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Hyperbolicity of T(6) cyclically presented groups
Ihechukwu Chinyere and Gerald Williams

Abstract. We consider groups defined by cyclic presentations wherdefieing word has length
and the cyclic presentation satisfies &) small cancellation condition. We classify when these
groups are hyperbolic. When combined with known results,abmpletely classifies the hyperbolic
T (6) cyclically presented groups.

1. Introduction

Groups defined by presentations that satisfy@lig) — T'(¢) (non-metric) small cancella-
tion conditions wheré /p 4+ 1/q < 1/2 are hyperbolic6, Corollary 3.3]. Therefore the
casedp,q) = (3,6), (4,4), (6, 3) present boundary cases and here both hyperbolic and
non-hyperbolic groups can arise. For these caseg4dnJorollary, p. 1860] the”(p) —
T (¢) presentations that define hyperbolic groups are charaeteais those for which there
is no minimal flat over the presentation. In this article wasider groups defined by a
class of presentations that admit a certain cyclic symmeaid/satisfyC(3) — 7(6). We
classify when the corresponding groups are hyperbolicmgef the defining parameters
of the presentations.

Thecyclically presented grou, (w) is the group defined by theyclic presentation

Py(w) = (xo, e Xp—1 | w, 0(w), ..., Qn_l(w)),

wherew(xo, ..., x,—1) is a cyclically reduced word in the free grouf (of lengthl(w))
with generatorsy, ..., x,—; andf : F, — F, is theshift automorphisnof F,, given by
0(x;) = x;+1 foreach0 <i < n (subscripts mod, n > 2).

If a presentation satisfies(6) then, as observed by Pride (s&8,[Section 5] and
[16, Lemma 3.1]), every piece has lengtlnd so if P, (w) satisfiesT'(6), then it satisfies
C(l(w)) — T(6). Thus if/(w) > 3, then the presentatioB, (w) satisfiesC(4) — T'(6),
and hencés, (w) is hyperbolic by L6, Corollary 4.1] and, therefore, it is non-elementary
hyperbolic by [LO] or [12)]. If the length/(w) = 1, thenG, (w) is trivial, and if/(w) = 2,
thenG, (w) is the free product of copies @f or Z,. Therefore we must consider the case
[(w) = 3 (in which case the& (3) — T'(6) condition coincides with th& (6) condition).

If w is a positive (or negative) word, then we may assumeithat xoxxx;, and if w is
non-positive (and non-negative), then we may assume xox,,x; '. Our main results
consider these cases.
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The group<, (xoxmxgl) are known as thgroups of Fibonacci-typand were intro-
duced independently in/[23], for topological and algebraic reasons, respectivelysTh
family of groups contains th€&ibonacci groupsF (2, n) = G,(xox1x; ') of [11], the
Sieradski groupsS(2, n) = Gn(xox2x7') of [29, and the Gilbert-Howie groups
H(n,m) = Gu(xoxmx7"') of [17]. They have been subsequently studiedliB[20, 21,
30]—see B1] for a survey. In particular, th&(6) and7'(7) presentations, (xoxXmx; )
were classified in40, Theorem 10] (see Corollary.2, below) and 0, Theorem 11]
records that in thg'(7) case the group§n(xoxmx;1) are non-elementary hyperbolic.
The groupss, (xoxi x;) were introduced ing] and studied further ing, 14,27]. The T (6)
presentation®, (xoxx x;) were classified in]4, Lemma 5.1] (see Lemma 1, below).
Moreover, R7, Theorem 3.7] shows that for all but finitely manythe 7(6) groups
G (xoxrx;) are hyperbolic.

Our main results are as follows.

TheoremA. Letn>2,0<k,[ <n,(n,k,l) =1, and suppose that the cyclic presentation
Py (xoxpx;) isT(6). LetG = G, (xoxgx;). lfn=70r8or

(8 n=21and(/ = 5k ork = 5] modn) or
(b) n =24and(l =5k ork = —4l orl = —4k modn),
thenG is not hyperbolic; otherwis& is non-elementary hyperbolic.

TheoremB. Letn>2,0<m,k<n, (n,m,k)=1,m+#k, k #0, and suppose that the cyc-
lic presentationP,, (xoxmx; ') is T(6). LetG = G, (xoxmx; '). If n =8 or (n> 12 is even
and2(2k — m) = 0 modn), thenG is not hyperbolic; otherwis& is non-elementary
hyperbolic.

The coprimality hypotheses of TheorersandB are imposed to avoid the present-
ations and groups decomposing in canonical ways. Spebifficald = (n, k, 1) > 1,
then the presentatioR, (xox,x;) is the disjoint union ofd copies of the presentation
Pya(xoxx/ax174) [9, Lemma 2.4] and s@,(xoxxx;) is the free product ofl copies
of Gyya(xoxk/ax174) and P, (xoxgx;) satisfiesT (6) if and only if P, q(xoXk/aX1/a)
satisfiesT’ (6). Similarly if d = (n,m, k) > 1, then Pn(xoxmxgl) is the disjoint union
of d copies ofP, /4 (xoxm/dx;/ld) [1, Lemma 1.2]; so the analogous conclusions can be
drawn in this case. Since a free prodiitt: K is hyperbolic if and only ifH andK are
hyperbolic—see, for example?,[ Theorem H]—there is no loss in generality in assum-
ing that such decompositions do not arise. The conditions &k, k # 0 are imposed in
TheoremB to ensure that the relators are cyclically reduced and,teotse, the group
is trivial.

A relator of a presentation iseely redundantif it is freely equal to the conjugate
of another relator or its inverse. The cyclic presentatiBmeoxmx;l) have no freely
redundantrelators, and(it, k,/) = 1, the presentatio®, (xox x;) has a freely redundant
relator if and only ifs = 3 and{k,!} = {1, 2}, in which case it defines the (non-elementary
hyperbolic) groupZ = Z. For this reason, throughout this article we will only catesi
presentations with no freely redundant relators.
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A consequence of Theorefmand the results ofl[4] (see also 27, Example 10, Pro-
positions 7.7 and 7.8]) is that the hyperbolicity status yilically presented group&
of the formG,, (xoxx x;) is known, except whetr is isomorphic toG,, (xox1x,/2—1) for
evenn > 10,n # 12, 18.

We prove Theorem in Section2 and TheorenB in Section3.

2. Thepositive case

Let P = (X | R) be a group presentation such that each relaterR is a cyclically
reduced word in the generators. L&t denote the symmetrized closure & that is,
the set of all cyclic permutations of elementsfuU R~1. Thestar graphof P is the
undirected graph with vertex st U X!, and with an edge joining vertices y for each
word xy~1u in R. These words occur in pairsy~'u € R implies thatyx~'u~! € R.
Such pairs are calleitiverse pairsand the two corresponding edges are identified in
[25, p. 61]. Thus ifl" is the star graph of the cyclic presentatiBn(xox x;), thenI” has
verticesy; andx; ! and edges; — xi_+1k’ X; — x;&l_k, andx; —x;°%, (0 <i < n), which
we will refer to as edges of typE, Y, andZ, respectively.

By [18] a presentation in which each relator has length at [Raatisfiesl’ (¢) (¢ > 3)
if and only if its star graph has no cycle of length less thaf\s we are interested in
presentations that satisffj(6), in Section2.1 we analyse cycles of length at mdasin
the star graph™ of P,(xoxxx;). In particular, we note thaf always contains a cycle
of length at most. We show that if two additional cycle types of lengitarise, then
only a few small values af are possible andr, (xox;x;) is isomorphic to one of only
a few groups, one of which turns out to be hyperbolic. In $&ct.2 we prove that the
remainder are not hyperbolic. In SectidrBwe consider the case when at most one further
cycle type of lengthb occurs and perform a detailed analysis of van Kampen diagram
(see R5, Chapter 5]) over the defining presentation to prove €hatcyxi x;) has a linear
isoperimetric function, and hence is hyperbolic. We themlime these results to prove
TheoremA in Section2.4.

2.1. Analysisof short cyclesin the star graph of P,(xoxrx;)

The following classification of th& (6) cyclic presentation®,, (xoxxx;) in terms of three
types of congruence®), (C), and(D) was obtained in14]. As indicated in Tablel,
the (B) conditions correspond to cycles (of lengthof the form XY, YZ, and ZX;
the (C) conditions correspond to cycles (of lengthof the formXZYZ, YXZX, and
ZYXY; and the(D) conditions correspond to cycles (of lengthof the form (X Y)?2,
(YZ)?,and(ZX)?, as well as to cycles (of length) of the formXYZYXZ,YZXZYX,
andZXYXZY. Replacing parametér by [ — k and/ by —k corresponds to replacing
edge typeX by Y, Y by Z, andZ by X and to replacing a conditiofx.j) of Table1
by (x.j + 1) (mod3), and replacing the group,(xoxrx;) by the isomorphic copy
Gn(xox;—rx_r). (Tosee thaG, (xoxgx;) = G, (xox;—x—_x) S€tj =i + k inthe relators
XiX; +xXi+1 Of P, (xoxzx;) and then cyclically permute to get the relat®fs; 1 ;_xx;
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J 0 1 2
(B.j) congruence 2k—1=0 2l —k=0 k+1=0
cycle type XY YZ zX
C.j) congruence l=+3 k=+3% k—1=+%
cycle type XZyz YXZX ZYXY
(D.J) congruence 2k—-1=7% 2l —k=7% k+l=3%
cycletype | (XY)2orXYZYXZ (YZ)?orYZXZYX (ZX)>orZXYXZY
(E.J) congruence 2%k —1=+5% 2l —k ==+5% k+1=+%
cycle type (XY)3 (YZ)3 (ZzXx)3
(F1.)) congruence S5k—1=0 5l -4k =0 k+4=0
cycle type (XY)’XZ (YZ)’YX (ZX)?ZY
(F2.j) congruence 41 -5k =0 4k +1=0 51-k=0
cycle type (YX)2vyz (XZ2)2XY (ZY)2ZX

Table 1. Congruences (mad) corresponding to short cycles in the star graptPpfxoxg x;).

of P,(xox;—xx_x).) Replacing parametdr by / — k corresponds to interchanging the
roles of edge typeX andY and so interchanging the roles of conditioifsl. ;) and
(F2.j), and replacing the grou@, (x¢xxx;) by the isomorphic cop$, (xox;—rx;)- (TO
see thatG, (xoxxx;) = Gu(xox;—kx;) replace the generatoxs by x; !, negate the sub-
scripts, and sef = —i — [ in the relatorsy; x; 1 x; +; and then invert to get the relators
XjXj 41—k Xj41 OF Pp(xoX1—X7).)

Lemma 2.1 ([14, Lemma 5.1]).Letn > 2 and suppose that, k,/) = 1,0 <k, <n.
Then P, (xoxi x;) satisfiesT (6) if and only if none of the congruencéB.j), (C.j) or
(D.j) (0 < j < 2)of Tablel holds.

Observation 2.2 (see R7, Theorem 3.4]).Suppose thatn, k,1) = 1,0 <k, [ <n, and
that none of the congruencéB. ), (C.j) or (D.j) (0 < j <2) of Tablel holds. Then
for each0 < i < n the sequence of vertices and edges- x;.!, — Xitax—1 — X7y _p; —
Xitk—2] — xi_—ll — x; forms a cycle of length of the form(X Y Z)? in the star grapHr".

We now consider how other cycles of lengtlsan arise ifT".

Lemma 2.3. Letn > 2. Suppose thatn, k,l) = 1,0 < k, [ < n, and that none of the
congruences$B.j), (C.j) or (D.j) (0 < j < 2) of Tablel holds. Then the star graph
contains a cycle of length of cycle type other thatX Y Z)? if and only if at least one
of the congruence&.j), (F1.j) or (F2.j) (0 < j <2) of Tablel holds, in which case
the corresponding entry of the table is a label of the cycle.

Proof. Let C be a cycle of lengtlé in I". Then there are no subpaths@fof the form
XX,YY or ZZ. If C involves each of the edge typds Y, Z twice, thenC is a cycle
of the form(XYZ)?, XYZYXZ,YZXZYX or ZXYXZY . But these last three cycles
only occur if the congruenc@. ;) holds, contrary to hypothesis. @ does not involve
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an edge of typeX (resp.Y, resp.Z), thenC is a cycle of the form(Y Z)3 (resp.(X Z)3,
resp.(X Y)3), which correspond to the conditions. /). If C involves exactly one edge
of type X (resp.Y, resp.Z), thenC is a cycle of the form(YZ)2YX or (ZY)?ZX
(resp.(ZX)?ZY or (XZ)?XY, resp.(XY)?XZ or (YX)?Y Z), which corresponds to
the conditiong F1.j) or (F2.j).

Conversely, if any of the congruences. ), (F1.j) or (F2.j) holds, then the cor-
responding entry of Tablgis the label of a cycle of lengthin I". [

Lemma24. Letn > 2. Suppose thau,k,/) = 1,0 <k, [ < n, and that none of the con-
gruencegB.j), (C.j)or (D.j) (0 < j <2) holds. If more than one of the congruences
(E.j), (Fl.j),and(F2.j) (0 < j < 2) hold, then one of the following holds:

(8 n=7and(l = 5k ork = 5] modn);

(b) n =8and(/ = 5k or k = 5] modn);

(¢) n=21and(l = 5k or k = 5] modn);

(d) n=24and(l =5k ork = —4l orl = —4k modn);

(e) n=27and(l =5kork =5lord4k =5lor4l =5k
ork = —4l orl = —4k modn).

In each cas&r =~ G, (xgx1x5).

Proof. (Throughout this proof, thg value in a conditior(x. ;) is to be taken mod.) If
(E.j)and(F1.j) hold, then(B.j + 1) holds, a contradiction. I E.;j) and(F1.j + 1)
hold, then(B.j + 2) holds. If (E.j) and(F2. — j) hold, then(B.;j + 2) holds. If (E.})
and(F2.1 — j) hold, then(B.;j + 1) or (D.j + 1) holds. If(F1.j) and(F2. — j) hold,
then(C.j) holds. If (F1.j) and(F2.1 — j) hold, then(B.j + 1) holds. Suppose now
that any two of thg E. ;) conditions hold; then all three of them hold. Sin@0) does
not hold, condition £.0) implies2k — [ = +n/3 modn and sincg B.2) does not hold,
condition(E.2) impliesk + [ = £+n/3 modn. Thus2k — [ = €(k + 1), wheree = +1.

If ¢ = +1, then(B.1) holds, a contradiction; and ¢ = —1, then(C.0) or (C.1) holds, a
contradiction.

Suppose that two of th@'1.j) conditions hold. Then all of them hold so, in particular,
[ = 5k modn. Summing the congruencég'1.0) and(F1.1) gives thatc = —4/ modn
and so (by(F1.0)) 21/ = 0 modn. Moreoverl = (n,k,l) = (n,—4l,1) = (n,l) son|21.

If n = 3, then(F1.0) implies that(B.0) holds, son = 7 or 21. An analogous argument
shows that if two of th€ F2.j) conditions hold, thek = 5/ andn = 7 or 21, thus giving
cases (a), (c) of the statement.

Suppose thatF'1.j) and(F2.2 — j) hold. We claim that: = 8 or 24; it then follows
from one of the congruences that 5k or k = 5] modn (by multiplying by 5, if neces-
sary), giving cases (b) and (d). We prove this in the ¢&4e0) and(F2.2), the other cases
being similar. The congruen¢é'1.0) implies! = 5k modn, so substituting intg72.2)
gives24k = 0 modn, butl = (n,k,1) = (n,k) son|24. If n < 6, then some condition
(B.j), (C.j) or (D.j) holds, and ifn = 12, then(B.2) or (D.2) holds, a contradiction;
thusn = 8 or 24, as claimed.



I. Chinyere and G. Williams 6

Suppose that eithe€k.j) and(F1.j +2))or ((E.j) and(F2.2 — j)) hold. We claim
thatn = 27. We prove this in the case whetE.0) and(F'1.2) hold, the other cases being
proved analogously. The congruendél.2) implies k = —4/ modn so (E.0) implies
271 = 0 modn, butl = (n,k,l) = (n,l) son|27. If n = 3 or 9, then(B.0) holds, and
hencen = 27, as claimed.

The final assertion tha®, (xoxrx;) = G, (x9x1x5) in each case follows froml,
Lemma 2.1]. [

We now deal with the group arising in case (e) of Leritna

Example 2.5 (The groupG,7(xox1x5)). Using KBMAG [19], it is straightforward to
show that the groupr,7(xox1x5) is hyperbolic, and since it contains a non-abelian free
subgroup (by 14, Corollary 5.2]), it is non-elementary hyperbolic.

2.2. Non-hyperbolic groups G, (xoxrx;)

In this section, we consider the groups arising in caseqdapf Lemma2.4. First we
recall that the grouy; (x¢x1x5) is not hyperbolic; se€?[7, Example 3.8] for a discussion.

Lemma 2.6 ([6,13]). The groupG7(x¢x1xs) is not hyperbolic.

We now show that the grou@g(xox1xs) is not hyperbolic. We do this by an applica-
tion of the Flat Plane Theorer][(an alternative approach would be to ugg,[Corollary,
p. 1860]).

Lemma 2.7. The groupGg(xox;xs5) is not hyperbolic.

Proof. Since the presentatioRg(xox;xs) satisfiesC(3) — T(6) and each relator has
length3, each face in the geometric realisatirof the Cayley complex of (obtained by
assigning length to each edge) is an equilateral triangle, and’ssatisfies the CAT0)
inequality. Consider the geometric realisatiag of the reduced van Kampen diagram
given in Figurel and for each) < i < n let A; be obtained fromA( by applying the
shift #’ to each edge. Then placing, A,, A4, Ag One above the other gives the geomet-
ric realisationA of a reduced van Kampen diagram. Copieg\dile the Euclidean plane
without cancellation of faces. Thus there is an isometribedaing of the Euclidean plane
in C, and so the result follows from the corollary to Theorem ASh [ (]

For later reference (in Sectid) we note that the relabelling of generatggs= xo,
y1 = x7_1, Yo = X2,Yy3 = xl_l, Y4 = X4, Y5 = x;l, Y6 = Xg, andy; = xs_l shows that
Gg(xpx1x5) = Gg(y0y4y1‘1), and so we have the following corollary.

Corollary 2.8. The groupH (8,4) = Gg(xox4x; ") is not hyperbolic.

Remark 2.9. The van Kampen diagram arising in the proof of Lemtn3 and later the
one in the proof of Lemma.6, provides a pair of commuting elements whose axes in the
geometric realisatioh meet at an anglex/3. It follows that the groups considered in
these results contain a free abelian subgroup of 2ske, for example 3, p. 446]).
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Figure 1. A van Kampen diagram over the presentati®g(xox1x5) with boundary label
(x2x0) (x3x5x7x1)(x2x0) ! (x1x3x5x7) "L

In Corollaries?2.10and2.11we use Lemmag.6and2.7, respectively, to prove that the
groups in cases (c) and (d) of Lemral are not hyperbolic. To do this we first recall the
shift extension of a cyclically presented group. The shitbanorphismd of a cyclically
presented grou@, (w) results in & ,-action onG, (w) that determines th&hift extension
E,(w) = G,(w) xg Z,, which admits a two-generator two-relator presentatiothef
form

E,(W) = (x.1 [ 1", W(x,1)),

whereW = W(x,t) is obtained by rewritingv in terms of the substitutions = % x¢~
(see, for example2l, Theorem 4]). Thus there is a retractich: E, (W) — Z,, given by
Vo) =1, v%(x) =t° = 1 with kernelG, (w). Moreover, as shown ir8[ Section 2], for
certain values off (0 < f < n) there may be further retractiong . Specifically, by B,
Theorem 2.3] the kernel of a retractioth : E,, (W) — Z, givenbyv”/ (t) =¢,v/ (x) =t/
is cyclically presented, generated by the elements= r'xt~¢+/) (0 <i < n). Since
(non-elementary) hyperbolicity is preserved under tafimi¢e index subgroups and finite
extensions, the grouf, (W) is (non-elementary) hyperbolic if and only if the kernel of
any, and hence all, of its retraction$ is (non-elementary) hyperbolic.

In the casav = xgxix; we have

E,(W) = Gp(w) xg {t | ") = (x,1 | ", xt¥xt'Fx17F)

which admits a retraction” : E, — (¢ | t") given byv/ (t) = ¢, v/ (x) = ¢/ if and
only if 3f = 0 modn; the kernel of such a retraction is the cyclically presergsezlip
Gn(xoXs+kX2f+1) (S€€ B, p. 158]).

Corollary 2.10. The groupG,; (xox1x5) is not hyperbolic.
Proof. The free product of three copies 6f (xox1x5) is the cyclically presented group

G21(xox3x15) with shift extension® = (x,¢ | t2', xt3xt'?xt~13). The kernel of the re-
tractionv” : E — Z, = (t | t?') givenbyv7(t) =t,v7(x) =t is the groupG,; (xoX10xg)
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Xi+l

Figure 2. A typical face in a van Kampen diagram over the presentaBipfxoxy x;).

which, by [L4, Lemma 2.1 (iv), (V)], is isomorphic t65 (x¢x1x5). SinceG7(xox1x5) iS
not hyperbolic, neither i€, (x¢ox3x15), nor E, and hence, nor i€, (xgx1x5). ]

Corollary 2.11. The groupG,4(x9x1x5) is not hyperbolic.

Proof. The free product of three copies 6§ (x¢x1x5) is the cyclically presented group
Ga4(x0x3x15) With shift extensionE = (x,t | 124, xt3xt'?xt~13). The kernel of the re-
tractionv® : E — Z,4 = (¢t | t?*) given byv3(r) =1, v8(x) =8 is the groupG4 (xox11x7)
which, by [14, Lemma 2.1 (v), (ii)], is isomorphic tG24(xox1x5). SinceGg(xox1x5) iS
not hyperbolic, neither i§,4(x¢x3x15), nor E, and hence, nor i6,4(xgx1x5). ]

2.3. Analysis of van Kampen diagramsover P,(xoxrx;)

In this section, we show that if the cyclic presentati®n= P, (xoxxx;) is T(6) and at
most one of the congruencég.j), (F1.j) or (F2.j) holds, thenG = G, (xoxxx;) IS
hyperbolic. Following the method of proof o2(, Theorem 13], we show th&t has a
linear isoperimetric function1s, Theorem 3.1]. That is, we show that there is a linear
function /' : N — N such that for allN € N and all freely reduced word¥’ € F,
with length at mostV that represent the identity ¢f we have Are@V) < f(N), where
AreaWW) denotes the minimum number of faces in a reduced van Kampgmnadh over

P with boundary label. Without loss of generality, we may assume that the boundary
of such a van Kampen diagram is a simple closed curve. Note that each face®iis

a triangle, as shown in Figuée where the corner labels, Y, Z correspond to the edge
types of the star graph d?. We say that a vertex @D is aboundary vertexf it lies on

aD, and is arinterior vertexotherwise. In order to obtain a linear isoperimetric fuoiti
(in Lemma2.16) we first carefully analyse degrees of vertices within

Lemma 2.12. Let A be an interior face ofD in which two of the vertices have label
(XY Z)2. Then the label of the third vertex contains a subword of tnefzha, whereb
is the label of the corner ok at this vertex, and, b € {X,Y, Z},a # b.

Proof. Without loss of generality, we may assume that the edge's afe oriented in an
anticlockwise manner. We name its vertiags v, vz, read in an anticlockwise manner,
and suppose;, v, are labelled XY Z)2. If the corner ofA atv; has labelX (resp.Y,
resp.Z), then the corner oA atwv, has labelr (resp.Z, resp.X), in which case the label
of v3 hasasubwordZY or XZX (resp.ZXZ orYXY,respXYX or ZY Z), as shown
in Figure3. [
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Figure 4. Neighbourhood of an interior vertex labelled Y Z)2.

Lemma 2.13. If an interior vertexv of D of degrees has label(X Y Z)?, then two adja-
centneighbours af haveX 'Y as a cyclic subword of their labels, two adjacent neighbours
haveX Z as a cyclic subword of their labels, and two adjacent neighbdaveY Z as a
cyclic subword of their labels.

Proof. If the label ofv is (XY Z)? oriented clockwise, then the neighbourhood d$ as
given in Figure4, from which the conclusion can be observed. A similar figuralsl with
the case when the label ofis (X Y Z)? oriented anticlockwise. (]

Lemma 2.14. Suppose that all interior vertices d have degree at least and all
labels of interior vertices of degreg are either(XY Z)? or label (E.j) for precisely
onej € {0,1,2}. If v is an interior vertex of degreéin D with label (E.;j) and where
all the neighbours ob are interior vertices of degre@then every neighbour af has two
neighbours which are either boundary vertices or have degideass.

Proof. Consider first the casg:.0), that is, a vertex labglX Y )3. As shown in Figuré
all the neighbours of must have labelX Y Z)2. Then each of the vertices, . . . ,us has
a corner labelled. If a vertexu; (1 <i < 6) is interior, then if it is of degres, its label
is not(XYZ)?2, by Lemma2.12, and so it must béX Y)3, a contradiction. Therefong;
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Us

Uy Ue

Us

Figure5. Neighbourhood of an interior vertex labelled.0) and no boundary neighbours.

is either interior of degree at lea&t or a boundary vertex, as required. The caded)
and (E.2) are dealt with by replacing by Y, Y by Z, andZ by X, as explained in
Section2.1 [

Lemma 2.15. Suppose that all interior vertices &f have degree at leastand all labels

of interior vertices of degreé are either(XY Z)? or (F1.j) (resp.(F2.j)) for precisely
onej € {0, 1,2}. If v is an interior vertex of degreé in D with label (F1.;) (resp.

(F2.j)) and where all the neighbours ofare interior vertices, them has a neighbour
of degree at least.

Proof. Consider the casg 1.0), thatis,v has labe(X Y)?X Z and suppose that all neigh-
bours ofv have degre&. Then Figure6 shows one of the two possible labellings of
neighbours that can occur. Since two adjacent neighbouesihd as a cyclic subword of
their label, these must each be labellgdly Z)?2, but this is impossible by Lemmz 12
thereforev has a neighbour of degree at le&sthe same conclusion can be obtained if
the second possible labelling of neighbours occurs. Thes¢#d.1) and(F1.2) are dealt
with by replacingX by Y, Y by Z, andZ by X. The case$F2.;) are obtained from the
cased F1.j) by interchanging the roles of andY, as described in Sectichl [

We are now in a position to be able to establish the existei@esuitable isoperimetric
function.
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Figure 6. Neighbourhood of an interior vertex labelléH1.0).

Lemma2.16. Letn > 2 and suppose that none of the congruendeg), (C.j) or (D.j)
holds(0 < j < 2) and that at most one congruencg. ), (F1.j) or (F2.;) holds(j €
{0, 1,2}). ThenG, (xoxrx;) has a linear isoperimetric function.

Proof. As at the beginning of this section, I8t € N, let W be a freely reduced word in
the free groupF;,, (with generatorsy, ..., x,—1) of length at mostV that represents the
identity of G, and letD be a reduced van Kampen diagram whose boungfarng a simple
closed curve with label’. We let/ denote the set of interior vertices B, B the set of
boundary vertices oD, and F the set of faces oD. Then AredlV) < | F|. Writing r to
denotel 80, we define the curvature of a fageby « (/) = —m + (sum of angles iry'), the
curvature of an interior vertex by k(v) = 27 — (sum of angles at), and the curvature
of a boundary vertex by «(0) = = — (sum of angles at). It follows from the Gauss—
Bonnet theorem that

D k@) + D k@) + Y k(f)=2n (1)

vel V€B fEeF

(see p6, Section 4] and the references therein).

Since none of the congruendgs ), (C.j) or(D.j) holds 0 < j <?2), every interior
vertex of D is of degree at lea%t, and since at most one congrueriéej), (F1.j) or
(F2.j) holds, the label of an interior vertex of degieis either(X Y Z)? or it is the label
corresponding to that congruence, given in Tdble

We assign angles to the corners of the faceB ias follows. Ifv is a boundary vertex
or an interior vertex of degree at le&sthen assign angh7 to every corner ait. Assume
now thatv is an interior vertex of degreeand consider a facg with verticesv andu,
w: if u, w are interior of degreé, then assign angl&d to the corner off atv; otherwise
assigno6 to the corner off atv.

Then, if a facef contains a boundary vertex, the@f) < —m + (47 4+ 66 + 66) = —1;
if a face f has all its vertices interior and one vertex of degree at lgathen«(f) <
—1 + (47 4+ 66 4+ 66) = —1; if all the vertices of a face" are interior of degreé, then
k(f) < —m + (594 59 + 59) = —3. Thereforec(f) < —1forall f € F.
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We now consider curvature of the vertices i an interior vertex of degree at le&st
thenk (v) < 2w —8(47) = —16. If v is an interior vertex of degreewith a neighbour that
is either on the bounda@D or has degree at leastthenk (v) <27 —2(66)—4(59) =-S8.

Now suppose that is an interior vertex of degregewith all its neighbours interior of

degree. Thenk (v) =27 — 6(59) = 6 and by Lemma&.15the label ofv is either(X Y Z)?
or(E.j) forsomej € {0,1,2}. If the label ofv is (X Y Z)?2, then, since precisely one other
label of degre® vertices is possible, Lemnial3implies thatv must have two adjacent
neighbours, each labelled Y Z)?2, but this is impossible by Lemma.12 If the label
ofvis (E.j) (forsomej € {0, 1,2}), then Lemm&.14implies that every neighbour
(1 =i < 6) of v has two neighbours which are either boundary vertices og Hagree at
least8. Therefore, for eache {1,.. ., 6} the curvature (v;) <27 — 4(59) — 2(66) = —8.
In this situation, transfer curvature efl from each vertex; to vertexwv; the resulting
curvatures are(v;) < -8+ 1= -7(1 <i <6)andk(v) = 6 —6(1) = 0. Since each
vertexv; has degreé, the maximum number of times curvature can be transferrey aw
fromv; is 6, so its curvature cannot exceeth) = —8 + 6(1) = —2. Therefore for each
interior vertexv we havex(v) < 0.

Now (1) implies

27 = ZK(U) + Zk(ﬁ) + ZK(.f)

vel beB feF
<Y 0+ ) (r—sumofanglesat) + » (-1)
vel  ¢eB feF
= |B|r — Z(sum of angles at) — | F|
V€B

S0

> (sum of angles at) < (|B| —2)7 — |F|.

V€B
On the other hand, the corner angle at any boundary ver#&x §o the sum of angles over
the boundary vertices is bounded below4¥yB|. Therefored7|B| < (|B| — 2)n — | F|,
so|F| < 133|B| — 360.

But AregW) < |F| and |B| < N so AredW) < 133N — 360, and so f(N) =

133N — 360 is a linear isoperimetric function. [

We now have all the ingredients to prove Theorem

2.4. Proof of Theorem A

Supposethat > 2,0 <k,l <n, (n,k,l) = 1 and that the cyclic presentatid® (xoxzx;)
satisfiesT (6). If P,(xoxxx;) has a freely redundant relator, then= 3 andG ~ Z x Z
(which is non-elementary hyperbolic) so we may assume fhatox;x;) has no freely
redundantrelators. Then Lemrd. implies that none of the congruendds j), (C.j) or
(D.j) (0 < j <2)(of Tablel) holdsand s& > 7. If n = 7 or 8, thenG =~ G, (xox1x5)
(see, for example[7, Table 2]) so is not hyperbolic by Lemma$and?2.7. Assume then
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thatn > 8. If more than one of the congruenads.j), (F1.j), and(F2.5) (0 < j <2)
hold, then one of the cases (c), (d) or (e) of Lemiingholds. In cases (c) and (d}, is not
hyperbolic by Corollarie®.10and2.11and in case (e)y is non-elementary hyperbolic,
by Example2.5 Thus we may assume that at most one of the congrughicgs, (F1.5)
or (F2.j) (0 < j <2)holds, in which case Lemmal16implies thatG,, (xox;x;) has a
linear isoperimetric function, and hence is hyperbolic.[B¥, Corollary 5.2]G contains
a non-abelian free subgroup so it is non-elementary hyfierbo

3. The non-positive case

As in [20], we express our arguments in terms of parameletsk andB = k — m.

Let I" be the star graph of the cyclic presentatib{(xoxmx,zl). ThenI" has vertices
x; andx; ! and edges;; — x;!,,., x; — xi+ g, andx; ' — x; !, (0 <i < n), which we
will refer to as edges of typ&, Y, andZ, respectively. Replacing paramekeby m — k
corresponds to interchanging the roles of edges of typasdZ, and so will correspond
to interchanging the roles of conditiots.0) and(x.1) in Table2, and replacing the group
Gn(x0xmx; ') by the isomorphic copys, (xoxmx,!,). (To see thaG, (xoxmx; ') =
G, (xoxmxr;l_k) replace the generatarsby x; !, invert the relators, negate the subscripts,
and setj = —i —m to get the reIators,-mexjjm_k of Gp(xoxmx,1,).)

As in the positive case, we are interested in cycles of leagthosts in ', so we ana-
lyse these in Sectiod.1. We observe that if a particular cycle type of lengttwhich we
refer to ag(y+)) occurs, therG = G, (xoxmx} ") is isomorphic toG, (xoXn/242X7 ") =
H(n,n/2 + 2) which (in Section3.2) we show is non-hyperbolic whenever its present-
ation satisfies’(6). We then show that if two of the remaining cycle types of lén@t
occur, thenG, (xoxmxgl) is isomorphic to one of a few groups with low valuesefall
but one of which turn out to be hyperbolic (the oth€g(xoxsx;!) = H(8, 4), being
non-hyperbolic). In Sectio3.3 we consider the case when exactly one cycle type of
length6 occurs and perform a detailed analysis of van Kampen diagjoxar the defining
presentation to prove thétn(xoxmxgl) has a linear isoperimetric function, and hence is
hyperbolic. We then combine these results to prove The@émSection3.4.

3.1. Analysisof short cyclesin the star graph of P, (xoxmx;")
Short cycles i were analysed inZ0].

Lemma 3.1 ([20, Theorem 10]).Letn > 2,0 <m,k <n,m # k, k # 0, and setd =
k,B =k —m. LetI" be the star graph of, (xoxmx; ).

(@) T has a cycle of length less tharif and only if at least one of the congruences
0.j), (6 +.j), (6d—.j), (r +.j)or(r —.j) of Table2 holds, in which case a
label of the cycle is the corresponding entry of the table.

(b) T has a cycle of lengtlé if and only if at least one of the congruendes; ),

B+ .j) (B—.J), (y+) or (y—) of Table2 holds, in which case a label of the
cycle is the corresponding entry of the table.
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j 0 1

—n. n.yn.n 2n —h. n.n.n 2n
m,k Congruencek_mzi,ig,iz,ig,i? =35 ig,iz,:‘:g,:‘:?

(P-/) A, Bcongruence B=1;+%;+M 8 £ A=l fogngn 420

cycle type Y2 Y3 v4Y° Z2.73.74.73
m, k congruence 2k—m=0 2k—m =0
(0+) A, B congruence A+B=0 B+A4=0
cycle type XYXZ XZXY
m, k congruence m=0 m =
(c—) A, B congruence A—B=0 B-—A=0
cycle type XYXZ XZXY
m, k congruence 3k—2m=0 3k—m=0
(t+.j) A, B congruence A+2B=0 B+24=0
cycle type XZXYY XYXZZ
m, k congruence 2m—k =0 m+k=0
(t—.j) A, B congruence A—-2B =0 B—-24=0
cycle type XZXYY XYXZZ
m, k congruence k—m=+% k=+%
(a.j) A, B congruence B=4+% A==%
cycle type Yo A
m, k congruence 4k —3m =0 4k —m=0
(B+.j) A, B congruence A+3B=0 B+34=0
cycle type XZXYYY XYXZ7ZZ
m, k congruence 3m—2k=0 2k+m=0
(B—.j) A, B congruence A—-3B =0 B—-34=0
cycle type XZXYYY XYXZ7ZZ
m, k congruence 2k —m=mn/2 2k —m=n/2
(y+) A, B congruence A+ B=n/2 B+A=n/2
cycle type XZZXYY XYYXZZ
m, k congruence m=n/2 m=n/2
(y—) A, B congruence A—B=n/2 B—A=n/2
cycle type XZZXYY XYYXZZ

Table 2. Congruences (mad) corresponding to short cycles in the star grapr@txoxmxI:l).

Hered =k, B =k —m.
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Corollary 3.2. Letn > 2 and suppose that,m, k) = 1,0 <m,k <n,m # k, k # 0.
Then

€) P,,(xoxmxlgl) satisfies7'(6) if and only if none of the congruencég.;),
(c+.j),(c—.j),(t +.j)or(z —.j) of Table2 holds;
(b) Pn(xoxmx; ') satisfiesT(7) if and only if none of the congruencep.;),

(c+.j), (=), (T+.j)(x—"j)()j) B +.j)(B—.)) (+)or(y-)
of Table2 holds.

Note that the twd@y +) conditions in Table are identical conditions and the twp—)
conditions are identical; for this reason we do not add thigtd these conditions. We first
identify the group<, (xoxmx,;l) in the presence of a cycle of tyge+) of Table2.

Lemma 33. Letn >2,0<m, k <n and let A = k, B = k — m. Suppose that
A+ B =n/2modn andthat(n,m,k) = 1. ThenG, (xoxmx; ') = Gp(XoXp 242X ") =
H(n,n +2).

Proof. The hypotheses imply that= (n,m, k) = (n,n/2 + 2k, k), which implies that
(n/2,k) =1 so either(n, k) =1 or (n/2 is odd and(n, k) = 2). In the former case
Gn(x0XmX; ') = Gp(XoXn 242k X5 ") = Gp(XoXn/242x7 ") (by [1, Lemma 1.3]); in the
latter cases, (xoxmx; ') = Gn (X0Xpn 242k X 1) = G (XoXn/244X5 ') Which is isomorphic
t0 G (xoXn/242x7 ") by [1, Lemma 1.3] andd0, Lemma 7]. n

In Lemma3.6we will show that the group#&/(n,n/2 + 2) are not hyperbolic for any
evenn > 8, n # 10. We now consider the groups that arise when more than onesof th
remaining lengtlé cycle cases hold.

Lemma 34. Letn >2,0 <m, k <n,m # k, k # 0, where(n,m, k) = 1, and set
A=k, B =k—m.LetI be the star graph of, (xoxmx;'). Suppose that none of the
congruencegp.j), (6 + .j), (6 —.j), (t +.j) or (zr —.j) holds forj € {0, 1} and
that (y+) does not hold. If more than one of the congrueneeg), (8 + .j), (B — .j),
and (y—) hold, thenG, (xoxnx; ') is isomorphic to one of(8,4), H(8,6), H(10,4),
H(18,4) or H(18, 16).

Proof. If («.0) and(«.1) hold, thend = +n/6 andB = +r/6 modn, and so eithefo+)
or (o—) holds, a contradiction. Ifx.0) and(y—) hold, then(p.1) holds, a contradiction.
If (@.1) and(y—) hold, then(p.0) holds.

If («.0) and (B + .0) or (8 — .0)) hold, then24 = 0 modn, and so(p.1) holds,
a contradiction; if(e.1) and (8 + .1) or (8 — .1)) hold, then2B = 0 modxn, and so
(p.0) holds. If (8 + .0) and (8 — .0) hold, then24 = 0 modn, and so(p.1) holds, a
contradiction; if(8 + .1) and(8 — .1) hold, the2 B = 0 modn, and so(p.0) holds.

If (8 —.0) and(y—) hold, thend = 3B modnr and4B = 0 modn, and sdp.0) holds,
a contradiction. Similarly, if 3 — .1) and(y—) hold, then(p.1) holds.

If (8 +.0)and(B + .1) hold, thenB = —34 modn and84 = 0 modn; moreover =
(n,A,B) = (n,A,-3A) = (n, A) son|8, and ifn < 8, then(p.0) holds, a contradiction,
son = 8 andG, (xoxmxlgl) is isomorphic toH (8, 4). Similarly, if (8 —.0) and(8 — .1)
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hold, thenG,, (xoxmx; ') = H(8,6). If (8 + .0) and(y—) hold, thend = —3B modn and
8B = 0 modn; moreoverl = (n, A, B) = (n,—3B, B) = (n, B) son|8, and ifn < 8,
then (p.0) holds, a contradiction, se = 8 and G, (xoxmxgl) ~ H(8,4). Similarly, if
(B + .1) and(y—) hold, then = 8 andG, (xoxmx; ') = H(8,4).

If (8 4+ .0)and(B — .1) hold, thenB = 34 modn and104 = 0 modn; moreover
1=(n,A,B)=(n,A)son|10,and ifn < 10, then(p.0) holds, a contradiction, so= 10.
Then(k,n) = 1, and so by [, Lemma 1.3] we may assume that=1; so4 = 1 and
k —m = B = 3, and hencen = 8. ThusG, (xoxmx; ') = Go(xoxsxy"). Similarly, if
(B + .1) and (B — .0) hold, thenn = 10 and Gn(xoxmxlzl) >~ Gio(xoxaxy!). By [8,
Theorem 2] we haVGl()(X())ngl_l) = Glo(X0X4)C1_1) = H(10,4).

If («.0) and(B+.1) hold, thenB=—-34 and184=0 modn; moreoveld =(n, A, B) =
(n, A) son|18 and ifn < 9, then(p.0) holds sorn = 18. Then(k,n) = 1, and so we
may assume that = 1 sok —m = B = —3, and hencen = 4. ThusG,,(xOxmx;I) ~
Gis(xoxaxy!) = H(18,4). If (.1) and(B + .0) hold, then4 = —3B and18B = 0 mod
n; moreoverl = (n, A, B) = (n, B) son|18 and agaim = 18. Then(k —m,n) = 1,
and so we may assume that=k —m = 1 sok = A = —3, and hencen = —4. Thus
Gn(X()melzl) = Glg(X())C_4)C:1) = Glg(X0X4)C1_1) = H(18,4) by [1, Lemma 1.3]and
[31, Lemma 7].

If («.0) and(B —.1) hold, thenB =34 and184=0 modn; moreoved = (n, A, B) =
(n, A) son|18, and ifn < 9, then(p.0) holds and s@ = 18. Then(k,n) = 1, and so we
may assume that = 1 sok —m = B = 3, and hencen = —2. Thuan(xoxmx;I) ~
Gis(xox16x7") = H(18,16).If (a.1) and(B — .0) hold, thend = 3B and18 B = 0 mod
n; moreoverl = (n, A, B) = (n, B) sorn|18 and ifn < 9, then(p.1) holds and sa = 18.
Then(k —m,n) = 1 and so we may assume that-m = 1 sok = A = 3, and hence
k =3, m =2.ThusG,(xoxmx; ') = Gis(xox2x3"') = H(18,16) by [1, Lemma 1.3]
and B1, Lemma 7]. L]

In Corollary 2.8 we showed thatd (8, 4) is not hyperbolic; in Lemm&.6 we will
show thatH (8, 6) is not hyperbolic. We now show that the remaining groupsragis:
Lemmas3.4are hyperbolic.

Example3.5. Using KBMAG [19], it is straightforward to show that the groupg10, 4),
H(18,4), and H(18, 16) are hyperbolic, and since they contain a non-abelian free su
group (by RO, Corollary 11]), they are non-elementary hyperbolic.

3.2. Non-hyperbolic groups G (xoxmx; ")

We now show that th& (6) groupsH (n, n/2 + 2) arising in Lemme&B.3 are not hyper-

bolic. (Note that ifn = 2, 4, 6 or 10, then the presentation df (n,n/2 + 2) does not

satisfyT'(6), by Corollary3.2)) As in the proof of Lemm&.7we do this by an application
of the Flat Plane Theorem.

Lemma3.6. Supposethat>8isevenn#10. ThenH (n,n/2+ 2)=Gpn(xoXp/242X] ")
is not hyperbolic.
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X11

=
=]
Y <
=
=
Y <

Xn Xn
X1 z+s 2+7 X11

Figure 7. A van Kampen diagram over the presentatib,{\(xoxn/2+2xl_1) with boundary label
(X0 /2) (X1 /24 5%n/247X11) (X12Xn /24+12) " (X1X5 /245%n/247X11)

Xi+k

Figure 8. A typical face in a van Kampen diagram over the presentalﬁ,p(xoxmxgl).

Proof. Since the presentatiaP, (xox,/2+2x7 ") satisfie<C(3)—T(6) and each relator has
length3, each face in the geometric realisatirof the Cayley complex of (obtained by
assigning length to each edge) is an equilateral triangle, and’ssatisfies the CAT0)
inequality. Consider the geometric realisatiag of the reduced van Kampen diagram
given in Figure7 and for eacl) <i < n let A; be obtained from\ by applying the shift
6’ to each edge. Then placingy, A1z, Az, ..., Asn_12 Side by side gives the geometric
realisationA of a reduced van Kampen diagram. CopiesAofile the Euclidean plane
without cancellation of faces. Thus there is an isometribedaing of the Euclidean plane
in C, and so the result follows from the Corollary to Theorem Ash [ [

3.3. Analysis of van Kampen diagrams over P,,(xoxmx;I)

In this section, we show that if the cyclic presentatidn= P, (xoxmxgl) is T(6) and
precisely one of the congruencésj), (8 + .j), (B —.j) or (y—) holds, thenG =
Gy (xoxmxgl) is hyperbolic. As in Sectiof.3we do this by showing that there is a linear
function f : N — N such that for allN € N and all freely reduced word®" € F,
with length at mostV that represent the identity af we have Are@¥) < f(N). Note
that each face iD is a triangle, as shown in Figu& where the corner labels, Y, Z
correspond to the edge types of the star graph.dh order to obtain a linear isoperimetric
function (in Lemmas.8) we first rule out certain configurations .
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Lemma 3.7. Suppose that all interior vertices @ have degree at leagt and that all
interior vertices of degreé of D correspond to precisely one of the congruen@eg),
B+.j),(B—.j)or(y—)for j €{0,1}. If vis an interior vertex of degre€ where all
the neighbours of are interior vertices, them has a neighbour of degree at ledst

Proof. If v is labelledY ® (resp.Z®), then clearly none of its neighbours can be labelled
Y® (resp.Z®), so they must each have degree at |&adf v is labelledXZXYYY
(resp.XYXZZZ,resp.XZZXYY), then the labels of the corners of the faces incident
to v show that at least one of the neighbours afoes not have labet ZXY Y'Y (resp.
XYXZZZ,resp.XZZXYY), and hence has degree at Ieast (]

We are now in a position to be able to establish the existeimeuitable isoperimetric
function.

Lemma3.8. Letn >2,0<m,k <n,m+#k,k #0andsetd =k, B =k —m. Letl" be
the star graph oﬂD,,(xoxmx,:I). Suppose that none 66.;), (0 +.j), (6 —.j), (t +.J)
or (r —.j) holds and that exactly one of the congruenges), (8 + .j), (8 —.j) or
(y—) of Table2 holds(j €{0, 1}). ThenG, (xoxmxgl) has a linear isoperimetric function.

Proof. Let N € N, let W be a freely reduced word in the free grofip of length at most

N that represents the identity 6f, and letD be a reduced van Kampen diagram whose
boundary is a simple closed curve with laliél We let/ denote the set of interior vertices
of D, B the set of boundary vertices of, and F' the set of faces 0D. Then Are@W) <

| F|. Writing = to denotel 80, we define the curvature of a fageby «(f) = —7 + (sum

of angles inf’), the curvature of an interior vertexby « (v) = 27 — (sum of angles at),

and the curvature of a boundary veriely « (0) = = — (sum of angles at). Again it fol-
lows from the Gauss—Bonnet theorem thgtHolds.

Since none of the congruenagsj), (o + .j), (6 —.j), (v + .j) or (r —.j) holds,
every interior vertex oD is of degree at leagtand since exactly one of the congruences
(a.j), (B+.J), (B—.j)or(y—) holds, then the label of an interior vertex of degéae
the corresponding label given in Taldle

We assign angles to the corners of facediras follows. Ifv is a boundary vertex,
then assigr7 to every corner at; if v is an interior vertex of degree at ledsthen assign
52 to every corner att. Assume now that is an interior vertex of degreeand consider a
face f with verticesv andu, w: if u, w are interior of degreé, then assigid9 to the corner
of f atv; otherwise assigh3.5 to the corner off atv. If a face f contains a boundary
vertex, thenc(f) < —m + 47 4+ 2(63.5) = —6; if aface f contains only interior vertices
of degrees, thenk (f) = —n + 3(59) = —3; if aface f contains only interior vertices of
degree atleast thenk (/) = —n + 3(52) = —24; ifaface f contains an interior vertex of
degrees and two interior vertices of degree at ledsthenx (f) = —7 + 63.5+2(52) =
—12.5; if a face f* contains two vertices of degréeand one of degree at ledstthen
k(f) = —m 4+ 2(63.5) + 52 = —1. Thereforec(f) < —1forall f € F.

We now turn to curvature of the verticesaliis an interior vertex of degree at ledst
thenk (v) < 27 — 7(52) = —4; if v is an interior vertex of degregthat has a neighbour
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that is either interior of degree at ledstr is a boundary vertex, thar{v) <2z — 4(59) —
2(63.5) = —3.

By Lemma3.7 every interior vertex of degreghas a neighbour on the boundary or
a neighbour that is interior of degree at leasThen« (v) < —3 for all interior verticesy
and so {) implies that

2 = ZK(U) + Zk(ﬁ) + ZK(.f)

vel V€B feF
<Y (=3)+ ) (v —sumofanglesat) + » (-1)
vel veB feF
= =3|I|+ Z(n —sum of angles at) — | F|
V€B
<|Blr — ) _(sumof angles a) — | F|
V€B

so

> (sum of angles a) < (|B| —2)7 — |F|.

V€EB
On the other hand, the corner angle at any boundary vertek and so the sum of angles
over the boundary vertices is bounded belowtByB|. Thereforet7|B| < (|B|—2)m —| F|
SO|F| < 133|B| — 360. But AregW) < |F| and|B| < N so AredW) < 133N — 360,
and hencef (N) = 133N — 360 is a linear isoperimetric function, as required. L]

We now have all the ingredients to prove Theorg@m

3.4. Proof of Theorem B

Supposethat >2,0<m,k <n,m #k,k #0, (n,m,k) = 1 and that the cyclic present-
ation P, (xoxmxgl) satisfiesl'(6). Then Lemma.1limplies that none of the congruences
(p.j), (c+.j),(6—.j),(t+.j)or(rt—.j) holds. If(y+) holds, them =8 orn > 12
andG is not hyperbolic by Lemma3.3and3.6; so suppose thay +) does not hold.

If T has no cycle of length less thanthen P, (xoxmxgl) satisfiesC(3) — 7(7), and
o) Gn(xoxmxgl) is hyperbolic by L6, Corollary 4.1]. Thus we may assume thahas
a cycle of lengths so, by Lemma3.1, at least one of the congruendes;), (8 + .j),
(B —.j) or (y—) holds (j € {0, 1}). Suppose that more than one of them hold. Then
G is one of the groups in the conclusion of Lem&i& Whenn = 8, the groupG =~
Gs(xoxaxy!) = H(8,4) or G = Gg(xoxexy ') = H(8, 6), which are non-hyperbolic by
Corollary 2.8 and Lemma3.6, respectively. In the remaining cas@sis non-elementary
hyperbolic by Exampl&.5.

Suppose then that exactly one of the congruegees, (8 + .j), (B —.j) or (y—)
holds. TherG has a linear isoperimetric function, and hence is hypecbbyi Lemma3.8.
By [20, Corollary 11]G contains a non-abelian free subgroup so it is non-elementar
hyperbolic.
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