8 (Relatively independent products). Let H be a discrete p.m.p. groupoid and
let G

p
�!H and K

q
�!H be two H-extensions. The relatively independent product measure

�G˝HK then makes the fibered product groupoid G ˝H K a discrete p.m.p. groupoid,
called the relatively independent product over H of G and K. The unit space of G˝H K, as
a probability space, is seen to be the relatively independent product .G˝H K/0D G0˝H0

K0 over H0 of the fibered probability spaces p0 W G0 ! H0 and q0 W K0 ! H0. The
left and right projection maps, G˝H K

pG

��! G and G˝H K
pK
��! K, are then groupoid

extensions, and we have the H-extension G˝H K! H via the map p ı pG D q ı pK.

Remark 3.9. If H Õ Y and H Õ Z are p.m.p. actions of H, then the map�
.h; y/; .h; z/

�
7!
�
h; .y; z/

�
gives an isomorphism from the relatively independent product .H Ë Y /˝H .H Ë Z/ of
the associated translation groupoids, to the translation groupoid H Ë .Y ˝H0 Z/ associ-
ated to the product action H Õ Y ˝H0 Z.

Remark 3.10. Parallel to Remark 3.9, if K, G, and L are all extensions of H, then the
K-extensions .K˝H G/˝K .K˝H L/!K and K˝H .G˝H L/!K are isomorphic
via ..k; g/; .k; l// 7! .k; .g; l//.

Definition 3.11 (Independent products). The independent product of two discrete p.m.p.
groupoids G and K is the discrete p.m.p. groupoid G˝K with unit space G0 ˝K0, and
all groupoid operations performed coordinate-wise.

Definition 3.12 (Ergodic and weakly mixing extensions). A groupoid extension G
p
�! H

is said to be relatively ergodic if for every measurable subset A of G0 which is G-invariant
(i.e., with s.g/ 2 A if and only if r.g/ 2 A for �G-a.e. g 2 G) there is some measurable
subset B of H0 such that �G0.A4p

�1.B// D 0. A groupoid extension G! H is said to
be relatively weakly mixing if the extension G˝H G! H is relatively ergodic.

We will use the following well-known characterization of relatively weakly mixing
extensions.

Lemma 3.13. Let G!H be an extension of discrete p.m.p. groupoids. Then the following
are equivalent.
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(1) The extension G! H is relatively weakly mixing.

(2) The extension G˝H G! H is relatively weakly mixing.

(3) Given any extension K! H, the extension K˝H G! K is relatively ergodic.

3.8. Equivalence of homomorphisms

Let G be a discrete p.m.p. groupoid, and let L be a Polish group. Two measurable homo-
morphisms u W G! L and v W G! L into L are said to be equivalent if there exists a
measurable map F W G0 ! L such that F.r.g//u.g/F.s.g//�1 D v.g/ for a.e. g 2 G.
This is an equivalence relation on measurable homomorphisms from G to L.

We let Z.G; L/ denote the set of all measurable homomorphisms from G to L, and we
let H.G; L/ denote the set of all equivalence classes of measurable homomorphisms from
G to L.

3.9. Reductions

Let H be a discrete p.m.p. groupoid and let A be a non-null measurable subset of H0.
Then we endow the reduction, HA D AHA, of H to A, with the structure of a discrete
p.m.p. groupoid by taking�H0

A
to be the normalized restriction of�H0 toA. Ifw WH!L

is a homomorphism to a group L, then we let wA denote the restriction of w to HA.
Let G

p
�!H be an H-extension. Then we abuse notation and write GA for the reduction

Gp�1.A/ of G to p�1.A/ � G0. We let GA
pA
��! HA denote the HA-extension obtained by

restricting p. Likewise, if w W G! L is a homomorphism to a group L, then we write
wA for the restriction of w to GA, and if G0

q
�! G1 is a morphism of H-extensions from

G0
p0
��! H to G1

p1
��! H, then we let .G0/A

qA
��! .G1/A denote the corresponding morphism

of HA-extensions, from .p0/A to .p1/A.

Proposition 3.14. Let H be a discrete p.m.p. groupoid, let A � H0 be a measurable
complete unit section for H, and let L be a Polish group.

(1) The restriction map Z.H; L/! Z.HA; L/, w 7! wA, is surjective, and descends
to a bijectionH.H;L/!H.HA;L/ on the space of equivalence classes of homo-
morphisms.

(2) Let G
p
�! H be a groupoid extension and let w 2 Z.G; L/. Then w is equivalent

to a homomorphism which descends to H if and only if wA is equivalent to a
homomorphism which descends to HA.

Proof. Since HAH D H, the countable-to-one Borel map s W AH ! H0 is surjective,
and it is clearly injective on A. By the Lusin–Novikov uniformization theorem we may
therefore find a Borel subset ofAH, containingA, with j \ s�1.x/jD 1 for all x 2H0.
Then for each h 2 H the sets  h, h �1, and  h �1 each consist of a single element
of AH, HA, and HA, respectively, and by abuse of notation we will also denote these
elements by  h, h �1, and  h �1, respectively. The map c WH!HA, c.h/ WD  h �1

is then a groupoid homomorphism extending the identity map on HA. The homomorphism
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c is not measure preserving in general, but it is measure-class preserving since, for a subset
D of HA we have c�1.D/�HDH, so that .c��H/.D/D 0 if and only if �H.HDH/D

0 if and only if �H.D/ D 0 if and only if �HA
.D/ D 0.

(1) It is clear that the restriction map descends to a well-defined map H.H; L/ !
H.HA;L/. The mapw 7!wA is surjective, since if v2Z.HA; L/, then the homomorphism
w 2 Z.H; L/, defined by w.h/ WD v. h �1/, satisfies wA D v. To see that the map on
equivalence classes is injective, letw0;w1 2Z.H;L/ be such thatw0A is equivalent tow1A,
so that there exists a measurable map f W A! L with w0.h/D f .r.h//w1.h/f .s.h//�1

for a.e. h 2 HA. Then for a.e. h 2 H we have

w0. h �1/ D f
�
r. h �1/

�
w1. h �1/f

�
s. h �1/

��1
D f

�
r
�
 r.h/

��
w1. h �1/f

�
r
�
 s.h/

���1
; (3.2)

where the identities r. h �1/ D r. r.h// and s. h �1/ D r. s.h// follow from
 h �1 D . r.h//h. s.h//�1. Define F W H0 ! L by

F.x/ WD w0. x/�1f
�
r. x/

�
w1. x/

for x 2 H0. Then for a.e. h 2 H we have

w0.h/ D w0
�
 r.h/

��1
w0. h �1/w0

�
 s.h/

�
D w0

�
 r.h/

��1
f
�
r
�
 r.h/

��
w1. h �1/f

�
r
�
 s.h/

���1
w0
�
 s.h/

�
D w0

�
 r.h/

��1
f
�
r
�
 r.h/

��
w1
�
 r.h/

�
w1.h/w1

�
 s.h/

��1
� f

�
r
�
 s.h/

���1
w0
�
 s.h/

�
D F

�
r.h/

�
w1.h/F

�
s.h/

��1
;

where the second equality follows from (3.2), and the first and third equalities come
from applying the homomorphisms w0 and w1, respectively, to the identity  h �1 D
. r.h//h. s.h//�1. This shows that w0 and w1 are equivalent.

(2) If w is equivalent to a homomorphism u which descends to H, then wA is equiv-
alent to the homomorphism uA, and uA descends to HA. Conversely, assume that wA is
equivalent to a homomorphism which descends to HA; i.e., wA is equivalent to a homo-
morphism of the form v ıpA, where v 2Z.HA;L/. By part (1) there is some u 2Z.H;L/
such that uA D v. Then .u ı p/A D v ı pA is equivalent to wA, so u ı p is equivalent to
w by part (1).

Proposition 3.15. Let H be a discrete p.m.p. groupoid and let A � H0 be a measurable
complete unit section for H. Let K

q
�! HA be an HA-extension. Then there exists an

H-extension G
p
�! H whose reduction GA

pA
��! HA is isomorphic as an HA-extension to

K
q
�! HA.
Moreover, this H-extension is unique if G0

p0
�!H and G1

p1
�!H are two H-extensions,

and if .G0/A
t
�! .G1/A is an isomorphism of the HA-extensions .p0/A and .p1/A, then

there exists a unique isomorphism of H-extensions G0
T
�! G1 with TA D t .
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Proof. As in the proof of Proposition 3.14, we fix a Borel subset  of H with A �  �
AH and j \ s�1.x/j D 1 for all x 2H0, and for each h2H we identify h, h �1, and
h �1 with elements of H, so that the map c W H! HA, c.h/ WD  h �1, is a measure-
class preserving groupoid homomorphism which restricts to the identity map on HA.

As a discrete Borel groupoid we take G to be the fibered product G WDH˝HA
K with

respect to the homomorphisms c and q, and we take p to be the left projection from G to
H. We equip the unit space G0 D H0 ˝H0

A
K0 with the probability measure

�G0 WD

Z
H0

ıx � �K0
c.x/
d�H0.x/:

These definitions make G a discrete p.m.p. groupoid, G
p
�! H an H-extension, and the

right projection GA!K provides an isomorphism of HA-extensions from GA
pA
��! HA to

K
q
�! HA.
These claims can be verified using translation groupoids as follows. The p.m.p. action

˛ W HA Õ K0, obtained from the extension q by Proposition 3.7, gives rise to a p.m.p.
action ˇ WH Õ G0 defined by ˇ.h/.s.h/; y/ WD .r.h/; ˛.c.h//y/ for h 2H, y 2K0

c.s.h//
.

By Proposition 3.7, the HA-extension K
q
�! HA is isomorphic to the HA-extension

HA Ë K0!HA associated to ˛, and this in turn is isomorphic as an HA-extension to the
reduction .H Ë G0/A ! HA, of the H-extension associated to the translation groupoid of
ˇ, via the map .h; y/ 7! .h; .s.h/; y//. The Borel map

p ˝ sG W G! H Ë G0; .h; k/ 7!
�
h;
�
s.h/; s.k/

��
is then a bijective groupoid homomorphism which sends �G0 to �.HËG0/0 . The claims
from the previous paragraph now follow.

We now prove the uniqueness statement. By Proposition 3.7 it is enough to consider
the case where each Gi is a translation groupoid Gi DH ËZi associated to a p.m.p. action

˛i W H Õ Zi of H, and Gi
pi
��! H is the projection map .h; z/ 7! h. Let .G0/A

t
�! .G1/A

be an isomorphism of HA-extensions. Then t has the form t .h; z/ D .h; t0.z//, where
t0 W .Z0/A ! .Z1/A is an isomorphism of the reduced actions ˛0jHA

W HA Õ .Z0/A and
˛1jHA

WHA Õ .Z1/A. Define T W G0! G1 by T .h; z/D .h;T 0.z//, where T 0 WZ0!Z1
is defined fiberwise by taking, for x 2 H0, the restriction T 0x W .Z0/x ! .Z1/x to .Z0/x
to be given by

T 0x D ˛1. x/
�1
ı t0r. x/ ı ˛0. x/:

Then T 0 is an isomorphism of the actions ˛0 and ˛1 which extends the isomorphism
t0, hence T is an isomorphism of H-extensions with TA D t . To see that T is unique,
suppose that U W G0 ! G1 is another isomorphism of H-extensions with UA D t , so that
U.h; z/ D .h; U 0.z// for some isomorphism U 0 W Z0 ! Z1 extending t0. Then for any
x 2H0, the restriction Ux , of U to .Z0/x , satisfies U 0x D ˛1. x/

�1 ıU 0
r. x/

ı ˛0. x/D

˛1. x/
�1 ı t0

r. x/
ı ˛0. x/ D T

0
x , whence U D T .
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Proposition 3.16. Let G and H be ergodic discrete p.m.p. groupoids, let A � G0 and
B � H0 be positive measure sets with �G.A/ D �H.B/, and suppose that t W GA ! HB

is an isomorphism. Then t extends to an isomorphism T W G! H.

Proof. Let A0; A1; : : : be a sequence of non-null measurable subsets of A, with A0 D A,
and

P
i2N�G.Ai /D 1 (we allow some of the Ai ’s to be empty). Then for each i 2 N, let-

ting Bi WD t .Ai /, we have �H.Bi /D �G.Ai / since t is measure preserving and �G.A/D

�H.B/. By ergodicity, after discarding a null set, we may find a sequence �0; �1; : : : ; of
measurable bisections of G with s.�0/; s.�1/; : : : partitioning G0, and with �0 D A and
r.�i / D Ai for all i 2 N. Likewise we may find measurable bisections �0; �1; : : : ; of H
with s.�0/; s.�1/; : : : partitioning H0, and with �0 D B0 D B and r.�i /D Bi for all i 2 N.
For x 2 G0 define �x WD �i and �x WD �i if and only if x 2 s.�i /. Then �r.g/g��1s.g/ 2 GA
for all g 2 G, and the map T W G! H defined by

T .g/ WD ��1r.g/t
�
�r.g/g�

�1
s.g/

�
�s.g/

is easily verified to be an isomorphism extending t .

Proposition 3.17. Let H be an ergodic discrete p.m.p. groupoid and assume that �H0

has no atoms. Then for each real number t � 1, up to isomorphism there exists a unique
ergodic discrete p.m.p. groupoid G such that H is isomorphic to GA for some measurable
A � G0 with �G.A/ D 1=t .

Proof. The uniqueness of G follows from Proposition 3.16, so it remains to prove exis-
tence. Let n be any integer greater than t . Let Œn� WD ¹0; 1; : : : ; n � 1º equipped with
normalized counting measure �Œn� and let Jn WD Œn� � Œn� be the equivalence relation
on Œn� consisting of a single equivalence class. Then Jn is an ergodic discrete p.m.p.
groupoid, whose unit space is J0n D ¹.0; 0/; .1; 1/; : : : ; .n; n/º. Let K WD H ˝ Jn and
let A D H0 ˝ ¹.0; 0/º, so that �K.A/ D 1=n. Let B be any measurable subset of K0

containing A with �K.B/ D t=n and let G WD KB . Since H and Jn are both ergodic, so
is K, and hence so is G. We have �G.A/ D �K.A/=�K.B/ D 1=t , and H is isomorphic
to GA D KA via the map h 7! .h; .0; 0//.

Proposition 3.18. Let G be an ergodic discrete p.m.p. groupoid and let A and B be pos-
itive measure subsets of G0 with �G.A/ D �G.B/. Then the reductions GA and GB are
isomorphic.

Proof. Since G is ergodic and �G.A/D �G.B/, we can find a measurable bisection � of G
with s.�/DA and r.�/DB . Then the map GA! GB , g 7! �g��1 is an isomorphism.

3.10. Untwisting lemma

The following is [11, Lemma 3.2] stated for discrete p.m.p. groupoids (see also [27,
Lemma 3.11]). We note that while the statement of [11, Lemma 3.2] corresponds to
the case where G is assumed to be ergodic, this assumption is unnecessary and is eas-
ily removed.
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Lemma 3.19. Let G
p
�! H be a relatively weakly mixing extension of discrete p.m.p.

groupoids. Let L be a Polish group admitting a bi-invariant metric, and let u W H ! L

and v W H ! L be measurable maps. Suppose that ˆ W G0 ! L is a measurable map
satisfying, for a.e. g 2 G,

u
�
p.g/

�
D ˆ

�
r.g/

�
v
�
p.g/

�
ˆ
�
s.g/

��1
:

Thenˆ descends to H0; i.e., there is some measurable map f WH0!L such thatˆ.x/D
f .p.x// for a.e. x 2 G0.

We will need the following “asymmetric” generalization of [11, Theorem 3.4] (see
also [27, Theorem 3.1]). We provide a complete proof, although we note that the proof in
this asymmetric setting is nearly identical to the proof of [11, Theorem 3.4].

Lemma 3.20 (Untwisting lemma, asymmetric version). Let H be a discrete p.m.p.
groupoid and let G0

q0
��! H and G1

q1
��! H be two H-extensions. Let G0 ˝H G1 be the

associated relatively independent product over H, with projections p0 and p1 to G0 and
G1, respectively:

G0 ˝H G1

p0

��

p1 // G1

q1

��

G0
q0 // H

Assume that the extension G1
q1
��!H is relatively weakly mixing. Letw0 W G0!L andw1 W

G1 ! L be measurable homomorphisms to a Polish group L which admits a bi-invariant
metric, and suppose that the homomorphisms w0 ı p0 and w1 ı p1 are equivalent. Then
there exists a measurable homomorphism w WH! L such that w0 is equivalent to w ı q0
and w1 is equivalent to w ı q1.

In fact, if F W .G0 ˝H G1/
0 ! L is a measurable map witnessing that w0 ı p0 and

w1 ı p1 are equivalent, so that

w0.g0/ D F
�
r.g0; g1/

�
w1.g1/F

�
s.g0; g1/

��1 (3.3)

for a.e. .g0; g1/ 2 G0 ˝H G1, then there exist measurable maps '0 W G00 ! L and '1 W
G01 ! L, and a measurable homomorphism w W H! L such that

F.x0; x1/ D '0.x0/
�1'1.x1/;

w
�
p0.g0/

�
D '0

�
r.g0/

�
w0.g0/'0

�
s.g0/

��1
;

w
�
p1.g1/

�
D '1

�
r.g1/

�
w1.g1/'1

�
s.g1/

��1
;

for a.e. .x0; x1/ 2 .G0 ˝H G1/
0, g0 2 G0, and g1 2 G1.

Proof. We begin with a claim.

Claim 3.21. The extension .G0˝H G0/˝H G1! G0˝H G0 is relatively weakly mixing.
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Proof of Claim 3.21. Define Ki WD Gi ˝H Gi for i D 0; 1, and let K WD K0 ˝H G1. We
must show that the extension K˝K0 K! K0 is relatively ergodic. This K0-extension
is isomorphic to the K0-extension K0 ˝H K1 ! K0 by Remark 3.10. Since G1 ! H is
relatively weakly mixing, by applying (1))(2) of Lemma 3.13 we see that the extension
K1 ! H is relatively weakly mixing, and hence we conclude from (1))(3) of Lemma
3.13 that the extension K0 ˝H K1 ! K0 is relatively ergodic.

Keeping the notation from the claim, let ˆ W K0 ! L be the map ˆ..x0; x00/; x1/ WD
F.x0; x1/F.x

0
0; x1/

�1, for ..x0; x00/; x1/ 2 K0. Then (3.3) implies that

ˆ
�
r
�
.g0; g

0
0/; g1

��
D w0.g0/ˆ

�
s
�
.g0; g

0
0/; g1

��
w0.g

0
0/
�1

for a.e. ..g0; g00/; g1/ 2 K. Therefore, by Claim 3.21 and Lemma 3.19, there is a measur-
able map f W K00 ! L such that for a.e. ..x0; x00/; x1/ 2 K0 we have ˆ..x0; x00/; x1/ D
f .x0; x

0
0/, i.e.,

F.x0; x1/ D f .x0; x
0
0/F.x

0
0; x1/:

Since for y 2H0 we have�K0
y
D�.G00/y

˝�.G00/y
˝�.G01/y

, by applying Fubini’s theorem
and an appropriate selection theorem (e.g., [16, Theorem 18.1]), we can find a measur-
able section t W H0 ! G00 for q00 W G

0
0 ! H0 such that for a.e. y 2H0, for �.G0˝G1/0y -a.e.

.x0; x1/ 2 .G0 ˝H G1/
0
y we have F.x0; x1/ D f .x0; t .y//F.t.y/; x1/. Let '0 W G00 ! L

be the map '0.x0/ WD f .x0; t .q0.x0///
�1 and let '1 W G01 ! L be the map '1.x1/ WD

F.t.q1.x1//; x1/, so that F.x0; x1/ D '0.x0/�1'1.x1/ for a.e. .x0; x1/ 2 .G0 ˝H G1/
0.

Then, by (3.3), for a.e. .g0; g1/ 2 G0 ˝H G1 we have

'0
�
r.g0/

�
w0.g0/'0

�
s.g0/

��1
D '1

�
r.g1/

�
w1.g1/'1

�
s.g1/

��1
: (3.4)

Thus, for a.e. h 2 H, for �.G˝HG/h D �.G0/h ˝ �.G1/h a.e. .g0; g1/ 2 .G0 ˝H G1/h D

.G0/h ˝ .G1/h, (3.4) holds. Fubini’s theorem then implies that there is some w.h/ 2 L,
along with a �.G0/h -conull subset C0;h of .G0/h and a �.G1/h -conull subset C1;h of .G1/h
such that the left- and right-hand sides of (3.4) are equal to w.h/ for all g0 2 C0;h and
g1 2 C1;h. It then follows that, after discarding a �H-null set, the assignment h 7! w.h/

is a homomorphism and satisfies the conclusion of the lemma.

3.11. Bernoulli extensions

Definition 3.22. Let K be a standard probability space. We let BK.G/ denote the trans-
lation groupoid associated to the Bernoulli action ˇG

K of G with base K; i.e., BK.G/ WD
G Ë K˝G. The projection map BK.G/! G is a groupoid extension called the Bernoulli
extension of G with base K. We write B.G/ for BŒ0;1�.G/.

Remark 3.23. If GDH ËX is a translation groupoid associated to a p.m.p. action of H,
then, by Proposition 3.25 below and Remark 3.9, the G-extensions BK.H ËX/!H ËX
and H Ë .X ˝H0 K˝H/!H ËX are isomorphic. In particular, for a groupH , we have
an isomorphism of groupoids BK.H ËX/ Š H Ë .X ˝KH /, where H Õ X ˝KH is
the product of H Õ X with the Bernoulli action of H over the base space K.
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If G
p
�!H is a groupoid extension, then we obtain an extension BK.G/

BK .p/
�����!BK.H/

as follows: for each x 2 G0 let px denote the restriction of p to xG, so that px W xG!
p.x/H is a bijection for a.e. x 2 G0. For such x, define BK.p/

x W KxG ! Kp.x/H by
BK.p/

x.f /.h/ D f ..px/�1.h//, for f 2 Kp.x/H and h 2 p.x/H. The map BK.p/
x is

measure preserving, and defining BK.p/.g; f / WD .p.g/;BK.p/
s.g/.f // for .g; f / 2

BK.G/ makes BK.p/ a groupoid extension. Moreover, we have the following commuting
square of groupoid extensions:

BK.G/

��

BK .p/// BK.H/

��

G
p

// H

(3.5)

Proposition 3.24. Let K be a standard probability space. The assignment which takes
each discrete p.m.p. groupoid G to the associated Bernoulli extension BK.G/! G and
which takes each groupoid extension G

p
�! H to the associated commuting square (3.5)

is a functor from the category DPG of discrete p.m.p. groupoids to the category DPG2 of
groupoid extensions.

The next proposition generalizes the fact that an orbit equivalence between essentially
free p.m.p. actions G Õ X andH Õ Y of countable groups induces an orbit equivalence
of the actions G Õ X ˝KG and H Õ Y ˝KH .

Proposition 3.25. Let G
p
�! H be an extension of discrete p.m.p. groupoids. Then the G-

extensions BK.G/
q
�!G and G˝HBK.H/!G are isomorphic, with an isomorphism being

given by the map q ˝BK.p/ W .g; f / 7! .q.g; f /;BK.p/.g; f // D .g;BK.p/.g; f //,

BK.G/

q

��

Š

q˝BK .p/ // G˝H BK.H/

��

G
id // G

(3.6)

Proof. This is a straightforward verification.

In the case of equivalence relations, the next lemma follows from [8, Theorem 3.3].

Lemma 3.26. Let G be a discrete p.m.p. groupoid and let A be a non-null measurable
subset of G0. Then the GA-extensions B.GA/! GA and B.G/A ! GA are isomorphic.

Proof. Let X D r.GA/. Then X is a G-invariant measurable subset of G0, so the exten-
sions B.G/X ! GX and B.GX / ! GX coincide. Therefore, after replacing G by GX if
necessary, we may assume that A is a complete unit section for G. By Lemma 3.3, the
actions ˇG

Œ0;1�
W G Õ Œ0; 1�˝G and ˇGA

Œ0;1�
W G Õ Œ0; 1�˝GA are isomorphic, and hence the G-

extensions B.G/!G and GËŒ0; 1�˝GA!G are isomorphic. Therefore, the GA-extensions
B.G/A ! GA and .G Ë Œ0; 1�˝GA/A ! GA are isomorphic. The latter GA extension coin-
cides precisely with B.GA/! GA.
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The relative weak mixing assumption in Lemma 3.20 will manifest in Section 4
through the following well-known lemma.

Lemma 3.27. Let G be a discrete p.m.p. groupoid which is aperiodic, i.e., with xG infinite
for a.e. x 2 G0, and let K be a standard probability space. Then the Bernoulli extension
BK.G/! G is relatively weakly mixing.

Proof. By Proposition 3.2 and Remark 3.9, the G-extensions BK.G/˝G BK.G/! G and
BK2.G/ ! G are isomorphic, hence it suffices to show that the extension BK.G/ ! G

is relatively ergodic. In terms of the Bernoulli action ˇG
K W G Õ K˝G, this means the

following: given a measurable subset A of K˝G which is ˇG
K-invariant, we must show

that for a.e. x 2 G0 the fiber Ax � KxG is either null or conull.
For each x 2 G0 let �x WD �xGK denote the measure on the fiber KxG, and for each

finite Q � xG let �Q W KxG ! KQ denote the restriction map �Q.f / WD f jQ.
Fix " > 0. For each x 2 G0 let n.x/ be the least natural number n such that there exists

some subsetQ� xG of cardinality jQj D n having the following property: .�/ there exists
some �Q-measurable subset B of KxG with �x.B4Ax/ � "�x.Ax/. We can then find
a measurable selection x 7! Qx � xG of such a set satisfying .�/, with jQxj D n.x/,
so that the set Q WD

S
x2G0 Q

x � G is measurable with xQ D Qx for x 2 G0. Since
A is ˇG

K-invariant, the function x 7! n.x/ is G-invariant, hence for each n 2 N the set
Dn WD ¹x 2 G0 W n.x/ D nº is G-invariant, which implies thatZ

Dn

jQxj d�G0 D

Z
Dn

jxQj d�G0 D n�G0.Dn/ <1:

In particular, the set Qx is finite for a.e. x 2 G0. It follows that xQQ�1 is a finite subset
of the infinite set xG for a.e. x 2 G0. Fix such an x and choose some g 2 xG which does
not belong to the finite set xQQ�1, and hence satisfies gQ \Q D ¿. Let y WD s.g/ and
find subsets By � KyG and Bx � KxG which are �yQ-measurable and �xQ-measurable,
respectively, and satisfy �y.By4Ay/ � "�y.Ay/ and �x.Bx4Ax/ � "�x.Ax/. Since A
is ˇG

K-invariant we have �y.Ay/ D �x.Ax/ and

�x.Ax/ D �x
�
ˇG.g/Ay \ Ax

�
� �x

�
ˇG.g/By \ Bx

�
C 2"�x.Ax/: (3.7)

Since gQ\QD¿, the subsets ˇG.g/By andBx ofKxG are independent for the measure
�x , and hence

�x
�
ˇG.g/By \ Bx

�
D �y.By/�x.Bx/ � .1C "/

2�x.Ax/
2:

Combining this with (3.7) shows that �x.Ax/ �
.1C"/2

1�2"
�x.Ax/

2. This inequality holds
for a.e. x 2 G0. Since " > 0 was arbitrary, we conclude that for a.e. x 2 G0 we have
�x.Ax/ � �x.Ax/

2 and hence Ax is either null or conull, as was to be shown.

Lemma 3.28. Let G be a discrete p.m.p. groupoid, let A be a non-null measurable subset
of G0 and let H be a measurable subgroupoid of GA with H0 D A. Let p W B.G/! G

be the Bernoulli extension of G with base space Œ0; 1� and let H0 WD p�1.H/. Then the
H-extension pjH0 W H0 ! H is isomorphic to the Bernoulli H-extension B.H/! H.
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Proof. By Lemma 3.26, we may assume thatAD G0 and hence that H0 D G0. In terms of
p.m.p. actions of H, we must show that the p.m.p. actions ˇGjH WH Õ Œ0; 1�˝G and ˇH W

H Õ Œ0; 1�˝H are isomorphic, where ˇGjH denotes the restriction to H of the standard
Bernoulli action of G.

By the Lusin–Novikov uniformization theorem we may find a sequence �0; �1; : : : of
measurable bisections of G with G D

S
i2N �i . Let �n WD �n n

S
i<nH�i and put † WD

¹�nºn2N. Then† is a countable collection of measurable bisections of G, and the sets H� ,
� 2 †, form a partition of G. For each � 2 † the map �� W H� ! Hr.�/, defined by
�� .g/ WD g��1, gives an isomorphism of measure preserving discrete H-actions, from
the left translation action H Õ H� , to the left translation action H Õ Hr.�/. Therefore,
the left translation action of H on G is isomorphic to the action of H on the disjoint union
V WD

F
�2†Hr.�/, and hence we have isomorphisms ˇGjH Š ˇ

V
Œ0;1�

of p.m.p. actions of
H. By Proposition 3.2 and Lemma 3.3 we have

ˇVŒ0;1� Š
O
�2†

ˇ
Hr.�/

Œ0;1�
Š

O
�2†

ˇH
Œ0;1� Š ˇ

H:

Proposition 3.29. Let G be an aperiodic discrete p.m.p. groupoid. Let K be a stan-
dard probability space and assume that �K is not a point mass. Then the discrete p.m.p.
groupoid BK.G/ is principal.

Proof. This is equivalent to saying that the action ˇG
K is essentially free; i.e., for a.e. g 2 G

with g 62 G0 and for a.e. f 2 Ks.g/G we have ˇG
K.g/f ¤ f . This is clear if s.g/ ¤ r.g/,

so we may assume that s.g/ D r.g/ D x. Since G is aperiodic, we may assume that xG is
infinite. Since g 62 G0, the permutation xG! xG, h 7! g�1h of xG has no fixed points,
so we may find an infinite subset I of xG such that g�1I \ I D ¿. If f 2 KxG and
ˇG
K.g/f D f , then, in particular, we have f .g�1h/ D f .h/ for all h 2 I . The set of
f 2 KxG where this occurs is null for the product measure �xGK , since �K is not a point
mass.

3.12. Measure equivalence of discrete p.m.p. groupoids

Definition 3.30. Let G and H be discrete p.m.p. groupoids.

(1) We say that G and H are extension equivalent, denoted by G'ext H, if there exists
a discrete p.m.p. groupoid K which is both an extension K ! G, of G, and an
extension K! H, of H.

(2) We say that G and H are reduction equivalent, denoted by G 'red H, if there exist
measurable complete unit sections A � G0 and B �H0, such that GA and HB are
isomorphic.

(3) We say that G and H are measure equivalent (or extension-reduction equivalent),
denoted by G 'ME H, if there exist extensions zG! G and zH ! H such that zG
and zH are reduction equivalent.

We note that, by Proposition 3.7, G and H are measure equivalent if and only if they
are stably orbit equivalent in the sense that there exist p.m.p. actions G Õ Y and H Õ Z
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such that the translation groupoids G Ë Y and H ËZ are reduction equivalent. It follows
that the definition of measure equivalence for groupoids given here is consistent with the
definition of measure equivalence for groups given in the introduction.

Proposition 3.31. Each of the relations 'ext, 'red, and 'ME is an equivalence relation
on the class of discrete p.m.p. groupoids. In addition, 'ext is the transitive closure of the
relation

Rext D
®
.G;H/ W there exists either an extension G! H or an extension H! G

¯
;

and'ME is the transitive closure of the union of Rext and'red.

Proof. Suppose first that H0'red G and G'red H1, so that for i D 0;1 there exist complete
unit sections Bi � H0

i and Ai � G0 with .Hi /Bi Š GAi . The assumption that Ai is a
complete unit section of G is equivalent, modulo a �G-null set, to Ai having positive
measure within almost every ergodic component of G. We may therefore find complete
unit sections A00 � A0 and A01 � A1 such that A00 and A01 have the same positive measure
within almost every ergodic component of G, and hence GA00 Š GA01 by Proposition 3.18.
Then, for i D 0; 1, the isomorphisms .Hi /Bi Š GAi yield complete unit sections B 0i � Bi
such that .Hi /B 0i Š GA0i , and therefore .H0/B 00 Š .H1/B 01 , i.e., H0 'red H1.

Since 'ext clearly lies between Rext and its transitive closure, to see that 'ext is the
transitive closure of Rext it is enough to show that 'ext is an equivalence relation. Sim-
ilarly, it is enough to show that 'ME is an equivalence relation. For 'ext, if K0 is an
extension of both G0 and H, and K1 is an extension of both H and G1, then K0 ˝H K1
is an extension of both G0 and G1; it follows that'ext is an equivalence relation.

Assume now that G 'ME H and H 'ME K, so that there are extensions G0 ! G and
H0 ! H along with complete unit sections A0 of G0 and B0 of H0 such that .G0/A0 Š
.H0/B0 , and also there are extensions H1 ! H and K1 ! K along with complete unit
sections B1 of H1 and C1 of K1 such that .H1/B1 Š .K1/C1 . Let zH be the relatively
independent product, zH WD H0 ˝H H1, of H0 and H1 over H. Then the composition
zHB0! .H0/B0

Š
�! .G0/A0 realizes zHB0 as an extension of .G0/A0 , so by Proposition 3.15

there exists an extension zG! G0 such that zGA0 Š zHB0 . Likewise, there exists an extension
zK! K1 such that zHB1 Š

zKC1 . Therefore zG 'red zH 'red zK and hence G 'ME K.

4. ME-invariance

Definition 4.1. Let C be a class of Polish groups. We say that an extension G! H of
discrete p.m.p. groupoids is relatively C-superrigid if every measurable homomorphism
w W G ! L taking values in a group L 2 C is equivalent to a homomorphism which
descends to H. We say that a discrete p.m.p. groupoid H is Bernoulli C-superrigid if for
every extension G!H of H, the Bernoulli extension B.G/! G is relatively C-superrigid.

Proposition 4.2. Let H be a countable group and let C be a class of Polish groups. Then
H is Bernoulli C-superrigid in the sense of Definition 4.1 if and only if H is Bernoulli
C-superrigid in the sense of Definition 1.1.
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Proof. This is primarily an exercise in lexicography. Explicitly:

(i) Measurable L-valued cocyles of a p.m.p. action H Õ X of H are the same
as measurable homomorphisms from the translation groupoid H Ë X into L,
with two cocycles being cohomologous if and only if they are equivalent as
homomorphisms.

(ii) By (i), an extension X ! Y of p.m.p. actions of H is relatively C-superrigid
in the sense of Definition 1.1 if and only if the associated extension H Ë X !
H Ë Y of translation groupoids is relatively C-superrigid in the sense of Defini-
tion 4.1.

(iii) IfH Õ Y is a p.m.p. action ofH , then by Proposition 3.25 and Remark 3.9 we
have isomorphisms of .H Ë Y /-extensions B.H Ë Y /Š .H Ë Y /˝H B.H/Š

H Ë .Y ˝ Œ0; 1�H /. Thus, by (ii), the groupoid extension B.H Ë Y /! H Ë Y
is relatively C-superrigid if and only if the extension Y ˝ Œ0; 1�H ! Y of p.m.p.
actions of H is relatively C-superrigid.

(iv) By Proposition 3.7, everyH -extension G!H is isomorphic to anH -extension
HËY!H associated to a translation groupoid of some p.m.p. actionHÕY of
H , and hence the associated Bernoulli extensions B.G/!G and B.H Ë Y /!
H Ë Y are isomorphic by Proposition 3.24.

The proposition follows from the compilation of (i)–(iv).

Lemma 4.3. Let C be a class of Polish groups. Let H be a discrete p.m.p. groupoid and
let A be a measurable complete unit section of H. Then H is Bernoulli C-superrigid if
and only if HA is Bernoulli C-superrigid.

Proof. Let G
p
�!H be an H-extension, so that GA

pA
��!HA is an HA-extension. We abuse

notation and identify A with its preimage p�1.A/ � G0 under p. Then A is a measur-
able complete unit section for G, and so by Lemma 3.26, the GA-extensions B.GA/! GA
and B.G/A ! GA are isomorphic. Thus, the extension B.GA/! GA being relatively C-
superrigid is equivalent to the extension B.G/A ! GA being relatively C-superrigid, and
by (2) of Proposition 3.14, this is equivalent to the extension B.G/! G being relatively
C-superrigid. Since, by Proposition 3.15, every HA-extension is isomorphic to the reduc-
tion of an H-extension, it follows that H is Bernoulli C-superrigid if and only if HA is
Bernoulli C-superrigid.

Lemma 4.4. Let C be a class of Polish groups contained in Ginv, and let G! H be an
extension of discrete p.m.p. groupoids. Then G is Bernoulli C-superrigid if and only if H
is Bernoulli C-superrigid.

Proof. It is clear that periodic groupoids (i.e., groupoids whose source and range maps
are finite-to-one) are Bernoulli C-superrigid, hence by breaking H into its periodic and
aperiodic parts, it is enough to consider the case where H is aperiodic.

If H is Bernoulli C-superrigid, then it is clear that G is Bernoulli C-superrigid, since
every extension of G is also an extension of H.
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Assume now that G is Bernoulli C-superrigid. Let K!H be another extension of H.
We must show that the Bernoulli extension B.K/

q1
��! K is relatively C-superrigid. Let

G˝H K
q0
��!K be the right projection. We then have the following commutative diagram

of groupoid extensions:

B.G˝H K/

p

��

Š // .G˝H K/˝K B.K/

p0

��

p1 // B.K/

q1

��

G˝H K
id // G˝H K

q0 // K

where the left square is given by Proposition 3.25 applied to the extension q0, and p0 and
p1 are the left and right projections, respectively. Since G is Bernoulli C-superrigid, and
G˝H K is an extension of G, the extension p is relatively C-superrigid. Therefore, the
extension p0 is relatively C-superrigid as well. In addition, by Lemma 3.27, the Bernoulli
extension q1 is relatively weakly mixing.

Let L 2 C and let w1 W B.K/ ! L be a measurable homomorphism. Since p0 is
relatively C-superrigid, the homomorphism w1 ı p1 is equivalent to a homomorphism of
the form w0 ı p0, where w0 is some measurable homomorphism from G˝H K into L.
Therefore, by Lemma 3.20, w1 is equivalent to a homomorphism which descends through
q1 to K, as was to be shown.

Theorem 1.2 is now a consequence of the following generalization to discrete p.m.p.
groupoids.

Theorem 4.5. Let C be a class of Polish groups contained in the class Ginv, and let G
and H be discrete p.m.p. groupoids which are measure equivalent. Then G is Bernoulli
C-superrigid if and only if H is Bernoulli C-superrigid.

Proof. This is immediate from Lemma 4.3 and Lemma 4.4.

5. Proof of Corollary 1.3
We record the following extension of Popa’s cocycle superrigidity theorem for product
groups [28] to the setting of ergodic discrete p.m.p. groupoids.

Theorem 5.1. Let G and H be ergodic discrete p.m.p. groupoids. Assume that G is non-
amenable and H is aperiodic. Then the independent product G ˝H is Bernoulli Ufin-
superrigid.

The case where G D G Ë X and H D H Ë Y are translation groupoids associated to
ergodic p.m.p. actions of countable groups G and H follows immediately from [28]. One
may give a proof of Theorem 5.1 in general which is essentially the same as the proof from
[28]. For convenience, we will instead give a different proof of how to deduce Theorem
5.1 directly from the case handled in [28], using Theorem 4.5 and [8, Theorem A], along
with the next lemma, whose proof is just a groupoid version of the proof of [11, Lemma
3.5] (see also [27, Lemma 3.6]).
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In what follows, a countable collection ˆ of measurable bisections of G is said to gen-
erate G if for a.e. g 2 G there exists a finite sequence �n; : : : ;�1 2ˆ such that g 2 �n � � ��1.
We say that an aperiodic measurable subgroupoid H of a discrete p.m.p. groupoid G is q-
normal in G if there exists a countable collection ˆ of measurable bisections of G, which
generates G, such that for each � 2 ˆ the groupoid ��1H� \ H is an aperiodic sub-
groupoid of Gs.�/ (i.e., ��1H� \H \ s�1.x/ is infinite for a.e. x 2 s.�/).

Lemma 5.2. Let C be a class of Polish groups contained in Ginv. Let G be a discrete p.m.p.
groupoid and let H be an aperiodic measurable subgroupoid of G which is q-normal in G.
Suppose that H is Bernoulli C-superrigid. Then G is also Bernoulli C-superrigid.

Proof of Lemma 5.2. Since q-normality and (by Theorem 4.5) Bernoulli C-superrigidity
both pass to extensions, it suffices to prove that, under the hypotheses of the lemma, the
Bernoulli extension p W B.G/ ! G is relatively C-superrigid. Let w W B.G/ ! L be a
measurable homomorphism to some L 2 C and let H0 WD p�1.H/. Then, by Lemma 3.28,
the extension p W H0 ! H is isomorphic as an H-extension to the Bernoulli extension
B.H/ ! H, so since H is Bernoulli C-superrigid, after replacing w by an equivalent
homomorphism we may assume that there is a measurable homomorphism w0 W H! L

such that w.h/ D w0.p.h// for all h 2 H0.
Letˆ be a countable collection of measurable bisections witnessing that H is q-normal

in G. For � 2ˆ let H.�/ WD ��1H� \H and let �0 WD p�1.�/, so that �0 is a bisection for
B.G/. By Lemma 3.28, the extension p Wp�1.H.�//!H.�/ is a Bernoulli extension and
so by Lemma 3.27, since H.�/ is aperiodic, this extension is relatively weakly mixing.
For each h 2 p�1.H.�// we have that p.h/; p.�0h.�0/�1/ 2 H and hence

w0
�
�p.h/��1

�
D w

�
�0h.�0/�1

�
D w

�
�0r.h/

�
w0
�
p.h/

�
w
�
�0s.h/

��1
:

It now follows from Lemma 3.19 that for each � 2 ˆ there is a measurable map f� W
s.�/! L such that w.�0x/ D f�.p.x// for a.e. x 2 p�1.s.�// D s.�0/. Thus, for each
� 2 ˆ, a.e. g 2 �0 satisfies

w.g/ D w
�
�0s.g/

�
D f�

�
p
�
s.g/

��
D f�

�
s
�
p.g/

��
:

After discarding an invariant �B.G/0 -null set we may therefore assume that for all � 2 ˆ
and g 2 �0 we have w.g/ D f�.s.p.g///. Given now g 2 B.G/, since ˆ generates G we
may find a finite sequence .�n; �n�1; : : : ; �1/ of elements ofˆwith p.g/ 2 �n�n�1 � � ��1.
We can moreover choose such a finite sequence so that it depends measurably on p.g/.
We then have g 2 �0n�

0
n�1 � � � �

0
1. For 1 � i � n let gi WD �0i � � � �

0
1s.g/, so that p.gi / D

�i � � ��1s.p.g// depends measurably on p.g/. Then

w.g/ D w.gn/ D w
�
�0nr.gn�1/

�
w.gn�1/

D f�n
�
r
�
p.gn�1/

��
w.gn�1/

:::

D f�n
�
r
�
p.gn�1/

��
f�n�1

�
r
�
p.gn�2/

��
� � � f�2

�
r
�
p.g1/

��
f�1

�
s
�
p.g/

��
;

which is a measurable function of p.g/. This shows that w descends through p to G.
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Proof of Theorem 5.1. By Theorem 4.5 it suffices to prove that some extension of G˝H

is Bernoulli Ufin-superrigid, so (after replacing both G and H by their respective Bernoulli
extensions if necessary) we may assume without loss of generality that G and H are both
principal groupoids; i.e., we may assume that G and H are ergodic discrete p.m.p. equiv-
alence relations. Consider now the Bernoulli extension B.G/ of G, also viewed as an
equivalence relation, and let X denote the unit space of B.G/. Since G is ergodic and
nonamenable, by [8, Theorem A], we may find a free ergodic p.m.p. action F2 Õ X , of
the free group F2 on two generators, whose orbit equivalence relation RF2 is contained in
B.G/. Since H is ergodic and aperiodic, we may find a free ergodic action Z Õ H0, of
Z, whose orbit equivalence relation RZ is contained in H. Then the independent product
RF2 ˝ RZ is Bernoulli Ufin-superrigid by [28]. Since the groupoid RF2 ˝ RZ is q-normal
in RF2 ˝H, and RF2 ˝H is q-normal in B.G/ ˝H, it follows from Lemma 5.2 that
B.G/ ˝H is Bernoulli Ufin-superrigid. Applying Theorem 4.5 again we conclude that
G˝H is Bernoulli Ufin-superrigid.

Let G be a locally compact second countable group and let G Õ X be a free p.m.p.
action of G on a standard probability space X . A Borel subset Y of X is said to be a
cross section for the action of G if G � Y is conull and there exists a neighborhood U of
the identity in G such that the sets U � y, y 2 Y , are pairwise disjoint. By [10], a cross
section always exists; we refer to [22, Section 4] for a detailed discussion covering all of
the following facts on cross sections which we will use.

Let Y be a cross section for the action G Õ X , and denote by RY the restriction to
Y of the orbit equivalence relation associated to G Õ X , so that RY is a countable Borel
equivalence relation on Y . If G is unimodular, with Haar measure �G , then there exists a
unique RY -invariant Borel probability measure �Y on Y and constant c D cY > 0 such
that if U is any neighborhood of the identity of G as above, then the map U � Y ! X ,
.g; y/ 7! g � y takes the measure .�G jU/˝ �Y to c�X j.U � Y /. We will therefore view
RY as a discrete p.m.p. groupoid whose unit space, R0Y , we may naturally identify with
the probability space Y . IfZ is any other cross section forG ÕX , then the discrete p.m.p.
groupoids RY and RZ are reduction equivalent in the sense of Definition 3.30.

Proof of Corollary 1.3. Let � be a lattice in G. Since G D G0 � G1 contains a lattice,
it is unimodular, and therefore both G0 and G1 are unimodular as well. For i D 0; 1 let
Gi Õ Xi be a free ergodic p.m.p. action of Gi , and let Yi � Xi be a cross section for
the action, with associated ergodic equivalence relation RYi . Then Y0 ˝ Y1 is a cross
section for the natural action G Õ X0 ˝ X1 of G D G0 � G1 on X0 ˝ X1, and the
associated equivalence relation RY0˝Y1 is naturally isomorphic to the independent product
groupoid RY0˝Y1 Š RY0 ˝RY1 . The groupoid RY0 is nonamenable since the group G0 is
nonamenable, and likewise RY1 is aperiodic since G1 is noncompact. Therefore, RY0˝Y1
is Bernoulli Ufin-superrigid by Theorem 5.1.

Consider now the free p.m.p. action of G on .X0 ˝X1/˝G=� given by

g �
�
.x0; x1/; h�

�
WD
�
g � .x0; x1/; gh�

�
:
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The sets Y WD .Y0 ˝ Y1/˝G=� and Z WD .X0 ˝ X1/˝ ¹1G�º are both cross sections
for this action, hence the groupoids RY and RZ are reduction equivalent. The set Z is
�-invariant and RZ is precisely the orbit equivalence relation generated by the action of
� on Z, hence RZ is a groupoid extension of � . In addition, RY is a groupoid extension
of RY0˝Y1 via the projection map Y ! Y0 ˝ Y1. The discrete p.m.p. groupoids � and
RY0˝Y1 are therefore measure equivalent, and hence � is Bernoulli Ufin-superrigid by
Theorem 4.5.

6. Weak Pinsker entropy and orbit equivalence

6.1. Background and preparation

6.1.1. Ornstein’s isomorphism theorem: from groups to groupoids. We will need the
following theorem, which generalizes Ornstein’s isomorphism theorem from Z to arbitrary
infinite groups. The proof has recently been completed by Seward, building on Ornstein’s
original work, as well as the work of Stepin and the first author.

Theorem 6.1 (Ornstein [23], Stepin [36], Bowen [3], Seward [30]). Let G be a countably
infinite group and let K0 and K1 be probability spaces with the same Shannon entropy,
H.K0/ D H.K1/. Then the Bernoulli shift actions G Õ KG0 and G Õ KG1 are isomor-
phic.

Theorem 6.1 can in fact be generalized from infinite groups to all aperiodic ergodic
discrete p.m.p. groupoids. The case of principal groupoids is handled in [8, Theorem 3.1].
The proof in the general case follows from Theorem 6.1 itself, along with the methods
from [3] and [8], as we now show. Generalizing Stepin’s definition [37] in the case of
groups, let us say that an ergodic discrete p.m.p. groupoid G is Ornstein if the Bernoulli
shift actions G Õ K˝G0 and G Õ K˝G1 are isomorphic wheneverK0 andK1 are probabil-
ity spaces with the same Shannon entropy. Thus, Theorem 6.1 says that every countably
infinite group is Ornstein.

Corollary 6.2. Every aperiodic ergodic discrete p.m.p. groupoid is Ornstein.

Proof. Let G be an aperiodic ergodic discrete p.m.p. groupoid. The proof breaks into two
cases, according to whether or not the measure �G0 has atoms. The case where �G0 has
atoms (Case 2 below) will be easily handled by Theorem 6.1. When �G0 is atomless
(Case 1 below), the main fact which we use is .�/ if G contains an ergodic subgroupoid
H which is Ornstein, and with H0 D G0, then G itself is Ornstein. This goes back to
Stepin [36] in the case of groups, and it was used in [3] in the case of discrete p.m.p.
equivalence relations. The proof of .�/ in general uses groupoid coinduction and it is a
routine extension of the proof in the case of groups and equivalence relations; we refer the
reader to [3] and [8, Theorem 3.1] for details.

Case 1. �G0 is atomless. In this case, since G is aperiodic we may find an ergodic ape-
riodic principal amenable subgroupoid H of G as follows: by [41, Proposition 9.3.2] we
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may find an ergodic aperiodic transformation S W G0 ! G0 belonging to the full group of
the equivalence relation RG. We may then find a measurable bisection � of G such that
r.�x/ D S.x/ for all x 2 G0. Let H denote the subgroupoid of G generated by �. Then
RH is the equivalence relation on G0 generated by the transformation S , and the map
H ! RH, h 7! .r.h/; s.h// is an isomorphism of discrete p.m.p. groupoids, so H has
the desired properties. Since H is isomorphic to a translation groupoid of a free ergodic
action of Z, it follows from Ornstein’s isomorphism theorem that the groupoid H itself is
Ornstein, and hence G is Ornstein by .�/.

Case 2. �G0 has atoms. In this case, by ergodicity of G we may assume that G0 is finite
and that �G0 is normalized counting measure on G0. Say G0 contains exactly n elements
x0; : : : ; xn�1. For each i < n let Ai WD ¹xiº, so that each of the sets Ai is a complete unit
section for G, and the reduction groupoid GAi D xiGxi is a group. Let A WD A0. The group
GA is infinite since G is aperiodic, so by Theorem 6.1, GA is Ornstein. LetK and L be two
probability spaces with H.K/ D H.L/. We have the isomorphisms

ˇG
K Š

O
i<n

ˇ
GAi
K Š

O
i<n

ˇGA
K Š ˇGA

Kn ; (6.1)

where the first and third isomorphisms come from Proposition 3.2, and the middle iso-
morphism comes from the isomorphisms of each of the discrete actions G Õ GAi with the
action G Õ GA. Reducing to GA, we obtain the isomorphism .ˇG

K/jGA Š .ˇ
GA
Kn /jGA D ˇ

GA
Kn .

Likewise, we have the isomorphism .ˇG
L/jGA Š ˇ

GA
Ln . Since GA is Ornstein and H.Kn/ D

H.Ln/, the GA-actions ˇGA
Kn and ˇGA

Ln are isomorphic, and hence the reductions .ˇG
K/jGA

and .ˇG
L/jGA are isomorphic. Proposition 3.15 therefore implies that ˇG

K and ˇG
L are iso-

morphic. This shows that G is Ornstein.

A corollary to this, which we will use often, is that if the groupoid weak Pinsker
entropy of G is positive, then the supremum in the definition of hgWP.G/ (given in Section
1.2.7) can be taken over Bernoulli extensions of principal groupoids.

Corollary 6.3. Let G be an ergodic discrete p.m.p. groupoid and let r � 0. If hgWP.G/ > r ,
then G is isomorphic to H ËK˝H for some principal ergodic discrete p.m.p. groupoid H

and some probability space K with H.K/ > r .

Proof. Since hgWP.G/ > r � 0, the groupoid G is aperiodic, and we may find an ergodic
discrete p.m.p. groupoid H1 and a probability space K1 with H.K1/ > r , such that G is
isomorphic to the translation groupoid H1 ËK˝H1

1 , associated to the Bernoulli action of
H1 with base K1. Let K0 and K be probability spaces with H.K1/ > H.K/ > r and
H.K0/ D H.K1/ �H.K/ > 0, so that H.K0 ˝K/ D H.K0/CH.K/ D H.K1/. By
Corollary 6.2, there exists a groupoid isomorphism H1 ËK˝H1

1 ŠH1 Ë .K0 ˝K/˝H1 .
Let H D H1 ËK˝H1

0 . Then we have isomorphisms

H ËK˝H Š H˝H1 .H1 ËK˝H1/ Š H1 Ë .K0 ˝K/˝H1 Š G;
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where the first isomorphism comes from Proposition 3.25 applied to the extension H!

H1, the second isomorphism is by Remark 3.9, and the third was already established. The
groupoid H is principal, since it is a nontrivial Bernoulli extension of H1.

6.1.2. Bernoulli superrigidity for atomic base spaces. The next two propositions are
groupoid versions of [11, Proposition 1.2].

Proposition 6.4. Let K1, K0, and G be discrete p.m.p. groupoids and let K1
p1
��! G

and K0
p0
��! G be groupoid extensions. Suppose that K1

t
�! K0 is a relatively weakly mix-

ing extension satisfying p0 ı t D p1. Let w W K0 ! L be a measurable homomorphism
into a Polish group L admitting a bi-invariant metric, and suppose that the lifted homo-
morphism w ı t W K1 ! G is equivalent to a homomorphism which descends through p1
to G. Then w is equivalent to a homomorphism which descends through p0 to G.

Proof. By hypothesis there is a measurable map ˆ W K01 ! L and a homomorphism u W

G! L satisfying

ˆ
�
r.k/

�
w
�
t .k/

�
ˆ
�
s.k/

��1
D u

�
p1.k/

�
D .u ı p0/

�
t .k/

�
for a.e. k 2 K1. Since t is relatively weakly mixing, Lemma 3.19 implies that ˆ D f ı t
for some map f W K00 ! L. Hence f .r.k0//w.k0/f .s.k0//�1 D .u ı p0/.k0/ for a.e.
k0 2 K0, and this shows that w is equivalent to u ı p0.

Proposition 6.5. Let C be a class of Polish groups contained in the class Ginv of Polish
groups admitting a bi-invariant metric. Let H be an aperiodic discrete p.m.p. groupoid
which is Bernoulli C-superrigid and let K be any standard probability space. Then for
every extension G ! H, the Bernoulli extension p0 W G Ë K˝G ! G is relatively C-
superrigid.

Proof. Let G be an extension of H, so that G is aperiodic as well. We have the following
commutative diagram of groupoid extensions

G Ë Œ0; 1�˝G
q

Š
//

p1
��

G Ë .K˝G ˝G0 Œ0; 1�
˝G/

��

p
// G ËK˝G

p0
��

G
idG

// G
idG

// G

where q is the isomorphism induced by an isomorphism Œ0; 1� Š K ˝ Œ0; 1� of probabil-
ity spaces, and p is the natural projection map. Since H is Bernoulli C-superrigid, the
extension p1 is relatively C-superrigid. Since G is aperiodic, the extension p is relatively
weakly mixing by Lemma 3.27, so the extension t WD p ı q is relatively weakly mixing
as well, since q is an isomorphism. Proposition 6.4 therefore implies that p0 is relatively
C-superrigid.

6.1.3. Pushing extensions to quotients. We now deal with a technical lemma used in
the proof of Theorem 1.5.
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Let G be a discrete p.m.p. groupoid. We let ŒŒG�� denote the collection of all measurable
bisections of G, and we let ŒG� denote the collection of all measurable bisections � of G
with s.�/D r.�/D G0. Then ŒŒG�� and ŒG� are closed under the natural inverse and product
operations defined on subsets of G, and these operations make ŒŒG�� an inverse semigroup,
and ŒG� a group. Given a measurable bisection � of G, we denote by c� W Gs.�/! Gr.�/ the
associated partial automorphism of G defined by c� .g/ WD �g��1 for g 2 Gs.�/.

Let K be a discrete p.m.p. groupoid, let G be a discrete Borel groupoid, and letw and v
be two measurable homomorphisms from K into G. We say that w and v are equivalent if
there exists a measurable map  WK0! G, with  .x/ 2 Gw.x/ for a.e. x 2K0, such that
 .r.k//w.k/ .s.k//�1 D v.k/ for a.e. k 2 K. When G is a group, then this definition is
consistent with the definition of equivalence of homomorphisms into a group.

Lemma 6.6. Let p W K! H and w W K! G be extensions of ergodic discrete p.m.p.
groupoids and assume that H is principal. Suppose that w is equivalent to a groupoid
homomorphism v which descends to H, i.e., vD v0 ıp for some groupoid homomorphism
v0 WH! G. Then there exists a bisection � 2 ŒK�, and a groupoid extension w0 WH! G

such that w ı c� D w0 ı p, and w is equivalent to w0 ı p.

Proof. Note that K is principal, being an extension of the principal groupoid H. By
assumption we may find a measurable map �0 WK0! G with �0.x/ 2 Gw.x/ for x 2K0,
such that

�0
�
r.k/

�
w.k/�0

�
s.k/

��1
D v0

�
p.k/

�
for a.e. k 2 K. After discarding a null set we may assume without loss of generality that
this holds everywhere, and we may also assume that both of the maps p and w are locally
bijective. Define � � K by � WD ¹k 2 K W w.k/ D �0.s.k//º. Then � might not be a
bisection, but s W � ! K0 is bijective (after discarding a null set), so for each k 2 K

the sets �k, k��1, and �k��1 contain exactly one element, and we abuse notation and
denote these elements by �k, k��1, and �k��1, respectively. Then the map c� WK!K,
c�.k/ WD �k�

�1 is a groupoid homomorphism. For each k 2 K we have

w
�
c�.k/

�
Dw

�
�r.k/

�
w.k/w

�
�s.k/

��1
D�0

�
r.k/

�
w.k/�0

�
s.k/

��1
Dv0

�
p.k/

�
: (6.2)

Let H1 D v
�1
0 .G0/ and let K1 WD .v0 ı p/�1.G0/, so that H1 and K1 are subgroupoids of

H and K, respectively, with K1D p
�1.H1/. By (6.2), for k 2K we have .v0 ıp/.k/ 2 G0

if and only if c�.k/ 2 w�1.G0/ D K0 and hence

K1 D c
�1
� .K0/: (6.3)

Claim 0. The groupoid K1 is periodic; i.e., K1x is finite for a.e. x 2 K0.

Proof of Claim 0. For k 2 K1 we have c�.k/ 2 K0, hence

c�.k/ D s
�
c�.k/

�
D s.�k��1/ D r

�
�s.k/

�
D c�

�
s.k/

�
: (6.4)

It follows that for each x 2K0 we have K1x � c�1� .c�.x//. It is therefore enough to show
that c�1� .c�.x// is finite for a.e. x 2 K0, and since .c�/��K0 is absolutely continuous
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with respect to �K0 , it is enough to show that c�1� .x/ is finite for a.e. x 2 K0. Since
K1 is principal, for each x 2 K0, the map sending k 2 c�1� .x/ to the pair .r.k/; s.k//
is an injection from c�1� .x/ to a subset of the set of all pairs .x1; x0/ 2 RK for which
c�.x1/ D x D c�.x0/. Therefore, it is enough to show that the set c�1� .x/ \K0 is finite
for a.e. x 2 K0.

Let D D ¹.x1; x0/ 2 RK W c�.x1/ D x0º. Then for each x 2 K0 the vertical slice
Dx WD ¹x1 2K

0 W .x1; x/ 2Dº has cardinality jDxj D jc�1� .x/\K0j, and the horizontal
slice Dx WD ¹x0 2 K0 W .x; x0/ 2 Dº has cardinality jDxj D 1. Since RK is p.m.p., we
haveZ

K0

ˇ̌
c�1� .x/ \K0

ˇ̌
d�K0.x/ D

Z
K0

jDxj d�K0.x/ D

Z
K0

jDx
j d�K0.x/ D 1;

and hence c�1� .x/ \K0 is finite almost surely.

Since K1 D p�1.H1/ and p is measure preserving and locally bijective, Claim 0
implies that the groupoid H1 is periodic as well. Therefore, since H is principal, after
discarding a null set we may find a Borel complete unit section Y0 � H0 for H1 such
that .H1/Y0 D Y0. In particular, �H.Y0/ > 0. Then X0 WD p�1.Y0/ is a complete unit
section for K1 with .K1/X0 D X0. Let �0 WD �X0. Then �K.�0/ > 0, and we claim that
�0 is a measurable bisection for K. Indeed, since �0 � �, we have that sj�0 is injec-
tive, and r j�0 is injective since if k0; k1 2 �0 satisfy r.k0/ D r.k1/, then c�.k�10 k1/ D

�.�s.k0//
�1.�s.k1//�

�1 D c�.s.k0//c�.s.k1// 2 K0, so k�10 k1 2 .K1/X0 � K0 and
hence k0 D k1.

Define now the sets

P1 WD
®
� 2

�
ŒK�

�
W s.�/ is p-measurable

¯
;

P WD
®
� 2 P1 W the homomorphism w ı c� W Ks.�/ ! G is p-measurable

¯
:

For � 2 P let v� W Hp.s.�// ! G denote the homomorphism which lifts to w ı c� , so
that w ı c� D v� ı p. We have �0 2 P by (6.2), with s.�0/ D X0, p.s.�0// D Y0, and
v�0 D v0jHY0 . We will show how to extend �0 to some element of P with �K.�/ D 1.

Claim 1. Let � 2 P1, let � 2 ŒG�, and let Q� WDw�1.�/ 2 ŒK�. Then v�1
�
.�/ is a measurable

bisection for H, and ��1 Q�� D p�1.v�1
�
.�//.

Proof of Claim 1. We have

��1 Q�� D .w ı c� /
�1.�/ D .v� ı p/

�1.�/ D p�1
�
v�1� .�/

�
;

and it remains to show that v�1
�
.�/ is a bisection for H. Since the inverse image of v�1

�
.�/

under p is a bisection for K, this easily follows from local bijectivity of p.

Claim 2. For every �1 2 P with 0 < �K.�1/ < 1 there exists some �2 2 P with �1 � �2
and �K.�2/ > �K.�1/.
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Proof of Claim 2. For � 2 ŒŒH�� define z� WD p�1.�/ 2 ŒŒK��. By ergodicity of K we may
find some � 2 ŒŒH��with r.z�/� s.�1/ such that �1z� is non-null and disjoint from Ks.�1/.
By ergodicity again, we may find some � 2 ŒG� such that

� 02 WD . Q��1z�/ n r.�1/K

is non-null. Since � 02 is a bisection of K which is disjoint from r.�1/Ks.�1/, the union
�2 WD �1 [ �

0
2 is a bisection of K, and clearly �1 � �2 and �K.�1/ < �K.�2/.

We now show that s.� 02/ is p-measurable. Using Claim 1, we have

s
�
. Q��1z�/ \ r.�1/K

�
D s.��11 Q��1z�/ D s

�
p�1

�
v�1�1 .�/�

��
D p�1

�
s
�
v�1�1 .�/�

��
:

Therefore,

s.� 02/ D s.z�/ n p
�1
�
s
�
v�1�1 .�/�

��
D p�1

�
s.�/ n s

�
v�1�1 .�/�

��
;

hence s.� 02/ is p-measurable. It follows that s.�2/ D s.�1/ [ s.�
0
2/ is p-measurable as

well.
It remains to show that w ı c�2 W Ks.�2/ ! G is p-measurable. For this, it is enough

to show that the restriction of w ı c�2 to each of the (p-measurable) sets Ks.�1/, Ks.� 02/,
s.� 02/Ks.�1/, and s.�1/Ks.� 02/ is p-measurable. For the first set, this is clear since c�2
coincides with c�1 on Ks.�1/. For the second set, on Ks.� 02/ we have c�2 D c� 02 D cQ� ı c�1 ı
cz� and hence on this set we have the identity

w ı c�2 D c� ı w ı c�1 ı cz� D c� ı v�1 ı p ı cz� D c� ı v�1 ı c� ı p;

which is p-measurable. Similarly, for k 2 s.� 02/Ks.�1/ we have

w
�
c�2.k/

�
D w. Q��1z�k�

�1
1 / D �w

�
c�1.z�k/

�
D �v�1

�
p.z�k/

�
D �v�1

�
�p.k/

�
;

which is p-measurable. Finally, the restriction .w ı c�2/js.�1/Ks.�
0
2/ is just the compo-

sition of the restriction .w ı c�2/js.�
0
2/Ks.�1/ with the inverse map k 7! k�1, hence it is

p-measurable as well.

By Claim 2 and measure theoretic exhaustion we may find some � 2P with �0 � � and
�K.�/ D 1. After discarding a null set we may assume that s.�/ D r.�/ D K0. We have
w ı c� D v� ı p, and so the homomorphism v� WH! G is measure preserving since both
w ı c� and p are measure preserving; i.e., v� is a groupoid extension. We putw0 WD v� . Let
 W K0 ! G be the function  .x/ WD w.�x/ 2 Gw.x/. Then  .r.k//w.k/ .s.k//�1 D
.w ı c� /.k/ D .w0 ı p/.k/, hence w is equivalent to w0 ı p.

6.2. Groupoid weak Pinsker entropy and the proof of Theorem 1.5

Theorem 6.7. LetG be a countable group which is Bernoulli Gdsc-superrigid. LetG ÕX

be any ergodic p.m.p. action of G and let G Ë X be the associated translation groupoid.
Then hgWP.G ËX/ D hWP.G Õ X/.
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Proof. If G is finite, then both entropies are 0, so we may assume that G is infinite. Let
w WG ËX!G denote the projection toG. The inequality hgWP.G ËX/� hWP.G ÕX/

always holds, so it suffices to show that hgWP.GËX/�hWP.GÕX/. If hgWP.GËX/D0,
then this is trivial, so we may assume that hgWP.GËX/>0. Fix r with 0<r <hgWP.GËX/.
It is enough to show that hWP.G Õ X/ > r .

Since hgWP.G Ë X/ > r , by Corollary 6.3 we may find a principal ergodic discrete
p.m.p. groupoid H and a probability spaceK withH.K/ > r , such thatG ËX is isomor-
phic to the translation groupoid H ËK˝H, associated to the Bernoulli action of H with
base K. Let q W G ËX ! H ËK˝H be an isomorphism, and let p W G ËX ! H be the
composition of q with the projection HËK˝H!H to H. SinceG ËX is an extension of
both G and H, the groupoids G and H are measure equivalent, and hence H is Bernoulli
Gdsc-superrigid by Theorem 4.5. Since the extension G ËX

p
�! H is isomorphic to a

Bernoulli extension of H, Proposition 6.5 shows that p is relatively Gdsc-superrigid. Since
w takes values in the discrete group G, it follows that w is cohomologous to a cocy-
cle v which descends through p to H. Applying Lemma 6.6, we may find a bisection
� 2 ŒG ËX� and a groupoid extension w0 W H! G such that w ı c� D w0 ı p.

We then have the following commutative diagram of extensions, where the top row
consists of isomorphisms, and the bottom row is the identity map on G:

G ËX

w

��

c�1
� // G ËX

wıc�

��

q
// H ËK˝H

��

Š // H˝G .G ËKG/

��

Š // G Ë .H0 ˝KG/

��

H

w0
��

idH // H

w0
��

G // G // G // G // G

In the top row, the third isomorphism is given by Proposition 3.25 applied to the extension
H

w0
��! G, and the rightmost isomorphism is obtained by composing the isomorphism

H ˝G .G Ë KG/ Š .G Ë H0/ ˝G .G Ë KG/ coming from Proposition 3.7 applied to
w0, with the isomorphism .G Ë H0/ ˝G .G Ë KG/ Š G Ë .H0 ˝ KG/ coming from
Remark 3.9. This shows that the G-extensions G ËX

w
�! G and G Ë .H0 ˝KG/! G

are isomorphic, and hence the actionGÕX is measurably conjugate to the product action
G Õ H0 ˝KG . Therefore, hWP.G Õ X/ � H.K/ > r .

Theorem 6.8. Let G be an aperiodic ergodic discrete p.m.p. groupoid and let A be a
positive measure subset of G0. Then hgWP.GA/ D

1
�G.A/

hgWP.G/.

Proof. We first show that hgWP.GA/ � �G.A/
�1hgWP.G/. This is trivial if hgWP.GA/ D 0,

so assume that hgWP.GA/ > 0. Given r with 0 < r < hgWP.GA/, we will show that r <
�G.A/

�1hgWP.G/. Since 0 < r < hgWP.GA/, by Corollary 6.3 we may find a principal,
ergodic discrete p.m.p. groupoid H0 and a probability space K with H.K/ > r such that
GA is isomorphic to the translation groupoid H0 ËK˝H0 . By considering the �G.A/

�1-
amplification of H0 (i.e., Proposition 3.17 with t D �G.A/

�1), we may assume without
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loss of generality that H0 is the reduction H0 DHB of a principal ergodic discrete p.m.p.
groupoid H to a subset B of H0 with �H.B/ D �G.A/. Let q0 W HB ËK˝HB ! GA be
an isomorphism.

Let L be a probability space with H.L/ D �G.A/H.K/. By [8, Theorem 3.3], there
is an isomorphism of HB -extensions, call it q1, from the reduction .H Ë L˝H/B !

HB to the groupoid HB Ë K˝HB ! HB . The sets B and A have the same measure,
and the groupoids H Ë L˝H and G are both ergodic, so the isomorphism q0 ı q1, from
.H Ë L˝H/B to GA, extends to an isomorphism from H ËL˝H to G by Proposition 3.16.
Therefore, hgWP.G/ � H.L/ D �G.A/H.K/ > �G.A/r , as was to be shown.

We now show that hgWP.G/ � �G.A/h
gWP.GA/. Once again we may assume that 0 <

hgWP.G/. Fix 0 < r < hgWP.G/ towards the goal of showing r < �G.A/h
gWP.GA/. By

Corollary 6.3 we may find a principal ergodic discrete p.m.p. groupoid H, a probability
space K with H.K/ > r , and an isomorphism q from G to the translation groupoid H Ë
K˝H. Let pH W H Ë K˝H ! H be the projection map. Let C be a subset of H0 with
�H.C / D �G.A/. Then the set B WD q�1.p�1H .C // � G0 has the same measure as A, so
since G is ergodic, the groupoids GA and GB are isomorphic by Proposition 3.18. Thus,
GA is isomorphic to the reduction .H ËK˝H/p�1H .C/, and by [8, Theorem 3.3] this is in
turn isomorphic to the translation groupoid HC Ë L˝HC associated to the Bernoulli shift
of HC with base space entropyH.L/D �H.C /

�1H.K/D �G.A/
�1H.K/. This proves

the inequality hgWP.GA/ � �G.A/
�1H.K/ > �G.A/

�1r .

Theorem 1.5 now follows easily from Theorems 6.7, 6.8, and 1.2.
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