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Hyperbolicity of T.6/ cyclically presented groups

Ihechukwu Chinyere and Gerald Williams

Abstract. We consider groups defined by cyclic presentations where thedefining word has length3
and the cyclic presentation satisfies theT .6/ small cancellation condition. We classify when these
groups are hyperbolic. When combined with known results, this completely classifies the hyperbolic
T .6/ cyclically presented groups.

1. Introduction

Groups defined by presentations that satisfy theC.p/ � T .q/ (non-metric) small cancella-
tion conditions where1=p C 1=q < 1=2 are hyperbolic [16, Corollary 3.3]. Therefore the
cases.p; q/ D .3; 6/; .4; 4/; .6; 3/ present boundary cases and here both hyperbolic and
non-hyperbolic groups can arise. For these cases, in [22, Corollary, p. 1860] theC.p/ �

T .q/ presentations that define hyperbolic groups are characterised as those for which there
is no minimal flat over the presentation. In this article we consider groups defined by a
class of presentations that admit a certain cyclic symmetryand satisfyC.3/ � T .6/. We
classify when the corresponding groups are hyperbolic in terms of the defining parameters
of the presentations.

Thecyclically presented groupGn.w/ is the group defined by thecyclic presentation

Pn.w/ D
˝

x0; : : : ; xn�1 j w; �.w/; : : : ; �n�1.w/
˛

;

wherew.x0; : : : ; xn�1/ is a cyclically reduced word in the free groupFn (of lengthl.w/)
with generatorsx0; : : : ; xn�1 and� W Fn ! Fn is theshift automorphismof Fn given by
�.xi / D xiC1 for each0 � i < n (subscripts modn, n � 2).

If a presentation satisfiesT .6/ then, as observed by Pride (see [28, Section 5] and
[16, Lemma 3.1]), every piece has length1 and so ifPn.w/ satisfiesT .6/, then it satisfies
C.l.w// � T .6/. Thus if l.w/ > 3, then the presentationPn.w/ satisfiesC.4/ � T .6/,
and henceGn.w/ is hyperbolic by [16, Corollary 4.1] and, therefore, it is non-elementary
hyperbolic by [10] or [12]. If the lengthl.w/ D 1, thenGn.w/ is trivial, and if l.w/ D 2,
thenGn.w/ is the free product of copies ofZ or Z2. Therefore we must consider the case
l.w/ D 3 (in which case theC.3/ � T .6/ condition coincides with theT .6/ condition).
If w is a positive (or negative) word, then we may assume thatw D x0xkxl , and if w is
non-positive (and non-negative), then we may assumew D x0xmx�1

k
. Our main results

consider these cases.
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The groupsGn.x0xmx�1
k

/ are known as thegroups of Fibonacci-typeand were intro-
duced independently in [7, 23], for topological and algebraic reasons, respectively. This
family of groups contains theFibonacci groupsF.2; n/ D Gn.x0x1x�1

2 / of [11], the
Sieradski groupsS.2; n/ D Gn.x0x2x�1

1 / of [29], and the Gilbert–Howie groups
H.n; m/ D Gn.x0xmx�1

1 / of [17]. They have been subsequently studied in [1,8,20,21,
30]—see [31] for a survey. In particular, theT .6/ andT .7/ presentationsPn.x0xmx�1

k
/

were classified in [20, Theorem 10] (see Corollary3.2, below) and [20, Theorem 11]
records that in theT .7/ case the groupsGn.x0xmx�1

k
/ are non-elementary hyperbolic.

The groupsGn.x0xkxl / were introduced in [9] and studied further in [4,14,27]. TheT .6/

presentationsPn.x0xkxl/ were classified in [14, Lemma 5.1] (see Lemma2.1, below).
Moreover, [27, Theorem 3.7] shows that for all but finitely manyn the T .6/ groups
Gn.x0xkxl / are hyperbolic.

Our main results are as follows.

Theorem A. Letn � 2, 0 � k, l < n, .n;k; l/ D 1, and suppose that the cyclic presentation
Pn.x0xkxl/ is T .6/. LetG D Gn.x0xkxl/. If n D 7 or 8 or

(a) n D 21 and.l � 5k or k � 5l modn/ or

(b) n D 24 and.l � 5k or k � �4l or l � �4k modn/,

thenG is not hyperbolic; otherwiseG is non-elementary hyperbolic.

Theorem B. Letn�2, 0�m, k <n, .n;m;k/D1, m¤k, k ¤0, and suppose that the cyc-
lic presentationPn.x0xmx�1

k
/ is T .6/. LetG DGn.x0xmx�1

k
/. If nD8 or .n�12 is even

and2.2k � m/ � 0 modn/, thenG is not hyperbolic; otherwiseG is non-elementary
hyperbolic.

The coprimality hypotheses of TheoremsA andB are imposed to avoid the present-
ations and groups decomposing in canonical ways. Specifically, if d D .n; k; l/ > 1,
then the presentationPn.x0xkxl / is the disjoint union ofd copies of the presentation
Pn=d .x0xk=d xl=d / [9, Lemma 2.4] and soGn.x0xkxl / is the free product ofd copies
of Gn=d .x0xk=d xl=d / and Pn.x0xkxl/ satisfiesT .6/ if and only if Pn=d .x0xk=d xl=d /

satisfiesT .6/. Similarly if d D .n; m; k/ > 1, thenPn.x0xmx�1
k

/ is the disjoint union
of d copies ofPn=d .x0xm=d x�1

k=d
/ [1, Lemma 1.2]; so the analogous conclusions can be

drawn in this case. Since a free productH � K is hyperbolic if and only ifH andK are
hyperbolic—see, for example, [2, Theorem H]—there is no loss in generality in assum-
ing that such decompositions do not arise. The conditionsm ¤ k, k ¤ 0 are imposed in
TheoremB to ensure that the relators are cyclically reduced and, as otherwise, the group
is trivial.

A relator of a presentation isfreely redundantif it is freely equal to the conjugate
of another relator or its inverse. The cyclic presentationsPn.x0xmx�1

k
/ have no freely

redundant relators, and if.n;k; l/ D 1, the presentationPn.x0xkxl/ has a freely redundant
relator if and only ifn D 3 and¹k; lº D ¹1;2º, in which case it defines the (non-elementary
hyperbolic) groupZ � Z. For this reason, throughout this article we will only consider
presentations with no freely redundant relators.
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A consequence of TheoremA and the results of [14] (see also [27, Example 10, Pro-
positions 7.7 and 7.8]) is that the hyperbolicity status of cyclically presented groupsG
of the formGn.x0xkxl/ is known, except whenG is isomorphic toGn.x0x1xn=2�1/ for
evenn � 10, n ¤ 12; 18.

We prove TheoremA in Section2 and TheoremB in Section3.

2. The positive case

Let P D hX j Ri be a group presentation such that each relatorr 2 R is a cyclically
reduced word in the generators. LetzR denote the symmetrized closure ofR; that is,
the set of all cyclic permutations of elements inR [ R

�1. Thestar graphof P is the
undirected graph with vertex setX [ X

�1, and with an edge joining verticesx, y for each
word xy�1u in zR. These words occur in pairs:xy�1u 2 zR implies thatyx�1u�1 2 zR.
Such pairs are calledinverse pairsand the two corresponding edges are identified in�

[25, p. 61]. Thus if� is the star graph of the cyclic presentationPn.x0xkxl /, then� has
verticesxi andx�1

i and edgesxi � x�1
iCk

, xi � x�1
iCl�k

, andxi � x�1
i�l

(0 � i < n), which
we will refer to as edges of typeX , Y , andZ, respectively.

By [18] a presentation in which each relator has length at least3 satisfiesT .q/ (q > 3)
if and only if its star graph has no cycle of length less thanq. As we are interested in
presentations that satisfyT .6/, in Section2.1 we analyse cycles of length at most6 in
the star graph� of Pn.x0xkxl /. In particular, we note that� always contains a cycle
of length at most6. We show that if two additional cycle types of length6 arise, then
only a few small values ofn are possible andGn.x0xkxl / is isomorphic to one of only
a few groups, one of which turns out to be hyperbolic. In Section 2.2 we prove that the
remainder are not hyperbolic. In Section2.3we consider the case when at most one further
cycle type of length6 occurs and perform a detailed analysis of van Kampen diagrams
(see [25, Chapter 5]) over the defining presentation to prove thatGn.x0xkxl/ has a linear
isoperimetric function, and hence is hyperbolic. We then combine these results to prove
TheoremA in Section2.4.

2.1. Analysis of short cycles in the star graph of Pn.x0xkxl /

The following classification of theT .6/ cyclic presentationsPn.x0xkxl/ in terms of three
types of congruences.B/, .C /, and.D/ was obtained in [14]. As indicated in Table1,
the .B/ conditions correspond to cycles (of length2) of the form XY , YZ, andZX ;
the .C / conditions correspond to cycles (of length4) of the formXZYZ, YXZX , and
ZYXY ; and the.D/ conditions correspond to cycles (of length4) of the form.XY /2,
.YZ/2, and.ZX/2, as well as to cycles (of length6) of the formXYZYXZ, YZXZYX ,
andZXYXZY . Replacing parameterk by l � k andl by �k corresponds to replacing
edge typeX by Y , Y by Z, andZ by X and to replacing a condition.�:j / of Table1
by .�:j C 1/ (mod3), and replacing the groupGn.x0xkxl / by the isomorphic copy
Gn.x0xl�kx�k/. (To see thatGn.x0xkxl / Š Gn.x0xl�kx�k/ setj D i C k in the relators
xi xiCkxiCl of Pn.x0xkxl / and then cyclically permute to get the relatorsxj xj Cl�kxj �k
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j 0 1 2

.B:j /
congruence 2k � l � 0 2l � k � 0 k C l � 0

cycle type XY YZ ZX

.C:j /
congruence l � ˙ n

3
k � ˙ n

3
k � l � ˙ n

3

cycle type XZYZ YXZX ZYXY

.D:j /
congruence 2k � l � n

2
2l � k � n

2
k C l � n

2

cycle type .XY /2 or XYZYXZ .YZ/2 or YZXZYX .ZX/2 or ZXYXZY

.E:j /
congruence 2k � l � ˙ n

3
2l � k � ˙ n

3
k C l � ˙ n

3

cycle type .XY /3 .YZ/3 .ZX/3

.F1:j /
congruence 5k � l � 0 5l � 4k � 0 k C 4l � 0

cycle type .XY /2XZ .YZ/2YX .ZX/2ZY

.F 2:j /
congruence 4l � 5k � 0 4k C l � 0 5l � k � 0

cycle type .YX/2YZ .XZ/2XY .ZY /2ZX

Table 1. Congruences (modn) corresponding to short cycles in the star graph ofPn.x0xkxl /.

of Pn.x0xl�kx�k/.) Replacing parameterk by l � k corresponds to interchanging the
roles of edge typesX andY and so interchanging the roles of conditions.F1:j / and
.F 2:j /, and replacing the groupGn.x0xkxl / by the isomorphic copyGn.x0xl�kxl /. (To
see thatGn.x0xkxl / Š Gn.x0xl�kxl / replace the generatorsxi by x�1

i , negate the sub-
scripts, and setj D �i � l in the relatorsxi xiCkxiCl and then invert to get the relators
xj xj Cl�kxj Cl of Pn.x0xl�kxl /.)

Lemma 2.1 ([14, Lemma 5.1]).Let n � 2 and suppose that.n; k; l/ D 1, 0 � k, l < n.
ThenPn.x0xkxl / satisfiesT .6/ if and only if none of the congruences.B:j /, .C:j / or
.D:j / .0 � j � 2/ of Table1 holds.

Observation 2.2 (see [27, Theorem 3.4]).Suppose that.n; k; l/ D 1, 0 � k, l < n, and
that none of the congruences.B:j /, .C:j / or .D:j / .0 � j � 2/ of Table1 holds. Then
for each0 � i < n the sequence of vertices and edgesxi � x�1

iCk
� xiC2k�l � x�1

iC2k�2l
�

xiCk�2l � x�1
i�l

� xi forms a cycle of length6 of the form.XYZ/2 in the star graph�.

We now consider how other cycles of length6 can arise in�.

Lemma 2.3. Let n � 2. Suppose that.n; k; l/ D 1, 0 � k, l < n, and that none of the
congruences.B:j /, .C:j / or .D:j / .0 � j � 2/ of Table1 holds. Then the star graph�
contains a cycle of length6 of cycle type other than.XYZ/2 if and only if at least one
of the congruences.E:j /, .F1:j / or .F 2:j / .0 � j � 2/ of Table1 holds, in which case
the corresponding entry of the table is a label of the cycle.

Proof. Let C be a cycle of length6 in �. Then there are no subpaths ofC of the form
XX , Y Y or ZZ. If C involves each of the edge typesX , Y , Z twice, thenC is a cycle
of the form.XYZ/2, XYZYXZ, YZXZYX or ZXYXZY . But these last three cycles
only occur if the congruence.D:j / holds, contrary to hypothesis. IfC does not involve
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an edge of typeX (resp.Y , resp.Z), thenC is a cycle of the form.YZ/3 (resp..XZ/3,
resp..XY /3), which correspond to the conditions.E:j /. If C involves exactly one edge
of type X (resp.Y , resp.Z), thenC is a cycle of the form.YZ/2YX or .ZY /2ZX

(resp..ZX/2ZY or .XZ/2XY , resp..XY /2XZ or .YX/2YZ), which corresponds to
the conditions.F1:j / or .F 2:j /.

Conversely, if any of the congruences.E:j /, .F1:j / or .F 2:j / holds, then the cor-
responding entry of Table1 is the label of a cycle of length6 in �.

Lemma 2.4. Letn � 2. Suppose that.n; k; l/ D 1, 0 � k, l < n, and that none of the con-
gruences.B:j /, .C:j / or .D:j / .0 � j � 2/ holds. If more than one of the congruences
.E:j /, .F1:j /, and.F 2:j / .0 � j � 2/ hold, then one of the following holds:

(a) n D 7 and.l � 5k or k � 5l modn/;

(b) n D 8 and.l � 5k or k � 5l modn/;

(c) n D 21 and.l � 5k or k � 5l modn/;

(d) n D 24 and.l � 5k or k � �4l or l � �4k modn/;

(e) n D 27 and.l � 5k or k � 5l or 4k � 5l or 4l � 5k

or k � �4l or l � �4k modn/.

In each caseG Š Gn.x0x1x5/.

Proof. (Throughout this proof, thej value in a condition.�:j / is to be taken mod3.) If
.E:j / and.F1:j / hold, then.B:j C 1/ holds, a contradiction. If.E:j / and.F1:j C 1/

hold, then.B:j C 2/ holds. If.E:j / and.F 2: � j / hold, then.B:j C 2/ holds. If.E:j /

and.F 2:1 � j / hold, then.B:j C 1/ or .D:j C 1/ holds. If.F1:j / and.F 2: � j / hold,
then.C:j / holds. If .F1:j / and.F 2:1 � j / hold, then.B:j C 1/ holds. Suppose now
that any two of the.E:j / conditions hold; then all three of them hold. Since.B:0/ does
not hold, condition.E:0/ implies2k � l � ˙n=3 modn and since.B:2/ does not hold,
condition.E:2/ impliesk C l � ˙n=3 modn. Thus2k � l � �.k C l/, where� D ˙1.
If � D C1, then.B:1/ holds, a contradiction; and if� D �1, then.C:0/ or .C:1/ holds, a
contradiction.

Suppose that two of the.F1:j / conditions hold. Then all of them hold so, in particular,
l � 5k modn. Summing the congruences.F1:0/ and.F1:1/ gives thatk � �4l modn

and so (by.F1:0/) 21l � 0 modn. Moreover1 D .n; k; l/ D .n; �4l; l/ D .n; l/ sonj21.
If n D 3, then.F1:0/ implies that.B:0/ holds, son D 7 or 21. An analogous argument
shows that if two of the.F 2:j / conditions hold, thenk � 5l andn D 7 or 21, thus giving
cases (a), (c) of the statement.

Suppose that.F1:j / and.F 2:2 � j / hold. We claim thatn D 8 or 24; it then follows
from one of the congruences thatl � 5k or k � 5l modn (by multiplying by5, if neces-
sary), giving cases (b) and (d). We prove this in the case.F1:0/ and.F 2:2/, the other cases
being similar. The congruence.F1:0/ impliesl � 5k modn, so substituting into.F 2:2/

gives24k � 0 modn, but 1 D .n; k; l/ D .n; k/ sonj24. If n � 6, then some condition
.B:j /, .C:j / or .D:j / holds, and ifn D 12, then.B:2/ or .D:2/ holds, a contradiction;
thusn D 8 or 24, as claimed.
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Suppose that either (.E:j / and.F1:j C 2/) or (.E:j / and.F 2:2 � j /) hold. We claim
thatn D 27. We prove this in the case where.E:0/ and.F1:2/ hold, the other cases being
proved analogously. The congruence.F1:2/ implies k � �4l modn so .E:0/ implies
27l � 0 modn, but 1 D .n; k; l/ D .n; l/ so nj27. If n D 3 or 9, then.B:0/ holds, and
hencen D 27, as claimed.

The final assertion thatGn.x0xkxl / Š Gn.x0x1x5/ in each case follows from [14,
Lemma 2.1].

We now deal with the group arising in case (e) of Lemma2.4.

Example 2.5 (The groupG27.x0x1x5/). Using KBMAG [19], it is straightforward to
show that the groupG27.x0x1x5/ is hyperbolic, and since it contains a non-abelian free
subgroup (by [14, Corollary 5.2]), it is non-elementary hyperbolic.

2.2. Non-hyperbolic groups Gn.x0xkxl /

In this section, we consider the groups arising in cases (a)–(d) of Lemma2.4. First we
recall that the groupG7.x0x1x5/ is not hyperbolic; see [27, Example 3.8] for a discussion.

Lemma 2.6 ([6,13]). The groupG7.x0x1x5/ is not hyperbolic.

We now show that the groupG8.x0x1x5/ is not hyperbolic. We do this by an applica-
tion of the Flat Plane Theorem [5] (an alternative approach would be to use [22, Corollary,
p. 1860]).

Lemma 2.7. The groupG8.x0x1x5/ is not hyperbolic.

Proof. Since the presentationP8.x0x1x5/ satisfiesC.3/ � T .6/ and each relator has
length3, each face in the geometric realisationzC of the Cayley complex ofP (obtained by
assigning length1 to each edge) is an equilateral triangle, and sozC satisfies the CAT.0/

inequality. Consider the geometric realisation�0 of the reduced van Kampen diagram
given in Figure1 and for each0 � i < n let �i be obtained from�0 by applying the
shift � i to each edge. Then placing�0, �2, �4, �6 one above the other gives the geomet-
ric realisation� of a reduced van Kampen diagram. Copies of� tile the Euclidean plane
without cancellation of faces. Thus there is an isometric embedding of the Euclidean plane
in zC , and so the result follows from the corollary to Theorem A in [5].

For later reference (in Section3) we note that the relabelling of generatorsy0 D x0,
y1 D x�1

7 , y2 D x2, y3 D x�1
1 , y4 D x4, y5 D x�1

3 , y6 D x6, andy7 D x�1
5 shows that

G8.x0x1x5/ Š G8.y0y4y�1
1 /, and so we have the following corollary.

Corollary 2.8. The groupH.8; 4/ D G8.x0x4x�1
1 / is not hyperbolic.

Remark 2.9. The van Kampen diagram arising in the proof of Lemma2.7, and later the
one in the proof of Lemma3.6, provides a pair of commuting elements whose axes in the
geometric realisation� meet at an angle2�=3. It follows that the groups considered in
these results contain a free abelian subgroup of rank2 (see, for example, [32, p. 446]).
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x0
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x0
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x7

x0

x6

x1
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x5

x6 x3

x7

x2

Figure 1. A van Kampen diagram over the presentationP8.x0x1x5/ with boundary label
.x2x0/.x3x5x7x1/.x2x0/�1.x1x3x5x7/�1.

In Corollaries2.10and2.11we use Lemmas2.6and2.7, respectively, to prove that the
groups in cases (c) and (d) of Lemma2.4are not hyperbolic. To do this we first recall the
shift extension of a cyclically presented group. The shift automorphism� of a cyclically
presented groupGn.w/ results in aZn-action onGn.w/ that determines theshift extension
En.w/ D Gn.w/ Ì� Zn, which admits a two-generator two-relator presentation ofthe
form

En.W / D
˝

x; t j tn; W.x; t/
˛

;

whereW D W.x; t/ is obtained by rewritingw in terms of the substitutionsxi D t i xt�i

(see, for example, [24, Theorem 4]). Thus there is a retraction�0 W En.W / ! Zn given by
�0.t/ D t , �0.x/ D t0 D 1 with kernelGn.w/. Moreover, as shown in [3, Section 2], for
certain values off (0 � f < n) there may be further retractions�f . Specifically, by [3,
Theorem 2.3] the kernel of a retraction�f W En.W / ! Zn given by�f .t/ D t , �f .x/ D tf

is cyclically presented, generated by the elementsyi D t i xt�.iCf / (0 � i < n). Since
(non-elementary) hyperbolicity is preserved under takingfinite index subgroups and finite
extensions, the groupEn.W / is (non-elementary) hyperbolic if and only if the kernel of
any, and hence all, of its retractions�f is (non-elementary) hyperbolic.

In the casew D x0xkxl we have

En.W / D Gn.w/ Ì� ht j tni D hx; t j tn; xtkxt l�kxt�l i

which admits a retraction�f W En ! ht j tni given by�f .t/ D t , �f .x/ D tf if and
only if 3f � 0 modn; the kernel of such a retraction is the cyclically presentedgroup
Gn.x0xf Ckx2f Cl/ (see [3, p. 158]).

Corollary 2.10. The groupG21.x0x1x5/ is not hyperbolic.

Proof. The free product of three copies ofG7.x0x1x5/ is the cyclically presented group
G21.x0x3x15/ with shift extensionE D hx; t j t21; xt3xt12xt�15i. The kernel of the re-
traction�7 W E ! Zn D ht j t21i given by�7.t/ D t , �7.x/ D t7 is the groupG21.x0x10x8/
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X

Y Z

xiCk xi

xiCl

b

b b

Figure 2. A typical face in a van Kampen diagram over the presentationPn.x0xkxl /.

which, by [14, Lemma 2.1 (iv), (v)], is isomorphic toG21.x0x1x5/. SinceG7.x0x1x5/ is
not hyperbolic, neither isG21.x0x3x15/, norE, and hence, nor isG21.x0x1x5/.

Corollary 2.11. The groupG24.x0x1x5/ is not hyperbolic.

Proof. The free product of three copies ofG8.x0x1x5/ is the cyclically presented group
G24.x0x3x15/ with shift extensionE D hx; t j t24; xt3xt12xt�15i. The kernel of the re-
traction�8 W E !Z24 Dht j t24i given by�8.t/D t , �8.x/D t8 is the groupG24.x0x11x7/

which, by [14, Lemma 2.1 (v), (ii)], is isomorphic toG24.x0x1x5/. SinceG8.x0x1x5/ is
not hyperbolic, neither isG24.x0x3x15/, norE, and hence, nor isG24.x0x1x5/.

2.3. Analysis of van Kampen diagrams over Pn.x0xkxl /

In this section, we show that if the cyclic presentationP D Pn.x0xkxl / is T .6/ and at
most one of the congruences.E:j /, .F1:j / or .F 2:j / holds, thenG D Gn.x0xkxl/ is
hyperbolic. Following the method of proof of [20, Theorem 13], we show thatG has a
linear isoperimetric function [15, Theorem 3.1]. That is, we show that there is a linear
function f W N ! N such that for allN 2 N and all freely reduced wordsW 2 Fn

with length at mostN that represent the identity ofG we have Area.W / � f .N /, where
Area.W / denotes the minimum number of faces in a reduced van Kampen diagram over
P with boundary labelW . Without loss of generality, we may assume that the boundary
of such a van Kampen diagramD is a simple closed curve. Note that each face inD is
a triangle, as shown in Figure2, where the corner labelsX , Y , Z correspond to the edge
types of the star graph ofP . We say that a vertex ofD is aboundary vertexif it lies on
@D, and is aninterior vertexotherwise. In order to obtain a linear isoperimetric function
(in Lemma2.16) we first carefully analyse degrees of vertices withinD.

Lemma 2.12. Let � be an interior face ofD in which two of the vertices have label
.XYZ/2. Then the label of the third vertex contains a subword of the form aba, whereb

is the label of the corner of� at this vertex, anda; b 2 ¹X; Y; Zº, a ¤ b.

Proof. Without loss of generality, we may assume that the edges of� are oriented in an
anticlockwise manner. We name its verticesv1, v2, v3, read in an anticlockwise manner,
and supposev1, v2 are labelled.XYZ/2. If the corner of� at v1 has labelX (resp.Y ,
resp.Z), then the corner of� atv2 has labelY (resp.Z, resp.X ), in which case the label
of v3 has a subwordYZY or XZX (resp.ZXZ or YXY , resp.XYX or ZYZ), as shown
in Figure3.
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XY Z

Z

X

Y

Y

Z
Y

v1

v2 v3

b

b b

XZ Y

Y
X

Z X

X
Z

v1

v2 v3

b

b b

Figure 3. Possible configurations when two vertices have label.XYZ/2.
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Y

Z

Z X
Y

Y

Z

Y

X

Z
Y

X
Z

Y X

X
Z

b

b b

bb

b

b

Figure 4. Neighbourhood of an interior vertex labelled.XYZ/2.

Lemma 2.13. If an interior vertexv of D of degree6 has label.XYZ/2, then two adja-
cent neighbours ofv haveXY as a cyclic subword of their labels, two adjacent neighbours
haveXZ as a cyclic subword of their labels, and two adjacent neighbours haveYZ as a
cyclic subword of their labels.

Proof. If the label ofv is .XYZ/2 oriented clockwise, then the neighbourhood ofv is as
given in Figure4, from which the conclusion can be observed. A similar figure deals with
the case when the label ofv is .XYZ/2 oriented anticlockwise.

Lemma 2.14. Suppose that all interior vertices ofD have degree at least6 and all
labels of interior vertices of degree6 are either.XYZ/2 or label .E:j / for precisely
onej 2 ¹0; 1; 2º. If v is an interior vertex of degree6 in D with label .E:j / and where
all the neighbours ofv are interior vertices of degree6 then every neighbour ofv has two
neighbours which are either boundary vertices or have degree at least8.

Proof. Consider first the case.E:0/, that is, a vertex label.XY /3. As shown in Figure5
all the neighbours ofv must have label.XYZ/2. Then each of the verticesu1; : : : ; u6 has
a corner labelledZ. If a vertexui (1 � i � 6) is interior, then if it is of degree6, its label
is not.XYZ/2, by Lemma2.12, and so it must be.XY /3, a contradiction. Thereforeui
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u1Z

u2

Z

u3 Z

u4

Z

u5

Z

u6

Z

X Y X

Y
X

Y X

Y

Y

Z

Y

X

X
Z

Y

X

XZXY Z

Y

Z
X

Y

Y

X

X
Z

Y
b b b

b b

b b
b b

b

b

b b

Figure 5. Neighbourhood of an interior vertex labelled.E:0/ and no boundary neighbours.

is either interior of degree at least8, or a boundary vertex, as required. The cases.E:1/

and .E:2/ are dealt with by replacingX by Y , Y by Z, andZ by X , as explained in
Section2.1.

Lemma 2.15. Suppose that all interior vertices ofD have degree at least6 and all labels
of interior vertices of degree6 are either.XYZ/2 or .F1:j / (resp..F 2:j /) for precisely
onej 2 ¹0; 1; 2º. If v is an interior vertex of degree6 in D with label .F1:j / (resp.
.F 2:j /) and where all the neighbours ofv are interior vertices, thenv has a neighbour
of degree at least8.

Proof. Consider the case.F1:0/, that is,v has label.XY /2XZ and suppose that all neigh-
bours ofv have degree6. Then Figure6 shows one of the two possible labellings of
neighbours that can occur. Since two adjacent neighbours haveYZ as a cyclic subword of
their label, these must each be labelled.XYZ/2, but this is impossible by Lemma2.12;
thereforev has a neighbour of degree at least8. The same conclusion can be obtained if
the second possible labelling of neighbours occurs. The cases.F1:1/ and.F1:2/ are dealt
with by replacingX by Y , Y by Z, andZ by X . The cases.F 2:j / are obtained from the
cases.F1:j / by interchanging the roles ofX andY , as described in Section2.1.

We are now in a position to be able to establish the existence of a suitable isoperimetric
function.
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Figure 6. Neighbourhood of an interior vertex labelled.F1:0/.

Lemma 2.16. Letn � 2 and suppose that none of the congruences.B:j /, .C:j / or .D:j /

holds.0 � j � 2/ and that at most one congruence.E:j /, .F1:j / or .F 2:j / holds.j 2

¹0; 1; 2º/. ThenGn.x0xkxl / has a linear isoperimetric function.

Proof. As at the beginning of this section, letN 2 N, let W be a freely reduced word in
the free groupFn (with generatorsx0; : : : ; xn�1) of length at mostN that represents the
identity ofG, and letD be a reduced van Kampen diagram whose boundary@D is a simple
closed curve with labelW . We letI denote the set of interior vertices ofD, B the set of
boundary vertices ofD, andF the set of faces ofD. Then Area.W / � jF j. Writing � to
denote180, we define the curvature of a facef by�.f /D�� C .sum of angles inf /, the
curvature of an interior vertexv by �.v/ D 2� � .sum of angles atv/, and the curvature
of a boundary vertexOv by �. Ov/ D � � .sum of angles atOv/. It follows from the Gauss–
Bonnet theorem that

X

v2I

�.v/ C
X

Ov2B

�. Ov/ C
X

f 2F

�.f / D 2� (1)

(see [26, Section 4] and the references therein).
Since none of the congruences.B:j /, .C:j / or .D:j / holds (0 � j � 2), every interior

vertex ofD is of degree at least6, and since at most one congruence.E:j /, .F1:j / or
.F 2:j / holds, the label of an interior vertex of degree6 is either.XYZ/2 or it is the label
corresponding to that congruence, given in Table1.

We assign angles to the corners of the faces inD as follows. Ifv is a boundary vertex
or an interior vertex of degree at least8, then assign angle47 to every corner atv. Assume
now thatv is an interior vertex of degree6 and consider a facef with verticesv andu,
w: if u; w are interior of degree6, then assign angle59 to the corner off at v; otherwise
assign66 to the corner off at v.

Then, if a facef contains a boundary vertex, then�.f / � �� C .47C66C66/ D �1;
if a facef has all its vertices interior and one vertex of degree at least 8, then�.f / �

�� C .47 C 66 C 66/ D �1; if all the vertices of a facef are interior of degree6, then
�.f / � �� C .59 C 59 C 59/ D �3. Therefore�.f / � �1 for all f 2 F .
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We now consider curvature of the vertices. Ifv is an interior vertex of degree at least8,
then�.v/ � 2� � 8.47/ D �16. If v is an interior vertex of degree6 with a neighbour that
is either on the boundary@D or has degree at least8, then�.v/�2��2.66/�4.59/D�8.

Now suppose thatv is an interior vertex of degree6 with all its neighbours interior of
degree6. Then�.v/ D 2� � 6.59/ D 6 and by Lemma2.15the label ofv is either.XYZ/2

or .E:j / for somej 2 ¹0;1;2º. If the label ofv is .XYZ/2, then, since precisely one other
label of degree6 vertices is possible, Lemma2.13implies thatv must have two adjacent
neighbours, each labelled.XYZ/2, but this is impossible by Lemma2.12. If the label
of v is .E:j / (for somej 2 ¹0; 1; 2º), then Lemma2.14implies that every neighbourvi

(1 � i � 6) of v has two neighbours which are either boundary vertices or have degree at
least8. Therefore, for eachi 2 ¹1; : : : ; 6º the curvature�.vi / � 2� � 4.59/ � 2.66/ D �8.
In this situation, transfer curvature of�1 from each vertexvi to vertexv; the resulting
curvatures are�.vi / � �8 C 1 D �7 (1 � i � 6) and�.v/ D 6 � 6.1/ D 0. Since each
vertexvi has degree6, the maximum number of times curvature can be transferred away
from vi is 6, so its curvature cannot exceed�.v/ D �8 C 6.1/ D �2. Therefore for each
interior vertexv we have�.v/ � 0.

Now (1) implies

2� D
X

v2I

�.v/ C
X

Ov2B

�. Ov/ C
X

f 2F

�.f /

�
X

v2I

0 C
X

Ov2B

.� � sum of angles atOv/ C
X

f 2F

.�1/

D jBj� �
X

Ov2B

.sum of angles atOv/ � jF j

so
X

Ov2B

.sum of angles atOv/ �
�

jBj � 2
�

� � jF j:

On the other hand, the corner angle at any boundary vertex is47, so the sum of angles over
the boundary vertices is bounded below by47jBj. Therefore47jBj � .jBj � 2/� � jF j,
sojF j � 133jBj � 360.

But Area.W / � jF j and jBj � N so Area.W / � 133N � 360, and sof .N / D

133N � 360 is a linear isoperimetric function.

We now have all the ingredients to prove TheoremA.

2.4. Proof of Theorem A

Suppose thatn � 2, 0 � k, l < n, .n;k; l/ D 1 and that the cyclic presentationPn.x0xkxl /

satisfiesT .6/. If Pn.x0xkxl / has a freely redundant relator, thenn D 3 andG Š Z � Z

(which is non-elementary hyperbolic) so we may assume thatPn.x0xkxl / has no freely
redundant relators. Then Lemma2.1implies that none of the congruences.B:j /, .C:j / or
.D:j / (0 � j � 2) (of Table1) holds and son � 7. If n D 7 or 8, thenG Š Gn.x0x1x5/

(see, for example, [27, Table 2]) so is not hyperbolic by Lemmas2.6and2.7. Assume then
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thatn > 8. If more than one of the congruences.E:j /, .F1:j /, and.F 2:j / (0 � j � 2)
hold, then one of the cases (c), (d) or (e) of Lemma2.4holds. In cases (c) and (d),G is not
hyperbolic by Corollaries2.10and2.11and in case (e),G is non-elementary hyperbolic,
by Example2.5. Thus we may assume that at most one of the congruences.E:j /, .F1:j /

or .F 2:j / (0 � j � 2) holds, in which case Lemma2.16implies thatGn.x0xkxl / has a
linear isoperimetric function, and hence is hyperbolic. By[14, Corollary 5.2]G contains
a non-abelian free subgroup so it is non-elementary hyperbolic.

3. The non-positive case

As in [20], we express our arguments in terms of parametersA D k andB D k � m.
Let � be the star graph of the cyclic presentationPn.x0xmx�1

k
/. Then� has vertices

xi andx�1
i and edgesxi � x�1

iCm, xi � xiCB , andx�1
i � x�1

iCA (0 � i < n), which we
will refer to as edges of typeX , Y , andZ, respectively. Replacing parameterk by m � k

corresponds to interchanging the roles of edges of typesY andZ, and so will correspond
to interchanging the roles of conditions.�:0/ and.�:1/ in Table2, and replacing the group
Gn.x0xmx�1

k
/ by the isomorphic copyGn.x0xmx�1

m�k
/. (To see thatGn.x0xmx�1

k
/ Š

Gn.x0xmx�1
m�k

/ replace the generatorsxi byx�1
i , invert the relators, negate the subscripts,

and setj D �i � m to get the relatorsxj xj Cmx�1
j Cm�k

of Gn.x0xmx�1
m�k

/.)
As in the positive case, we are interested in cycles of lengthat most6 in �, so we ana-

lyse these in Section3.1. We observe that if a particular cycle type of length6 (which we
refer to as.
C/) occurs, thenG D Gn.x0xmx�1

k
/ is isomorphic toGn.x0xn=2C2x�1

1 / D

H.n; n=2 C 2/ which (in Section3.2) we show is non-hyperbolic whenever its present-
ation satisfiesT .6/. We then show that if two of the remaining cycle types of length 6

occur, thenGn.x0xmx�1
k

/ is isomorphic to one of a few groups with low values ofn, all
but one of which turn out to be hyperbolic (the other,G8.x0x4x�1

1 / D H.8; 4/, being
non-hyperbolic). In Section3.3 we consider the case when exactly one cycle type of
length6 occurs and perform a detailed analysis of van Kampen diagrams over the defining
presentation to prove thatGn.x0xmx�1

k
/ has a linear isoperimetric function, and hence is

hyperbolic. We then combine these results to prove TheoremB in Section3.4.

3.1. Analysis of short cycles in the star graph of Pn.x0xmx�1

k
/

Short cycles in� were analysed in [20].

Lemma 3.1 ([20, Theorem 10]).Let n � 2, 0 � m, k < n, m ¤ k, k ¤ 0, and setA D

k; B D k � m. Let� be the star graph ofPn.x0xmx�1
k

/.

(a) � has a cycle of length less than6 if and only if at least one of the congruences
.�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / of Table2 holds, in which case a
label of the cycle is the corresponding entry of the table.

(b) � has a cycle of length6 if and only if at least one of the congruences.˛:j /,
.ˇ C :j /, .ˇ � :j /, .
C/ or .
�/ of Table2 holds, in which case a label of the
cycle is the corresponding entry of the table.
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j 0 1

.�:j /

m; k congruencek � m� n
2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5
k � n

2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5

A; B congruence B � n
2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5
A� n

2
I ˙n

3
I ˙n

4
I ˙n

5
; ˙2n

5

cycle type Y 2I Y 3I Y 4I Y 5 Z2I Z3I Z4I Z5

.�C/

m; k congruence 2k � m � 0 2k � m � 0

A; B congruence A C B � 0 B C A � 0

cycle type XYXZ XZXY

.��/

m; k congruence m � 0 m � 0

A; B congruence A � B � 0 B � A � 0

cycle type XYXZ XZXY

.� C:j /

m; k congruence 3k � 2m � 0 3k � m � 0

A; B congruence A C 2B � 0 B C 2A � 0

cycle type XZXY Y XYXZZ

.� �:j /

m; k congruence 2m � k � 0 m C k � 0

A; B congruence A � 2B � 0 B � 2A � 0

cycle type XZXY Y XYXZZ

.˛:j /

m; k congruence k � m � ˙n
6

k � ˙n
6

A; B congruence B � ˙n
6

A � ˙n
6

cycle type Y 6 Z6

.ˇC:j /

m; k congruence 4k � 3m � 0 4k � m � 0

A; B congruence A C 3B � 0 B C 3A � 0

cycle type XZXY Y Y XYXZZZ

.ˇ�:j /

m; k congruence 3m � 2k � 0 2k C m � 0

A; B congruence A � 3B � 0 B � 3A � 0

cycle type XZXY Y Y XYXZZZ

.
C/

m; k congruence 2k � m � n=2 2k � m � n=2

A; B congruence A C B � n=2 B C A � n=2

cycle type XZZXY Y XY YXZZ

.
�/

m; k congruence m � n=2 m � n=2

A; B congruence A � B � n=2 B � A � n=2

cycle type XZZXY Y XY YXZZ

Table 2. Congruences (modn) corresponding to short cycles in the star graph ofPn.x0xmx�1
k

/.
HereA D k, B D k � m.
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Corollary 3.2. Let n � 2 and suppose that.n; m; k/ D 1, 0 � m, k < n, m ¤ k, k ¤ 0.
Then

(a) Pn.x0xmx�1
k

/ satisfiesT .6/ if and only if none of the congruences.�:j /,
.� C :j /, .� � :j /, .� C :j / or .� � :j / of Table2 holds;

(b) Pn.x0xmx�1
k

/ satisfiesT .7/ if and only if none of the congruences.�:j /,
.� C :j /, .� � :j /, .� C :j /, .� � :j /, .˛:j /, .ˇ C :j /, .ˇ � :j /, .
C/ or .
�/

of Table2 holds.

Note that the two.
C/ conditions in Table2 are identical conditions and the two.
�/

conditions are identical; for this reason we do not add the “:j ” to these conditions. We first
identify the groupsGn.x0xmx�1

k
/ in the presence of a cycle of type.
C/ of Table2.

Lemma 3.3. Let n � 2, 0 � m, k < n and let A D k; B D k � m. Suppose that
A C B � n=2 modn and that.n;m;k/ D 1. ThenGn.x0xmx�1

k
/ Š Gn.x0xn=2C2x�1

1 / D

H.n; n C 2/.

Proof. The hypotheses imply that1 D .n; m; k/ D .n; n=2 C 2k; k/, which implies that
.n=2; k/ D 1 so either.n; k/ D 1 or (n=2 is odd and.n; k/ D 2). In the former case
Gn.x0xmx�1

k
/ Š Gn.x0xn=2C2kx�1

k
/ Š Gn.x0xn=2C2x�1

1 / (by [1, Lemma 1.3]); in the
latter caseGn.x0xmx�1

k
/ŠGn.x0xn=2C2kx�1

k
/ŠGn.x0xn=2C4x�1

2 / which is isomorphic
to Gn.x0xn=2C2x�1

1 / by [1, Lemma 1.3] and [30, Lemma 7].

In Lemma3.6we will show that the groupsH.n; n=2 C 2/ are not hyperbolic for any
evenn � 8, n ¤ 10. We now consider the groups that arise when more than one of the
remaining length6 cycle cases hold.

Lemma 3.4. Let n � 2, 0 � m, k < n, m ¤ k, k ¤ 0, where.n; m; k/ D 1, and set
A D k, B D k � m. Let � be the star graph ofPn.x0xmx�1

k
/. Suppose that none of the

congruences.�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / holds forj 2 ¹0; 1º and
that .
C/ does not hold. If more than one of the congruences.˛:j /, .ˇ C :j /, .ˇ � :j /,
and .
�/ hold, thenGn.x0xmx�1

k
/ is isomorphic to one ofH.8; 4/, H.8; 6/, H.10; 4/,

H.18; 4/ or H.18; 16/.

Proof. If .˛:0/ and.˛:1/ hold, thenA � ˙n=6 andB � ˙n=6 modn, and so either.�C/

or .��/ holds, a contradiction. If.˛:0/ and.
�/ hold, then.�:1/ holds, a contradiction.
If .˛:1/ and.
�/ hold, then.�:0/ holds.

If .˛:0/ and (.ˇ C :0/ or .ˇ � :0/) hold, then2A � 0 modn, and so.�:1/ holds,
a contradiction; if.˛:1/ and (.ˇ C :1/ or .ˇ � :1/) hold, then2B � 0 modn, and so
.�:0/ holds. If .ˇ C :0/ and .ˇ � :0/ hold, then2A � 0 modn, and so.�:1/ holds, a
contradiction; if.ˇ C :1/ and.ˇ � :1/ hold, then2B � 0 modn, and so.�:0/ holds.

If .ˇ � :0/ and.
�/ hold, thenA � 3B modn and4B � 0 modn, and so.�:0/ holds,
a contradiction. Similarly, if.ˇ � :1/ and.
�/ hold, then.�:1/ holds.

If .ˇ C :0/ and.ˇ C :1/ hold, thenB � �3A modn and8A � 0 modn; moreover1 D

.n; A; B/ D .n; A; �3A/ D .n; A/ sonj8, and ifn < 8, then.�:0/ holds, a contradiction,
son D 8 andGn.x0xmx�1

k
/ is isomorphic toH.8; 4/. Similarly, if .ˇ � :0/ and.ˇ � :1/
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hold, thenGn.x0xmx�1
k

/ Š H.8;6/. If .ˇ C :0/ and.
�/ hold, thenA � �3B modn and
8B � 0 modn; moreover1 D .n; A; B/ D .n; �3B; B/ D .n; B/ so nj8, and if n < 8,
then .�:0/ holds, a contradiction, son D 8 andGn.x0xmx�1

k
/ Š H.8; 4/. Similarly, if

.ˇ C :1/ and.
�/ hold, thenn D 8 andGn.x0xmx�1
k

/ Š H.8; 4/.
If .ˇ C :0/ and.ˇ � :1/ hold, thenB � 3A modn and10A � 0 modn; moreover

1 D .n;A;B/ D .n;A/ sonj10, and ifn < 10, then.�:0/ holds, a contradiction, son D 10.
Then.k; n/ D 1, and so by [1, Lemma 1.3] we may assume thatk D 1; so A D 1 and
k � m D B D 3, and hencem D 8. ThusGn.x0xmx�1

k
/ Š G10.x0x8x�1

1 /. Similarly, if
.ˇ C :1/ and .ˇ � :0/ hold, thenn D 10 andGn.x0xmx�1

k
/ Š G10.x0x4x�1

1 /. By [8,
Theorem 2] we haveG10.x0x8x�1

1 / Š G10.x0x4x�1
1 / D H.10; 4/.

If .˛:0/ and.ˇC:1/ hold, thenB��3A and18A�0 modn; moreover1D.n;A;B/D

.n; A/ so nj18 and if n � 9, then.�:0/ holds son D 18. Then.k; n/ D 1, and so we
may assume thatk D 1 sok � m D B D �3, and hencem D 4. ThusGn.x0xmx�1

k
/ Š

G18.x0x4x�1
1 / D H.18; 4/. If .˛:1/ and.ˇ C :0/ hold, thenA � �3B and18B � 0 mod

n; moreover1 D .n; A; B/ D .n; B/ so nj18 and againn D 18. Then.k � m; n/ D 1,
and so we may assume thatB D k � m D 1 sok D A D �3, and hencem D �4. Thus
Gn.x0xmx�1

k
/ D G18.x0x�4x�1

�3/ Š G18.x0x4x�1
1 / D H.18; 4/ by [1, Lemma 1.3] and

[31, Lemma 7].
If .˛:0/ and.ˇ � :1/ hold, thenB �3A and18A�0 modn; moreover1 D .n;A;B/ D

.n; A/ sonj18, and ifn � 9, then.�:0/ holds and son D 18. Then.k; n/ D 1, and so we
may assume thatk D 1 sok � m D B D 3, and hencem D �2. ThusGn.x0xmx�1

k
/ Š

G18.x0x16x�1
1 / D H.18; 16/. If .˛:1/ and.ˇ � :0/ hold, thenA � 3B and18B � 0 mod

n; moreover1 D .n; A; B/ D .n; B/ sonj18 and ifn � 9, then.�:1/ holds and son D 18.
Then.k � m; n/ D 1 and so we may assume thatk � m D 1 so k D A D 3, and hence
k D 3, m D 2. ThusGn.x0xmx�1

k
/ Š G18.x0x2x�1

3 / Š H.18; 16/ by [1, Lemma 1.3]
and [31, Lemma 7].

In Corollary 2.8 we showed thatH.8; 4/ is not hyperbolic; in Lemma3.6 we will
show thatH.8; 6/ is not hyperbolic. We now show that the remaining groups arising in
Lemma3.4are hyperbolic.

Example 3.5. Using KBMAG [19], it is straightforward to show that the groupsH.10;4/,
H.18; 4/, andH.18; 16/ are hyperbolic, and since they contain a non-abelian free sub-
group (by [20, Corollary 11]), they are non-elementary hyperbolic.

3.2. Non-hyperbolic groups Gn.x0xmx�1

k
/

We now show that theT .6/ groupsH.n; n=2 C 2/ arising in Lemma3.3 are not hyper-
bolic. (Note that ifn D 2; 4; 6 or 10, then the presentation ofH.n; n=2 C 2/ does not
satisfyT .6/, by Corollary3.2.) As in the proof of Lemma2.7we do this by an application
of the Flat Plane Theorem.

Lemma 3.6. Suppose thatn�8 is even,n¤10. ThenH.n;n=2 C 2/DGn.x0xn=2C2x�1
1 /

is not hyperbolic.
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b

b b b b

b b b b
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x n
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Figure 7. A van Kampen diagram over the presentationPn.x0xn=2C2x�1
1 / with boundary label

.x0xn=2/.x1xn=2C5xn=2C7x11/.x12xn=2C12/�1.x1xn=2C5xn=2C7x11/�1.

X

Y Z

xiCm xi

xiCk

b

b b

Figure 8. A typical face in a van Kampen diagram over the presentationPn.x0xmx�1
k

/.

Proof. Since the presentationPn.x0xn=2C2x�1
1 / satisfiesC.3/�T .6/ and each relator has

length3, each face in the geometric realisationzC of the Cayley complex ofP (obtained by
assigning length1 to each edge) is an equilateral triangle, and sozC satisfies the CAT.0/

inequality. Consider the geometric realisation�0 of the reduced van Kampen diagram
given in Figure7 and for each0 � i < n let �i be obtained from�0 by applying the shift
� i to each edge. Then placing�0; �12; �24; : : : ; �6n�12 side by side gives the geometric
realisation� of a reduced van Kampen diagram. Copies of� tile the Euclidean plane
without cancellation of faces. Thus there is an isometric embedding of the Euclidean plane
in zC , and so the result follows from the Corollary to Theorem A in [5].

3.3. Analysis of van Kampen diagrams over Pn.x0xmx�1

k
/

In this section, we show that if the cyclic presentationP D Pn.x0xmx�1
k

/ is T .6/ and
precisely one of the congruences.˛:j /, .ˇ C :j /, .ˇ � :j / or .
�/ holds, thenG D

Gn.x0xmx�1
k

/ is hyperbolic. As in Section2.3we do this by showing that there is a linear
function f W N ! N such that for allN 2 N and all freely reduced wordsW 2 Fn

with length at mostN that represent the identity ofG we have Area.W / � f .N /. Note
that each face inD is a triangle, as shown in Figure8, where the corner labelsX; Y; Z

correspond to the edge types of the star graph ofP . In order to obtain a linear isoperimetric
function (in Lemma3.8) we first rule out certain configurations inD.



I. Chinyere and G. Williams 18

Lemma 3.7. Suppose that all interior vertices ofD have degree at least6 and that all
interior vertices of degree6 of D correspond to precisely one of the congruences.˛:j /,
.ˇ C :j /, .ˇ � :j / or .
�/ for j 2 ¹0; 1º. If v is an interior vertex of degree6 where all
the neighbours ofv are interior vertices, thenv has a neighbour of degree at least7.

Proof. If v is labelledY 6 (resp.Z6), then clearly none of its neighbours can be labelled
Y 6 (resp.Z6), so they must each have degree at least7. If v is labelledXZXY Y Y

(resp.XYXZZZ, resp.XZZXY Y ), then the labels of the corners of the faces incident
to v show that at least one of the neighbours ofv does not have labelXZXY Y Y (resp.
XYXZZZ, resp.XZZXY Y ), and hence has degree at least7.

We are now in a position to be able to establish the existence of a suitable isoperimetric
function.

Lemma 3.8. Letn � 2, 0 � m, k < n, m ¤ k, k ¤ 0 and setA D k; B D k � m. Let� be
the star graph ofPn.x0xmx�1

k
/. Suppose that none of.�:j /, .� C :j /, .� � :j /, .� C :j /

or .� � :j / holds and that exactly one of the congruences.˛:j /, .ˇ C :j /, .ˇ � :j / or
.
�/ of Table2 holds.j 2¹0;1º/. ThenGn.x0xmx�1

k
/ has a linear isoperimetric function.

Proof. Let N 2 N, let W be a freely reduced word in the free groupFn of length at most
N that represents the identity ofG, and letD be a reduced van Kampen diagram whose
boundary is a simple closed curve with labelW . We letI denote the set of interior vertices
of D, B the set of boundary vertices ofD, andF the set of faces ofD. Then Area.W / �

jF j. Writing � to denote180, we define the curvature of a facef by �.f / D �� C .sum
of angles inf /, the curvature of an interior vertexv by �.v/ D 2� � .sum of angles atv/,
and the curvature of a boundary vertexOv by �. Ov/ D � � .sum of angles atOv/. Again it fol-
lows from the Gauss–Bonnet theorem that (1) holds.

Since none of the congruences.�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / holds,
every interior vertex ofD is of degree at least6 and since exactly one of the congruences
.˛:j /, .ˇ C :j /, .ˇ � :j / or .
�/ holds, then the label of an interior vertex of degree6 is
the corresponding label given in Table2.

We assign angles to the corners of faces inD as follows. Ifv is a boundary vertex,
then assign47 to every corner atv; if v is an interior vertex of degree at least7, then assign
52 to every corner atv. Assume now thatv is an interior vertex of degree6 and consider a
facef with verticesv andu;w: if u;w are interior of degree6, then assign59 to the corner
of f at v; otherwise assign63:5 to the corner off at v. If a facef contains a boundary
vertex, then�.f / � �� C 47 C 2.63:5/ D �6; if a facef contains only interior vertices
of degree6, then�.f / D �� C 3.59/ D �3; if a facef contains only interior vertices of
degree at least7, then�.f / D �� C 3.52/ D �24; if a facef contains an interior vertex of
degree6 and two interior vertices of degree at least7, then�.f / D �� C 63:5 C 2.52/ D

�12:5; if a facef contains two vertices of degree6 and one of degree at least7 then
�.f / D �� C 2.63:5/ C 52 D �1. Therefore�.f / � �1 for all f 2 F .

We now turn to curvature of the vertices. Ifv is an interior vertex of degree at least7,
then�.v/ � 2� � 7.52/ D �4; if v is an interior vertex of degree6 that has a neighbour
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that is either interior of degree at least7 or is a boundary vertex, then�.v/ � 2� � 4.59/ �

2.63:5/ D �3.
By Lemma3.7 every interior vertex of degree6 has a neighbour on the boundary or

a neighbour that is interior of degree at least7. Then�.v/ � �3 for all interior verticesv
and so (1) implies that

2� D
X

v2I

�.v/ C
X

Ov2B

�. Ov/ C
X

f 2F

�.f /

�
X

v2I

.�3/ C
X

Ov2B

.� � sum of angles atOv/ C
X

f 2F

.�1/

D �3jI j C
X

Ov2B

.� � sum of angles atOv/ � jF j

� jBj� �
X

Ov2B

.sum of angles atOv/ � jF j

so
X

Ov2B

.sum of angles atOv/ �
�

jBj � 2
�

� � jF j:

On the other hand, the corner angle at any boundary vertex is47, and so the sum of angles
over the boundary vertices is bounded below by47jBj. Therefore47jBj� .jBj�2/��jF j

so jF j � 133jBj � 360. But Area.W / � jF j andjBj � N so Area.W / � 133N � 360,
and hencef .N / D 133N � 360 is a linear isoperimetric function, as required.

We now have all the ingredients to prove TheoremB.

3.4. Proof of Theorem B

Suppose thatn � 2, 0 � m, k < n, m ¤ k, k ¤ 0, .n;m;k/ D 1 and that the cyclic present-
ationPn.x0xmx�1

k
/ satisfiesT .6/. Then Lemma3.1implies that none of the congruences

.�:j /, .� C :j /, .� � :j /, .� C :j / or .� � :j / holds. If.
C/ holds, thenn D 8 or n � 12

andG is not hyperbolic by Lemmas3.3and3.6; so suppose that.
C/ does not hold.
If � has no cycle of length less than7, thenPn.x0xmx�1

k
/ satisfiesC.3/ � T .7/, and

so Gn.x0xmx�1
k

/ is hyperbolic by [16, Corollary 4.1]. Thus we may assume that� has
a cycle of length6 so, by Lemma3.1, at least one of the congruences.˛:j /, .ˇ C :j /,
.ˇ � :j / or .
�/ holds (j 2 ¹0; 1º). Suppose that more than one of them hold. Then
G is one of the groups in the conclusion of Lemma3.4. Whenn D 8, the groupG Š

G8.x0x4x�1
1 / D H.8; 4/ or G Š G8.x0x6x�1

1 / D H.8; 6/, which are non-hyperbolic by
Corollary2.8 and Lemma3.6, respectively. In the remaining casesG is non-elementary
hyperbolic by Example3.5.

Suppose then that exactly one of the congruences.˛:j /, .ˇ C :j /, .ˇ � :j / or .
�/

holds. ThenG has a linear isoperimetric function, and hence is hyperbolic, by Lemma3.8.
By [20, Corollary 11]G contains a non-abelian free subgroup so it is non-elementary
hyperbolic.
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