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Cubulation of some triangle-free Artin groups

Thomas Haettel

Abstract. We prove that some classes of triangle-free Artin groups act properly on locally finite,
finite-dimensional CAT.0/ cube complexes. In particular, this provides the first examples of Artin
groups that are properly cubulated but cannot be cocompactly cubulated, even virtually. The exis-
tence of such a proper action has many interesting consequences for the group, notably the Haagerup
property, and the Baum–Connes conjecture with coefficients.

1. Introduction

Artin groups are natural combinatorial generalizations of Artin’s braid groups. For every
finite simple graph � with vertex set S and with edges labeled by some integer in ¹2; 3;
: : :º, one associates the Artin group A.�/ with the presentation

A.�/ D
˝
S j 8¹s; tº 2 �.1/; wm.s; t/ D wm.t; s/ if the edge ¹s; tº is labeled m

˛
;

where wm.s; t/ is the word stst : : : of length m. Note that when m D 2, then s and t
commute, and when m D 3, then s and t satisfy the classical braid relation sts D tst .
Also note that when adding the relation s2 D 1 for every s 2 S , one obtains the Coxeter
group W.�/ associated to � .

Apart from certain very particular classes, Artin groups remain largely mysterious
(see [9, 22]). An approach to understanding Artin groups is to find actions by isometries
on metric spaces with some nonpositive curvature, which usually have very nice algebraic
consequences on the groups.

In order to state what is known, let us recall the following classes of Artin groups. An
Artin group A.�/ is called

� right-angled if all labels are equal to 2,

� of spherical type if W.�/ is finite,

� of type FC if every complete subgraph of � spans a spherical type Artin subgroup, or

� of large type if all labels are greater or equal to 3, and

� of XXL type if all labels are greater or equal to 5.
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Concerning CAT.0/ spaces, R. Charney asks whether every Artin group acts properly
and cocompactly on a CAT.0/ space (see [9]). Very few cases are known, essentially right-
angled Artin groups (see [10]), groups with few generators (see [6,7,16]), and groups with
sufficiently large labels (see [3, 5, 8, 14]).

Concerning variations on the notion of nonpositive curvature, Bestvina defined a geo-
metric action of Artin groups of spherical type on a simplicial complex with some nonpos-
itive curvature features (see [4]). More recently, Huang and Osajda proved (see [20]) that
every Artin group of almost large type (a class including all Artin groups of large type)
acts properly and cocompactly on systolic complexes, which are a combinatorial variation
of nonpositive curvature. They also proved (see [21]) that every Artin group of type FC
acts geometrically on a Helly graph, which gives rise to classifying spaces with convex
geodesic bicombings.

Concerning CAT.0/ cube complexes, we have a conjectural description of all Artin
groups acting properly and cocompactly (even virtually) on a CAT.0/ cube complex
(see [15]), which shows that such cocompactly cubulated groups look much like right-
angled Artin groups.

However, Haglund and Wise ask whether every Artin group acts properly on a CAT.0/
cube complex, but not necessarily cocompactly (see [17]). Apart from the very few exam-
ples of cocompactly cubulated Artin groups, no other example was known. The purpose
of this article is to give the first examples of properly cubulated Artin groups.

Theorem A. Assume that A D A.�/ is an Artin group satisfying one of the following.

(A) � has no cycle.

(B) � is bipartite and has all labels at least 3.

(C) � has no triangle and has no label 3.

Then A is the fundamental group of a locally finite, finite-dimensional, non-compact,
locally CAT.0/ cube complex with finitely many hyperplanes.

Note that all these Artin groups are 2-dimensional and, as such, enter the conjectural
classification of cocompactly cubulated Artin groups (see [15]). Most of these are, in fact,
not cocompactly cubulated. Here are possibly the simplest interesting examples.

Corollary B. Let � be a connected, bipartite graph with diameter at least 3 and with
labels at least 3. Then A.�/ acts properly on a finite-dimensional, locally finite CAT.0/
cube complex, but no finite index subgroup of A.�/ acts properly and cocompactly on a
CAT.0/ cube complex.

Among the many consequences of the existence of a proper action on a CAT.0/ cube
complex, here are the ones that are new for these Artin groups.

Corollary C. Let A be an Artin group as in Theorem A.

(1) A satisfies the Haagerup property.

(2) A is weakly amenable, with Cowling-Haagerup constant 1.
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(3) A satisfies the Baum–Connes conjecture with coefficients.

(4) A satisfies the Rapid Decay (RD) property.

(5) A has finite asymptotic dimension.

The Haagerup property for a group A asks for the existence of a metrically proper
affine action by isometries on a Hilbert space. Apart from right-angled Artin groups and
cocompactly cubulated Artin groups (see [15]), no example was known. The most notable
consequence of the Haagerup property is the Baum–Connes conjecture with coefficients.

The weak amenability of a discrete group A asks for the existence of a sequence
of finitely supported functions on A, converging pointwise to 1, which are uniformly
bounded (by 1) in the completely bounded multiplier norm (see [13] for details). As for
the Haagerup property, apart from right-angled Artin groups and cocompactly cubulated
Artin groups (see [15]), no example was known.

Concerning the Baum–Connes conjecture, the only examples were essentially braid
groups (see [24] and [25]), some large type Artin groups (see [12]), and XXL type Artin
groups (see [14]).

The property RD requires a polynomial bound on the norm of a convolution operator.
One interesting consequence of property RD is that, together with a proper cocompact
action on a CAT.0/ space, it implies the Baum–Connes conjecture. The only previous
examples were the 4-strand braid group (see [1]) and many large type Artin groups
(see [12]).

The asymptotic dimension of a group is coarse notion of dimension, whose finiteness
for a finitely generated group implies the Novikov conjecture. The previous examples of
Artin groups with finite asymptotic dimension were braid groups (see [2]), right-angled
Artin groups, and cocompactly cubulated Artin groups (see [15]).

The idea to construct a locally CAT.0/ cube complex which has for fundamental group
an Artin group A.�/ as in Theorem A is very simple. We will construct, for each edge
¹a; bº in � , a locally CAT.0/ cube complex Ma;b whose fundamental group is a dihedral
Artin group ha; bi. We will then glue all these cube complexes along subcomplexes corre-
sponding to the generators of A.�/. However, there are many challenges when applying
this strategy.

The first problem is to build a locally CAT.0/ cube complex Ma;b for a dihedral
Artin group ha; b j wm.a; b/ D wm.b; a/i, with two locally convex subcomplexes Ma

andMb with fundamental groups hai and hbi, respectively. According to [15], this cannot
be achieved by a compact CAT.0/ cube complex, hence the need to consider only proper
actions. In the first two cases (A) and (B), we will use the same complex Ma;b , and in the
last case (C) we will use a slightly different complex.

The second problem is to ensure that, for each such complex Ma;b , the subcom-
plexes Ma and Mb do not intersect too much. This is the first role of the assumptions
in Theorem A. In the first two cases (A) and (B), we will consider an action of ha; b j
wm.a; b/ D wm.b; a/i on the product of Rm and an m-regular tree. In this case, Ma

and Mb only intersect in one edge. In the last case (C), we will consider an action of
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ha; b j wm.a; b/ D wm.b; a/i on the product of Rm and a tree-like CAT.0/ square com-
plex. In this case, Ma and Mb only intersect in a vertex.

In each case (A), (B), and (C), the assumptions ensure that we are able to glue all the
complexes Mab’s, for each edge ¹a; bº of � , into a cube complex M whose fundamental
group is the Artin group A.�/.

The last question is to decide when the complexM is locally CAT.0/. In the case (A),
the complex M is a tree-like gluing of locally CAT.0/ subspaces Mab’s along convex
subspaces Ma’s, which guarantees that M is locally CAT.0/. In the cases (B) and (C),
we will apply Gromov’s flag link condition: since � has no triangle, if we consider three
pairwise intersecting subcomplexes Mab’s, they have a small global intersection, which
ensures that links of vertices in M are flag.

Outline of the article. In Section 2, we describe the action of each dihedral Artin group
on a Euclidean space that will be used in all three cases (A), (B), and (C). In Section 3,
we describe the action of each dihedral Artin group on a tree that will be used in the cases
(A) and (B). In Section 4, we explain in the cases (A) and (B) how to glue the dihedral
subcomplexes to obtain a cube complex whose fundamental group is the Artin group and
prove the CAT.0/ property. In Section 5, we describe the action of each dihedral Artin
group on a tree-like CAT.0/ square complex that will be used in the case (C). In Section 6,
we explain in the case (C) how to glue the dihedral subcomplexes to obtain a cube complex
whose fundamental group is the Artin group and prove the CAT.0/ property. In Section 7,
we give the proofs of the two corollaries.

2. The Euclidean action

We start by describing an action of dihedral Artin groups on Euclidean spaces, that will
be used in all cases (A), (B), and (C).

Proposition 2.1. For eachm> 2, there exists a cocompact, cubical action of the dihedral
Artin group I2.m/ D ha; b j wm.a; b/ D wm.b; a/i on †a;b D Rm, with the standard
cubical structure, and base vertex x0 D 0, such that

(1) the action is given by

a � .y0; : : : ; ym�1/ D .y0 C 1; y�1; y�2; : : : ; y�.m�1//;

b � .y0; : : : ; ym�1/ D .y2; y1 C 1; y0; y2�3; y2�4; : : : ; y2�.m�1//;

with indices in Z=mZ;

(2) the element a acts as a translation on the line †a D R � ¹0ºm�1 containing x0;

(3) the element b acts as a translation on the line †b D ¹0º � R � ¹0ºm�2 contain-
ing x0;

(4) the lines †a and †b intersect in ¹x0º.
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Proof. Note that the linear part of the action corresponds to the permutation of the m
coordinates given by the action of the Coxeter dihedral group on the vertices of the regular
m-gon.

Let us compute the actions of the elements ab and ba:

ab � .y0; : : : ; ym�1/ D .y2 C 1; y3; y4; : : : ; y.m�2/C2; y.m�1/C2 C 1/;

ba � .y0; : : : ; ym�1/ D .y�2; y�1 C 1; y0 C 1; y1; : : : ; y.m�1/�2/:

When m D 2p is even, we deduce the actions of the elements wm.a; b/ D .ab/p and
wm.b; a/ D .ba/

p:

wm.a;b/ � .y0; : : : ;ym�1/Dwm.b;a/ � .y0; : : : ;ym�1/D .y0C 1;y1C 1; : : : ;ym�1C 1/:

When m D 2p C 1 is odd, we deduce the action of .ab/p:

.ab/p � .y0; : : : ; ym�1/ D .ym�1 C 1; y0; y1 C 1; y2 C 1; : : : ; ym�2 C 1/;

so we can compute the actions of wm.a; b/ D .ab/pa and wm.b; a/ D b.ab/p:

wm.a; b/ � .y0; : : : ; ym�1/ D wm.b; a/ � .y0; : : : ; ym�1/

D .y1 C 1; y0 C 1; y�1 C 1; : : : ; ym�2 C 1/:

In each case, this defines an affine cubical action of I2.m/ on Rm.
To see that the action of I2.m/ is cocompact, notice that the pure Artin subgroup, ker-

nel of the morphism I2.m/! D2�m (where D2�m denotes the Coxeter dihedral group),
acts transitively on the cocompact lattice .2Z/m � Rm.

We will need the two following technical results in the sequel.

Lemma 2.2. For every m > 2, for any n 2 Zn¹0º, one has

(1) ..ba/n �†a/ \†a D ;;

(2) ..ba/n �†a/ \†b D ;;

(3) .wm.a; b/n �†a/ \†a D ;;

(4) .wm.a; b/n �†a/ \†b D ;.

Proof. Assume first that m D 2. Then the action of ab D ba D wm.a; b/ D wm.b; a/ on
†a;b is given by ab � .y0; y1/ D .y0 C 1; y1 C 1/. The result is clear in this case.

Assume now that m > 3.
Recall that the action of ba on †a;b is given by

ba � .y0; : : : ; ym�1/ D .y�2; y�1 C 1; y0 C 1; y1; : : : ; y.m�1/�2/:

In particular, if y 2 †a [ †b , then for any n 2 Zn¹0º, we know that there exists i 2
¹2; 3; : : : ; m � 1º such that ..ba/n � y/i ¤ 0, so .ba/n � y 62 †a [†b .

Recall that the action of wm.a; b/ on†a;b has for translation part .1; 1; : : : ; 1/. There-
fore, if y 2†a [†b , then for any n 2Zn¹0º, we know that for every i 2 ¹2;3; : : : ;m� 1º
we have .wm.a; b/n � y/i ¤ 0, so wm.a; b/n � y 62 †a [†b .
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Lemma 2.3. For every m > 2, for any n 2 Zn¹0º, and for any y 2 †a;b , one has

(1) .ba/n � y ¤ y;

(2) wm.a; b/n � y ¤ y.

Proof. Notice that if the sum of coordinates of y is s, then the sum of coordinates of
.ba/ �y is sC2, and the sum of coordinates ofwm.a;b/ �y is sCm. The result follows.

Without risk of confusion, if a is a generator of an infinite cyclic group hai, we will
denote by †a ' R the real line tiled by unit segments, with base vertex x0 D 0. We also
define the action of hai on †a, where a acts as a translation byC1.

3. The tree actions – cases (A) and (B)

We will now describe an action by isometries of each dihedral Artin group on a regular
tree, that will be used in the cases (A) and (B).

Lemma 3.1. For every m > 2, consider distinct colors �.a/, �.b/ in ¹0; 1º on the gener-
ators of the dihedral Artin group I2.m/ D ha; b j wm.a; b/ D wm.b; a/i. There exists a
vertex-transitive action of I2.m/ on an m-regular tree Ta;b such that the following hold.

(1) The elements a, b act as translations on Ta;b , with axes Ta, Tb both containing an
edge Œt0; t1�.

(2) The stabilizer of t0 is hbai, and the stabilizer of t1 is habi.

(3) If m > 3, then Ta \ Tb D Œt0; t1�. If m D 2, then Ta D Tb D Ta;b .

(4) Let g 2 ¹a; bº. If �.g/ D 0, then g � t0 D t1, and if �.g/ D 1, then g � t1 D t0.

Proof. Without loss of generality, assume that �.a/ D 0 and �.b/ D 1.
Assume first that m D 2. Let us denote Ta;b D R, with the standard tiling by unit

segments, with base vertex t0 D 0 and its neighbor t1 D 1. Consider the action of ha; bi '
Z2 on Ta;b , where for each g 2 ¹a; bº, the element g acts on Ta;b by a translation of
.�1/�.g/. The axes Ta, Tb of a, b satisfy Ta D Tb D Ta;b .

Assume now that m is odd, then according to Brady and McCammond (see [8]), there
is an interesting presentation of I2.m/ given by I2.m/D ha; b j wm.a; b/D wm.b; a/i D
ht; u j tm D u2i, where t D ab and u D wm.a; b/, so the central quotient G of I2.m/
is isomorphic to ht; u j tm D u2i=htm D u2i ' Z=mZ ? Z=2Z. Consider the action of
G on the Bass–Serre .m; 2/-biregular tree T , and remove all degree 2 vertices to obtain
an action on the m-regular tree Ta;b . Note that since b D uau�1, the axes Ta, Tb of a, b
in Ta;b intersect along the edge correponding to hui. The two endpoints of this edge are
t0, corresponding to the subgroup hutu�1i D hbai, and t1, corresponding to the subgroup
hti D habi. We have a � t0 D t1 and b � t1 D t0; see Figure 1.

Assume finally that m D 2p is even, then according to Brady and McCammond
(see [8]), there is an interesting presentation of I2.m/ given by

I2.m/ D
˝
a; b j wm.a; b/ D wm.b; a/

˛
D ha; t j atp D tpai;
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a

b

t0t1

Figure 1. A part of the tree Ta;b for ma;b D 3, with the axes of a and b.

a

b

t0t1

Figure 2. A part of the tree Ta;b for ma;b D 4, with the axes of a and b.

where t D ab. In particular, I2.m/ can be seen as the HNN extension of the group hti 'Z
with the subgroup htpi and the identity map, with stable letter a.

Consider the action of I2.2p/ on the Bass–Serre oriented 2p-regular tree Ta;b . Let t0
denote the vertex corresponding to the subgroup ha�1tai, it is fixed by ha�1tai D hbai,
and let t1 D a � t0 denote the vertex corresponding to the subgroup hti, it is fixed by
hti D habi. The axes Ta, Tb of a, b intersect in the edge Œt0; t1�; see Figure 2.

4. The gluing construction – cases (A) and (B)

Consider a labeled graph � such that

(A) either � has no cycle or

(B) � is bipartite, and all its labels are at least 3.

In both cases, � is bipartite, and we will fix a coloring � of vertices of � in ¹0; 1º such
that adjacent vertices have distinct colors.

If � is not connected, then the Artin group A.�/ is the free product of the parabolic
subgroups corresponding to the connected components of � . In order to prove Theorem A,
it is enough to consider the case where � is connected.

For each a 2 S , we will denote by Ta ' R the real line tiled by unit segments, with
particular vertices t0 D 0 and t1 D 1. We also define the action of hai on Ta, where a acts
as a translation by .�1/�.a/.
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For each a 2 S , let Xa D Ta � †a ' R2, with the product action of a, the product
cubical structure, and with base vertex p0 D .t0; x0/ and its particular neighbor p1 D
.t1; x0/. Let us denote the quotient Ma D hainXa, with base vertex q0, the image of p0,
and its particular neighbor q1, image of p1.

Lemma 4.1. The action of hai on Xa is free, so Ma is a locally CAT.0/ square complex
with two hyperplanes, and the fundamental group �1.Ma; q0/ is naturally isomorphic to
hai.

Proof. Since the action of hai on the factor Ta ' R is free, we deduce that the action of
hai on Xa is free. Notice that hai acts transitively on the hyperplanes of Ta and on the
hyperplanes of †a, so that Ma has two hyperplanes.

Let E denote the set of edges of � . For each edge ¹a; bº 2 E, let Xa;b D Ta;b �†a;b ,
where Ta;b denotes the tree described in Lemma 3.1 for the dihedral Artin group ha; bi,
and †a;b denotes the Euclidean space described in Proposition 2.1 for the dihedral Artin
group ha;bi. Note thatXa;b is endowed with the product cubical structure, and the product
action of ha;bi. It has a base vertex p0 D .t0; x0/ and its particular neighbor p1 D .t1; x0/.
Let us denote the quotient Ma;b D ha; binXa;b , with base vertex q0, the image of p0, and
its particular neighbor q1, image of p1.

Lemma 4.2. The action of ha; bi on Xa;b is free, so Ma;b is a locally CAT.0/ cube com-
plex of dimension ma;b C 1, with two or three hyperplanes, and the fundamental group
�1.Ma;b; q0/ is naturally isomorphic to ha; bi.

Proof. Assume that .t; x/ 2 Xa;b and g 2 ha; bi are such that g � .t; x/ D .t; x/. We will
prove that g D 1.

Since ha; bi acts transitively on the vertices and on the edges of Ta;b , we may assume
that either t D t0 or t 2 .t0; t1/. Without loss of generality, assume that �.a/ D 0 and
�.b/ D 1.

If t D t0, then g 2 hbai. According to Lemma 2.3, g D 1.
If t 2 .t0; t1/, then the stabilizer of t is contained in hwm.a; b/i, so g 2 hwm.a; b/i.

According to Lemma 2.2, g D 1.
Notice that ha; bi acts transitively on hyperplanes of Ta;b . If ma;b is odd, then ha; bi

acts transitively on hyperplanes of †a;b , and if ma;b is even, then ha; bi has two orbits of
hyperplanes in †a;b . Therefore Ma;b has two or three hyperplanes.

Let us try to give a simple picture of the space Mab when m D 3. Let Pa;b < ha; bi
denotes the pure braid subgroup; i.e., the kernel of the canonical morphism

ha; b j aba D babi ! Wa;b D ha; b j a
2
D 1; b2 D 1; aba D babi ' S3:

Rather than Ma;b , it is probably simpler to describe the finite cover bMab D Xa;b=Pa;b .
Note that the centerZa;b of Pab is the infinite cyclic subgroup spanned by .ab/3, and that
Pa;b=Za;b acts freely, properly, and cocompactly on the 3-regular tree Ta;b , with quotient
the graph Ta;b with two vertices and three edges; see Figure 3. So we can describe bMab
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t0t1

Ta;bR2 S1

��

Figure 3. A picture of the finite cover bMab of Ma;b when m D 3.

as a fiber bundle over Ta;b , with fiber †a;b=Za;b ' R2 � S1, and it is homeormorphic to
the trivial bundle R2 � S1 � Ta;b .

Lemma 4.3. For each a 2 S and ¹a; bº 2 E, the hai-equivariant embedding Xa ! Xa;b
defines an embedding �a;¹a;bº WMa !Ma;b sending q0; q1 2Ma to q0; q1 2Ma;b . Fur-
thermore, �a;¹a;bº.Ma/ is locally convex in Ma;b .

Proof. Assume that .t; x/ is a vertex in Xa and g 2 ha; bi are such that g � .t; x/ 2 Xa.
We will show that g � .t; x/ 2 hai � .t; x/.

The action of hai is transitive on vertices of Ta, so we may assume that g � t D t D t0.
Without loss of generality, assume that �.a/ D 0 and �.b/ D 1. Then g 2 hbai, and there
exists n 2 Z such that g D .ba/n.

Since .ba/n �†a \†a ¤ ;, according to Lemma 2.2, we deduce that nD 0, so g D 1.
Furthermore, note that the image of the natural embedding Xa ! Xa;b has convex

image in the CAT.0/ cube complex Xa;b . So its image �a;¹a;bº.Ma/ in the quotient Ma;b

by the free action of ha; bi is locally convex.

Now define

M D

 [
a2S

Ma [

[
¹a;bº2E

Ma;b

!�
�;

where the identifications are given, for every a 2 S and ¹a; bº 2 E, by �a;¹a;bº W Ma !

Ma;b .
It is a cube complex, with a basepoint q0, and a particular neighbor q1. We will first

prove that eachMa andMa;b embeds inM , and then prove that the fundamental group of
M is the Artin group A.�/.

Lemma 4.4. For each edge ¹a; bº 2 E with label ma;b > 3, one has

�a;¹a;bº.Ma/ \ �b;¹a;bº.Mb/ D Œq0; q1�:

More precisely, �a;¹a;bº.q0/ D �b;¹a;bº.q0/ and �a;¹a;bº.q1/ D �b;¹a;bº.q1/.

Proof. Assume that .t; x/ 2 Xa and g 2 ha; bi are such that g � .t; x/ 2 Xb . We will prove
that .t; x/ 2 ¹p0; p1º. Without loss of generality, assume that �.a/ D 0 and �.b/ D 1.
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Since hai acts transitively on the vertices of Ta, we may assume that t D t0. Since hbi
acts transitively on the vertices of Tb , we may also assume that g � t D g � t0 D t0. There-
fore g 2 hbai, and there exists n 2 Z such that g D .ba/n. Since .ba/n �†a\†b ¤;,
according to Lemma 2.2, we deduce that n D 0 and g D 1.

Lemma 4.5. For each edge ¹a; bº 2 E with label ma;b D 2, one has

�a;¹a;bº.Ma/ \ �b;¹a;bº.Mb/ D �a;¹a;bº
�
Ta � ¹x0º

�
D �b;¹a;bº

�
Tb � ¹x0º

�
:

Proof. Notice that every vertex in �a;¹a;bº.Ma/ is in the image of �a;¹a;bº.Ta � ¹x0º/, but
not every edge.

Consider an edge Œ.t;x/; .t 0; x0/� 2Xa and g 2 ha;bi such that g � Œ.t;x/; .t 0; x0/� 2Xb .
We will prove that g D 1 and that x D x0 D x0. Note that edges in †a and edges in †b
are not in the same ha; bi-orbit, so x D x0.

Since hai acts transitively on the vertices of Ta, we may assume that t D t0. Since
hbi acts transitively on the vertices of Tb , we may also assume that g � t0 D t0. Therefore
g 2 hbai, and there exists n 2 Z such that g D .ba/n. Now .ba/n � †a \ †b ¤ ;, so
according to Lemma 2.2 we deduce that nD 0 and gD 1. Therefore x 2†a \†b D ¹x0º.

Lemma 4.6. For each a 2 S , the natural mapMa!M is injective. For each ¹a; bº 2 E,
the natural map Ma;b !M is injective.

Proof. Note that, according to Lemma 4.3, for every a 2 S , the edge Œq0; q1��Ma injects
in M . Therefore, in order to simplify notation, we will consider Œq0; q1� as an edge of M .

We will first prove the following result. Fix a; b 2 S , with either a D b or ¹a; bº 2
E. Assume that there exists a sequence a0 D a; a1; : : : ; an D b in S and points r0 2
Ma0 ; r1 2Ma1 ; : : : ; rn 2Man such that for every 0 6 i 6 n� 1, we have ¹ai ; aiC1º 2 E
and �ai ;¹ai ;aiC1º.ri / D �aiC1;¹ai ;aiC1º.riC1/. We will prove that

(1) a D b and r0 D rn 2Ma DMb , or

(2) ¹a; bº 2 E, ma;b > 3, and r0 D rn 2 Œq0; q1�, or

(3) ¹a; bº 2 E, ma;b D 2, and r0 D rn 2 Ta � ¹x0º D Tb � ¹x0º D Ta;b � ¹x0º.

To prove that, we consider each of the two possibilities for � .

(A) Consider the case where � is a tree. Then there exists 0 6 i 6 n � 2 such that
ai D aiC2. Since Mai embeds in Mai ;aiC1 according to Lemma 4.3, we deduce
that ri D riC2. So we can shorten the path from r0 to rn. By induction on n, we
are reduced to the case n 6 1. If n D 0, then a D b and r0 D rn. If n D 1 and
ma;b > 3, then according to Lemma 4.4 we deduce that r0D rn 2 Œq0; q1�. If nD 1
and ma;b D 2, then according to Lemma 4.5 we deduce that

r0 D rn 2 Ta � ¹x0º D Tb � ¹x0º D Ta;b � ¹x0º:

(B) Consider the case where � is bipartite, and all labels are at least 3. If n D 0,
then a D b and r0 D rn. If n > 1, then for each 0 6 i 6 n � 1, as we have
�ai ;¹ai ;aiC1º.ri / D �aiC1;¹ai ;aiC1º.riC1/, we deduce according to Lemma 4.4 that
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ri ; riC1 2 Œq0; q1�. Therefore r0; rn 2 Œq0; q1�. According to Lemma 4.3, the edge
Œq0; q1� injects in M , so r0 D rn.

For each a2S , applying the previous result to aDb2S proves thatMa embeds inM .
For each ¹a; bº 2 E, applying the previous result to a, b proves that Ma [Mb injects

in M . Since the subset Ma;bn.�a;¹a;bº.Ma/ [ �b;¹a;bº.Mb// injects in M , we conclude
that Ma;b injects in M .

In order to simplify notation, we will therefore identify each Ma, for a 2 S , and each
Ma;b , for ¹a; bº 2 E, with their images in M .

Lemma 4.7. The fundamental group �1.M; q0/ is naturally isomorphic to A D A.�/.

Proof. We apply the Van Kampen Theorem to the subsets Ma;b , for ¹a; bº 2 E, each
containing the basepoint q0. According to the proof of Lemma 4.6, for any two distinct
edges ¹a; bº; ¹c; dº in E, the intersection Ma;b \Mc;d can be Ms (for some s 2 S ), or
the image of Ts � ¹x0º inM (for some s 2 S ), or Œq0; q1�. As a consequence, for any three
distinct edges ¹a; bº; ¹c; dº; ¹e; f º in E, the triple intersection Ma;b \Mc;d \Me;f is
of the same form. We deduce that pairwise and triple intersections of subsets Ma;b , for
¹a;bº 2E, are connected. We conclude that the fundamental group �1.M;q0/ is naturally
isomorphic to the Artin group A D A.�/.

Lemma 4.8. In the case (A) where � is a tree, the cube complex M is locally CAT.0/.

Proof. We will prove it by induction on the number of vertices of � . If � is a single
edge ¹a; bº, then M D Ma;b is locally CAT.0/. Otherwise, consider an edge ¹a; bº 2 E
containing a leaf a 2 S of � . Let � 0 denote the subtree obtained by removing a from � .
Let M 0 denote the complex associated to � 0. We have M D M 0 [Ma;bn �, where the
identification is given by the two embeddings ofMb inM 0 andMa;b . We know thatMa;b

is locally CAT.0/ and M 0 is locally CAT.0/ by induction. Furthermore, Mb is locally
convex in both Ma;b and M 0. Therefore M is locally CAT.0/.

Lemma 4.9. In the case (B) where � is bipartite and has no label 2, the cube complexM
is locally CAT.0/.

Proof. Fix a vertex q 2M , we will prove that M is locally CAT.0/ at q.
Assume first that there exists ¹a; bº 2 E such that q 2Ma;bn.Ma [Mb/. Then Ma;b

is a neighborhood of q in M . Since Ma;b is locally CAT.0/, M is locally CAT.0/ at q.
Assume now that there exists a 2 S such that q 2 ManŒq0; q1�. Then M 0a DS
¹a;bº2E Ma;b is a neighborhood of q in M . Since M 0a is the gluing of locally CAT.0/

cube complexesMa;b , for ¹a; bº 2E, along the common locally convex subspaceMa, we
deduce that M 0a is a locally CAT.0/ cube complex. Therefore M is locally CAT.0/ at q.

Assume now that qD q0. We will prove that the link of q0 is a flag simplicial complex.
Assume thatQ1,Q2,Q3 are three cubes ofM containing q0 such that each pairwise inter-
sectionQi \Qj has codimension 1 inQi andQj , andQ1\Q2\Q3 has codimension 2
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in Q1, Q2, and Q3. We will prove that there exists a cube Q of M containing Q1, Q2,
andQ3 with codimension 1. For each i 2 ¹1; 2; 3º, let ¹ai ; biº 2E such thatQi �Mai ;bi .

Claim. If there exist three edges ¹a;bº;¹a;cº;¹a;dº 2E such thatQ1;Q2;Q3 �Ma;b [

Ma;c [Ma;d , then such a cube Q exists. Indeed note that Ma;b [Ma;c [Ma;d is the
union of three locally CAT.0/ cube complexes along the common locally convex subspace
Ma, hence it is locally CAT.0/. Therefore there exists a cube Q in Ma;b [Ma;c [Ma;d

containing each of Q1, Q2, Q3 with codimension 1 in this situation.

� Assume first that for each i¤j , we have Qi\Qj ¤ Œq0; q1�. Then for each i¤j ,
Mai ;bi andMaj ;bj intersect outside of Œq0; q1�, so the edges ¹ai ; biº and ¹aj ; bj º inter-
sect in � . Since � has no triangles, there exist ¹a; bº; ¹a; cº; ¹a; dº 2 E such that
Q1;Q2;Q3�Ma;b[Ma;c[Ma;d . According to the claim, a cubeQ as required exists.

� Assume now that, for instance, we have Q1 \Q3 D Œq0; q1�. Then, as Q1 \Q2 ¤
Œq0; q1� and Q2 \Q3 ¤ Œq0; q1�, by the previous argument we know that the edges
¹a1; b1º and ¹a2; b2º in � and also the edges ¹a2; b2º and ¹a3; b3º intersect in � . For
instance, we can assume for instance that b1 D a2. Since Q1 \Q3 D Œq0; q1�, we
know that Q1, Q2, Q3 are squares. So Q1 is the square at q0 spanned by the edges
Q1 \Q3 D Œq0; q1� and Q1 \Q2 � Ma1;b1 \Ma2;b2 D Ma2 . So we deduce that
Q1 � Ma2 . Hence we deduce that Q1, Q2, Q3 are contained in Ma2;b2 [Ma3;b3 .
Since the edges ¹a2; b2º and ¹a3; b3º intersect in � , by the claim we know that a cube
Q as desired exists.

Assume finally that q D q1. This situation is entirely similar to the previous one
q D q0.

5. The tree actions – case (C)

We will now describe an action by isometries of each dihedral Artin group on a tree-like
CAT.0/ square complex, that will be used in the case (C).

Lemma 5.1. For every m ¤ 3, there exists a cubical action of the dihedral Artin group
I2.m/ D ha; b j wm.a; b/ D wm.b; a/i on a CAT.0/ square complex Ta;b such that the
following hold.

(1) The elements a, b act as translations on Ta;b , with combinatorial displacement 2,
and with axes combinatorial lines Ta, Tb such that Ta \ Tb is a single vertex t0.

(2) If m > 4, the stabilizer of t0 is hwm.a; b/i. If m D 2, the stabilizer of t0 is trivial.

Proof. Assume first that m D 2p C 1 > 5 is odd, then according to Brady and McCam-
mond (see [8]), there is an interesting presentation of I2.m/ given by

I2.m/ D
˝
a; b j wm.a; b/ D wm.b; a/

˛
D ht; u j tm D u2i;
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P0
t0

a

b

Figure 4. A part of the complex Ta;b for ma;b D 5, with the axes of a and b.

P0 t0

a

b

Figure 5. A part of the complex Ta;b for ma;b D 6, with the axes of a and b.

where t D ab and u D wm.a; b/, so the central quotient G of I2.m/ is isomorphic to
ht;u j tmD u2i=htmD u2i 'Z=mZ ?Z=2Z. Consider the action ofG on the Bass–Serre
.m; 2/-biregular tree T . Consider the square complex Ta;b obtained from T by replacing
the star of each vertex with valencym by a regularm-gon tessellated bym squares, where
t acts on the base m-gon P0 by a rotation of angle 4�

m
. Note that a D t�pu, b D ut�p ,

and tp acts on the base m-gon by a rotation of angle 4p�
m
D
�2�
m

. This way, the axes of
a and b acting on Ta;b intersect the boundary of the m-gon P in consecutive sides. Let
t0 2 Ta;b denote the intersection of the axes of a and b; it is also the unique vertex fixed
by u D wm.a; b/ (see Figure 4).

Assume now that m D 2p > 4 is even, then according to Brady and McCammond
(see [8]), there is an interesting presentation of I2.m/ given by I2.m/D ha;b jwm.a;b/D
wm.b; a/i D ha; t j at

p D tpai, where t D ab. In particular, I2.m/ can be seen as the
HNN extension of the group hti ' Z with the subgroup htpi and the identity map, with
stable letter a.

Consider the action of I2.2p/ on the Bass–Serre oriented 2p-regular tree T . Let T 0

denote the barycentric subdivision of T , it is an oriented .2p; 2/-biregular tree. Consider
the square complex Ta;b obtained from T 0 by replacing the star of each vertex with degree
2p by a regular 2p-gon tessellated by 2p squares, such that t acts on the base 2p-gon P0
by a rotation of angle 4�

2p
.

Since b D a�1t , the axes of a and b acting on Ta;b intersect the boundary of the 2p-
gon P in consecutive sides. Let t0 2 Ta;b denote the intersection of the axes of a and b
(see Figure 5).



T. Haettel 300

When m D 2, i.e., for the abelian dihedral group I2.2/ D ha; b j ab D bai ' Z2, let
Ta;b D R2 with the usual square tiling, where a acts as a translation of .2; 0/, and b acts
as a translation of .0; 2/. Then Ta DR� ¹0º and Tb D ¹0º �R intersect in t0 D .0; 0/.

6. The gluing construction, case (C)

Fix a triangle-free graph � , with each edge being labeled by an integer equal to 2 or at
least 4.

For each a 2 S , let Xa D Ta � †a ' R2, with the product action of a, the product
cubical structure, and with base vertex p0 D .t0; x0/. Let us denote the quotient Ma D

hainXa, with base vertex q0, the image of p0.

Lemma 6.1. The action of hai on Xa is free, so Ma is locally CAT.0/ square complex
with three hyperplanes, and the fundamental group �1.Ma; q0/ is naturally isomorphic to
hai.

Proof. Since the action of hai on the factor Ta ' R is free, we deduce that the action of
hai on Xa is free. Notice that hai has two orbits of hyperplanes in Ta and acts transitively
on the hyperplanes of †a, so that Ma has three hyperplanes.

Let E denote the set of edges of � . For each edge ¹a; bº 2 E, let Xa;b D Ta;b �†a;b ,
where Ta;b denotes the square complex described in Lemma 5.1 for the dihedral Artin
group ha; bi, and †a;b denotes the Euclidean space described in Proposition 2.1 for the
dihedral Artin group ha; bi. Note that Xa;b is endowed with the product cubical structure,
and the product action of ha; bi. It has a base vertex p0 D .t0; x0/. Let us denote the
quotient Ma;b D ha; binXa;b , with base vertex q0, the image of p0.

Lemma 6.2. The action of ha; bi on Xa;b is free, so Ma;b is a locally CAT.0/ cube com-
plex of dimension ma;b C 2, with two or four hyperplanes, and the fundamental group
�1.Ma;b; q0/ is naturally isomorphic to ha; bi.

Proof. Assume that .t; x/ 2 Xa;b and g 2 ha; bi are such that g � .t; x/ D .t; x/. We will
prove that g D 1.

Let t denote the center of a polygon of Ta;b . Note that ha; bi acts transitively on
polygons of Ta;b . Therefore we may assume that t is the center of b � P0, and so g 2
bhabib�1 D hbai. According to Lemma 2.3, g D 1.

If t is in the orbit of t0, we may assume that t D t0, and so g 2 hwm.a; b/i.
If t is not the center of a polygon nor in the orbit of t0, then g 2 hwm.a; b/2i (if

m D ma;b is odd) or g 2 hwm.a; b/i (if m D ma;b is even).
In these last two cases, we have g 2 hwm.a; b/i. According to Lemma 2.3, g D 1.
Notice that if m is odd, then ha; bi acts transitively on hyperplanes of Ta;b , and if

m is even, then ha; bi has two orbits of hyperplanes in Ta;b . If ma;b is odd, then ha; bi
acts transitively on hyperplanes of †a;b , and if ma;b is even, then ha; bi has two orbits of
hyperplanes in †a;b . Therefore Ma;b has two or four hyperplanes.
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Lemma 6.3. For each a 2 S and ¹a; bº 2 E, the hai-equivariant embedding Xa ! Xa;b
defines an embedding �a;¹a;bº WMa!Ma;b sending q0 2Ma to q0 2Ma;b . Furthermore,
�a;¹a;bº.Ma/ is locally convex in Ma;b .

Proof. Assume that .t; x/ is a vertex in Xa and g 2 ha; bi are such that g � .t; x/ 2 Xa.
We will show that g � .t; x/ 2 hai � .t; x/.

The action of hai has two orbits of vertices on Ta, so we may assume that g � t D t D t0
or that g � t D t is the common neighbor ta to t0 and a � t0.

(1) If g � t0 D t0, then g 2 hwm.a; b/i.

(2) If g � ta D ta and m is odd, then g 2 hwm.a; b/2i.

(3) If g � ta D ta and m > 4 is even, then g 2 hwm.a; b/i.

(4) If g � ta D ta and m D 2, then g D 1.

In every situation, we have g2hwm.a;b/i, and there exists n2Z such that gD.wm.a;b//n.
According to Lemma 2.2, since wm.a; b/n �†a \†a ¤ ;, we have n D 0 and g D 1.

Furthermore, note that the image ofXa under the natural embedding inXa;b is convex.
So its image �a;¹a;bº.Ma/ in the quotient Ma;b by the free action of ha; bi is locally
convex.

Now define

M D

 [
a2S

Ma [

[
¹a;bº2E

Ma;b

!�
�;

where the identifications are given, for every a 2 S and ¹a; bº 2 E, by �a;¹a;bº W Ma !

Ma;b .
The space M is a cube complex, with a basepoint q0. We will first prove that each

Ma and Ma;b embeds in M , and then prove that the fundamental group of M is the Artin
group A.�/.

Lemma 6.4. For each edge ¹a; bº 2 E, one has

�a;¹a;bº.Ma/ \ �b;¹a;bº.Mb/ D ¹q0º:

Proof. Assume that .t; x/ 2 Xa and g 2 ha; bi are such that g � .t; x/ 2 Xb . We will prove
that .t; x/ D .t0; x0/.

Since hai has two orbits of vertices on Ta, we may assume that t D t0 or t D ta, the
common neighbor of t0 and a � t0. Since hbi has two orbits of vertices on Tb , we may
assume that g � t D t0 or g � t D tb , the common neighbor of t0 and b � t0.

� Assume first that g � t D t D t0. Then g 2 hwm.a; b/i.

� Assume now that t D ta and g � ta D tb . Since ta, tb are in the same ha; bi-orbit in
Ta;b , this only occurs when m is odd. Then tb D wm.a; b/ � ta, and the stabilizer of ta
is hwm.a; b/2i, so g 2 wm.a; b/hwm.a; b/2i � hwm.a; b/i.

In each case, we deduce that g 2 hwm.a; b/i. Sincewm.a; b/n �†a \†b ¤ ;, accord-
ing to Lemma 2.2 we have n D 0 and g D 1.



T. Haettel 302

Lemma 6.5. For each a 2 S , the natural mapMa!M is injective. For each ¹a; bº 2 E,
the natural map Ma;b !M is injective.

Proof. This is a direct consequence of Lemma 6.4.

In order to simplify notation, we will therefore identify each Ma, for a 2 S , and each
Ma;b , for ¹a; bº 2 E, with their images in M .

Lemma 6.6. The fundamental group �1.M; q0/ is naturally isomorphic to A D A.�/.

Proof. We apply the Van Kampen Theorem to the subsets Ma;b , for ¹a; bº 2 E, each
containing the basepoint q0. Since pairwise and triple intersections are connected, we
conclude that the fundamental group �1.M;q0/ is naturally isomorphic to the Artin group
A D A.�/.

Lemma 6.7. The cube complex M is locally CAT.0/.

Proof. Fix a vertex q 2M , we will prove that M is locally CAT.0/ at q.
Assume first that there exists ¹a; bº 2 E such that q 2Ma;bn.Ma [Mb/. Then Ma;b

is a neighborhood of q in M . Since Ma;b is locally CAT.0/, M is locally CAT.0/ at q.
Assume now that there exists a2S such that q2Man¹q0º. ThenM 0aD

S
¹a;bº2EMa;b

is a neighborhood of q in M . Since M 0a is the glueing of locally CAT.0/ cube complexes
Ma;b , for ¹a; bº 2 E, along the common locally convex subspaceMa, we deduce thatM 0a
is a locally CAT.0/ cube complex. Therefore M is locally CAT.0/ at q.

Assume now that q D q0. We will prove that the link of M at q0 is flag. Assume
that Q1, Q2, Q3 are three cubes of M containing q0 such that each pairwise intersection
Qi \Qj has codimension 1 inQi andQj , andQ1 \Q2 \Q3 has codimension 2 inQ1,
Q2, and Q3. We will prove that there exists a cube Q of M containing Q1, Q2, and Q3
with codimension 1. For each i 2 ¹1; 2; 3º, let ¹ai ; biº 2 E such that Qi �Mai ;bi .

For each i ¤ j , we know thatMai ;bi andMaj ;bj intersect outside of ¹q0º, so the edges
¹ai ; biº and ¹aj ; bj º intersect in � . Since � has no triangles, there exist ¹a; bº; ¹a; cº;
¹a;dº 2E such thatQ1;Q2;Q3 �Ma;b [Ma;c [Ma;d . Note thatMa;b [Ma;c [Ma;d

is the union of three locally CAT.0/ cube complexes along the locally convex subspace
Ma, hence it is locally CAT.0/. Therefore there exists a cube Q in Ma;b [Ma;c [Ma;d

containing each of Q1, Q2, Q3 with codimension 1.

7. Proofs of corollaries

We finish by giving a proof of the two corollaries stated in the introduction.

Proof of Corollary B. Let � be a connected, bipartite graph with diameter at least 3 and
with labels at least 3. Since A.�/ has dimension 2, the main result of [15] applies to show
that the group A.�/ is not virtually cocompactly cubulated. And the group A.�/ falls in
the case (B) of Theorem A.
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Proof of Corollary C. Assume that A is the fundamental group of a locally finite, finite-
dimensional locally CAT.0/ cube complex. Then A acts freely properly by isometries on
a locally finite, finite-dimensional CAT.0/ cube complex.

(1) According to Niblo and Reeves (see [23]), A has the Haagerup property.

(2) According to the main theorem of [13], A is weakly amenable, with Cowling-
Haagerup constant 1.

(3) According to Higson and Kasparov (see [18] and [19]), the Haagerup property for
A implies the Baum–Connes conjecture with coefficients.

(4) According to Chatterji and Ruane (see [11]), since A acts freely on a finite-
dimensional CAT.0/ cube complex, A has the property RD.

(5) According to Wright (see [26]), the asymptotic dimension of a finite-dimensional
CAT.0/ cube complex is bounded above by its dimension.
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