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Equations in acylindrically hyperbolic groups
and verbal closedness

Oleg Bogopolski

Abstract. Let H be an acylindrically hyperbolic group without nontrivial finite normal subgroups.
We show that any finite system S of equations with constants from H is equivalent to a single
equation. We also show that the algebraic set associated with S is, up to conjugacy, a projec-
tion of the algebraic set associated with a single splitted equation (such an equation has the form
w.x1; : : : ; xn/ D h, where w 2 F.X/, h 2 H ).

From this we deduce the following statement: Let G be an arbitrary overgroup of the above
group H . Then H is verbally closed in G if and only if it is algebraically closed in G.

These statements have interesting implications; here we give only two of them: If H is a non-
cyclic torsion-free hyperbolic group, then every (possibly infinite) system of equations with finitely
many variables and with constants from H is equivalent to a single equation. We give a positive
solution to Problem 5.2 from the paper [J. Group Theory 17 (2014), 29–40] of Myasnikov and
Roman’kov: Verbally closed subgroups of torsion-free hyperbolic groups are retracts.

Moreover, we describe solutions of the equation xnym D anbm in acylindrically hyperbolic
groups (AH-groups), where a, b are non-commensurable jointly special loxodromic elements and
n;m are integers with sufficiently large common divisor. We also prove the existence of special test
words in AH-groups and give an application to endomorphisms of AH-groups.

Dedicated to my teacher Valerii Churkin on the occasion of his 75th birthday.
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1. Introduction
In 1943, Neumann [41] considered systems of equations over arbitrary groups and, moti-
vated by field theory, introduced for groups such notions as adjoining of solutions and
both algebraic and transcendent extensions. Inspired by this paper, Scott [58] introduced
the notion of algebraically closed groups in the class of all groups. Since then the theory
of equations over groups developed in two directions.

In the first direction, one studies which types of equations are solvable over groups
from certain classes (e.g. over finite, residually finite, locally indicable or torsion-free
groups). The branch which studies properties of algebraic sets in groups is called algebraic
geometry over groups; see [3,39]. An extensive list of problems and results in this area can
be found in the survey of Roman’kov [53] of 2012 and in the recent papers of Klyachko
and Thom [29] and Nitsche and Thom [45].

In the second direction, one studies properties of algebraically, existentially, and ver-
bally closed groups in certain overgroups or classes of groups (see Definition 2.2 below
and a general definition of S-closedness suggested by Neumann in [43]). For problems
and results in this area see the surveys of Leinen [33], Roman’kov [53], and the papers
[2,30,31,35,40,42,43,54–56,58]. Note that this branch of group theory is closely related
to logic in the form of model theory and recursive functions; see the book of Higman and
Scott [22], Appendix A.4 in the book of Hodges [23], and the paper [26].

An important class of groups where both of these directions have a good chance for
development is the class of acylindrically hyperbolic groups. These groups were implicitly
studied in [5, 10, 14, 21, 63] before they were formally defined by Osin in [47]. In [47,
Theorem 1.2], Osin proved that all definitions used in the above-mentioned papers are
equivalent to his definition .AH1/; see Section 3.

For brevity, we also write AH-groups for acylindrically hyperbolic groups. We call a
group clean if it does not contain nontrivial finite normal subgroups.

The class of AH-groups is large. It includes non-(virtually cyclic) groups that are
hyperbolic relative to proper subgroups, many 3-manifold groups, groups of deficiency
at least 2, many groups acting on trees, non-(virtually cyclic) groups acting properly on
proper CAT.0/-spaces and containing rank-one elements, non-cyclic directly indecom-
posable right-angled Artin groups, all but finitely many mapping class groups, Out.Fn/
for n > 2, and many other interesting groups; see the survey of Osin [50], where some
interesting properties of AH-groups are listed as well.
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However, almost nothing was known about solutions of equations and related prob-
lems in the class of AH-groups. In this paper, we describe solutions of certain equations
of the form xnym D anbm in AH-groups (see Proposition C and Corollary C1). Using
this description, we construct certain test words for clean AH-groups (see Definition 11.1
and Corollaries D and E). We use these test words to study systems of equations over AH-
groups and to establish relations between the verbal closedness, the algebraic closedness,
and the retract property for AH-subgroups of groups. Below we briefly formulate some of
the main results of the present paper (see Section 2 for full formulations).

– Theorem A says that if H is a clean acylindrically hyperbolic group, then any finite
system of equations with constants in H has the same set of solutions in H as a single
equation. Moreover, this set is a projection, up to conjugacy, of the set of solutions of a
single splitted equation (see Definition 2.1).

Recall that a group H is called equationally Noetherian if every system of equations
with constants fromH and a finite number of variables is equivalent to a finite subsystem;
see [3]. The equational noetherianity is important in the study of equations over groups,
model theory of groups, and other questions; see [3,4,20,27,28,39,51,59–61]. Many inter-
esting classes of groups enjoy this property (see [3,12,19,57,61]); in particular, hyperbolic
groups are equationally Noetherian (see [65, Corollary 6.13] and [60, Theorem 1.22]).

– A simplified version of Corollary A1 says that ifH is a clean non-elementary hyper-
bolic group, then every (possibly infinite) system of equations with constants in H and
finitely many variables is equivalent to a single equation with coefficients in H ; i.e., they
have the same set of solutions in H .

– Theorem B says that for any clean acylindrically hyperbolic groupH and any over-
group G of H the notions of verbal and algebraic closedness of H in G are equivalent.

Special cases of this theorem where H is a virtually free group or a free product of
nontrivial groups were considered by Klyachko, Mazhuga, and Miroshnichenko in [31]
and by Mazhuga in [38].

– Corollary B1 says that if H is a finitely generated clean acylindrically hyperbolic
group and G is a finitely presented overgroup of H , then the notions of verbal and alge-
braic closedness of H in G are both equivalent to the assertion that H is a retract in G.

The same conclusion holds if H is an equationally Noetherian clean acylindrically
hyperbolic group and G is an arbitrary overgroup which is finitely generated over H .

– Corollary B2 solves Problem 5.2 from the paper [40] of Myasnikov and Roman’kov:
Verbally closed subgroups of clean hyperbolic groups are retracts.

In Section 2, we give exact formulations of all main results and describe the logical
structure of the paper.

2. Main results

Let H be a group. An equation with variables x1; : : : ; xn and constants from H is an
element of the free product Fn �H , where Fn is the free group with basis x1; : : : ; xn.
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Sometimes we write an equation f in the form f .x1; : : : ; xnIH/ stressing that f involves
the variables x1; : : : ; xn and constants from H . Sometimes, for convenience, we write an
equation f0f1 in the form f0 D f

�1
1 .

Let S � Fn � H be a system of equations and let G be an overgroup of H . A
tuple .g1; : : : ; gn/ with components from G is called a solution of the system S in G
if f .g1; : : : ; gnIH/D 1 in G for every equation f .x1; : : : ; xnIH/ from S . Let VG.S/ be
the set of all solutions of the system S in G; i.e.,

VG.S/ D
®
.g1; : : : ; gn/ 2 G

n
j f .g1; : : : ; gnIH/ D 1 for all f 2 S

¯
:

2.1. Systems of equations versus a single equation

Definition 2.1. An equation f 2 Fn � G is called splitted if it has the form wg, where
w 2 Fn and g 2 G.

For m > n, let prn W Gm ! Gn be the projection to the first n coordinates; i.e.,
prn.g1; : : : ;gm/D .g1; : : : ;gn/. For g;u 2G, we denote guD u�1gu. For .g1; : : : ;gn/ 2
Gn and u 2 G, we set .g1; : : : ; gn/u D .gu1 ; : : : ; g

u
n/. The first main result of this paper is

the following theorem.

Theorem A. LetH be an acylindrically hyperbolic group without nontrivial finite normal
subgroups. Let S � Fn �H be a finite system of equations with constants from H . Then
the following statements hold.

(1) There exists a single equation f 2 Fn �H such that

VH .f / D VH .S/:

(2) There exists a natural number k > n and a single splitted equation f 2 Fk �H of
the form f1f0, where f1 2 Fk and f0 2 H such that the following two properties
are satisfied:

(a) we have
prn

�
VH .f /

�
D

[
˛2Z

VH .S/
f ˛0 ;

(b) for any overgroup G of the group H , we have

prn
�
VG.f /

�
�

[
˛2Z

VG.S/
f ˛0 :

(3) There exist a natural number k > n and two splitted equations f;g 2 Fk �H such
that

VH .S/ D prn
�
VH .f /

�
\ prn

�
VH .g/

�
:

In [19, Theorem D], Groves and Hull proved that any relatively hyperbolic group
with respect to a finite collection of equationally Noetherian subgroups is equationally
Noetherian. Using this fact we deduce the following corollary directly from Theorem A.
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Corollary A1. Suppose that H is a clean non-(virtually cyclic) relatively hyperbolic
group with respect to a finite collection of proper equationally Noetherian subgroups.
Then every (possibly infinite) system of equations with constants in H and finitely many
variables is equivalent to a single equation with constants in H ; i.e., they have the same
set of solutions in H .

In particular, this corollary is valid for all clean non-elementary hyperbolic groups.

2.2. Algebraic closedness, verbal closedness, and retracts

Let X D ¹x1; x2; : : :º be a countably infinite set of variables and let F.X/ be the free
group with basisX . We recall definitions of algebraically (verbally) closed subgroups and
retracts.

Definition 2.2. Let H be a subgroup of a group G.

(a) The subgroup H is called algebraically closed in G if for any finite system of
equations

S D ¹Wi .x1; : : : ; xnIH/ D 1 j i D 1; : : : ; mº

with constants from H the following holds: if S has a solution in G, then it has a
solution in H ; see [40, 43].

(b) The subgroup H is called verbally closed in G if for any word W 2 F.X/ and
any element h 2H the following holds: if the equationW.x1; : : : ; xn/ D h has a
solution in G, then it has a solution in H ; see [40, Definition 1.1].

(c) The subgroup H is called a retract of G if there is a homomorphism ' W G ! H

such that 'jH D id. The homomorphism ' is called a retraction.

Obviously, if H is a retract of G, then H is algebraically closed in G. Algebraic
closedness implies verbal closedness, but the converse implication is not valid in general;
see example in Remark 14.2.

The following proposition of Myasnikov and Roman’kov says that, under some gen-
eral assumptions, the property of H to be algebraically closed in G is equivalent to the
property of H to be a retract of G.

Recall that a group G is called finitely generated over a subgroup H if there exists a
finite subset X � G such that G D hX;H i.

Proposition 2.3 ([40, Proposition 2.2]). LetH be a subgroup of a group G. Suppose that
at least one of the following holds:

(a) H is finitely generated and G is finitely presented,

(b) H is equationally Noetherian and G is finitely generated over H .

Then H is algebraically closed in G if and only if H is a retract of G.

In [40], Myasnikov and Roman’kov initiated the study of verbal closedness. They
proved (using nilpotent groups) that the algebraic and the verbal closedness and the prop-
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erty to be a retract are equivalent for subgroups of finitely generated free groups; see [40,
Theorem 1.2]. Some other results on verbal closedness can be found in [30, 31, 36–38].

Our second main theorem establishes the equivalence of verbal and algebraic closed-
ness for clean acylindrically hyperbolic subgroups of arbitrary groups.

Theorem B. LetH be an acylindrically hyperbolic group without nontrivial finite normal
subgroups and let G be an arbitrary overgroup of H . Then H is verbally closed in G if
and only if H is algebraically closed in G.

The assumption that H does not have nontrivial finite normal subgroups cannot be
omitted (see example in Remark 14.2). Some special cases of this theorem were consid-
ered earlier in [31, 38]; see Remark 14.1.

The following corollary follows directly from Theorem B and Proposition 2.3.

Corollary B1 (see [40, Proposition 2.2] for the equivalence (1),(3)). Let H be a sub-
group of a group G such that at least one of the following holds:

(a) H is finitely generated and G is finitely presented,

(b) H is equationally Noetherian and G is finitely generated over H .

Suppose additionally thatH is acylindrically hyperbolic and does not have nontrivial
finite normal subgroups. Then the following three statements are equivalent:

(1) H is algebraically closed in G,

(2) H is verbally closed in G,

(3) H is a retract of G.

2.3. Solution of a problem of Myasnikov and Roman’kov on verbal closedness

In [40], Myasnikov and Roman’kov write that not much is known in general about verbally
closed subgroups of a given group G and raise the following two problems.

Problem 5.1 in [40]. What are the verbally closed subgroups of a free nilpotent group of
finite rank?

Problem 5.2 in [40]. Prove that verbally closed subgroups of a torsion-free hyperbolic
group are retracts.

Problem 5.1 was solved by Roman’kov and Khisamiev in [54]. They proved the fol-
lowing. Let Nc be the variety of all nilpotent groups of class at most c and Nr;c a free
nilpotent group of finite rank r and nilpotency class c. A subgroup H of Nr;c is verbally
closed in Nr;c if and only if H is a free factor of Nr;c in the variety Nc (equivalently, an
algebraically closed subgroup, or a retract of Nr;c).

Problem 5.2 (in a slightly general setting) is solved in this paper as follows.

Corollary B2 (Corollary 15.8; solution to Problem 5.2 in [40]). Let G be a hyperbolic
group and H a subgroup of G. Suppose that H does not have nontrivial finite normal
subgroups. Then the conditions that H is algebraically closed in G, H is verbally closed
in G, and H is a retract of G are equivalent.
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Below we formulate more general corollaries about relatively hyperbolic (sub)groups.
For a relevant terminology see the manuscript of Osin [49].

Corollary B3 (Corollary 15.6). LetG be a group and letH be a subgroup ofG such that
G is finitely generated overH . Suppose thatH is hyperbolic relative to a finite collection
of equationally Noetherian proper subgroups and does not have nontrivial finite normal
subgroups. Then the conditions that H is algebraically closed in G, H is verbally closed
in G, and H is a retract of G are equivalent.

Corollary B4 (Corollary 15.7). Let G be a relatively hyperbolic group with respect to
a finite collection of finitely generated equationally Noetherian subgroups. Suppose that
H is a non-parabolic subgroup of G such that H does not have nontrivial finite normal
subgroups. Then the conditions that H is algebraically closed in G, H is verbally closed
in G, and H is a retract of G are equivalent.

2.4. Solutions of certain equations in acylindrically hyperbolic groups

In the course of the proof of Theorem A, we obtain a description of solutions of the equa-
tion xnym D anbm in acylindrically hyperbolic groups for non-commensurable jointly
special loxodromic elements a, b and numbers n;m with sufficiently large common divi-
sor.

Suppose that G is an acylindrically hyperbolic group with respect to a generating set
X ; see Definition 3.2. Then any loxodromic, with respect toX , element g 2G is contained
in a unique maximal virtually cyclic subgroup EG.g/ of G (see [14, Lemma 6.5]). This
subgroup is called the elementary subgroup associated with g.

We call an element g 2 G special with respect to X if it is loxodromic with respect to
X and EG.g/ D hgi. Elements g1; : : : ; gk 2 G are called jointly special if there exists a
generating setX ofG such that each gi is special with respect toX (see precise definitions
in Section 3).

Two elements a; b 2 G of infinite order are called commensurable if there exist g 2 G
and s; t 2 Z n ¹0º such that as D g�1btg.

Proposition C (Proposition 7.1). Let G be an acylindrically hyperbolic group. Suppose
that a and b are two non-commensurable jointly special elements of G. Then there exists
a generating set Y of G containing E D hai [ hbi and there exists a number N 2 N such
that for all n;m > N the following holds.

If .c; d/ is a solution of the equation xnym D anbm, then one of the following holds:

(1) c and d are loxodromic with respect to Y and EG.d/ D EG.c/;

(2) c is loxodromic with respect to Y , d is elliptic, and dm 2 EG.c/;

(3) d is loxodromic with respect to Y , c is elliptic, and cn 2 EG.d/;

(4) c and d are elliptic with respect to Y and one of the following holds:

(a) c is conjugate to a and d is conjugate to b;

(b) c is conjugate to b, d is conjugate to a, and jn �mj 6 N .
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The following corollary gives a simple description of solutions of this equation for
certain n, m.

Corollary C1 (Corollary 9.5). LetG be an acylindrically hyperbolic group. Suppose that
a; b 2 G are two non-commensurable jointly special elements. Then there exists a number
`D `.a;b/ 2N such that for all n;m 2 `N, n¤m, the equation xnymD anbm is perfect;
i.e., any solution of this equation in G is conjugate to .a; b/ by a power of anbm.

The condition on gcd.n;m/ in this corollary cannot be replaced by the condition that
n;m are sufficiently large; see example in Remark 7.3.

2.5. Test words in acylindrically hyperbolic groups

LetG be a group. An element g 2G is called a test element if any endomorphism ' WG!

G for which '.g/ D g is an automorphism (see [64, Definition 1], [46, Definition 1]).
Note that this concept was studied by Shpilrain in [62], before being made explicit

in [46, 64]. It is well known due to Dehn and Nielsen that Œx1; x2� is a test word in F2
(see [34, 44]). Other examples of test words in Fn were given by Zieschang [66, 67],
Rips [52], Dold [15], and Shpilrain [62].

Turner [64] related test words in free groups with retracts; he proved that w 2 Fn is a
test word if and only if w is not contained in a proper retract of Fn. Groves [18] extended
this result to torsion-free hyperbolic groups.

In [25], Ivanov constructed the so-called C -test words in free groups and applied them
to show that there exist two wordsw1;w2 2Fn such that any monomorphism ' WFn!Fn
is uniquely determined by '.w1/ and '.w2/. In [32], Lee constructed C -test words with
some additional property.

In [40], Myasnikov and Roman’kov used Lee’s test words to prove that verbally closed
subgroups of Fn are retracts. We introduce the following variant of a test word, which
helps us to prove Theorem A.

Definition 2.4. Let H be a group and let a1; : : : ; ak be some elements of H . A word
W.x1; : : : ; xk/ is called an .a1; : : : ; ak/-test word if for every solution .b1; : : : ; bk/ of the
equation

W.a1; : : : ; ak/ D W.x1; : : : ; xk/

in H , there exists a number ˛ 2 Z such that bi D aU
˛

i for i D 1; : : : ; k, where U D
W.a1; : : : ; ak/.

In Section 12, we construct certain .a1; : : : ; ak/-test words in clean acylindrically
hyperbolic groups. In particular, we prove the following corollary.

Corollary D (Corollary 12.2). LetH be an acylindrically hyperbolic group without non-
trivial finite normal subgroups and let a1; : : : ; ak 2 H (where k > 3) be jointly spe-
cial and pairwise non-commensurable elements. Then there is an .a1; : : : ; ak/-test word
Uk.x1; : : : ;xk/ such that the elements a1; : : : ; ak together with Uk.a1; : : : ; ak/ are jointly
special and pairwise non-commensurable.
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This corollary and a more general Proposition 12.1 are used to prove statements (1)
and (2)–(3) of Theorem A, respectively.

The following corollary says that any clean finitely generated acylindrically hyperbolic
group contains test elements satisfying a stronger condition than in [46, Definition 1]. This
corollary follows directly from Proposition 10.7 and Corollary D.

Corollary E. Let H be a finitely generated acylindrically hyperbolic group without non-
trivial finite normal subgroups. Then there exists an element w 2 H such that for any
endomorphism ' W H ! H the equality '.w/ D w implies that ' is a conjugation by a
power of w.

2.6. Uniform divergence of quasi-geodesics determined by loxodromic elements in
acylindrically hyperbolic groups

Proposition C is proved with the help of the following two propositions which seem to be
interesting for their own sake. The first one says that the quasi-geodesics determined by
two loxodromic elements in acylindrically hyperbolic groups diverge uniformly.

Proposition F (Proposition 5.4). Let G be a group and let X be a generating set of G.
Suppose that the Cayley graph �.G;X/ is hyperbolic and acylindrical. Then there exists
a constant N0 > 0 such that for any loxodromic (with respect to X ) elements c; d 2 G
with EG.c/ ¤ EG.d/ and for any n;m 2 N we have that

jcndmjX >
min¹n;mº

N0
:

Proposition G (Proposition 5.6). Let G be a group and let X be a generating set of G.
Suppose that the Cayley graph �.G;X/ is hyperbolic and acylindrical. Then there exists
a constant N1 > 0 such that for any loxodromic (with respect to X ) element c 2 G, any
elliptic element e 2 G nEG.c/, and any n 2 N, we have that

jcnejX >
n

N1
:

We prove these propositions with the help of the periodicity theorem for acylindrically
hyperbolic groups; see [6, Theorem 1.4]. This theorem and relevant notions are reproduced
in Section 5.1 of the present paper. A special case of this theorem, whereG is a free group
and r D 0, can be found in the book of Adian [1] devoted to a solution of the Burnside
problem (see statement 2.3 in Chapter I there).

Note that these propositions have another interesting application: in [8], we use them
to describe homomorphisms fromH toG, whereH is a topological group which is either
completely metrizable or locally compact Hausdorff, andG is an acylindrically hyperbolic
group.
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3. Acylindrically hyperbolic groups

We introduce general notation and recall some relevant definitions and statements from
the papers [6, 14, 17, 47].

3.1. General notation

All generating sets considered in this paper are assumed to be symmetric, i.e., closed under
taking inverse elements. Let G be a group generated by a subset X . For g 2 G, let jgjX
be the length of a shortest word in X representing g. The corresponding metric on G is
denoted by dX (or by d if X is clear from the context); thus, dX .a; b/ D ja�1bjX . The
right Cayley graph of G with respect to X is denoted by �.G; X/. By a path p in the
Cayley graph we mean a combinatorial path; the initial and the terminal vertices of p are
denoted by p� and pC, respectively. The path inverse to p is denoted by Np. The length
of p is denoted by `.p/. The label of p is denoted by Lab.p/; we stress that the label
is a formal word in the alphabet X . The canonical image of Lab.p/ in G is denoted by
LabG.p/.

Given a real number K > 0, two paths p and q in �.G; X/ are called K-similar if
d.p�; q�/ 6 K and d.pC; qC/ 6 K.

Recall that a path p in �.G;X/ is called .~; "/-quasi-geodesic, where ~ > 1, " > 0,
if d.q�; qC/ > 1

~
`.q/ � " for any subpath q of p.

The following remark is important. Suppose that ¹X�º�2ƒ is a collection of subsets
of a group G such that

S
�2ƒ X� generates G. The alphabet X D

F
�2ƒ X� determines

the Cayley graph �.G;X/, where two vertices may be connected by many edges. This
happens if some element x 2G belongs to subsetsX� andX� ofG for different �;� 2ƒ.
In this case, �.G;X/ contains two edges from g to gx for any vertex g. The labels of these
edges are different since they belong to disjoint subsets of the alphabet X; however these
labels represent the same element x in G.

The following notation will shorten the forthcoming proofs. For a; b; c 2 R, we write
a �c b if ja � bj 6 c. Note that a �c b and b �c1 d imply a �cCc1 d .

For a group G and an element a 2 G, we define a homomorphism Oa W G ! G by the
rule Oa.g/ D a�1ga. We also write ga for a�1ga.

3.2. Hyperbolic spaces

Let A, B , C be three points in a metric space X. Recall that the Gromov product of A, B
with respect to C is the number

.A;B/C WD
d.C;A/C d.C;B/ � d.A;B/

2
:

We use the following definition of a ı-hyperbolic space (see [11, Chapter III.H, Defi-
nition 1.16, and Proposition 1.17]).

For ı > 0, we say that a geodesic triangleABC in X is ı-thin at the vertex C if for any
two pointsA1 andB1 on the sides ŒC;A� and ŒC;B�with d.C;A1/D d.C;B1/6 .A;B/C ,
we have that d.A1; B1/ 6 ı.
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We say that a metric space X is ı-hyperbolic if it is geodesic and every geodesic
triangle in X is ı-thin at each of its vertices.

3.3. Two equivalent definitions of acylindrically hyperbolic groups

Definition 3.1 (see [10] and Introduction in [47]). An action of a group G on a metric
space S is called acylindrical if for every " > 0 there exist R;N > 0 such that for every
two points x, y with d.x; y/ > R, there are at most N elements g 2 G satisfying

d.x; gx/ 6 " and d.y; gy/ 6 ":

Given a generating set X of a group G, we say that the Cayley graph �.G; X/ is
acylindrical if the left action of G on �.G; X/ is acylindrical. For Cayley graphs, the
acylindricity condition can be rewritten as follows: for every " > 0 there exist R;N > 0

such that for any g 2 G of length jgjX > R we have thatˇ̌®
f 2 G j jf jX 6 "; jg�1fgjX 6 "

¯ˇ̌
6 N:

Recall that an action of a group G on a hyperbolic space S is called elementary if the
limit set of G on the Gromov boundary @S contains at most 2 points.

Definition 3.2 (see [47, Definition 1.3]). A group G is called acylindrically hyperbolic if
it satisfies one of the following equivalent conditions:

(AH1) there exists a generating set X of G such that the corresponding Cayley graph
�.G;X/ is hyperbolic, j@�.G;X/j > 2, and the natural action of G on �.G;X/
is acylindrical;

(AH2) G admits a non-elementary acylindrical action on a hyperbolic space.

In the case (AH1), we also write that G is acylindrically hyperbolic with respect to X .
Recall the following useful lemma.

Lemma 3.3 ([47, Lemma 5.1]). For any group G and any generating sets X and Y of G
such that

sup
x2X

jxjY <1 and sup
y2Y

jyjX <1;

the following hold:

(a) �.G;X/ is hyperbolic if and only if �.G; Y / is hyperbolic,

(b) �.G;X/ is acylindrical if and only if �.G; Y / is acylindrical.

3.4. Elliptic and loxodromic elements in acylindrically hyperbolic groups

Let G be a group acting on a metric space S . Recall that the stable norm of an element
g 2 G for this action is defined as

kgk D lim
n!1

1

n
d.x; gnx/;
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where x is an arbitrary point in S ; see [13]. It is easy to check that this number is well
defined, independent of x, that it is a conjugacy invariant, and that kgkk D jkj � kgk for
all k 2 Z. The following definition is standard.

Definition 3.4. Given a group G acting on a metric space S , an element g 2 G is called
elliptic if some (equivalently, any) orbit of g is bounded, and loxodromic if the map Z! S

defined by n 7! gnx is a quasi-isometric embedding for some (equivalently, any) x 2 S .
That is, for x 2 S , there exist ~ > 1 and " > 0 such that for any n;m 2 Z we have

d.gnx; gmx/ >
1

~
jn �mj � ":

LetX be a generating set ofG. We say that g 2 G is elliptic (respectively loxodromic)
with respect to X if g is elliptic (respectively loxodromic) for the canonical left action of
G on the Cayley graph �.G; X/. If X is clear from a context, we omit the words “with
respect to X .”

The set of all elliptic (respectively loxodromic) elements of G with respect to X is
denoted by Ell.G;X/ (respectively by Lox.G;X/).

Note that for groups acting on geodesic hyperbolic spaces, there is only one additional
isometry type of an element: parabolic (see e.g. [13, Chapitre 9, Théorème 2.1]).

Bowditch [10, Lemma 2.2] proved that every element of a group acting acylindrically
on a hyperbolic space is either elliptic or loxodromic (see a more general statement in [47,
Theorem 1.1]). Moreover, he proved there that the infimum of the set of stable norms of all
loxodromic elements for such an action is larger than zero (we assume that inf; D C1).

From this fundamental result, we deduced in [6, Corollary 2.12] that, under certain
assumptions, the quasi-geodesics associated with loxodromic elements have universal
quasi-geodesic constants (see Definition 3.5 and Corollary 3.6 below).

Definition 3.5. Let G be a group and X a generating set of G. For any two elements
u; v 2 G, we choose a geodesic path Œu; v� in �.G; X/ from u to v so that wŒu; v� D
Œwu; wv� for any w 2 G. With any element x 2 G and any loxodromic element g 2 G,
we associate the bi-infinite quasi-geodesic

L.x; g/ D
1

[
iD�1

xŒgi ; giC1�:

We have thatL.x;g/D xL.1;g/. The pathL.1;g/ is called the quasi-geodesic associated
with g.

Corollary 3.6 ([6, Corollary 2.12]). Let G be a group and X a generating set of G.
Suppose that the Cayley graph �.G; X/ is hyperbolic and acylindrical. Then there exist
~ > 1 and " > 0 such that the following holds:

if an element g 2 G is loxodromic and shortest in its conjugacy class, then the quasi-
geodesic L.1; g/ associated with g is a .~; "/-quasi-geodesic.

Recall that any loxodromic element g in an acylindrically hyperbolic group G is
contained in a unique maximal virtually cyclic subgroup [14, Lemma 6.5]. This sub-
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group, denoted by EG.g/, is called the elementary subgroup associated with g; it can
be described as follows (see equivalent definitions in [14, Corollary 6.6]):

EG.g/ D ¹f 2 G j 9n 2 N W f �1gnf D g˙nº

D
®
f 2 G j 9k;m 2 Z n ¹0º W f �1gkf D gm

¯
: (3.1)

Lemma 3.7 (see [47, Lemma 6.8]). Suppose that a group G acts acylindrically on a
hyperbolic space S . Then there exists L 2 N such that for every loxodromic element
g 2 G, EG.g/ contains a normal infinite cyclic subgroup of index L.

Definition 3.8. Suppose that G is an acylindrically hyperbolic group.

(a) An element g 2 G is called special if there exists a generating set X of G such
that

– G is acylindrically hyperbolic with respect to X ,

– g is loxodromic with respect to X , and

– EG.g/ D hgi.

In this case, g is called special with respect to X .

(b) Elements g1; : : : ; gk 2 G are called jointly special if there exists a generating set
X of G such that each gi is special with respect to X .

Note that point (a) of this definition was already used in the case of relatively hyper-
bolic groups (see comments in [48, Section 3]).

The following theorem helps to verify whether an acylindrical action of a group on a
hyperbolic space is elementary or not.

Theorem 3.9 (see [47, Theorem 1.1]). LetG be a group acting acylindrically on a hyper-
bolic space. Then G satisfies exactly one of the following conditions:

(a) G has bounded orbits;

(b) G is virtually cyclic and contains a loxodromic element;

(c) G contains infinitely many loxodromic elements whose limit sets are pairwise
disjoint. In this case the action of G is non-elementary and G is acylindrically
hyperbolic.

3.5. Hyperbolically embedded subgroups

LetG be a group and ¹H�º�2ƒ a collection of subgroups ofG. A subsetX ofG is called a
relative generating set ofG with respect to ¹H�º�2ƒ ifG is generated byX together with
the union of all H�. All relative generating sets are assumed to be symmetric. We define

H D
G
�2ƒ

H�:

For the following two definitions, we assume that X is a relative generating set of G
with respect to ¹H�º�2ƒ.
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Definition 3.10 (see [14, Definition 4.1]). The group G is called weakly hyperbolic rela-
tive to X and ¹H�º�2ƒ if the Cayley graph �.G;X tH / is hyperbolic.

We consider the Cayley graph �.H�;H�/ as a complete subgraph of �.G;X tH /.

Definition 3.11 (see [14, Definition 4.2]). For every � 2ƒ, we introduce a relative metric
Od� W H� �H� ! Œ0;C1� as follows:

let a; b 2H�. A path in �.G;X tH / from a to b is calledH�-admissible if it has no
edges in the subgraph �.H�;H�/.

The distance Od�.a; b/ is defined to be the length of a shortest H�-admissible path
connecting a to b if such exists. If no such path exists, we set Od�.a; b/ D1.

Definition 3.12 (see [14, Definition 4.25]). Let G be a group and X a symmetric subset
of G. A collection of subgroups ¹H�º�2ƒ of G is called hyperbolically embedded in G
with respect to X (we write ¹H�º�2ƒ ,!h .G;X/) if the following hold.

(a) The group G is generated by X together with the union of all H� and the Cayley
graph �.G;X tH / is hyperbolic.

(b) For every � 2 ƒ, the metric space .H�; Od�/ is proper. That is, any ball of finite
radius in H� contains finitely many elements.

Further, we say that ¹H�º�2ƒ is hyperbolically embedded inG and write ¹H�º�2ƒ,!h

G if ¹H�º�2ƒ ,!h .G;X/ for some X � G.

It was proved in [47, Theorem 1.2] that a group G is acylindrically hyperbolic if and
only if it contains a proper infinite hyperbolically embedded subgroup.

Lemma 3.13 (see [14, Corollary 4.27]). Let G be a group, ¹H�º�2ƒ a collection of sub-
groups of G, and X; Y relative generating sets of G with respect to ¹H�º�2ƒ. Suppose
that jX�Y j <1. Then ¹H�º�2ƒ ,!h .G;X/ if and only if ¹H�º�2ƒ ,!h .G; Y /.

There are examples which show that the condition jX�Y j <1 cannot be replaced by
the condition using supremum as in Lemma 3.3.

Lemma 3.14 (see [14, Proposition 4.33]). Suppose that ¹H�º�2ƒ ,!h .G;X/. Then, for
each � 2 ƒ, we have that ¹g 2 G j jH� \ g�1H�gj D 1º � H�.

We use the following nontrivial theorem.

Theorem 3.15 (see [47, Theorem 5.4]). Let G be a group, ¹H�º�2ƒ a finite collection
of subgroups of G and X a subset of G. Suppose that ¹H�º�2ƒ ,!h .G; X/. Then there
exists Y � G such that X � Y and the following conditions hold.

(a) ¹H�º�2ƒ ,!h .G;Y /. In particular, the Cayley graph �.G;Y tH / is hyperbolic.

(b) The action of G on �.G; Y tH / is acylindrical.
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4. Preliminary statements

The main aim of this section is to prove Lemmas 4.7 and 4.8. These lemmas will be used
in Section 5. The following lemma is an easy exercise and we leave it for the reader.

Lemma 4.1. Let ABC be a geodesic triangle in a ı-hyperbolic space and let A1 and
B1 be the middle points of the sides ŒA; C � and ŒB; C �, respectively. Then d.A1; B1/ 6
d.A;B/=2C 2ı.

Lemma 4.2 (see [11, Chapter III.H, Theorem 1.7]). For all ı > 0, ~ > 1, � > 0, there
exists a constant � D �.ı; ~; �/ > 0 with the following property:

if X is a ı-hyperbolic space, p is a .~; �/-quasi-geodesic in X, and Œx; y� is a geodesic
segment joining the endpoints of p, then the Hausdorff distance between Œx; y� and the
image of p is at most �.

The following lemma is an easy generalization of this statement.

Lemma 4.3 (see [6, Corollary 2.3]). For any ı > 0, ~ > 1, � > 0, r > 0, the following
holds:

if X is a ı-hyperbolic space, p and q are .~; �/-quasi-geodesics in X such that
max¹d.p�; q�/; d.pC; qC/º 6 r , then the Hausdorff distance between the images of p
and q is at most �.ı; ~; �; r/ D r C 2ı C 2�, where � D �.ı; ~; �/ is the constant from
Lemma 4.2.

The following lemma can be deduced straightforward from the definition of Gromov
product.

Lemma 4.4. LetABC be a geodesic triangle in a metric space and letP andQ be points
on its sides ŒA; B� and ŒB; C �. Then d.P;Q/ > d.P;B/C d.B;Q/ � 2.A; C /B .

Lemma 4.5. Let p; q be two .~; "/-quasi-geodesics in a ı-hyperbolic space such that
pC D q�. Then their concatenation pq is a .~; 2˛ C ˇ/-quasi-geodesic, where ˛ is the
Gromov product of p�; qC with respect to pC and ˇ > " is a constant depending only on
ı, ~, ".

Proof. Let r be a subpath of pq. We shall estimate d.r�; rC/ from below by using `.r/.
We consider only the case r D p1q1, where p1 is a terminal subpath of p and q1 is
an initial subpath of q. Denote A D p�, B D pC, C D qC, P1 D r�, and Q1 D rC.
By Lemma 4.2, there exist points P 2 ŒA; B� and Q 2 ŒB; C � such that d.P1; P / 6 �,
d.Q1;Q/6 �, where �D �.ı;~; "/. By Lemma 4.4, we have that d.P;Q/> d.P;B/C

d.B;Q/ � 2˛. Then

d.P1;Q1/ > d.P1; B/C d.B;Q1/ � 2˛ � 4�

>
�
1

~
`.p1/ � "

�
C

�
1

~
`.q1/ � "

�
� 2˛ � 4� D

1

~
`.r/ � .2˛ C 2"C 4�/:

Therefore, the statement holds for ˇ D 2"C 4�.
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Figure 1. Illustration to Lemma 4.6.

The following lemma says that the concatenation q1q2q3 of three .~;"/-quasi-geodesic
paths in a ı-hyperbolic space, where q2 is sufficiently long, is a .~; "0/-quasi-geodesic for
"0 depending only on ı, ~, ", and some Gromov products.

Lemma 4.6. For any ı > 0, ~ > 1, "> 0, ˛ > 0, there exists "0 > 0 such that the following
holds. Let X be a ı-hyperbolic space, q D q0q1q2 a path in X such that q0; q1; q2 are
.~; "/-quasi-geodesic paths satisfying the following two conditions:

(1) ..q0/�; .q1/C/.q0/C < ˛ and ..q1/�; .q2/C/.q1/C < ˛;

(2) d..q1/�; .q1/C/ > 2.˛ C ı/.

Then q is a .~; "0/-quasi-geodesic path.

Proof. By Lemma 4.5, the path .q0q1/ is a .~; "1/-quasi-geodesic for "1 D 2˛C ˇ, where
ˇ D ˇ.ı; ~; "/ > ". Since "1 > ", the path q2 is also a .~; "1/-quasi-geodesic. Now we
apply Lemma 4.5 to .q0q1/ and q2. To complete the proof, it suffices to show that�

.q0q1/�; .q2/C
�
.q0q1/C

< ˛1;

where ˛1 WD ˛ C ı. Denote A D .q0/�, B D .q1/�, C D .q1/C, and D D .q2/C.
Suppose the converse; i.e., .A;D/C > ˛1. Then there exist two points R 2 ŒC;D� and

R0 2 ŒC;A� such that d.C;R/D d.C;R0/D ˛1 and d.R;R0/ 6 ı; see Figure 1. From (1)
and (2) we deduce that

.A;B/C D d.B;C / � .A; C /B > 2.˛ C ı/ � ˛ D ˛ C 2ı > ˛1:

Then there exists R00 2 ŒC; B� such that d.C; R00/ D ˛1 and d.R00; R0/ 6 ı. Thus,
d.R;R00/ 6 2ı. On the other hand, using Lemma 4.4, we deduce that

d.R;R00/ > d.C;R/C d.C;R00/ � 2.B;D/C > 2˛1 � 2˛ D 2ı:

A contradiction.

Lemma 4.7. Let G be a group and X a generating set of G. Suppose that the Cayley
graph �.G;X/ is hyperbolic and acylindrical. Then there exist real numbers ~ > 1, "0 > 0,
and a number n0 2 N with the following property.

Suppose that n> n0 and c 2G is a loxodromic element. Let S.c/ be the set of shortest
elements in the conjugacy class of c and let g 2 G be a shortest element for which there
exists c1 2 S.c/ with c D g�1c1g. Then any path p0p1 � � � pnpnC1 in �.G; X/, where
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Figure 2. Illustration to Lemma 4.7.

p0;p1; : : : ;pn;pnC1 are geodesics with labels representing g�1; c1; : : : ; c1;g, is a .~;"0/-
quasi-geodesic. In particular,

jcnjX >
1

~

�
njc1jX C 2jgjX

�
� "0 >

1

~
n � "0:

Proof. Let ı > 0 be a constant such that �.G; X/ is ı-hyperbolic. Let n be an arbitrary
positive integer. Suppose that c; g; c1 2 G are elements and p0; : : : ; pnC1 are geodesics
in �.G; X/ as above. We set q0 D p0, q1 D p1p2 � � � pn, and q2 D pnC1. Then q1 is
a .~; "/-quasi-geodesic, where ~ and " are the constants from Corollary 3.6. According
to Lemma 4.2, the Hausdorff distance between q1 and Œ.q1/�; .q1/C� is at most � D
�.ı; ~; "/. We set

n0 WD
˙
~.4ı C 2�C "C 2/

�
:

Now we suppose that n > n0. It suffices to show that the paths q0, q1, q2 satisfy
conditions (1) and (2) of Lemma 4.6 for ˛ D ı C �C 1. Denote A D .q0/�, B D .q1/�,
C D .q1/C, and D D .q2/C; see Figure 2. For (1), we shall check that

.A; C /B < ı C �C 1 and .B;D/C < ı C �C 1:

Because of symmetry, we check only the first inequality. To the contrary, suppose
that .A; C /B > ı C � C 1. Then there exist vertices X 2 ŒB; A� and Y 2 ŒB; C � such
that d.B;X/ D d.B; Y / D bı C �C 1c and d.X; Y / 6 ı. Since the Hausdorff distance
between q1 and ŒB; C � is at most �, there exists a vertex Z 2 q1 such that d.Y; Z/ 6 �.
Then

d.A;Z/ 6 d.A;X/C d.X; Y /C d.Y;Z/

6 d.A;X/C ı C � < d.A;X/C d.B;X/ D d.A;B/: (4.1)

We have that Z 2 pi D ŒBci1; Bc
iC1
1 � for some 0 6 i 6 n � 1. Let a and b be the

elements of G representing the labels of ŒBci1; Z� and ŒZ; BciC11 �, respectively. Then
c1 D ab. We set c2 D ba and f D a�1c�i1 g. Then c2 is also shortest in the conjugacy
class of c and we have that c D g�1c1g D f �1c2f . Since Z D Bci1a and B D Ag�1,
we have that f D Z�1A. Then

jf jX D d.Z;A/
(4.1)
< d.B;A/ D jgjX
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that contradicts the choice of g. Therefore, condition (1) is satisfied. Condition (2) follows
from the above-mentioned fact that q1 is a .~; "/-quasi-geodesic:

d
�
.q1/�; .q1/C

�
>
1

~
`.p1p2 � � �pn/ � " >

n

~
� " >

n0

~
� " > 2˛ C 2ı:

Thus, by Lemma 4.6, q0q1q2 D p0p1 � � �pnpnC1 is a .~; "0/-quasi-geodesic for some
universal constants ~, "0. In particular,

jcnjX >
1

~
`.p0p1 � � �pnpnC1/ � "0 D

1

~

�
njc1jX C 2jgjX

�
� "0 >

1

~
n � "0:

Lemma 4.8. For every ı > 0, there exists "1 D "1.ı/ > 0 such that the following holds.
Suppose that the Cayley graph of a group G with respect to a generating set X is ı-
hyperbolic for some integer ı > 0. Let a; b 2 G be conjugate elements satisfying jajX >
jbjX C 4ı C 2. Then there exist x; y 2 G with the following properties:

(a) a D x�1yx;

(b) jyjX 2 ¹jbjX C 4ı C 1; jbjX C 4ı C 2º;

(c) any path q0q1q2 in �.G; X/, where q0; q1; q2 are geodesics with labels repre-
senting x�1, y, x, is a .1; "1/-quasi-geodesic.

Proof. In the set S WD ¹.y; x/ 2 G �G j a D x�1yx; jyjX 6 jbjX C 4ıC 2º, we choose
a pair .y; x/ 2 S with minimal jxjX . Clearly, (a) is valid. We claim that (b) is valid.

Suppose the contrary; i.e., jyjX 6 jbjX C 4ı. Since jajX > jbjX C 4ı C 2, we have
that y ¤ a, hence x ¤ 1. We write x D x1x2 � � � xn with xi 2 X˙, i D 1; : : : ; n, and
n D jxjX . Then .x�11 yx1; x2x3 � � � xn/ 2 S . A contradiction to minimality of jxjX .

Now we verify that (c) is valid for some "1 depending only on ı. Let q D q0q1q2 be
a path in �.G;X/ such that its subpaths q0, q1, q2 are geodesics with labels representing
x�1, y, x. Without loss of generality, we may assume that .q0/� D 1. First, we show that
conditions (1) and (2) of Lemma 4.6 are satisfied for ˛ D ı C 1.

To the contrary, suppose that condition (1) of this lemma is not valid, say ..q1/�;
.q2/C/.q1/C > ıC 1; i.e., .x�1;x�1yx/x�1y > ıC 1. Because ofG-invariance of Gromov
product, we have that

.1; yx/y > ı C 1:

Then there exist expressions y D v1v2, x D u1u2 such that jyjX D jv1jX C jv2jX , jxjX D
ju1jX C ju2jX , jv2jX D ju1jX D ı C 1, and jv2u1jX 6 ı. Then the pair .v2v1; v2u1u2/
lies in S and

jv2u1u2jX 6 jv2u1jX C ju2jX 6 ı C ju2jX < ju1jX C ju2jX D jxjX :

A contradiction to minimality of jxjX . Thus, condition (1) of Lemma 4.6 is valid. Condi-
tion (2) of this lemma is also valid, since

d
�
.q1/�; .q1/C

�
D jyjX

(b)
> jbjX C 4ı C 1 > 4ı C 2 D 2˛ C 2ı:
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Recall that the paths q0, q1, q2 are geodesic and hence .1; 0/-quasi-geodesic. Then, by
Lemma 4.6, their concatenation q0q1q2 is a .1; "1/-quasi-geodesic for some "1 depending
only on ı.

5. Uniform divergence of quasi-geodesics associated with loxodromic
elements in acylindrically hyperbolic groups

The main aim of this section is to prove Propositions 5.4 and 5.6. We use Theorem 5.2
proved by the author in [6]; see Theorem 1.4 there. For convenience, we recall all neces-
sary notions in the following subsection.

5.1. A periodicity theorem for acylindrically hyperbolic groups

Definition 5.1. Let Y be a generating set ofG. Given a loxodromic element a 2G and an
element x 2 G, consider the bi-infinite path L.x; a/ in �.G; Y / obtained by connecting
consequent points : : : ; xa�1; x; xa; : : : by geodesic paths so that, for all n 2 Z, the path
pn connecting xan and xanC1 has the same label as the path p0 connecting x and xa. The
paths pn are called a-periods of L.x; a/, and the vertices xai , i 2 Z, are called the phase
vertices of L.x; a/. For k 2 N, we say that a subpath p � L.x; a/ contains k a-periods
if there exists n 2 Z such that pnpnC1 � � �pnCk�1 is a subpath of p.

LetG be a group andX a generating set ofG. Suppose that the Cayley graph �.G;X/
is hyperbolic and thatG acts acylindrically on �.G;X/. In [10], Bowditch proved that the
infimum of the set of stable norms (see Section 3.4 of the present paper) of all loxodromic
elements ofG with respect toX is a positive number. We denote this number by inj.G;X/
and call it the injectivity radius of G with respect to X .

Theorem 5.2 ([6, Theorem 1.4]). LetG be a group andX a generating set ofG. Suppose
that the Cayley graph �.G;X/ is hyperbolic and that G acts acylindrically on �.G;X/.
Then there exists a constant C > 0 such that the following holds.

Let a; b 2G be two loxodromic elements which are shortest in their conjugacy classes
and such that jajX > jbjX . Let x; y 2 G be arbitrary elements and r an arbitrary non-
negative integer. We set f .r/ D 2r

inj.G;X/ C C .
If a subpath p � L.x; a/ contains at least f .r/ a-periods and lies in the r-neighbor-

hood of L.y; b/, then there exist s; t ¤ 0 such that .x�1y/bs.y�1x/ D at . In particular,
a and b are commensurable.

Theorem 5.2 is illustrated by Figure 3.

Remark 5.3. (1) The main feature of Theorem 5.2 is that the function f is linear and
does not depend on jajX and jbjX . Another point is that X is allowed to be infinite.

(2) In the conclusion of Theorem 5.2, we can write z�1bsz D at , where z 2 G is the
element corresponding to the label of any path from any phase vertex of L.y; b/ to any
phase vertex of L.x; a/.
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�.G;X/

L.x; a/

L.y; b/

� f .r/ periods r

Figure 3. Illustration to Theorem 5.2.

5.2. Loxodromic-loxodromic case

Proposition 5.4. Let G be a group and let X be a generating set of G. Suppose that the
Cayley graph �.G;X/ is hyperbolic and acylindrical. Then there exists a constantN0 > 0
such that for any loxodromic (with respect to X ) elements c; d 2 G with EG.c/¤ EG.d/
and for any n;m 2 N we have that

jcndmjX >
min¹n;mº

N0
:

Proof. Let ı > 0 be a constant such that �.G;X/ is ı-hyperbolic. We use the following
constants:

• ~ > 1, "0 > 0 and n0 2 N are the constants from Lemma 4.7;

• � D �.ı; ~; "0/; see Lemma 4.2;

• C is the constant from Theorem 5.2.

We show that the proposition is valid for

N0 D max
²
n0;

4000.�C ı C 1/

inj.G;X/
C 4C

³
: (5.1)

Suppose to the contrary that there exist two loxodromic elements c; d 2 G satisfying
EG.c/ ¤ EG.d/ and there exist n;m 2 N such that

min¹n;mº > N0k; where k D jcndmjX : (5.2)

Clearly, k ¤ 0.
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Figure 4

Figure 5

For any g 2 G, let S.g/ be the set of shortest elements in the conjugacy class of
g. Let u 2 G be a shortest element for which there exists c1 2 S.c/ with the property
c D u�1c1u. Let v 2 G be a shortest element for which there exists d1 2 S.d/ with the
property d D v�1d1v.

Without loss of generality, we assume that

jc1jX > jd1jX : (5.3)

Denote w D d�mc�n. Then jwjX D k and we have the equation

u�1 c1c1 � � � c1„ ƒ‚ …
n

uv�1 d1 � � � d1d1„ ƒ‚ …
m

vw D 1: (5.4)

Consider a geodesic .nCmC 5/-gon P Dp0.p1p2 � � �pn/pnC1 NqmC1. Nqm � � � Nq2 Nq1/ Nq0h in
the Cayley graph �.G;X/ such that the labels of its sides correspond to the elements in the
left side of (5.4) (see Figure 4). In particular, the labels of the paths q0;q1;q2; : : : ;qm;qmC1
correspond to the elements v�1; d�11 ; d�11 ; : : : ; d�11 ; v.

Since min¹n; mº > N0k > N0 > n0, we have by Lemma 4.7 that the paths p WD
p0p1p2 � � � pnpnC1 and q D q0q1q2 � � � qmqmC1 are .~; "0/-quasi-geodesics. In the fol-
lowing claims we use the following constants:

K D k C 36�C 26ı; K1 D K C 4�C 4ı; K2 D 10K1 C 2�C 2ı:

Claim 1. The quasi-geodesic p1p2 � � � pn contains n > 4f .K2/ c1-periods. The quasi-
geodesic q1q2 � � � qm contains m > 4f .K2/ d1-periods.

Proof. The claim follows straightforward from the definition of function f .r/ in Theo-
rem 5.2 and from (5.1) and (5.2).
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We intend to apply Theorem 5.2 to these quasi-geodesics or to their parts. However,
we cannot claim that the first quasi-geodesic is contained in the K2-neighborhood of the
second one.

Let P be the middle point of the quasi-geodesic p1p2 � � �pn and let Q be the middle
point of the quasi-geodesic q1q2 � � � qm.

Claim 2. We have that
d.P;Q/ 6 K: (5.5)

Proof. Denote A D .p0/�, B D .p1/�, C D .pnC1/�, D D .pnC1/C, and E D .q0/�;
see Figure 5.

By Lemma 4.2, there exists a point P1 2 ŒA;D� such that

d.P; P1/ 6 �: (5.6)

The point P divides the path p into two halves. In the following we define two points
L; R 2 p. If n is even, we set L D P D R. If n is odd, we set L D .pd n2 e/� and R D
.pd n2 e/C. By Lemma 4.3 applied to the first half of the quasi-geodesic p and the geodesic
ŒA; P1�, there exists a point L1 2 ŒA; P1� such that

d.L;L1/ 6 d.P; P1/C 2.�C ı/ 6 3�C 2ı: (5.7)

Applying Lemma 4.3 once more, we obtain that there exists a point B1 2 ŒA; L1� such
that

d.B;B1/ 6 d.L;L1/C 2.�C ı/ 6 5�C 4ı: (5.8)

Using triangle inequality several times, we deduce that

d.A;P1/ D d.A;B1/C d.B1; L1/C d.L1; P1/

�T d.A;B/C d.B;L/C d.L;P /;

where T D 2d.B; B1/ C 2d.L; L1/ C d.P; P1/. It follows from (5.6)–(5.8) that T 6
17�C 12ı. Hence

d.A;P1/ �17�C12ı d.A;B/C d.B;L/C d.L;P /: (5.9)

Analogously, we have that

d.D;P1/ �17�C12ı d.D;C /C d.C;R/C d.R;P /: (5.10)

Since the three summands in (5.9) are equal to the three summands in (5.10), we deduce
that

d.A;P1/ �34�C24ı d.D;P1/:

Let P 0 be the middle point of ŒA;D�. Then d.P1; P 0/ 6 17�C 12ı. We have that

d.P; P 0/ 6 d.P; P1/C d.P1; P
0/ 6 18�C 12ı: (5.11)
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Figure 6

Analogously, if Q0 is the middle point of ŒE;D�, then

d.Q;Q0/ 6 18�C 12ı: (5.12)

By Lemma 4.1 applied to the geodesic triangle ADE, we have that

d.P 0;Q0/ 6
1

2
d.A;E/C 2ı D

k

2
C 2ı: (5.13)

Now the claim follows from (5.11)–(5.13).

We consider the decomposition p0p1p2 � � � pnpnC1 D ˛0˛1˛2˛3˛4˛5, where ˛0 D
p0, ˛1 D p1 � � �pb n4 c, ˛4 D pn�b n4 cC1 � � �pn, ˛5 D pnC1, and ˛2 and ˛3 are determined by
the condition .˛2/CDP D .˛3/�. We also consider the decomposition q0q1 � � �qmqmC1D

1
2
3
4, where 
1 D q0, 
4 D qmC1, and 
2 and 
3 are determined by the condition
.
2/C D Q D .
3/�; see Figure 6.

Claim 3. There are decompositions 
1
2 D ˇ0ˇ1ˇ2 and 
3
4 D ˇ3ˇ4ˇ5 such that ˛i and
ˇi are K1-similar for i D 0; : : : ; 5. In particular, the Hausdorff distance between ˛i and
ˇi is at most K2 for i D 0; : : : ; 5.

Proof. Because of symmetry, we show only that the first decomposition exists. We have
that

d
�
.˛0˛1˛2/�; .
1
2/�

�
D k;

d
�
.˛0˛1˛2/C; .
1
2/C

� (5.5)
6 K:

By Lemma 4.3 applied to the .~; "0/-quasi-geodesics ˛0˛1˛2 and 
1
2, there exists a
point U 2 
1
2 such that d..˛1/C; U / 6 K C 2�C 2ı; see Figure 7.

Applying this lemma once more, we obtain a point V on the segment of 
1
2 from E

to U such that d..˛1/�; V / 6 K C 4�C 4ı D K1. The points V and U divide the path

1
2 into three consecutive subpaths. We denote them by ˇ0, ˇ1, ˇ2. By construction, the
paths ˛i and ˇi are K1-similar. Again by Lemma 4.3, the Hausdorff distance between ˛i
and ˇi is at most K1 C 2�C 2ı 6 K2.

It follows from 
1
2 D ˇ0ˇ1ˇ2 that either ˇ2 is a subpath of 
2, or ˇ0ˇ1 is an initial
subpath of 
1. Analogously, it follows from 
3
4 D ˇ3ˇ4ˇ5 that either ˇ3 is a subpath of

3, or ˇ4ˇ5 is a terminal subpath of 
4.
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Figure 7

Figure 8

Case 1. Suppose that ˇ2 is a subpath of 
2; see Figure 7.

Observe that ˛2 and ˇ2 satisfy assumptions of Theorem 5.2. Indeed, in this case ˛2
and ˇ2 are subpaths of the quasi-geodesics L..pn/C; c1/ and L..qm/C; d�11 /, respec-
tively, jc1jX > jd1jX by (5.3), the Hausdorff distance between ˛2 and ˇ2 is at mostK2 by
Claim 3, and ˛2 contains at least f .K2/ c1-periods by Claim 1.

Hence, by Theorem 5.2 and Remark 5.3, there exist s; t ¤ 0 such that

.uv�1/d s1 .vu
�1/ D ct1: (5.14)

Indeed, vu�1 is the element which corresponds to the label of the path qmC1pnC1 from
the phase vertex .qm/C to the phase vertex .pn/C. From (5.14) and from c D u�1c1u,
d D v�1d1v, we deduce that ct D d s . Therefore, EG.c/ D EG.d/. This contradicts the
assumption of Proposition 5.4.

Case 2. Suppose that ˇ3 is a subpath of 
3.

This case can be considered analogously. Thus, it remains to consider the following
case.

Case 3. Suppose that ˇ0ˇ1 is an initial subpath of 
1 and ˇ4ˇ5 is a terminal subpath of

4; see Figure 8.

Recall that the geodesics 
1 and 
4 have mutually inverse labels. Therefore, there exist
g 2 G such that 
1 D g.
4/. We denote

˛00 D g.˛5/; ˛01 D g.˛4/; ˇ00 D g.ˇ5/; and ˇ01 D g.ˇ4/I

see Figure 9. Then ˇ0ˇ1 and ˇ00ˇ
0
1 are initial segments of 
1.
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Figure 9

Claim 4. The Hausdorff distance between ˛1 and ˛01 is at most K2.

Proof. Since ˇi and ˛i are K1-similar for all i , we have that

d
�
. ǰ /�; . ǰ /C

�
�2K1 d

�
. j̨ /�; . j̨ /C

�
;

d
�
.ˇ0j /�; .ˇ

0
j /C

�
�2K1 d

�
.˛0j /�; .˛

0
j /C

� (5.15)

for j D 0; 1. Observe that ˛0 and ˛00 have the same labels and ˛1 and ˛01 have mutually
inverse labels. Therefore, the numbers on the right sides of (5.15) are equal. This implies
that

d
�
. ǰ /�; . ǰ /C

�
�4K1 d

�
.ˇ0j /�; .ˇ

0
j /C

�
:

Since ˇ0ˇ1 and ˇ00ˇ
0
1 are initial segments of the geodesic 
1, we deduce that

d
�
.ˇ0/C; .ˇ

0
0/C

�
6 4K1;

d
�
.ˇ1/C; .ˇ

0
1/C

�
6 8K1:

From here, from the K1-similarity of ˛i and ˇi , and from the K1-similarity of ˛0i and ˇ0i
we deduce that

d
�
.˛1/�; .˛

0
1/�

�
D d

�
.˛0/C; .˛

0
0/C

�
6 d

�
.˛0/C; .ˇ0/C

�
C d

�
.ˇ0/C; .ˇ

0
0/C

�
C d

�
.ˇ00/C; .˛

0
0/C

�
6 K1 C 4K1 CK1 D 6K1;

d
�
.˛1/C; .˛

0
1/C

�
6 d

�
.˛1/C; .ˇ1/C

�
C d

�
.ˇ1/C; .ˇ

0
1/C

�
C d

�
.ˇ01/C; .˛

0
1/C

�
6 K1 C 8K1 CK1 D 10K1:

By Lemma 4.3, the Hausdorff distance between ˛1 and ˛01 is at most K2.

Observe that ˛1 and ˛01 satisfy assumptions of Theorem 5.2. Indeed, ˛1 and ˛01 are
subpaths of the quasi-geodesics L..˛1/�; c1/ and L..˛01/�; c

�1
1 /, respectively, each of
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them contains at least f .K2/ periods by Claim 1, and the Hausdorff distance between ˛1
and ˛01 is at most K2 by Claim 4. By this theorem, there exist integers s; t ¤ 0 such that
z�1cs1z D c

t
1, where z 2 G is the element representing the label of any path from .˛01/�

to .˛1/�. As such path we take ˛00h˛0. Then z D uwu�1, and we have w�1csw D ct .
Hence

w 2 EG.c/:

Since w D d�mc�n, we have dm D c�nw�1 2 EG.c/ and hence EG.c/ D EG.d/. This
contradicts the assumption of Proposition 5.4.

Thus, the inequality (5.2) is impossible, and we are done.

5.3. Loxodromic-elliptic case

Remark 5.5. Suppose that G is a group and X � G is a (possibly infinite) generating
set of G such that �.G;X/ is ı-hyperbolic for some ı > 0. A subgroup H of G is called
elliptic (with respect to X ) if, acting on �.G;X/, it has bounded orbits.

It is well known that any elliptic subgroup H of G can be conjugated into the ball of
radius 4ı C 1 and center 1 in �.G;X/. The proof of this fact is given in [9] for the case
where G is a hyperbolic group. It also works under the above assumptions. An alternative
proof is given in [47, Corollary 6.7].

Proposition 5.6. Let G be a group and let X be a generating set of G. Suppose that
the Cayley graph �.G; X/ is hyperbolic and acylindrical. Then there exists a constant
N1 > 0 such that for any loxodromic (with respect to X ) element c 2 G, any elliptic
element e 2 G nEG.c/, and any n 2 N, we have that

jcnejX >
n

N1
:

Proof. The proof is very similar to the proof of Lemma 5.4. However, some pieces are
new and some are easier. Therefore, we decided to present a complete proof for clearness.
Let ı > 0 be a constant such that �.G;X/ is ı-hyperbolic.

We use the following constants:

• ~ > 1, "0 > 0, and n0 2 N are the constants from Lemma 4.7;

• "1 D "1.ı/ > 0 is the constant from Lemma 4.8;

• "2 WD max¹"0; "1º;

• � D �.ı; ~; "2/; see Lemma 4.2;

• C is the constant from Theorem 5.2.

We show that the proposition is valid for

N1 D max
²
n0;

400.�C ı C 1/

inj.G;X/
C 2C C 1; ~."0 C 8ı C 4/

³
: (5.16)
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Suppose to the contrary that there exist a loxodromic (with respect to X ) element
c 2 G, an elliptic element e 2 G nEG.c/, and a number n 2 N such that

n > N1k; where k D jcnejX : (5.17)

Clearly, k ¤ 0.

Claim 1. There exist x; y 2 G such that e D x�1yx and the following holds:

(1) jyjX 6 8ı C 3,

(2) any path q0q1q2 in �.G;X/, where q0, q1, q2 are geodesics with labels represent-
ing x�1, y, x, is a .1; "1/-quasi-geodesic path.

Proof. It follows from (5.16) and (5.17) that n > N1k > N1 > n0. Then, by Lemma 4.7,
we have

jcnjX >
1

~
n � "0:

From this we deduce that

k D jcnejX > jcnjX � jejX
(5.3)
>

1

~
n � "0 � jejX >

1

~
N1k � "0 � jejX

(5.16)
> k."0 C 8ı C 4/ � "0 � jejX > k C 8ı C 3 � jejX :

Hence jejX > 8ıC 3. Since e is elliptic, e is conjugate to an element ofG of length at most
4ı C 1 (see Remark 5.5). Thus, the assumption and, hence, the conclusion of Lemma 4.8
are satisfied.

For any g 2 G, let S.g/ be the set of shortest elements in the conjugacy class of g. Let
u2G be a shortest element for which there exists c1 2S.c/with the property cD u�1c1u.

We denote w D .cne/�1. Then jwjX D k and we have the equation

u�1 c1c1 � � � c1„ ƒ‚ …
n

ux�1yxw D 1: (5.18)

Consider a geodesic .nC 6/-gon P D p0.p1p2 � � �pn/pnC1 Nq2 Nq1 Nq0h in the Cayley graph
�.G; X/ such that the labels of its sides correspond to the elements in the left side of
(5.18); see Figure 10.

In particular, the labels of the paths q0, q1, q2 correspond to the elements x�1, y�1,
and x. By Claim 1, the path q WD q0q1q2 is a .1; "1/-quasi-geodesic. Since n > N1k >
N1 > n0, we have by Lemma 4.7 that the path p WD p0p1p2 � � �pnpnC1 is a .~; "0/-quasi-
geodesic. Then p and q are .~; "2/-quasi-geodesics. In the following claims, we use the
following constants:

K D k C 36�C 26ı; K1 D K C 2�C 6ı C 2; K2 D K1 C 2�C 2ı:

Claim 2. The quasi-geodesic p1p2 � � �pn contains n > 2f .2K2/C 1 c1-periods.
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Figure 10

Figure 11

Proof. The claim follows straightforward from the definition of function f .r/ in Theo-
rem 5.2 and from (5.16) and (5.17).

Let P be the middle point of the quasi-geodesic p1p2 � � � pn and let Q be the
middle point of the geodesic q1. As in Claim 2 of the proof of Proposition 5.4, we have
that d.P;Q/ 6 K.

We consider the decomposition p0p1p2 � � � pnpnC1 D ˛0˛1˛2˛3, where ˛0 D p0,
˛3 D pnC1, and ˛1 and ˛2 are determined by the condition .˛1/C D P D .˛2/�; see
Figure 11.

Claim 3. There are decompositions q0 D ˇ0ˇ1 and q2 D ˇ2ˇ3 such that ˛i and ˇi are
K1-similar for i D 0; : : : ; 3. In particular, the Hausdorff distance between ˛i and ˇi is at
most K2.

Proof. Because of symmetry, we show only that the first decomposition exists. By
Claim 1, we have that d..q1/�; .q1/C/ D jyjX 6 8ı C 3. Hence

d
�
.˛0˛1/�; .q0/�

�
D k;

d
�
.˛0˛1/C; .q0/C

�
6 d.P;Q/C

1

2
d
�
.q1/�; .q1/C

�
< K C 4ı C 2:
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By Lemma 4.3 applied to the .~; "2/-quasi-geodesics ˛0˛1 and q0, there exists a point
U 2 q0 such that d..˛1/C; U / 6 K C 4ı C 2C .2�C 2ı/ D K1.

The point U divides the path q into two subpaths. We denote them by ˇ0, ˇ1. By
construction, the paths ˛i and ˇi are K1-similar. Again by Lemma 4.3, the Hausdorff
distance between ˛i and ˇi is at most K1 C 2�C 2ı D K2.

Recall that the geodesics q0 and q2 have mutually inverse labels. Therefore, there
exists g 2 G such that q0 D g.q2/. We denote

˛00 D g.˛3/; ˛01 D g.˛2/; ˇ00 D g.ˇ3/; and ˇ01 D g.ˇ2/:

Then ˇ0ˇ1 D ˇ00ˇ
0
1 D q0.

Claim 4. One of ˛1, ˛01 lies in the 2K2-neighborhood of the other.

Proof. By Claim 3, the Hausdorff distance between ˛1 and ˇ1 is at most K2. Also the
Hausdorff-distance between ˛01 and ˇ01 is at mostK2. The claim follows from the fact that
one of ˇ1, ˇ01 is a subsegment of the other.

Observe that ˛1 and ˛01 satisfy assumptions of Theorem 5.2. Indeed, ˛1 and ˛01 are
subpaths of the quasi-geodesics L..˛1/�; c1/ and L..˛01/�; c

�1
1 /, respectively, each of

them contains at least f .2K2/ periods by Claim 2, and one of them lies in the 2K2-
neighborhood of the other by Claim 3. By this theorem, there exist integers s; t ¤ 0 such
that z�1cs1zD c

t
1, where z 2G is the element representing the label of any path from .˛01/�

to .˛1/�. As such path we take ˛00h˛0. Then z D uwu�1, and we have thatw�1csw D ct .
Hence

w 2 EG.c/:

Since wD .cne/�1, we have that e 2EG.c/. This contradicts the assumption of Proposi-
tion 5.6. Thus, the inequality (5.17) is impossible, and we are done.

6. Extension of quasi-morphisms from hyperbolically embedded
subgroups to the whole group

6.1. A sufficient condition for preserving the ellipticity under decreasing of a
generating set

Lemma 6.1. Let G be a group and X a generating set of G. Suppose that �.G; X/ is
hyperbolic and acylindrical. Let a1; : : : ; ak 2 G be finitely many loxodromic elements
with respect to X . Let g 2 G be an element non-commensurable with elements of A D
¹a1; : : : ; akº. If g is elliptic with respect to X 0 D X [ EG.a1/ [ � � � [ EG.ak/, then g is
elliptic with respect to X .

Proof. Let Bi be a finite set of representatives of left cosets of hai i in EG.ai /, i D
1; : : : ; k. Enlarging X by a finite set does not change the property of �.G; X/ to be
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Figure 12. Case s D 2.

hyperbolic and acylindrical (see [47, Lemma 5.1]) and the property of elements of G to
be elliptic or loxodromic. Therefore, we may assume that X contains

Sk
iD1Bi . Let ı > 0

be a constant such that �.G;X/ is ı-hyperbolic.
To the contrary, suppose that g is elliptic with respect to X 0 and not elliptic with

respect to X .
Then the following holds.

(1) There exists R > 0 such that jgnjX 0 6 R for all n 2 Z.

(2) g is loxodromic with respect to X .

We fix an arbitrary n 2N and write gn D x1x2 � � �xt , where xi 2 X 0 and t is minimal.
In particular, t 6 R. Each element of EG.ai / can be written in the form baki for some
b 2 Bi � X . Therefore, gn can be written as

gn D u0a
k1
i1
u1a

k2
i2
� � �us�1a

ks
is
us;

where u0; : : : ; us are words in X , ai1 ; ai2 : : : ; ais 2 A, 0 6 s 6 t 6 R, and

sX
jD0

juj jX 6 t 6 R: (6.1)

Let f0; h 2 G be elements such that g D f �10 hf0 and h is a shortest element (with
respect toX ) in the conjugacy class of g. For each ai 2 A, let fi ; bi 2 G be elements such
that ai D f �1i bifi and bi is a shortest element (with respect to X ) in the conjugacy class
of ai . Let F D max¹jfi jX j i D 0; : : : ; kº. Then

hn D v0b
k1
i1
v1b

k2
i2
� � � vs�1b

ks
is
vs;

where v0 D f0u0f
�1
i1

, vj D fij ujf
�1
ijC1

, j D 1; : : : ; s � 1, and vs D fisusf
�1
0 . Using

(6.1), we have that

sX
jD0

jvj jX 6
sX

jD0

juj jX C 2jf0jX C 2

sX
jD1

jfij jX 6 RC 2.RC 1/F: (6.2)

Let P be a geodesic 2.s C 1/-gon in �.G;X/ with sides p0; q0; p1; : : : ; ps; qs such
that p0; p1; : : : ; ps are quasi-geodesics representing h�n; bk1i1 ; : : : ; b

ks
is

and q0; : : : ; qs are
geodesics representing v0; : : : ; vs; see Figure 12.
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Since the elements h; bi1 ; : : : ; bis are loxodromic with respect to X and have mini-
mal length in their conjugacy classes, the paths p0; p1; : : : ; ps are .~; "/-quasi-geodesics,
where ~ and " are universal constants from Corollary 3.6. We set

˛ D 2Rı C 2�.ı; ~; "/;

where �.ı; ~; "/ is the constant from Lemma 4.2.

Claim 1. The side p0 lies in the ˛-neighborhood of the union of other sides of P .

Proof. For each i D 0; : : : ; s, we chose a geodesic segment epi such that .epi /�D .pi /� and
.epi /CD.pi /C. Consider the geodesic 2.sC1/-gon zP with the sidesfp0; q0;fp1; : : : ; eps; qs .
The side fp0 lies in the 2sı-neighborhood of the other sides of zP . By Lemma 4.2, the
Hausdorff distance between epi and pi is at most �.ı; ~; "/ for every i . This completes the
proof.

For i D 0; : : : ; s, we set

Di D ~
�
2˛ C jvi jX C "

�
C 1:

Claim 2. For any i2¹0; : : : ; sº, the ˛-neighborhood of qi contains at mostDi points of p0.

Proof. Let Qi be the set of points on p0 which lie in the ˛-neighborhood of qi . Suppose
that Qi ¤ ; and let z1 and z2 be the leftmost and the rightmost points of Qi on p0.
Then dX .z1; z2/ 6 2˛ C `.qi / D 2˛ C jvi jX . Therefore, the length of the subpath of p0
connecting z1 and z2 is at most ~.2˛ C jvi jX C "/, and the claim follows.

We set
ˇ D �.ı; ~; "; ˛/;

where � is the function from Lemma 4.3. Also, for j D 1; : : : ; s, we set

Cj WD max
®
~
��
f .ˇ/C 2

�
jbij jX C 2˛ C "

�
;
�
f .ˇ/C 2

�
jhjX

¯
; (6.3)

where f is the function from Theorem 5.2.

Claim 3. For anyj2¹1; : : : ; sº, the ˛-neighborhood ofpj contains at mostCj points ofp0.

Proof. Let c be the maximal subpath of p0 for which there exists a subpath c0 of pj or pj
with the property

dX .c�; c
0
�/ 6 ˛ and dX .cC; c

0
C/ 6 ˛: (6.4)

Suppose that the ˛-neighborhood of pj contains more than Cj points of p0. Then

`.c/ > Cj :

We check the following statements:

(1) the Hausdorff distance between c and c0 is at most ˇ;

(2) the path c contains at least f .ˇ/ h-periods;

(3) the path c0 contains at least f .ˇ/ b˙ij -periods.
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Statement (1) follows from (6.4) and Lemma 4.3. Statement (2) follows from

`.c/ > Cj
(6.3)
>
�
f .ˇ/C 2

�
jhjX :

Finally, statement (3) follows from

`.c0/ > dX .c
0
�; c
0
C/ > dX .c�; cC/ � dX .c�; c

0
�/ � dX .cC; c

0
C/ > dX .c�; cC/ � 2˛

>
1

~
`.c/ � " � 2˛ >

1

~
Cj � " � 2˛

(6.3)
>
�
f .ˇ/C 2

�
jbij jX :

It follows from statements (1)–(3) and Theorem 5.2 that h and bij are commensurable.
Then g and aij are commensurable. A contradiction.

It follows from Claims 1–3 that p0 contains at most
Ps
iD0 Di C

Ps
jD1 Cj points.

Using (6.2), we have that
sX
iD0

Di 6 .RC 1/
�
~.2˛ C "/C 1

�
C ~

�
RC 2.RC 1/F

�
:

We also have that
sX

jD1

Cj 6RmaxCj 6Rmax
®
~
��
f .ˇ/C 2

��
max

iD1;:::;k
jai jX

�
C 2˛C "

�
;
�
f .ˇ/C 2

�
jhjX

¯
:

Therefore, `X .p0/ is bounded from above by a constant which does not depend on n.
This contradicts the fact that `X .p0/ D njhjX > n.

6.2. Improving relative generating sets for hyperbolically embedded subgroups

Recall that in the situation ¹E1; : : : ;Ekº ,!h G, we use notation E D E1 t � � � tEk . The
following lemma follows directly from Definition 3.12.

Lemma 6.2. Suppose that ¹E1; : : : ;Ekº ,!h .G;X/ and let Y be a subset ofG such that
X � Y � hXi and supy2Y jyjX <1. Then ¹E1; : : : ; Ekº ,!h .G; Y /.

Proof. The hyperbolicity of �.G; Y t E/ follows from the hyperbolicity of �.G;X t E/

by Lemma 3.3. The local finiteness of .Ei ; bdi Y /, where the relative metric bdi Y on Ei is
defined using Y , follows from the local finiteness of .Ei ; bdiX /, where the relative metricbdiX on Ei is defined using X .

Lemma 6.3. Suppose that ¹E1; : : : ; Ekº ,!h .G;X/, where E1; : : : ; Ek are infinite vir-
tually cyclic subgroups of G. Then there exists a subset Y � G containing X such that
the following properties are satisfied:

(1) hY i D G,

(2) ¹E1; : : : ; Ekº ,!h .G; Y /,

(3) �.G; Y / and �.G; Y t E/ are hyperbolic and acylindrical,

(4) if G is not virtually cyclic, then G is acylindrically hyperbolic with respect to Y ,
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(5) if g 2 G is an elliptic element with respect to Y [
Sk
iD1 Ei such that g is non-

commensurable with elements of
Sk
iD1 Ei of infinite order, then g is elliptic with

respect to Y . Moreover, there exists u 2 G such that u�1gmu 2 Y for all m 2 Z.

Proof. By Theorem 3.15, there exists a subsetX1�G such thatX �X1 and the following
conditions hold.

(i) ¹E1; : : : ; Ekº ,!h .G;X1/.

(ii) �.G;X1 t E/ is hyperbolic and acylindrical.

We show thatX1 can be chosen so that, additionally,X1 generatesG. LetAi be a finite
generating set of Ei . We set X2 WD X1 [A1 [ � � � [Ak . Since G D hX1 [

Sk
iD1Ei i, we

have that G D hX2i.

Claim 1. (a) ¹E1; : : : ; Ekº ,!h .G;X2/.

(b) �.G;X2 t E/ is hyperbolic and acylindrical.

(c) �.G;X2/ is hyperbolic and acylindrical.

Proof. Since jX1�X2j < 1, we have that (i),(a) by Lemma 3.13 and (ii),(b) by
Lemma 3.3. To prove (c), we first observe that ¹1º ,!h .Ei ; Ai / for i D 1; : : : ; k, and
recall that ¹E1; : : : ;Ekº ,!h .G;X1/. By [14, Proposition 4.35], this implies that ¹1º ,!h

.G; X2/. In particular, by definition this means that �.G; X2/ is hyperbolic. The acylin-
dricity of �.G;X2/ can be proved as in the part of the proof of [47, Theorem 1.4], starting
from the words “let us show that �.G;X/ is acylindrical.”

Let ı > 0 be a number such that �.G;X2/ is ı-hyperbolic. We set

Y D
®
g 2 G j jgjX2 6 4ı C 1

¯
:

Since G D hX2i, we have that G D hY i, i.e., (1). Statement (2) follows from Lemma 6.2
and Claim 1 (a).

Now we prove (3). The hyperbolicity and acylindricity of �.G; Y t E/ follows from
the hyperbolicity and acylindricity of �.G; X2 t E/ by Lemma 3.3. Analogously, the
hyperbolicity and acylindricity of �.G; Y / follows from the hyperbolicity and acylindric-
ity of �.G;X2/.

For (4) and (5), we first prove the following claim.

Claim 2. Let ai 2Ei be an arbitrary element of infinite order. Then ai is loxodromic with
respect to Y and Ei D EG.ai /.

Proof. By statement (3), �.G;Y / is hyperbolic and acylindrical. Therefore any element of
G is either elliptic or loxodromic with respect to Y . By statement (2), the space .Ei ; bdi Y /
is locally finite, hence ai cannot be elliptic with respect to Y .

Since EG.ai / is the maximal virtually cyclic subgroup containing ai , we have that
Ei � EG.ai /. The inverse inclusion follows from Lemma 3.14 and the algebraic charac-
terization of EG.ai / in (3.1).
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We prove (4). Suppose that G is not virtually cyclic. Since �.G; Y / is hyperbolic and
acylindrical, it suffices to show that the action of G on �.G; Y / is non-elementary. By
Claim 2, this action has unbounded orbits. Thus, cases (a) and (b) of Theorem 3.9 are
excluded. The remaining case (c) of this theorem says that G is acylindrically hyperbolic
with respect to Y .

Finally, we prove (5). Suppose that g 2 G is an elliptic element with respect to Y [Sk
iD1 Ei and that g is non-commensurable with elements of

Sk
iD1 Ei of infinite order.

Assumptions of Lemma 6.1 are valid for �.G; Y /, the elements a1; : : : ; ak from Claim 2,
and the element g. By this lemma, g is elliptic with respect to Y .

Since supy2Y jyjX2 6 4ı C 1, we conclude that g is elliptic with respect to X2. By
Remark 5.5, hgi is conjugated into Y .

6.3. Quasi-morphisms

Let G be a group. Recall that a map q W G ! R is called a quasi-morphism if there exists
a constant " > 0 such that for every f; g 2 G we have thatˇ̌

q.fg/ � q.f / � q.g/
ˇ̌
< ":

For a quasi-morphism q W G ! R, we define its defect D.q/ by

D.q/ D sup
f;g2G

ˇ̌
q.fg/ � q.f / � q.g/

ˇ̌
:

The quasi-morphism q is called homogeneous if q.gm/ D m � q.g/ for all g 2 G and
m 2 Z.

Remark 6.4. For every quasi-morphism q W G ! R, there exists a unique homogenous
quasi-morphism Qq W G ! R which lies at a bounded distance from q. This means that the
following conditions are satisfied:

(1) Qq.gm/ D m � Qq.g/ for all g 2 G and m 2 Z,

(2) there exists C > 0 such that jq.g/ � Qq.g/j 6 C for all g 2 G.

The quasi-morphism Qq is defined by the formula

Qq.g/ D lim
m!1

q.gm/

m
: (6.5)

Lemma 6.5. Suppose that q W G ! R is a homogeneous quasi-morphism. Then q is
constant on each conjugacy class of elements of G. In particular, if a; b 2 G are two
commensurable elements and q.a/ D 0, then q.b/ D 0.

Proof. Let u; g; h 2 G be elements such that u�1gu D h. Thenˇ̌
q.gm/ � q.hm/

ˇ̌
6 2

�
q.u/CD.q/

�
for all m 2 N. Hence

q.g/ D lim
m!1

q.gm/

m
D lim
m!1

q.hm/

m
D q.h/:
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Statements (a) and (b) of the following corollary follow from [24, Theorem 4.2]. We
show that statement (c) can be deduced from the proof of this theorem combined with
Lemma 6.3.

Corollary 6.6. Suppose thatG is a group and E1; : : : ;Ek are infinite cyclic subgroups of
G generated by elements a1; : : : ; ak , respectively. Suppose that ¹E1; : : : ;Ekº ,!h .G;X/

and denote E D
Sk
iD1Ei . Then for all I � ¹1; : : : ; kº, there exists a homogenous quasi-

morphism Qq W G ! R such that the following hold:

(a) Qq.ai / D 1 for all i 2 I ,

(b) Qq.ai / D 0 for all i … I ,

(c) Qq.g/ D 0 for all g 2 Ell.G; X [ E/ that are non-commensurable with elements
of E.

Proof. By Lemma 6.3, there exists a subset Y � G such that X � Y and the statements
(1)–(5) of this lemma are satisfied. In particular, we have that ¹E1; : : : ; Ekº ,!h .G; Y /.
By [24, Theorem 4.2] applied to this hyperbolic embedding, there exists a quasi-morphism
q W G ! R (possibly inhomogenous) such that the following hold:

(a0) q.ani / D n for all i 2 I and all n 2 Z,

(b0) q.ani / D 0 for all i … I and all n 2 Z.

Moreover, by construction of q in the proof of this theorem, we obtain

(c0) q.y/ D 0 for all y 2 Y nE.

Let Qq be the homogenous quasi-morphism obtained from q by (6.5). Then Qq satisfies
conditions (a), (b). We prove that Qq satisfies condition (c).

Condition (c) is obviously valid for elements g 2G of finite order. Suppose that g 2G
has infinite order and is elliptic with respect to X [ E and non-commensurable with ele-
ments ofE. Then g is elliptic with respect to Y [E. By statement (5) of Lemma 6.3, there
exists u2G such that u�1gmu2 Y for allm2N. Since g is non-commensurable with ele-
ments ofE, we have that u�1gmu2Y nE for allm2N. By (c0), we obtain q.u�1gmu/D0
for all m2N. Then Qq.u�1gu/D0. By Lemma 6.5, we have that Qq.g/D0, i.e., (c).

7. Equation xnym D anbm in acylindrically hyperbolic groups

Proposition 7.1. Let G be an acylindrically hyperbolic group. Suppose that a and b are
two non-commensurable jointly special elements of G. Then there exists a generating
set Y of G containing E D hai [ hbi and there exists a number N 2 N such that for all
n;m > N the following holds:

if .c; d/ is a solution of the equation xnym D anbm, then one of the following holds:

(1) c and d are loxodromic with respect to Y and EG.d/ D EG.c/;

(2) c is loxodromic with respect to Y , d is elliptic, and dm 2 EG.c/;

(3) d is loxodromic with respect to Y , c is elliptic, and cn 2 EG.d/;
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(4) c and d are elliptic with respect to Y and one of the following holds:

(a) c is conjugate to a and d is conjugate to b;

(b) c is conjugate to b, d is conjugate to a, and jn �mj 6 N .

Proof. By [14, Theorem 6.8], there exists a subset X1 � G such that ¹hai; hbiº ,!h

.G; X1/. Then, by [47, Theorem 5.4], there exists a subset X � G such that X1 � X
and the following conditions hold:

(1) ¹hai; hbiº ,!h .G;X/,

(2) �.G;X t E/ is hyperbolic and acylindrical, where E D hai [ hbi.

We set Y DX [E . By Propositions 5.4 and 5.6 applied to .G;Y /, there exist constants
N0 and N1 satisfying conclusions of these propositions. Now we analyze the equation
cndm D anbm.

Case 1. Suppose that c; d are loxodromic with respect to Y . Then, by Proposition 5.4,
if n;m > 2N0 and EG.c/ ¤ EG.d/, then jcndmjY > 2. On the other hand, jcndmjY D
janbmjY 6 2. Therefore, we have that EG.c/ D EG.d/ if n;m > 2N0.

Case 2. Suppose that c is loxodromic and d is elliptic with respect to Y . Then, by Propo-
sition 5.6, the following holds: if n > 2N1 and dm … EG.c/, then jcndmjY > 2. On the
other hand, jcndmjY D janbmjY 6 2. Therefore, we have that dm 2 EG.c/ if n > 2N1.

Case 3. Suppose that d is loxodromic and c is elliptic with respect to Y . Then, analo-
gously to Case 2, we obtain cn 2 EG.d/ if m > 2N1.

Case 4. Suppose that c; d are elliptic with respect to Y .

In this case, we will use Corollary 6.6 applied to the hyperbolic embedding®
hai; hbi

¯
,!h .G;X/:

Let qa W G ! R be a homogenous quasi-morphism such that qa.a/ D 1, qa.b/ D 0, and
qa.g/D 0 for all g 2 Ell.G;Y / that are non-commensurable with a and b. By Lemma 6.5,
if g is commensurable with b, then qa.g/D 0. Thus, qa.g/D 0 for all g 2 Ell.G; Y / that
are non-commensurable with a.

Analogously, let qb W G! R be a homogenous quasi-morphism such that qb.a/D 0,
qb.b/ D 1, and qb.g/ D 0 for all g 2 Ell.G; Y / that are non-commensurable with b. We
set

N2 D 2max
®
D.qa/;D.qb/

¯
:

and suppose that n;m > N2. From the definition of a quasi-morphism, we have thatˇ̌
qa.a

nbm/ � qa.a
n/ � qa.b

m/
ˇ̌

6 D.qa/:

Then ˇ̌
qa.a

nbm/ � n
ˇ̌

6 D.qa/: (7.1)
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Analogously, ˇ̌
qb.a

nbm/ �m
ˇ̌

6 D.qb/: (7.2)

We also have that ˇ̌
qa.c

ndm/ � qa.c
n/ � qa.d

m/
ˇ̌

6 D.qa/; (7.3)ˇ̌
qb.c

ndm/ � qb.c
n/ � qb.d

m/
ˇ̌

6 D.qb/:

Subcase 4.1. Suppose that there exists x 2 ¹a; bº such that c and d are non-commensu-
rable with x. Without loss of generality, we assume that x D a. Then (7.3) implies thatˇ̌

qa.c
ndm/

ˇ̌
6 D.qa/: (7.4)

It follows from (7.1) and (7.4) that n 6 2D.qa/ 6 N2. A contradiction.

Subcase 4.2. Suppose that c is commensurable with a and d is commensurable with b.
The former means that there exist u 2 G and s1; s2 2 Z n ¹0º such that cs1 D u�1as2u.
Then c 2 EG.u�1au/. Since a is special, we have that EG.u�1au/ D hu�1aui. Hence
c D u�1asu for some s 2 Z n ¹0º. Then (7.3) implies thatˇ̌

qa.c
ndm/ � sn

ˇ̌
6 D.qa/:

Using (7.1), we deduce that

jn � snj 6 2D.qa/ 6 N2:

Since n > N2, we have that s D 1; i.e., c D u�1au. Analogously, d and b are conjugate.

Subcase 4.3. Suppose that c is commensurable with b and d is commensurable with a.
The latter means that there exist v 2 G and t1; t2 2 Z n ¹0º such that d t1 D v�1at2v. Then
d 2 EG.v

�1av/D hv�1avi. Hence d D v�1atv for some t 2 Z n ¹0º. Then (7.3) implies
that ˇ̌

qa.c
ndm/ � tm

ˇ̌
6 D.qa/:

Using (7.1), we deduce that

jn � tmj 6 2D.qa/ 6 N2: (7.5)

Analogously, using the commensurability of c and b, we deduce that

jm � snj 6 N2 (7.6)

for some s 2 Z n ¹0º. It follows from n;m > N2 and (7.5), (7.6) that s; t > 1. Without loss
of generality, we assume that m > n. Then

m > N2 > jn � tmj D tm � n > .t � 1/m:

From this we deduce that t D 1 and jn �mj 6 N2.

Taking into account all considered cases, we can set N D max¹2N0; 2N1; dN2eº.
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The following lemma says that if n, m in Proposition 7.1 have a certain common
divisor, then only the subcase (a) in the conclusion of this proposition is possible; i.e., c is
conjugate to a and d is conjugate to b. A description of these conjugates will be given in
Corollary 9.5.

Lemma 7.2. Let G be an acylindrically hyperbolic group. Suppose that a; b 2 G are two
non-commensurable jointly special elements. Then there exists ` 2 N such that for all
n;m 2 `N, n ¤ m, the following holds:

if anbm D cndm, where c; d 2 G, then c is conjugate to a and d is conjugate to b.

Proof. We use the generating set Y as in the proof of Proposition 7.1. In particular, hai [
hbi � Y . We also use the homogenous quasi-morphisms qa W G ! R and qb W G ! R
defined there. In particular, qa.a/ D 1, qa.b/ D 0, qb.a/ D 0, and qb.b/ D 1.
� By Lemma 3.7, there exists a number L 2N such that for every loxodromic element

g 2 G (with respect to Y ), the elementary subgroup EG.g/ contains a normal cyclic
subgroup of index L.
� By Lemma 4.7, there exist ~ > 1, "0 > 0, and n0 2 N such that for any loxodromic

(with respect to Y ) element g 2 G and any n > n0 we have that

jgnjY >
1

~
n � "0:

�We set
` D LMNn0;

where M D d.2C "0/~e C 1 and N 2 N is the number from Proposition 7.1. Recall that
in the proof of this proposition we defined N so that we have that

N > 2max
®
D.qa/;D.qb/

¯
:

Suppose that anbn D cndm, where n;m 2 `N, n ¤ m. We analyze cases in the con-
clusion of Proposition 7.1.

(1) c and d are loxodromic with respect to Y and EG.c/ D EG.d/.
By Lemma 3.7, there exists z 2 EG.c/ such that cL and dL are powers of z, say

cL D zs and dL D zt . Then cndm D zsnCmt=L. Observe that snC mt ¤ 0; otherwise
anbm D cndm D 1 that is impossible by non-commensurability of a and b. Since ` D
MLNn0 is a divisor of n and m, we have (using Lemma 4.7) that

2 > janbmjY D jzsnCmt=LjY >
1

~

jsnCmt j

L
� "0 >

1

~

`

L
� "0 >

1

~
M � "0 > 2:

A contradiction.
(2) c is loxodromic with respect to Y , d is elliptic, and dm 2 EG.c/.
By definition of L, the group EG.c/ contains a normal infinite cyclic subgroup C of

index L. Hence cL 2 C and d�mcLdm D c˙L. Since L is a divisor of n, this implies that

d�mcndm D c˙n:
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The group C is generated by a loxodromic element, because it contains the loxodromic
element cL. Since dmL 2 C and d is elliptic, we have that

dmL D 1:

Subcase 1. Suppose that d�mcndm D cn. Then

.anbm/L D .cndm/L D cnLdmL D cnL:

It follows that

2L >
ˇ̌
.anbm/L

ˇ̌
Y
D jcnLjY >

1

~
nL � "0 >

1

~
ML � "0L > 2L:

A contradiction.

Subcase 2. Suppose that d�mcndm D c�n. Then

.anbm/2 D .cndm/2 D d2m:

Recalling that dmL D 1, we deduce that .anbm/2L D 1. Since homogeneous quasi-mor-
phisms vanish on periodic elements, we have that qa.anbm/ D 0. In view ofˇ̌

qa.a
nbm/ � qa.a

n/ � qa.b
m/
ˇ̌

6 D.qa/;

this implies that n 6 D.qa/ 6 N < `. A contradiction.

(3) d is loxodromic with respect to Y , c is elliptic, and cn 2 EG.d/.
This case is impossible by the same reason as the previous one.
(4) c and d are elliptic with respect to Y and one of the following holds:

(a) c is conjugate to a and d is conjugate to b;

(b) c is conjugate to b, d is conjugate to a, and jn �mj 6 N .

The case (b) is impossible since n; m 2 `N, n ¤ m, and N is a proper divisor of `.
Thus, only the case (a) is possible.

Remark 7.3. The condition on gcd.n;m/ in Lemma 7.2 cannot be replaced by the condi-
tion that n, m are sufficiently large. Indeed, if gcd.n;m/ D 1, then the equation xnym D
anbm in the free group F.a; b/ of rank 2 has infinitely many solutions

.x; y/ D
�
.anbm/s; .anbm/t

�
;

where s, t are integers satisfying nsCmt D 1. None of the components of these solutions
is conjugate to a or b.

8. Isolated components in geodesic polygons

In the following proof, we use Proposition 4.14 from [14]. Since this proposition and
accompanied definitions are crucial in the following proof, we recall them here.

Let G be a group, ¹H�º�2ƒ a collection of subgroups of G, and X a symmetrized
subset of G. We assume that X together with ¹H�º�2ƒ generates G. Let H D

F
�2ƒH�.
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Definition 8.1 (see [14, Definition 4.5]). Let q be a path in the Cayley graph �.G;XtH /.
A (non-trivial) subpath p of q is called an H�-subpath if the label of p is a word in the
alphabetH�. AnH�-subpath p of q is anH�-component if p is not contained in a longer
subpath of q with this property. Two H�-components p1; p2 of a path q in �.G;X tH /

are called connected if there exists a path 
 in �.G;X tH / that connects some vertex of
p1 to some vertex of p2, and Lab.
/ is a word consisting only of letters from H�.

Note that we can always assume that 
 has length at most 1 as every element of H�
is included in the set of generators. An H�-component p of a path q in �.G;X tH / is
isolated if it is not connected to any other component of q.

Recall that definitions of a weakly hyperbolic group and of a relative metric Od� onH�
were given in Section 3. Given a path p in �.G;X tH /, the canonical image of Lab.p/
in G is denoted by LabG.p/.

Definition 8.2 (see [14, Definition 4.13]). Let ~ > 1, " > 0, and n > 2. Let P D p1 � � �pn
be an n-gon in �.G;X tH / and let I be a subset of the set of its sides ¹p1; : : : ; pnº such
that

(1) each side pi 2 I is an isolated H�i -component of P for some �i 2 ƒ,

(2) each side pi … I is a .~; "/-quasi-geodesic.

We denote s.P ; I / D
P
pi2I

Od�i .1;LabG.pi //.

Proposition 8.3 (see [14, Proposition 4.14]). Suppose thatG is weakly hyperbolic relative
to X and ¹H�º�2ƒ. Then for any ~ > 1, " > 0, there exists a constant D.~; "/ > 0 such
that for any n-gon P in �.G; X tH / and any subset I of the set of its sides satisfying
conditions of Definition 8.2, we have that s.P ; I / 6 D.~; "/n.

Corollary 8.4. Suppose that G is weakly hyperbolic relative to X and ¹H�º�2ƒ. Let
P D p1p2p3 be a geodesic triangle in �.G;X tH /, where p3 is an isolated component
of P or a degenerate path. Suppose that q is an H�-component of P of the form q D

q1q2, where q1 is a terminal subpath of p1 and q2 is an initial subpath of p2. Then
Od�.1;LabG.q// 6 4D.1; 0/.

Proof. Let q01 and q02 be paths such that p1 D q01q1 and p2 D q2q02. Consider the 4-gon
P 0 D q01qq

0
2p3. TheH�-component q of P 0 cannot be connected to p3 by assumption and

it cannot be connected to an H�-component of q01 or q02, since p1 and p2 are geodesics.
Therefore, q is an isolated component in P 0, and we are done by Proposition 8.3.

9. Perfect equations of kind xnym D anbm in acylindrically
hyperbolic groups

The first proposition in this section describes conjugators in the conclusion of Lemma 7.2.
From this proposition and the lemma we deduce Corollary 9.5, which gives a clear descrip-
tion of solutions of the equation xnym D anbm in acylindrically hyperbolic groups in the



Equations in acylindrically hyperbolic groups and verbal closedness 653

case where a, b are non-commensurable and jointly special, and n;m have a certain com-
mon divisor.

Proposition 9.1. Let G be an acylindrically hyperbolic group. Suppose that a; b 2 G are
two non-commensurable jointly special elements. Then there exists N 2 N such that for
any n;m > N and any u; v 2 G satisfying

.u�1anu/.v�1bmv/ D anbm;

there exists r 2 Z such that u 2 hai.anbm/r and v 2 hbi.anbm/r .

We give a proof of this proposition after introducing some auxiliary definitions and
lemmas. These lemmas will be proved at the end of this section.

We set Ha D hai, Hb D hbi, and H D Ha tHb . By [14, Theorem 6.8], there exists
a symmetrized subset X of G such that ¹Ha;Hbº ,!h .G;X/. In particular, G is weakly
hyperbolic relative to X and ¹Ha;Hbº. The associated relative metrics on Ha and on Hb
are denoted by Oda and Odb , respectively (see Definition 3.11).

A path p in �.G;X tH / is called an a-path (respectively, a b-path) if the label of p
is a word in letters from Ha (respectively, from Hb).

For an element g D ai 2 Ha, the number ji j is called the a-length of g. Analogously
we define the b-length of an element g 2 Hb .

A word w in the alphabet X tH is called geodesic if it has minimal length among
all words, representing the same element in G as w. In particular, w does not contain two
consecutive letters which both lie in Ha or both lie in Hb .

Definition of the complexity of a word. Given a geodesic wordw in the alphabetX tH ,
we define its complexity Compl.w/ as the pair .jwjXtH ; s/, where s is the sum of a-
lengths of its Ha-components plus the sum of b-lengths of its Hb-components. We order
the pairs lexicographically: .t 01; t

0
2/ � .t1; t2/ if t 01 < t1 or t1 D t 01 and t 02 < t2.

For an element g 2 G, we define its complexity Compl.g/ as the minimum of com-
plexities of geodesic words w in the alphabet X tH representing g. Note that there is
only finitely many elements in each descending chain of complexities.

For any pair .u; v/ of elements of G, we define its complexity as follows:

Compl.u; v/ D
�

Compl.u/;Compl.v/
�
:

We write
Compl.u1; v1/ < Compl.u; v/

if Compl.u1/ � Compl.u/ and Compl.v1/ � Compl.v/.

Definition of the number N . We have observed that G is weakly hyperbolic relative to
X and ¹Ha; Hbº. Let D D D.1; 0/ be the constant from Proposition 8.3 for parameters
.~; "/ D .1; 0/. We set

Na D max
®
i j Oda.1; a

i / 6 9D
¯
; Nb D max

®
i j Odb.1; b

i / 6 9D
¯
:
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Since the spaces .Ha; Oda/ and .Hb; Odb/ are locally finite, the numbers Na and Nb are
finite. We set

N D 4 �max¹Na; Nbº C 1:

Then N 2 N. We will prove that this N satisfies Proposition 9.1. For the rest of the
proof we assume that G, a, and b satisfy assumptions of this proposition and that n;m >

N .
Consider the following equations in variables x; y:

.x�1anx/.y�1bmy/ D anbm; (9.1)

.x�1anx/.y�1bmy/ D bman: (9.2)

Lemma 9.2. Suppose that .u; v/ is a solution of (9.1) such that u … hai, v … hbi. We set
.u1; v1/ WD .uan; van/ and .u2; v2/ WD .ub�m; vb�m/. Then .u1; v1/ and .u2; v2/ are
solutions of (9.2), and we have that

Compl.u1; v1/ < Compl.u; v/ or Compl.u2; v2/ < Compl.u; v/:

The following lemma is dual to Lemma 9.2.

Lemma 9.3. Suppose that .p; q/ is a solution of (9.2) such that p … hai, q … hbi. We set
.p1; q1/ WD .pa

�n; qa�n/ and .p2; q2/ WD .pbm; qbm/. Then .p1; q1/ and .p2; q2/ are
solutions of (9.1), and we have that

Compl.p1; q1/ < Compl.p; q/ or Compl.p2; q2/ < Compl.p; q/:

Proofs of these lemmas will be given later.

Proof of Proposition 9.1. Suppose that .u; v/ is a solution of (9.1). If u 2 hai, then
v�1bmv D bm, hence v 2 EG.b/ D hbi, and we are done. Analogously, if v 2 hbi, then
u 2 hai, and we are done. Thus, we may assume that u … hai and v … hbi.

By Lemma 9.2, .uan; van/ and .ub�m; vb�m/ are solutions of (9.2) and we have that
Compl.uan; van/ < Compl.u; v/ or Compl.ub�m; vb�m/ < Compl.u; v/. We consider
only the first case

Compl.uan; van/ < Compl.u; v/; (9.3)

since the second case can be considered analogously.
We may assume that .uan; van/ satisfies assumption of Lemma 9.3. Indeed, the first

assumption uan … hai is satisfied since u … hai. Suppose that the second assumption is not
satisfied; i.e., van 2 hbi. Then v 2 hbi � .anbm/�1, and we deduce from (9.1) that u�1anu �
anbma�n D anbm. It follows that uanbm 2 EG.a/ D hai. Hence u 2 hai.anbm/�1, and
we are done.

Thus, we assume that .uan; van/ satisfies assumption of Lemma 9.3. By (9.3), the first
case in the conclusion of this lemma cannot happen. Therefore, we have the second case;
i.e., .uanbm; vanbm/ satisfies (9.1) and

Compl.uanbm; vanbm/ < Compl.uan; van/:
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Figure 13

This formula and (9.3) imply that Compl.uanbm; vanbm/ < Compl.u; v/, and the state-
ment of Proposition 9.1 follows by induction.

Proof of Lemma 9.2. By an abuse of notation, for any elementw 2G, we also denote byw
a geodesic word of minimal complexity among all geodesic words in X tH representing
the element w.

Let .u; v/ be a solution of (9.1) satisfying assumption of Lemma 9.2. Obviously,
.u1; v1/ WD .uan; van/ and .u2; v2/ WD .ub�m; vb�m/ are solutions of (9.2). Thus, it
suffices to prove that one of the following holds:

(a) both words u and v end with a power of a which is smaller than �n=2;

(b) both words u and v end with a power of b which is larger than m=2.

Since n;m > N , we have that

n > 4Na D 4max
®
i j Oda.1; a

i / 6 9D
¯
; (9.4)

m > 4Nb D 4max
®
i j Odb.1; b

i / 6 9D
¯
: (9.5)

Let P D p1p2 � � � p8 be a geodesic 8-gon in �.G; X t H / with sides pi labeled by
consecutive syllables of the word

u�1anu v�1bmvb�ma�n:

More precisely, Lab.p1/ D u�1, Lab.p2/ D an, : : : ; and Lab.p8/ D a�n. Observe that
the sides p2, p5, p7, p8 of P are edges labeled by powers of a and b; see Figure 13.

By assumption of lemma, the words u and v are nonempty. Write u D aiu0 and v D
bj v0, where i; j 2 Z, the first letter of u0 does not lie in Ha, and the first letter of v0 does
not lie in Hb . As .u; v/, the pair .u0; v0/ is also a solution of (9.1) satisfying assumption
of lemma. Obviously, if we prove it for .u0; v0/, then we prove it for .u; v/ too.

Thus, we may assume that the first letter of u is not a nontrivial power of a, and the
first letter of v is not a nontrivial power of b.
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(a) (b)

Figure 14

Then p2 is an Ha-component of P and p5 is an Hb-component of P . It follows from
(9.4) and (9.5) that

Oda
�
1;LabG.p2/

�
D Oda.1; a

n/ > 9D;

Odb
�
1;LabG.p5/

�
D Odb.1; b

�m/ D Odb.1; b
m/ > 9D:

These inequalities and Proposition 8.3 imply that the components p2 and p5 are not iso-
lated in P .

Then p2 is connected to a component of p4 or p6 and p5 is connected to a component
of p1 or p3.

Case 1. Suppose that p2 is connected to an Ha-component of p6.

Then there exists a geodesic rectangle P1 D p2r1o2r2, where o2 is anHa-component
of p6 (see Figure 14(a)). Let o1; o3 be subpaths of p6 such that p6 D o1o2o3. We consider
two complementary geodesic 5-gons P2 D p3p4p5o1r1 and P3 D p1r2o3p7p8.

The path p5 is not an isolated Hb-component of P2 (by Proposition 8.3 and using the
inequality Odb.1;LabG.p5// > 9D). Therefore, p5 is connected to some Hb-component
ˇ of p3 (see Figure 14(b)). Then p3 D ˛ˇ
 for some subpaths ˛, 
 of p3. Let ı be a
geodesic b-path from .p5/� to ˇC. We consider the triangle �1 D 
p4ı. The path ı is an
isolated Hb-component of �1 or a degenerate path.

In the rest of the proof we use the following notation. For any nontrivial path p in
the Cayley graph �.G; X tH /, let pı and p� denote the first and the last edges of p,
respectively.

Let t be the Hb-component of P containing the edge p7. Then t is contained in o3p7
(see Figure 15).

Subcase 1.1. Suppose that t is not connected to a component of p1.
Then t is isolated in the 5-gon P3.
By Proposition 8.3 applied to P3, we obtain

Odb
�
1;LabG.t/

�
6 5D: (9.6)
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Figure 15

By (9.5), we have that

Odb
�
1;LabG.p7/

�
D Odb.1; b

�m/ > 9D:

Therefore, p7 is a proper subpath of t , and hence t D p�6p7 with

Odb
�
1;LabG.p�6/

�
> 4D:

Since LabG.p6/ D LabG.p4/, we have that LabG.p�6/ D .LabG.pı4//
�1. Hence

Odb
�
1;LabG.pı4/

�
> 4D: (9.7)

We claim that the b-path pı4 cannot be a component of�1. Indeed, if it were, we could
apply Corollary 8.4 to the triangle �1, its side ı (which is an isolated Hb-component of
�1 or a degenerate path), and to the component pı4, and get a contradiction to (9.7).

Hence p�3p
ı
4 is a component of �1 and, by Corollary 8.4, we have that

Odb
�
1;LabG.p�3p

ı
4/
�

6 4D: (9.8)

Now we estimate y; z 2 Z such that LabG.p�3/ D b
y and LabG.p�6/ D b

z . Since

LabG.t/ D LabG.p�6p7/ D b
z�m;

LabG.p�3p
ı
4/ D LabG.p�3/

�
LabG.p�6/

��1
D by�z ;

we deduce from (9.6) and (9.8) that

jz �mj 6 Nb and jy � zj 6 Nb :

Since m > 4Nb , we have that

z > m �Nb >
3

4
m and y > z �Nb >

1

2
m:

Observe that the word u D Lab.p3/ ends with Lab.p�3/ D by and the word v D
Lab.p6/ ends with Lab.p�6/ D b

z . Thus, by previous estimations, both u and v end with
a power of b which is larger than m=2, and we are done.

Subcase 1.2. Suppose that t is connected to some component of p1.
Let � be a geodesic b-path from the initial point of this component to tC (see Figure

16). We consider the triangle �2 D p8�� , where � is the initial path of p1 with the
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Figure 16

endpoint �C D ��. The path � is either an isolated Hb-component of �2 or a degenerate
path. Let q be an Ha-component of �2 containing p8. Then q is also isolated in �2.

By Proposition 8.3, we have that

Oda
�
1;LabG.q/

�
6 3D: (9.9)

By (9.4), we have that

Oda
�
1;LabG.p8/

�
D Oda.1; a

�n/ > 9D:

Therefore, p8 is a proper subpath of q, and hence q D p8pı1 with

Oda
�
1;LabG.pı1/

�
> 6D:

Since LabG.p1/ D LabG.p3/, we have that LabG.pı1/ D .LabG.p�3//
�1. Hence

Oda
�
1;LabG.p�3/

�
> 6D:

By Corollary 8.4 applied to the triangle �1, the a-path p�3 cannot be a component of
�1. Hence p�3p

ı
4 is a component of �1 and, by this corollary, we have that

Oda
�
1;LabG.p�3p

ı
4/
�

6 4D: (9.10)

Now we estimate z; y 2 Z such that LabG.pı1/ D a
z and LabG.pı4/ D a

y . Since

LabG.q/ D LabG.p8pı1/ D a
�nCz ;

LabG.p�3p
ı
4/ D

�
LabG.pı1/

��1LabG.pı4/ D a
�zCy ;

we deduce from (9.9) and (9.10) that

j � nC zj 6 Na and j � z C yj 6 Na:

Since n > 4Na, we have that

z > n �Na >
3

4
n and y > z �Na >

1

2
n:

Observe that the word u D Lab.p1/ ends with .Lab.pı1//
�1 D a�z and the word

v D Lab.p4/ ends with .Lab.pı4//
�1 D a�y . Thus, by previous estimations, both u and

v end with a power of a which is smaller than �n=2, and we are done.
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Case 2. Suppose that p2 is connected to an Ha-component of p4.
Arguing as in Case 1, we can prove that p5 is connected to a component of p1.

After that, renaming a, b, u, v, n, m by b�1, a�1, v, u, m, n, respectively, we reduce to
Case 1.

To simplify formulations, we introduce the following definition.

Definition 9.4. Let g 2 G and n; m 2 Z. The equation xnym D g in variables x, y is
called perfect if it has a solution .x0; y0/ in G and any solution of this equation has the
form .x

g˛

0 ; y
g˛

0 / for some ˛ 2 Z.

The following corollary directly follows from Lemma 7.2 and Proposition 9.1.

Corollary 9.5. Let G be an acylindrically hyperbolic group. Suppose that a; b 2 G are
two non-commensurable jointly special elements. Then there exists a number `D `.a;b/2
N such that for all n;m 2 `N, n ¤ m, the equation xnym D anbm is perfect.

10. Special generating sets for finitely generated acylindrically
hyperbolic groups

The main purpose of this section is Proposition 10.6, which is essentially used in the proof
of Theorem A. Proposition 10.7 is only used in the proof of Corollary E. Other statements
of this section will be used in Sections 11–13.

The following lemma proven in [14] is crucial in many proofs. Therefore, we repro-
duce it here.

Lemma 10.1 (see [14, Lemma 4.21]). Let G be a group weakly hyperbolic relative to X
and ¹H�º�2ƒ and let W be the set consisting of all words U in X tH such that

(W1) U contains no subwords of type xy, where x; y 2 X ,

(W2) if U contains a letter h 2 H� for some � 2 ƒ, then Od�.1; h/ > 50D, where
D D D.1; 0/ is given by Proposition 8.3,

(W3) if h1xh2 (respectively, h1h2) is a subword of U , where x 2 X , h1 2 H�, h2 2
H�, then either � ¤ � or the element represented by x in G does not belong to
H� (respectively, � ¤ �).

Then the following hold.

(a) Every path in �.G;X tH / labeled by a word from W is .4; 1/-quasi-geodesic.

(b) For every " > 0 and every integer K > 0, there exist R D R.";K/ > 0 satisfying
the following condition. Let p; q be two paths in �.G;X tH / such that `.p/ >
R, Lab.p/;Lab.q/ 2 W , and p, q are oriented "-close; i.e.,

max
®
d.p�; q�/; d.pC; qC/

¯
6 ":

Then there exist K consecutive components of p which are connected to K con-
secutive components of q.
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Corollary 10.2. Suppose that G is a group, Y � G a subset, and E1; : : : ; Ek are sub-
groups of G such that

¹E1; : : : ; Ekº ,!h .G; Y /:

Suppose that a1; : : : ; ak are elements of infinite order from E1; : : : ;Ek , respectively. Then
there exists N 2 N such that if n1; : : : ; nk > N , then every cyclically reduced word W of
syllable length at least 2 in the alphabet ¹an11 ; : : : ; a

nk
k
º˙ represents a loxodromic element

of G with respect to Y t E , where E D E1 t � � � t Ek . In particular, han11 ; : : : ; a
nk
k
i is a

free group of rank k.
Moreover, if hY i D G, then each word W as above represents a loxodromic element

of G with respect to Y .

Proof. For i D 1; : : : ; k, let Odi be the metric on Ei associated with the embedding

¹E1; : : : ; Ekº ,!h .G; Y /:

Let
Ni WD max

®
n 2 N j Odi .1; a

n
i / 6 50D

¯
;

where D D D.1; 0/ is given by Proposition 8.3. We claim that

N D max¹Ni j i D 1; : : : ; kº C 1

satisfies the corollary. Let n1; : : : ; nk > N and let W be a cyclically reduced word in the
alphabet ¹an11 ; : : : ; a

nk
k
º˙ such that the syllable length of W is at least 2. Using conjuga-

tion, we may assume that the first and the last letters of W do not coincide and are not
inverse to each other.

Let U be the word in the alphabet han11 i t � � � t ha
nk
k
i obtained from W by replacing

each syllable of W of kind a˙nii � � � a
˙ni
i„ ƒ‚ …

s

by the unique letter a˙snii . Then Um satisfies

conditions (W1)–(W3) of Lemma 10.1 for anym 2 N. Let pm be the path in �.G;Y t E/

labeled by Um, such that .pm/� D 1. Since, by this lemma, the path pm is .4; 1/-quasi-
geodesic, we have that d.1; .pm/C/ > `.pm/=4 � 1 > m=2 � 1. Then U , and hence W ,
represents a loxodromic element of G with respect to Y t E . In particular, W ¤ 1 in G.
If W is of syllable length 1, i.e., W D a

nim
i for some i 2 ¹1; : : : ; kº and m ¤ 0, then,

obviously, W ¤ 1 in G. Therefore, han11 ; : : : ; a
nk
k
i is a free group of rank k.

The last statement of corollary obviously follows from the first one.

The following lemma is closely related to [14, Corollary 6.12].

Lemma 10.3. Let G be a group, X � G, and H ,!h .G;X/ a finitely generated infinite
subgroup. Then for any finite collection of elements a1; : : : ; as 2 G nH and any infinite
subset zH �H , there exist elements h1; : : : ; hs 2 zH such that a1h1; : : : ; ashs are pairwise
non-commensurable loxodromic elements with respect to the action ofG on �.G;X tH/.

Proof. First, we show that conditions (a0) and (b) of [14, Theorem 6.11] are satisfied for
some extended relative generating set X1. Though the conclusion of this theorem is not
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sufficient for our aims, the proof is sufficient and can be easily adopted to obtain the
desired statement.

Definition of X1. Let B be a finite generating set of H . We set

X1 D X [ B [ ¹a1; : : : ; asº
˙:

Since jX 4X1j <1, we have thatH ,!h .G;X1/ by Lemma 3.13. Let Od be the relative
metric on H associated with this embedding.

Verification of condition (a0). We shall show that

• Od.1; h/ <1 for any h 2 H and

• H is unbounded with respect to Od .

The former follows from the fact that the relative generating set X1 contains a finite
generating set of H , namely B . The latter follows from the fact that the metric space
.H; Od/ is locally finite (since H ,!h .G;X1/) and the assumption that H is infinite.

Verification of condition (b) for the elements a1; : : : ; as . We shall check that

• these elements lie in X1 and

• jH ai \H j <1 for i D 1; : : : ; s.

The former is valid by definition of X1, the latter follows from the assumption that
ai 2 G nH (see Lemma 3.14).

Thus, conditions (a0) and (b) of [14, Theorem 6.11] are satisfied for the extended rela-
tive generating set X1. Now we look into the proof of this theorem. Condition (a0) and the
local finiteness of .H; Od/ enable to choose h1; : : : ; hs in zH such that

Od.1; h1/ > 50D;

Od.1; hiC1/ > Od.1; hi /C 8D; i D 1; : : : ; s � 1;

where D D D.1; 0/ is provided by Proposition 8.3. We set fi D aihi . Then the proof
that f1; : : : ; fs are non-commensurable and loxodromic with respect to the action of G
on �.G; X1 tH/ is the same as in [14, Theorem 6.11]. Since X � X1, these elements
remain loxodromic with respect to the action of G on �.G;X tH/.

Lemma 10.4. Let G be an acylindrically hyperbolic group with respect to a generating
setZ and let a; b 2G be two non-commensurable loxodromic with respect toZ elements,
where, additionally, a is special. Then there exists a positive integer n0 such that for
any n; m > n0 the element g D anbm is special with respect to some generating set, in
particular EG.g/ D hgi.

Proof. Since G acts acylindrically on the hyperbolic space �.G; Z/ and a, b are non-
commensurable and loxodromic with respect toZ, we can apply [14, Theorem 6.8] which
says that in this situation there exists a subset X � G such that ¹EG.a/; EG.b/º ,!h

.G; X/. Denote E D EG.a/ t EG.b/. By Theorem 3.15, there exists Y � G such that
X � Y and the following conditions hold.
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(a) ¹EG.a/; EG.b/º ,!h .G; Y /. In particular, the Cayley graph �.G; Y t E/ is
hyperbolic.

(b) The action of G on �.G; Y t E/ is acylindrical.

Let Od1 and Od2 be the relative metrics on EG.a/ and on EG.b/, respectively, asso-
ciated with the embedding ¹EG.a/; EG.b/º ,!h .G; Y /. Then there exists n0 such that
for any l > n0 we have that Od1.1; al / > 50D and Od2.1; bl / > 50D, where D D D.1; 0/
is the constant from Proposition 8.3. Let n;m > n0 and g D anbm. Observe that condi-
tions (W1)–(W3) of Lemma 10.1 are satisfied for g considered as a word of length 2 in the
alphabet E � Y t E . By part (a) of Lemma 10.1, the element g is loxodromic with respect
to Y t E . Since G acts acylindrically on the hyperbolic space �.G; Y t E/ and contains
a loxodromic element with respect to this action and G is not virtually cyclic, we con-
clude that this action is non-elementary (see Theorem 3.9). Therefore, G is acylindrically
hyperbolic with respect to Y t E and the subgroup EG.g/ is well defined.

The rest of the proof is very similar to the second part of the proof of [14, Lemma 6.18].
Let t 2 EG.g/. Then tg�k D gkt for some k 2 N and � 2 ¹�1; 1º. Consider the paths p
and q in �.G; Y t E/ labeled by .anbm/k and .anbm/�k , respectively, such that p� D 1,
q� D t . We have that dYtE.p�; q�/ D dYtE.pC; qC/ D ", where " D jt jYtE .

Let R D R."; 3/ be as in the part (b) of Lemma 10.1. Passing to a multiple of k if nec-
essary, we may assume that `.p/>R. Then by statement (b) of Lemma 10.1, there exist 3
consecutive components p1, p2, p3 of p that are connected to 3 consecutive components
q1, q2, q3 of q.

Without loss of generality, we may assume that p1, p3, q1, q3 are EG.a/-compon-
ents while p2, q2 are EG.b/-components. Let ej be a path connecting .pj /C to .qj /C
in �.G; Y t E/ and let zj be the element of G represented by Lab.ej /, j D 1; 2. Then
zj 2 EG.a/ \ EG.b/. But EG.a/ \ EG.b/ D 1 since a, b are non-commensurable and
EG.a/D hai by assumption. Thus, zj D 1. Reading the label of the closed path e1q2e2p2,
we obtain b�mb�mD 1. Therefore, � D 1 and the label of q is .anbm/k . Reading the labels
of the segment of p from 1 to .p1/C, e1, and the segment of Nq from .q1/C to t , we obtain
t D gl for some l 2 Z. Therefore, EG.g/ 6 hgi. Hence EG.g/ D hgi and g is special
with respect to Y t E .

Lemma 10.5. Suppose that G is an acylindrically hyperbolic group without nontrivial
finite normal subgroups. Then there exist an element g 2 G and a generating set Y of G
such that g is special with respect to Y and hgi ,!h .G; Y /.

Proof. By [14, Lemma 6.18], there exist a subset X � G, a subgroup E ,!h .G;X/, and
an element g 2 G such that E D hgi �K.G/, where K.G/ is the maximal finite normal
subgroup of G. By assumption, K.G/ D 1. Then hgi ,!h .G;X/.

It was shown in the proof of this lemma that g can be chosen to be loxodromic with
respect to some generating set. In particular, we may assume that g has infinite order. Note
that G is not virtually cyclic, since G is acylindrically hyperbolic.



Equations in acylindrically hyperbolic groups and verbal closedness 663

By Lemma 6.3, there exists a generating set Y of G such that G is acylindrically
hyperbolic with respect to Y and hgi ,!h .G; Y /. Let Od be the relative metric on hgi
associated with this embedding. Since the metric space .hgi; Od / is locally finite, g cannot
be elliptic with respect to Y . Then g is loxodromic with respect to Y . Since hgi ,!h

.G; Y /, we deduce from Lemma 3.14 and (3.1) that EG.g/ D hgi. Thus, g is special with
respect to Y .

Proposition 10.6. Suppose that G is an acylindrically hyperbolic group without nontriv-
ial finite normal subgroups. Then there are special loxodromic elements a; g 2 G such
that for any integer k > 0 the coset ahgi contains k pairwise non-commensurable and
jointly special elements.

Proof. By Lemma 10.5, there exist an element g 2 G and a generating set Y of G such
that g is special with respect to Y and H ,!h .G; Y /, where H D hgi. It follows from
Definition 3.8 that G is acylindrically hyperbolic with respect to Y .

Let b 2G nH be an arbitrary element. By Lemma 10.3, there exist two non-commen-
surable loxodromic elements bgs , bgt with respect to Y t H . It follows that they are
loxodromic with respect to Y . At least one of them, say c WD bgs , is non-commensurable
with g. In particular,

hci \ hgi D 1:

By Lemma 10.4, there exists a positive integer n0 such that for any n;m > n0 the element
cngm is special with respect to some generating set; in particular,

EG.c
ngm/ D hcngmi: (10.1)

By Lemma 10.3, for any k 2N, there exist natural numbersm1 <m2 < � � �<mk such
thatm1 > n0 and the elements cn0gm1 ; : : : ; cn0gmk are pairwise non-commensurable and
loxodromic with respect to Y tH . Then they are loxodromic with respect to Y . Moreover,
by (10.1), we have that EG.cn0gmi / D hcn0gmi i for i D 1; : : : ; k. Thus, these elements
are pairwise non-commensurable and jointly special with respect to Y .

We set a D cn0gn0 . Then a, g, and k elements agm1�n0 ; : : : ; agmk�n0 satisfy the
conclusion of proposition.

Remark. One can prove a stronger version of this lemma, saying that for any infinite sub-
set I � ahgi, there exists an infinite subset of I consisting of pairwise non-commensurable
and jointly special elements.

As we mentioned above, the following proposition is only used for the proof of Corol-
lary E. The proof of this proposition is very similar to the proof of Proposition 10.6.

Proposition 10.7. Suppose that G is a finitely generated acylindrically hyperbolic group
without nontrivial finite normal subgroups. Then, for any n 2 N, G can be generated by
a finite set A such that jAj > n and the elements of A are pairwise non-commensurable
and jointly special.
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Proof. By Lemma 10.5, there exist an element g 2 G and a generating set Y of G such
that g is special with respect to Y and H ,!h .G; Y /, where H D hgi. It follows from
Definition 3.8 that G is acylindrically hyperbolic with respect to Y .

Suppose that G D ha1; : : : ; ali. Removing those ai that are powers of g, we may
assume that G D hg; a1; : : : ; aki for some 1 6 k 6 l , where ai … H for i D 1; : : : ; k.

Step 1. We show how to find a finite generating set B of G such that g 2 B and the
elements of B are pairwise non-commensurable and loxodromic with respect to Y .

We setG0D hgi andGi D hg;a1; : : : ; ai i for i D 1; : : : ;k. Note thatGDGk . Arguing
inductively, we fix i 2 ¹0; : : : ; k � 1º and suppose that we have found a finite generating
set Bi of Gi such that g 2 Bi and the elements of Bi are pairwise non-commensurable
and loxodromic with respect to Y .

We set s D jBi j C 1. By Lemma 10.3, there exist positive integers n1 < n2 < � � � < ns
such that the elements of the set ¹aiC1gn1 ; aiC1gn2 ; : : : ; aiC1gns º are pairwise non-
commensurable and loxodromic with respect to Y t H . It follows that they are loxo-
dromic with respect to Y . Since the number of these elements is jBi j C 1, there exists
j 2 ¹1; : : : ; sº such that the elements of BiC1 WD Bi [ ¹aiC1g

nj º are pairwise non-
commensurable. Since g 2 Bi , we deduce that GiC1 D hBiC1i. Finally, we set B D Bk .

Thus, we may assume from the beginning thatGDhg;a1; : : : ;aki, where g;a1; : : : ;ak
are pairwise non-commensurable and loxodromic with respect to Y . Recall that g is spe-
cial with respect to Y .

Step 2. We show how to find a finite generating set of G consisting of pairwise non-
commensurable and special elements with respect to Y .

We set A0 D ¹gº. Arguing inductively, we fix i 2 ¹0; : : : ; k � 1º and suppose that we
have found a finite subset Ai � G such that g; a1; : : : ; ai 2 hAi i and the elements of Ai
are pairwise non-commensurable and special with respect to Y . We set s D 2jAi j C 2 and
construct a finite set AiC1 � G with analogous properties.

By Lemma 10.4, there exists n0 2 N such that for any n;m > n0 the element aniC1g
m

is special with respect to some generating set of G. In particular, we have that

EG.a
n
iC1g

m/ D haniC1g
m
i (10.2)

for any n; m > n0. By Lemma 10.3, there exist s integers m1; m2; : : : ; ms > n0 such
that the elements an0C1iC1 g

m1 ; a
n0C2
iC1 g

m2 ; : : : ; a
n0Cs
iC1 g

ms are pairwise non-commensurable
and loxodromic with respect to Y tH (and hence with respect to Y ). By (10.2) they are
special with respect to Y . Since the number of these elements is 2jAi j C 2, there exists an
odd j 2 ¹1; : : : ; s � 1º such that the elements of

AiC1 WD Ai [ ¹a
n0Cj
iC1 gmj ; a

n0CjC1
iC1 gmjC1º

are pairwise non-commensurable. By construction, all elements of AiC1 are special with
respect to Y . Since g 2 Ai , we have aiC1 2 hAiC1i.
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Observe that hAki DG and jAkj D 2kC 1, where k > 1 is fixed before Step 2. Repeat-
ing the construction of Step 2 several times, we can obtain a finite generating set A of G
with desired properties and of arbitrary large finite cardinality.

11. Test words in acylindrically hyperbolic groups: a special case

A background on test words and our definition of an .a1; : : : ; ak/-test word are given in
Section 2.5. For convenience, we recall this definition here. In this section, we construct
certain .a1; : : : ; ak/-test words in acylindrically hyperbolic groups.

Definition 11.1. Let H be a group and let a1; : : : ; ak be some elements of H . A word
W.x1; : : : ; xk/ is called an .a1; : : : ; ak/-test word if for every solution .b1; : : : ; bk/ of the
equation

W.a1; : : : ; ak/ D W.x1; : : : ; xk/

in H , there exists a number ˛ 2 Z such that bi D aU
˛

i for i D 1; : : : ; k, where U D
W.a1; : : : ; ak/.

Remark 11.2. Let H be an acylindrically hyperbolic group without nontrivial normal
finite subgroup. The following lemma says, in particular, that if a1; a2; a3 2H are jointly
special and pairwise non-commensurable elements, then there exist an .a1; a2; a3; 1/-test
word. The reason for the general formulation of this lemma (i.e., for k > 3 elements) is
that it serves as the basis of induction for Proposition 12.1.

Lemma 11.3. Let H be an acylindrically hyperbolic group without nontrivial normal
finite subgroups and let a1; : : : ; ak 2 H (k > 3) be jointly special and pairwise non-
commensurable elements. Then there exist 10 positive integers k1, l1, m1, k2, l2, m2, s,
p, q, t such that the following holds.

Let U be the left side of the equation�
.a
k1
1 a

l1
3 /
m1.a

k2
2 a

l2
3 /
m2
�s
.a
p
2 a

q
3/
t
D
�
.x
k1
1 x

l1
3 /
m1.x

k2
2 x

l2
3 /
m2
�s�
x
p
2 .x3y3/

q
�t
:

Then, for any solution .x1; x2; x3; y3/ D .b1; b2; b3; c3/ of this equation in H , there
exists an integer number ˛ such that

b1 D a
U ˛

1 ; b2 D a
U ˛

2 ; b3 D a
U ˛

3 ; c3 D 1:

Moreover, the 10 exponents can be chosen so that, additionally to the above statement,
the elements U; a1; : : : ; ak , will be jointly special and pairwise non-commensurable.

Proof. First we find an appropriate generating set of H .

Claim 1. There exists a generating set Y of H such that the following properties are
satisfied.

(i) The group H is acylindrically hyperbolic with respect to Y .

(ii) The elements a1; : : : ; ak are special with respect to Y .

(iii) ¹ha1i; : : : ; hakiº ,!h .H; Y /.
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..a
k1
1 a

l1
3 /
m1.a

k2
2 a

l2
3 /
m2/s.a

p
2 a

q
3/
t D ..b

k1
1 b

l1
3 /
m1.b

k2
2 b

l2
3 /
m2/s.b

p
2 .b3c3/

q/t

.a
k1
1 a

l1
3 /
m1.a

k2
2 a

l2
3 /
m2 a

p
2 a

q
3 .b

k1
1 b

l1
3 /
m1.b

k2
2 b

l2
3 /
m2 b

p
2 .b3c3/

q

a
k1
1 a

l1
3 a

k2
2 a

l2
3 a2 a3 b

k1
1 b

l1
3 b

k2
2 b

l2
3 b2 b3c3

a1 a3 a2 a3 b1 b3 b2 b3

Figure 17

Proof. Conditions of Lemma 11.3 imply that EH .aj / D haj i, j D 1; : : : ; k, and®
ha1i; : : : ; haki

¯
,!h H (11.1)

(see [14, Theorem 6.8]). Applying Lemma 6.3 to this hyperbolic embedding, we obtain
a generating set Y of H such that H is acylindrically hyperbolic with respect to Y and
¹ha1i; : : : ; hakiº ,!h .H; Y /. Thus, the properties (i) and (iii) are satisfied.

We prove (ii). Property (i) implies that any element of H is either elliptic or lox-
odromic with respect to Y . For j D 1; : : : ; k, let bdj Y be the relative metric on haj i
associated with the hyperbolic embedding (11.1). By definition, the space .haj i; bdj Y /
is locally finite. Therefore, aj cannot be elliptic with respect to Y . Thus, aj is loxodromic
with respect to Y and satisfies EG.aj / D haj i. Hence aj is special with respect to Y .

We use the following notation.

Notation. Given a; b; c; d 2 H , we say that the pair .a; b/ is conjugate to the pair .c; d/
if there exists g 2H such that g�1ag D c and g�1bg D d . In this case, we write .a; b/�
.c; d/.

Let k1, l1, m1, k2, l2, m2, s, p, q, t be arbitrary 10 positive integers (we call them
exponents) and let .b1; b2; b3; c3/ be a solution of the equation in Lemma 11.3:�

.a
k1
1 a

l1
3 /
m1.a

k2
2 a

l2
3 /
m2
�s
.a
p
2 a

q
3/
t
D
�
.b
k1
1 b

l1
3 /
m1.b

k2
2 b

l2
3 /
m2
�s�
b
p
2 .b3c3/

q
�t
: (11.2)

The diagrams on Figure 17 reflect the nested structure of the left and the right sides of
this equation.

We explain the structure of forthcoming proof.
� In Step 1, we will choose 10 exponents so that assumptions of Corollary 9.5 became

applicable to 5 pairs of labels of the left diagram (we put them in 5 shadowed regions).
� In Step 2, we will start from the root equation and deduce from Corollary 9.5 conse-

quently the following formulas:

(1) ..ak11 a
l1
3 /
m1.a

k2
2 a

l2
3 /
m2 ; a

p
2 a

q
3/ � ..b

k1
1 b

l1
3 /
m1.b

k2
2 b

l2
3 /
m2 ; b

p
2 .b3c3/

q/;
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(2) .ak11 a
l1
3 ; a

k2
2 a

l2
3 / � .b

k1
1 b

l1
3 ; b

k2
2 b

l2
3 / and .a2; a3/ � .b2; b3c3/;

(3) .a1; a3/ � .b1; b3/ and .a2; a3/ � .b2; b3/.

� In Step 3, we will analyze these formulas and deduce the statement of lemma.
We fix m 2 N such that ham1 ; a

m
2 ; a

m
3 i is a free group of rank 3 (see Corollary 10.2).

Let Y be the generating set of H from Claim 1.

Step 1. In the following, we will use

– Corollary 9.5 (to provide perfectness of equations),

– Corollary 10.2 (to construct many loxodromic elements with respect to Y ),

– Lemma 10.3 (to construct many non-commensurable elements), and

– Lemma 10.4 (to provide EG.g/ D hgi for each constructed element g).

We will also use the principle that if u; v 2 H are non-commensurable, then any ele-
ment g 2 H is non-commensurable with at least one of u, v.

(a) We choose k1; l1 2 mN so that

(1) the equation ak11 a
l1
3 D x

k1yl1 is perfect,

(2) the element ak11 a
l1
3 is special with respect to Y .

In details: by Corollary 10.2, the elements ai1a
j
3 are loxodromic with respect to

Y for all sufficiently large i; j . By Lemma 10.4, EG.ai1a
j
3 / D ha

i
1a
j
3 i for all

sufficiently large i; j . Thus, ai1a
j
3 is special with respect to Y for all sufficiently

large i; j . Then we apply Corollary 9.5 to provide the perfectness.

(b) We choose k2; l2 2 mN so that

(1) the equation ak22 a
l2
3 D x

k2yl2 is perfect;

(2) the element ak22 a
l2
3 is special with respect to Y and non-commensurable with

a
k1
1 a

l1
3 .

(c) We choose m1; m2 2 N so that

(1) the equation .ak11 a
l1
3 /
m1.a

k2
2 a

l2
3 /
m2 D xm1ym2 is perfect;

(2) the element .ak11 a
l1
3 /
m1.a

k2
2 a

l2
3 /
m2 is special with respect to Y .

(d) We choose p; q 2 mN so that

(1) the equation ap2 a
q
3 D x

pyq is perfect;

(2) the element ap2 a
q
3 is special with respect to Y and non-commensurable with

.a
k1
1 a

l1
3 /
m1.a

k2
2 a

l2
3 /
m2 .

(e) We choose s; t 2 N so that

(1) the following equation is perfect:�
.a
k1
1 a

l1
3 /
m1.a

k2
2 a

l2
3 /
m2
�s
.a
p
2 a

q
3/
t
D xsyt I

(2) the element on the left side of this equation is special with respect to Y and
non-commensurable with elements a1; : : : ; ak .
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Notation. Let A, B , C , D, E denote the left sides of equations in (a), (b), (c), (d), (e),
respectively.

Step 2. By (11.2) and (e), there exists " 2 Z such that

.a
k1
1 a

l1
3 /
m1.a

k2
2 a

l2
3 /
m2 D

�
.b
k1
1 b

l1
3 /
m1.b

k2
2 b

l2
3 /
m2
�E"

; (11.3)

a
p
2 a

q
3 D

�
b
p
2 .b3c3/

q
�E"

: (11.4)

By (11.3) and (c), there exists 
 2 Z such that

a
k1
1 a

l1
3 D .b

k1
1 b

l1
3 /
E"C 
 ; (11.5)

a
k2
2 a

l2
3 D .b

k2
2 b

l2
3 /
E"C 
 : (11.6)

By (11.4) and (d), there exists ı 2 Z such that

a2 D b
E"Dı

2 ; a3 D .b3c3/
E"Dı

: (11.7)

By (11.5) and (a), there exists ˛ 2 Z such that

a1 D b
E"C 
A˛

1 ; a3 D b
E"C 
A˛

3 : (11.8)

By (11.6) and (b), there exists ˇ 2 Z such that

a2 D b
E"C 
Bˇ

2 ; a3 D b
E"C 
Bˇ

3 : (11.9)

Step 3. From the last equations in (11.8) and (11.9), we deduce that A�˛Bˇ centralizes
a3. We claim that ˛ D ˇ D 0.

Indeed, let H1 be the subgroup of H generated by am1 ; a
m
2 ; a

m
3 . By the choice of m,

H1 is free of rank 3. Since A�˛Bˇ lies in H1 and centralizes am3 (which is primitive in
H1), the element A�˛Bˇ is a power of am3 . Consider the homomorphism

' W H1 ! Z � Z; am1 7! .1; 0/; am2 7! .0; 1/; am3 7! .0; 0/:

Then

'.A�˛Bˇ / D

�
�
k1

m
˛;
k2

m
ˇ

�
D .0; 0/:

Hence ˛ D ˇ D 0.
Using this, we deduce from the first equations in (11.7) and (11.9) that C�
Dı cen-

tralizes a2. We claim that 
 D ı D 0. Indeed, as above we deduce that C�
Dı is a power
of am2 . Consider the homomorphism

 W H1 ! Z � Z; am1 7! .1; 0/; am2 7! .0; 0/; am3 7! .0; 1/:

Then

 .C�
Dı/ D

�
�
k1m1

m

;
q

m
ı �

�
l1m1

m
C
l2m2

m

�



�
D .0; 0/:

Hence 
 D ıD 0. Then the last equations in (11.7) and (11.8) imply that c3D 1. Moreover,
the equations (11.7)–(11.8) imply that a1 D bE

e

1 , a2 D bE
e

2 , a3 D bE
e

3 .
Finally note that the elements E; a1; : : : ; ak are pairwise non-commensurable and

jointly special by (e) and Claim 1 (ii).
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12. Test words in acylindrically hyperbolic groups: the general case

Notation. We write 1k for the tuple .1; : : : ; 1„ ƒ‚ …
k

/.

The aim of this section is to prove the following proposition, which will be used in
Section 13.

However, to prove this proposition, we need the following generalization, which is
simultaneously a generalization of Lemma 11.3.

Proposition 12.1. Let H be an acylindrically hyperbolic group without nontrivial nor-
mal finite subgroups and let a1; : : : ; ak 2 H (where k > 3) be jointly special and pair-
wise non-commensurable elements. Then there exists an .a1; : : : ; ak ; 1k�2/-test word
Wk.x1; : : : ; xk ; y3; : : : ; yk/ such that the elements a1; : : : ; ak together with the element
Wk.a1; : : : ; ak ; 1k�2/ are jointly special and pairwise non-commensurable.

Proof. It suffices to prove, by induction on n, the following claim.

Claim. For any nD 3; : : : ; k, there exists an .a1; : : : ; an;1n�2/-test wordWn.x1; : : : ; xn;
y3; : : : ; yn/ such that the elements a1; : : : ; ak together with the element Wn.a1; : : : ; an;
1n�2/ are jointly special and pairwise non-commensurable.

For n D 3, this statement is valid by Lemma 11.3. Suppose that for some 3 6 n < k,
we have constructed the desired word Wn D Wn.x1; : : : ; xn; y3; : : : ; yn/. We show how
to construct WnC1.

DenoteADWn.a1; : : : ; an;1n�2/. Since the elementsA, a1; : : : ; ak are jointly special
and pairwise non-commensurable, they satisfy the assumption of Lemma 11.3. By this
lemma, there exist positive integers k1, l1,m1, k2, l2,m2, s, p, q, t such that the following
holds.

(a) The word

M.X; xn; xnC1; ynC1/ D
�
.Xk1x

l1
nC1/

m1.xk2n x
l2
nC1/

m2
�s�
xpn .xnC1ynC1/

q
�t

in variables .X; xn; xnC1; ynC1/ is an .A; an; anC1; 1/-test word.

(b) The elements M.A; an; anC1; 1/, A, a1; : : : ; ak are jointly special and pairwise
non-commensurable.

We define

WnC1.x1; : : : ; xnC1; y3; : : : ; ynC1/ DM.Wn; xn; xnC1; ynC1/:

First, we prove that WnC1 is an .a1; : : : ; anC1; 1n�1/-test word.
Suppose that for some elements b1; : : : ; bnC1, c3; : : : ; cnC1 in H we have that��
W k1
n .a1; : : : ; an; 1; : : : ; 1/a

l1
nC1

�m1
.ak2n a

l2
nC1/

m2
�s�
apn .anC1 � 1/

q
�t

D
��
W k1
n .b1; : : : ; bn; c3; : : : ; cn/b

l1
nC1

�m1
.bk2n b

l2
nC1/

m2
�s�
bpn .bnC1cnC1/

q
�t
:
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Denote B WD Wn.b1; : : : ; bn; c3; : : : ; cn/ and write this equation shorter:�
.Ak1a

l1
nC1/

m1.ak2n a
l2
nC1/

m2
�s�
apn .anC1 � 1/

q
�t

D
�
.Bk1b

l1
nC1/

m1.bk2n b
l2
nC1/

m2
�s�
bpn .bnC1cnC1/

q
�t
:

Let U be the left side of this equation.
Since, by statement (a), M.X; xn; xnC1; ynC1/ is an .A; an; anC1; 1/-test word, there

exists ˛ 2 Z such that

B D AU
˛

; (12.1)

bn D a
U ˛

n ; bnC1 D a
U ˛

nC1; cnC1 D 1: (12.2)

From (12.1) we deduce that

Wn.b
U�˛

1 ; : : : ; bU
�˛

n ; cU
�˛

3 ; : : : ; cU
�˛

n / D Wn.a1; : : : ; an; 1n�2/ D A:

Since Wn is an .a1; : : : ; an; 1n�2/-test word, there exists ˇ 2 Z such that

bU
�˛

1 D aA
ˇ

1 ;

:::

bU
�˛

n D aA
ˇ

n ;

(12.3)

and
c3 D � � � D cn D 1: (12.4)

From the first equation in (12.2) and the last equation in (12.3), we deduce that aA
ˇ

n D an.
Since A and an are jointly special and non-commensurable, we have that ˇ D 0. Then
(12.2)–(12.4) imply that

.b1; : : : ; bnC1; c3; : : : ; cnC1/ D .a
U ˛

1 ; : : : ; aU
˛

nC1; 1
n�1/I

i.e., the word WnC1 is an .a1; : : : ; anC1; 1n�1/-test word.
It remains to show that the elementsWnC1.a1; : : : ; anC1;1n�1/, a1; : : : ; ak are jointly

special and pairwise non-commensurable. This follows from statement (b) and the fact
that WnC1.a1; : : : ; anC1; 1n�1/ DM.A; an; anC1; 1/.

In some cases it suffices to use the following corollary, which is a weaker version of
Proposition 12.1. This corollary follows from Proposition 12.1 if we set there

Uk.x1; : : : ; xk/ WD Wk.x1; : : : ; xk ; 1k�2/:

Corollary 12.2. Let H be an acylindrically hyperbolic group without nontrivial finite
normal subgroups and let a1; : : : ; ak 2 H (where k > 3) be jointly special and pairwise
non-commensurable elements. Then there is an .a1; : : : ; ak/-test word Uk.x1; : : : ; xk/

such that the elements a1; : : : ; ak together with Uk.a1; : : : ; ak/ are jointly special and
pairwise non-commensurable.



Equations in acylindrically hyperbolic groups and verbal closedness 671

13. Proof of Theorem A

Lemma 13.1. Let H be a group. For any finite system of equations S � Fn �H there
exists an integer k > 0 and a finite system S 0 � FnCk � H consisting of only splitted
equations such that jS 0j > jS j and

VH .S
0/ D VH .S/ � ¹g1º � � � � � ¹gkº

for some elements g1; : : : ; gk 2 H .

Proof. To define S 0, one should replace each constant h in S by a new variable xh and
add the equation xhh�1.

Notation. To shorten notation, we write x instead of the tuple .x1; : : : ; xn/.

Proof of Theorem A. (1) Let S D ¹s1; : : : ; skº, where si 2 Fn � H . We take arbitrary
.k C 2/ jointly special and pairwise non-commensurable elements a1; : : : ; akC2 2 H .
The existence of such elements is guaranteed by Proposition 10.6. By Proposition 12.1,
there exists an .a1; : : : ; akC2; 1k/-test word WkC2.z1; : : : ; zkC2; y1; : : : ; yk/. Then the
desired equation is

f WWkC2.a1; : : : ; akC2; 1k/ D WkC2.a1; : : : ; akC2; s1; : : : ; sk/:

(2) By Lemma 13.1, we may assume that S consists of splitted equations:

S D
®
wi .x1; : : : ; xn/ D hi j i D 1; : : : ; m

¯
: (13.1)

By Proposition 10.6, there exist special elements a, b such that the coset ahbi contains
.2mC 2/ pairwise non-commensurable jointly special elements, say

abs; abt ; abk1 ; : : : ; abkm ; abl1 ; : : : ; ablm :

Then the elements of the tuple

T D .abs; abt ; h�1i ab
kihi ; h

�1
i ab

lihi I i D 1; : : : ; m/

are also pairwise non-commensurable and jointly special. Let U2mC2 be the T -test word
from Corollary 12.2. We set

f0 D U2mC2.ab
s; abt ; h�1i ab

kihi ; h
�1
i ab

lihi I i D 1; : : : ; m/:

Now we introduce two new variables y; z and set

f �11 D U2mC2

�
yzs; yzt ; wi .x/

�1yzkiwi .x/; wi .x/
�1yzliwi .x/I i D 1; : : : ; m

�
:

We show that the splitted equation f written in the form

f �11 D f0: (13.2)

satisfies the statements (a) and (b) of Theorem A.
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(a) Suppose that f has a solution in H , say

.x1; : : : ; xn; y; z/ D .C1; : : : ; Cn; A; B/:

We shall show that there exists ˛ 2 Z such that .C1; : : : ; Cn/f
�˛
0 is a solution of the

system S .
Set Hi D wi .C /. Then we have that

U2mC2.ab
s; abt ; h�1i ab

kihi ; h
�1
i ab

lihi I i D 1; : : : ; m/

D U2mC2.AB
s; AB t ; H�1i ABkiHi ; H

�1
i AB liHi I i D 1; : : : ; m/: (13.3)

By definition of the test word (see Definition 11.1) applied to U2mC2 and (13.3), there
exists ˛ 2 Z such that the formulas (13.4)–(13.7) are valid:

.abs/f
˛
0 D ABs; (13.4)

.abt /f
˛
0 D AB t ; (13.5)

.h�1i ab
kihi /

f ˛0 D H�1i ABkiHi ; (13.6)

.h�1i ab
lihi /

f ˛0 D H�1i AB liHi : (13.7)

It follows from (13.4) and (13.5) that .bs�t /f
˛
0 D Bs�t . Since b is special, we have

that
B D bf

˛
0 : (13.8)

From (13.4) and (13.8), we obtain

A D af
˛
0 : (13.9)

Substituting (13.8) and (13.9) in (13.6) and (13.7), we deduce that

h
f ˛0
i H�1i 2 CH

�
.abki /f

˛
0
�
\ CH

�
.abli /f

˛
0
�

(3.1)
� EH

�
.abki /f

˛
0
�
\EH

�
.abli /f

˛
0
�

D
˝
.abki /f

˛
0
˛
\
˝
.abli /f

˛
0
˛
:

The latter equation holds since the elements abki and abli are special. This intersection is
trivial since abki and abli are non-commensurable. Therefore,

wi .C / D h
f ˛0
i

for i D 1; : : : ; m. Hence C f
�˛
0 is a solution of S .

(b) Since VG.f / is invariant under conjugation by the element f0, it suffices to check
that

prn
�
VG.f /

�
� VG.S/:

The latter is trivial: if .x1; : : : ; xn/ D .c1; : : : ; cn/ is a solution of the system S in G,
then

.x1; : : : ; xn; y; z/ D .c1; : : : ; cn; a; b/

is a solution of (13.2) in G.
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(3) We may again assume that S has the form (13.1). We may additionally assume that
the set ¹h1; : : : ; hmº of right sides of equations from S contains two non-commensurable
special elements from H ; otherwise we could take two non-commensurable special ele-
ments u; v 2 H and add two equations xnC1 D u and xnC2 D v to S . Obviously, the set
of solutions of the old system S is a projection of the set of solutions of the new system S .

In the following, we will use the tuple T , the element f0, and the equation f defined
in (a). Thus, we have that

prn
�
VH .f /

�
D

[
˛2Z

VH .S/
f ˛0 : (13.10)

By Corollary 12.2, all components of T together with f0 are pairwise non-commen-
surable and jointly special. Let T 0 be the tuple obtained from T by adding the compo-
nent f0:

T 0 D .f0; ab
s; abt ; h�1i ab

kihi ; h
�1
i ab

lihi I i D 1; : : : ; m/:

Let U2mC3 be the T 0-test word from Corollary 12.1. We set

g0 D U2mC3.f0; ab
s; abt ; h�1i ab

kihi ; h
�1
i ab

lihi I i D 1; : : : ; m/:

Now we introduce new variables t; y; z and define the word

g�11 D U2mC3

�
t; yzs; yzt ; wi .x/

�1yzkiwi .x/; wi .x/
�1yzliwi .x/I i D 1; : : : ; m

�
:

Let g be the equation g1g0. Using the same arguments as in the proof of (a), we obtain

prn
�
VH .g/

�
D

[
˛2Z

VH .S/
g˛0 : (13.11)

Claim 1. Suppose that for some ˛; ˇ 2 Z we have that

VH .S/
f ˛0 \ VH .S/

g
ˇ
0 ¤ ;:

Then ˛ D ˇ D 0.

Proof. By assumption, the set ¹h1; : : : ; hmº of right sides of equations from S contains
two non-commensurable special elements, say u, v. Then

uf
˛
0 D ug

ˇ
0 and vf

˛
0 D vg

ˇ
0 ;

and we deduce that

f ˛0 g
�ˇ
0 2 EH .u/ \EH .v/ D hui \ hvi D 1:

The penultimate equation holds since u and b are special, and the latter equation holds
since u and v are non-commensurable.

By Corollary 12.2, all components of T 0 together with g0 are pairwise non-commen-
surable and jointly special. In particular, g0 and f0 are non-commensurable and have
infinite orders. From this and f ˛0 D g

ˇ
0 , we obtain ˛ D ˇ D 0.



O. Bogopolski 674

This claim and equations (13.10) and (13.11) imply that

VH .S/ D prn
�
VH .f /

�
\ prn

�
VH .g/

�
:

Remark 13.2. In the general case, one splitted equation in statement (3) of Theorem A is
not sufficient. Indeed, letH be an arbitrary nontrivial group and let S D¹wi .x1; : : : ;xn/D
hi j i D 1; : : : ; mº, m > 2, be a finite system of splitted equations with constants hi
fromH such that CH .h1/\ CH .h2/ D 1 and VH .S/ ¤ ;. Then for any splitted equation
f 2 Fk �H , where k > n, we have that

VH .S/ ¤ prn
�
VH .f /

�
:

This follows from the following observations.

(a) If f is a splitted equation of the form f1f0, where f1 2 Fk and f0 2 H , then
.VH .f //

f0 D VH .f /. Moreover, we have that .VH .f //g D VH .f / for any g 2
H if f0 D 1.

(b) VH .S/
g \ VH .S/ D ; for every nontrivial g 2 H . This can be proved similarly

to the proof of Claim 1.

14. Proof of Theorem B

Proof of Theorem B. Suppose that H is verbally closed in G. We show that H is alge-
braically closed in G. Let S be a finite system of equations with constants from H such
that VG.S/ ¤ ;. We shall show that VH .S/ ¤ ;.

Let f be a splitted equation as in statement (2) of Theorem A. By part (b) of this
statement, we have that VG.S/ � prn.VG.f //, hence VG.f / ¤ ;. Since H is verbally
closed in G, we have that VH .f / ¤ ;. By part (a) of statement (2) of Theorem A, we
have that VH .S/ ¤ ;. Thus, H is algebraically closed in G. The converse implication is
obvious.

Remark 14.1. Consider the free product

H D �
˛2A

H˛;

where A is an arbitrary set of cardinal larger than 1 and each H˛ is nontrivial. In [38],
Mazhuga showed that if H is a verbally closed subgroup of a group G, then H is alge-
braically closed in G. This result (except the very special case H D Z2 � Z2, which was
first considered in [31]) follows from our Theorem B.

Indeed, H can be splitted as H D A � B , where A and B are nontrivial; hence H
is relatively hyperbolic with respect to ¹A; Bº. It is well known that if a non-(virtually
cyclic) group is relatively hyperbolic with respect to a collection of proper subgroups,
then it is acylindrically hyperbolic. Therefore, if H 6Š Z2 � Z2, then H is acylindrically
hyperbolic, and we can apply Theorem B.
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Remark 14.2. In Theorem B and Corollary B1, the assumption that H does not have
nontrivial finite normal subgroups cannot be omitted. Indeed, consider two copies of the
dihedral group D4:

A D ha; b j a4 D 1; b2 D 1; b�1ab D a�1i;

B D hc; d j c4 D 1; d2 D 1; d�1cd D c�1i:

Let ' W B ! A be the isomorphism sending c to a and d to b. We write A �
a2Dc2

B

for the quotient of the direct product A�B by the cyclic subgroup h.a2; c2/i. We identify
A and B with their canonical isomorphic images in this quotient. Then the elements of
A �
a2Dc2

B can be written as pq, where p 2 A, q 2 B . If p; p1 2 A and q; q1 2 B , then

pq D p1q1 in this quotient if and only if p D p1 and q D q1, or p1 D pa2 and q1 D qc2.
Let F be the free group of rank 2. We set

G D F � .A �
a2Dc2

B/ D .F � A/ �
a2Dc2

B

and consider H D F � A as a subgroup of G. Clearly, H is hyperbolic. Since H is not
virtually cyclic, it is acylindrically hyperbolic.

Claim. The following statements hold.

(a) A is verbally closed in A �
a2Dc2

B .

(b) H is verbally closed in G.

(c) H is not a retract of G.

(d) H is not algebraically closed in G.

Proof. (a) Suppose that an equationW.x1; : : : ;xn/D v1, where v 2A, has a solution x1D
p1q1; : : : ; xn D pnqn in A �

a2Dc2
B . We shall find a solution in A. Using commutativity,

we deduce that W.p1; : : : ; pn/W.q1; : : : ; qn/ D v1. Then we have two cases.

Case 1. W.p1; : : : ; pn/ D v and W.q1; : : : ; qn/ D 1.
Then .p1; : : : ; pn/ is the desired solution.

Case 2. W.p1; : : : ; pn/ D va2 and W.q1; : : : ; qn/ D c2.
If the exponent sum of some letter xi inW , say of the letter x1, is odd, then .p1a2; : : : ;

pn/ is the desired solution. Suppose that the exponent sum of any xi in W is even. Then
W.p1; : : : ; pn/ 2 A

2 D ¹1; a2º, hence v D 1 or v D a2. If v D 1, then .1; : : : ; 1/ is the
desired solution, and if v D a2, then .'.q1/; : : : ; '.qn// is one.

Statement (b) follows from (a) by using the fact that F is a complementary direct
summand to A �

a2Dc2
B in G.

(c) Suppose that  W G ! H a retraction. Then�
 .B/;H

�
D
�
 .B/;  .H/

�
D  

�
ŒB;H�

�
D 1:
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Therefore,  .B/ � ha2i. Since ha2i D H \ B , we have that  .B/ D ha2i. We obtain
that hc2i is a retract of B . A contradiction.

Statement (d) follows from (c) and Proposition 2.3.

15. Solution to a problem of Myasnikov and Roman’kov
As it was mentioned in the introduction, the following corollary follows directly from
Theorem B and Proposition 2.3.

Corollary B1. Let H be a subgroup of a group G such that at least one of the following
holds:

(a) H is finitely generated and G is finitely presented;

(b) H is equationally Noetherian and G is finitely generated over H .

Suppose additionally thatH is acylindrically hyperbolic and does not have nontrivial
finite normal subgroups. Then the following three statements are equivalent:

(1) H is algebraically closed in G,

(2) H is verbally closed in G,

(3) H is a retract of G.

In this section, we deduce three further corollaries from Corollary B1. The last one,
Corollary 15.8, solves Problem 5.2 from the paper [40].

Note that these corollaries allow H to be a virtually cyclic group, and Corollary B1
not. Therefore, we first prove Proposition 15.3, which deals with the case where H is
virtually cyclic.

Though this proposition follows from statement (1) in [31, Theorem 1] about virtually
free subgroups, we prefer to indicate a proof which uses only [31, Theorem 2] about
dihedral subgroups. The first lemma is simple; we extracted its proof from the proof of
[40, Lemma 3.1].

Lemma 15.1. Let G be a group such that its abelianization Gab is finitely generated. Let
H be an infinite cyclic subgroup of G. Then the conditions that H is algebraically closed
in G, H is verbally closed in G, and H is a retract of G are equivalent.

Proof. It suffices to prove that if H is verbally closed in G, then H is a retract of G.
Thus, suppose that H D hhi is an infinite cyclic verbally closed subgroup of G. Let
Tor.Gab/ be the subgroup ofGab consisting of all elements of finite order and let ' WG!
Gab=Tor.Gab/ be the canonical homomorphism. We claim thatH \ ŒG;G�D 1. Indeed,
suppose that h1 D Œg1; g2� � � � Œg2k�1; g2k � for some h1 2 H and gi 2 G, i D 1; : : : ; 2k.
Consider the equation h1 D Œx1; x2� � � � Œx2k�1; x2k �. Since this equation has a solution in
G, it has a solution in H . Since H is abelian, we have that h1 D 1.

Thus, ' embeds H into Gab= Tor.Gab/. We claim that '.h/ is primitive in the free
abelian group Gab= Tor.Gab/. Indeed, otherwise we would have that '.h/ D '.g/t for
some g2G and t>2. Let s be the order of Tor.Gab/. Then hs D gst Œg1;g2� � � � Œg2k�1;g2k �
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for some gi 2 G, i D 1; : : : ; 2k. Consider the equation hs D xst Œx1; x2� � � � Œx2k�1; x2k �.
Since this equation has a solution in G, it has a solution in H . Then hs D hst1 for some
h1 2 H . Hence h D ht1 and we have that t D ˙1. A contradiction.

Thus, H is embedded into Gab=Tor.Gab/ as a direct summand. Hence H is a retract
of G.

Lemma 15.2 (see [31, Theorem 2]). Suppose thatH is an infinite dihedral subgroup of a
finitely generated group G. Then the conditions that H is algebraically closed in G, H is
verbally closed in G, and H is a retract of G are equivalent.

Proposition 15.3 (see also [31, Theorem 1]). Let H be a virtually cyclic subgroup of a
finitely generated group G. Suppose that H does not have nontrivial finite normal sub-
groups. Then the conditions that H is algebraically closed in G, H is verbally closed in
G, and H is a retract of G are equivalent.

Proof. We may assume that H is nontrivial. It is well known (see, for example, [16,
Lemma 2.5]) that every virtually cyclic group has a finite-by-cyclic subgroup of index at
most 2. Thus, there exists a subgroup H0 6 H of index at most 2 and a finite normal sub-
group K 6 H0 such that H0=K is cyclic. By assumptions, H cannot be finite. Therefore,
H0=K Š Z, which implies that K is the largest finite normal subgroup of H0. Hence K
is normal in H . Since H does not have nontrivial finite normal subgroups, we obtain that
K D 1. ThenH is either infinite cyclic or infinite dihedral, and the statement follows from
Lemmas 15.1 and 15.2.

The following lemma says that, in some sense, generic subgroups of relatively hyper-
bolic groups are acylindrically hyperbolic. For terminology concerning relatively hyper-
bolic groups we refer to [49].

Lemma 15.4. Suppose thatG is a group that is relatively hyperbolic with respect to a col-
lection of subgroups ¹P�º�2ƒ. Suppose that H is a non-(virtually cyclic) non-parabolic
subgroup of G. Then H is acylindrically hyperbolic.

In particular, the following groups are acylindrically hyperbolic:

(1) non-(virtually cyclic) groups that are hyperbolic relative to a collection of proper
subgroups (see also [50]);

(2) non-(virtually cyclic) subgroups of hyperbolic groups.

Proof. Let X be a finite relative generating set of G and let P D
F
�2ƒ P�. Then the

Cayley graph �.G;X t P / is hyperbolic by [49, Corollary 2.54] and the action of G on
�.G;X t P / is acylindrical by [47, Proposition 5.2]. In particular, H acts acylindrically
on �.G;X tP /.

By [7, Lemma 2.9], a subgroup of a relatively hyperbolic group contains a loxodromic
element if and only if it is infinite and non-parabolic. Thus, H contains a loxodromic
element. Hence H has unbounded orbits acting on �.G; X t P /. Then the statement
follows from Theorem 3.9.
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The first two corollaries are about relatively hyperbolic groups, and in their proofs we
use the following remarkable result of Groves and Hull.

Theorem 15.5 (see [19, Theorem D]). Suppose that G is a relatively hyperbolic group
with respect to a finite collection of subgroups ¹H1; : : : ; Hnº. Then G is equationally
Noetherian if and only if each Hi is equationally Noetherian.

Corollary 15.6. Let G be a group and let H be a subgroup of G such that G is finitely
generated overH . Suppose thatH is hyperbolic relative to a finite collection of equation-
ally Noetherian proper subgroups and does not have nontrivial finite normal subgroups.
Then the conditions that H is algebraically closed in G, H is verbally closed in G, and
H is a retract of G are equivalent.

Proof. By Proposition 15.3, we may assume that H is non-(virtually cyclic). Then, by
Lemma 15.4, H is acylindrically hyperbolic. Moreover, H is equationally Noetherian by
the result of Groves and Hull [19, Theorem D]. Then the statement follows from Corol-
lary B1.

The proof of the following corollary is similar to that of the previous one; we give it
for completeness.

Corollary 15.7. Let G be a relatively hyperbolic group with respect to a finite collec-
tion of finitely generated equationally Noetherian subgroups. Suppose that H is a non-
parabolic subgroup of G such that H does not have nontrivial finite normal subgroups.
Then the conditions that H is algebraically closed in G, H is verbally closed in G, and
H is a retract of G are equivalent.

Proof. It follows from the assumptions that G is finitely generated. By Proposition 15.3,
we may assume that H is non-(virtually cyclic). Then, by Lemma 15.4, H is acylindri-
cally hyperbolic. By the result of Groves and Hull [19, Theorem D], G is equationally
Noetherian. Any subgroup of an equationally Noetherian group is equationally Noether-
ian. Therefore, H is equationally Noetherian. Then the statement follows from Corol-
lary B1.

The following corollary follows directly from the previous one. Indeed, every hyper-
bolic group is relatively hyperbolic with respect to the trivial subgroup.

Corollary 15.8 (Solution to Problem 5.2 in [40]). Let G be a hyperbolic group and H a
subgroup of G. Suppose that H does not have nontrivial finite normal subgroups. Then
the conditions that H is algebraically closed in G, H is verbally closed in G, and H is a
retract of G are equivalent.

Remark 15.9. This corollary can be proved without using Corollary 15.7. A direct proof
can be obtained from the above proof if, instead of the result of Groves and Hull, we will
use the result of Reinfeldt and Weidmann [65, Corollary 6.13] that all hyperbolic groups
are equationally Noetherian.
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