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Hierarchical hyperbolicity of graph products

Daniel Berlyne and Jacob Russell

Abstract. We show that any graph product of finitely generated groups is hierarchically hyperbolic
relative to its vertex groups. We apply this result to answer two questions of Behrstock, Hagen,
and Sisto: we show that the syllable metric on any graph product forms a hierarchically hyperbolic
space, and that graph products of hierarchically hyperbolic groups are themselves hierarchically
hyperbolic groups. This last result is a strengthening of a result of Berlai and Robbio by removing
the need for extra hypotheses on the vertex groups. We also answer two questions of Genevois about
the geometry of the electrification of a graph product of finite groups.
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1. Introduction

There have been many attempts to generalise the notion of hyperbolicity of a group since
it was first introduced by Gromov [19]. One of these, hierarchical hyperbolicity, was
developed by Behrstock, Hagen, and Sisto [3, 5] as a way of describing hyperbolic beha-
viour in quasi-geodesic metric spaces via hierarchy machinery akin to that constructed
for mapping class groups by Masur and Minsky [22, 23]. The work of Behrstock, Hagen,
and Sisto originally focused on developing such machinery for right-angled Artin groups,
but also encompasses a wide variety of groups and spaces, such as virtually cocompact
special groups [3], 3-manifold groups with no Nil or Sol components [3], Teichmüller
space with either the Teichmüller or Weil–Petersson metric [5, 7, 9, 10, 13, 22, 26], and
graph products of hyperbolic groups [8]. Hierarchical hyperbolicity has deep geometric
consequences for a space, including a Masur and Minsky style distance formula [3], a
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quadratic isoperimetric inequality [3], rank rigidity and Tits alternative theorems [11,12],
control over top-dimensional quasi-flats [6], and bounds on the asymptotic dimension [4].

A hierarchically hyperbolic structure on a quasi-geodesic space X is a collection of
uniformly hyperbolic spaces C.W / indexed by the elements W of an index set S. For
eachW 2S, there is a projection map from X onto the hyperbolic spaceC.W /, and every
pair of elements of S is related by one of three mutually exclusive relations: orthogonality,
nesting, and transversality. This data then satisfies a collection of axioms that allow for the
coarse geometry of the entire space to be recovered from the projections to the hyperbolic
spaces C.W /.

In the present paper, we construct an explicit hierarchy structure for any graph product,
using right-angled Artin groups as our motivating example. Given a finite simplicial graph
� with vertex set V.�/ and edge set E.�/, we define the right-angled Artin group A� by

A� D
˝
V.�/ j Œv; w� D e 8¹v;wº 2 E.�/

˛
:

More generally, if we associate to each vertex v of � a finitely-generated group Gv , then
we define the graph product G� by

G� D
�
�

v2V.�/

Gv

�.˝̋
Œgv; gw � j gv 2 Gv; gw 2 Gw ; ¹v;wº 2 E.�/

˛̨
;

so that A� is obtained as the special case where the vertex groups are Gv D Z for all
v 2 V.�/.

For right-angled Artin groups A� , a hierarchically hyperbolic structure was construc-
ted by Behrstock, Hagen, and Sisto by considering the collection of induced subgraphs of
the defining graph � [5]. Each induced subgraph ƒ of � generates a new right-angled
Artin group Aƒ, which is realised as a subgroup of A� . The Cayley graph of A� is
the 1-skeleton of a CAT.0/ cube complex X , which comes equipped with a projection
to a hyperbolic space C.X/ called the contact graph. Since each induced subgraph ƒ
of � generates its own right-angled Artin group with associated cube complex Y � X ,
the subgroup Aƒ has its own associated contact graph C.Y /. Since edges of � corres-
pond to commuting relations in A� , join subgraphs of � (that is, subgraphs of the form
ƒ1 tƒ2 where every vertex of ƒ1 is joined by an edge to every vertex of ƒ2) generate
direct product subgroups of A� . This provides us with an intuitive notion of orthogonality
within our hierarchy. Set containment of subgraphs of � provides a natural partial order in
the hierarchy, which we call nesting, and any subgraphs that are not orthogonal or nested
are considered transverse. Collectively, the hyperbolic spaces C.Y / allow us to recover
the entire geometry of A� , via projections to the subcomplexes Y � X and through the
nesting, orthogonality, and transversality relations defined above.

Since the nesting and orthogonality relations for a right-angled Artin group are in-
trinsic to the defining graph � , it is sensible to attempt to generalise this hierarchy structure
to arbitrary graph products. It is important to note, however, that arbitrary graph products
may not be hierarchically hyperbolic, since we have no control over the vertex groups.
For example, the vertex groups could be copies of Out.F3/, which is known not to be
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hierarchically hyperbolic [3]. However, this is the only roadblock. Specifically, we show
that graph products are relatively hierarchically hyperbolic; that is, graph products admit a
structure satisfying all of the axioms of hierarchical hyperbolicity with the exception that
the spaces associated to the nesting-minimal sets (the vertex groups) are not necessarily
hyperbolic.

Theorem A. Let � be a finite simplicial graph, with each vertex v labelled by a finitely-
generated group Gv . The graph product G� is a hierarchically hyperbolic group relative
to the vertex groups.

The notion of relative hierarchical hyperbolicity was originally developed by Behr-
stock, Hagen, and Sisto in [3] and is explored further in [4]. Despite the lack of hyperbol-
icity in the nesting-minimal sets, many of the consequences of hierarchical hyperbolicity
are preserved in the relatively hierarchically hyperbolic setting. In particular, Theorem A
implies that the graph product G� has a Masur and Minsky style distance formula and
an acylindrical action on the nesting-maximal hyperbolic space; see Corollaries 4.23 and
4.24.

Another way of asserting control over the vertex groups is by replacing the word metric
on G� with the syllable metric, which measures the length of an element g 2 G� by
counting the minimal number of elements needed to express g as a product of vertex
group elements. This has the effect of making all vertex groups diameter 1, and therefore
hyperbolic. The syllable metric on a right-angled Artin group was studied by Kim and
Koberda as an analogue of the Weil–Petersson metric on Teichmüller space (the Weil–
Petersson metric is quasi-isometric to the space obtained from the mapping class group by
coning off all cyclic subgroups generated by Dehn twists) [20]. Kim and Koberda produce
several hierarchy-like results for the syllable metric on a right-angled Artin group with
triangle- and square-free defining graph, including a Masur and Minsky style distance
formula and an acylindrical action on a hyperbolic space. This inspired Behrstock, Hagen,
and Sisto to ask if the syllable metric on a right-angled Artin group is a hierarchically
hyperbolic space [3]. We give a positive answer to this question, not just for right-angled
Artin groups but for all graph products.

Corollary B. Let � be a finite simplicial graph, with each vertex v labelled by a groupGv .
The graph product G� endowed with the syllable metric is a hierarchically hyperbolic
space.

To prove Theorem A and Corollary B, we utilise techniques developed by Genevois
and Martin in [14, 17], which exploit the cubical-like geometry of a graph product when
endowed with the syllable metric. This allows us to adapt proofs from the right-angled
Artin group case, which rely heavily on geometric properties of cube complexes. While
the syllable metric does not appear in the statement of Theorem A, it is an integral part
of the proof, acting as a middle ground where geometric computations are performed
before projecting to the associated hyperbolic spaces. This also allows Theorem A and
Corollary B to be proved essentially simultaneously.
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Our primary application of Theorem A is showing that a graph product of hierarchic-
ally hyperbolic groups is itself hierarchically hyperbolic. This gives a positive answer to
another question of Behrstock, Hagen, and Sisto [3, Question D].

Theorem C. Let � be a finite simplicial graph, with each vertex v labelled by a groupGv .
If each Gv is a hierarchically hyperbolic group, then the graph product G� is a hierarch-
ically hyperbolic group.

Berlai and Robbio have established a combination theorem for graphs of hierarchically
hyperbolic groups that they use to prove Theorem C when the vertex groups satisfy some
natural, but non-trivial, additional hypotheses [8]. For the specific case of graph products,
Theorem C improves upon Berlai and Robbio’s result by removing the need for these
additional hypotheses, as well as providing an explicit description of the hierarchically
hyperbolic structure in terms of the defining graph.

We also use our relatively hierarchically hyperbolic structure for graph products to
answer two questions of Genevois about a new quasi-isometry invariant for graph products
of finite groups called the electrification of G� . Graph products of finite groups form a
particularly interesting class, as they include right-angled Coxeter groups and are the only
cases where the syllable metric and word metric are quasi-isometric. Genevois defines the
electrification E.�/ of a graph product of finite groups by taking the syllable metric onG�
and adding edges between elements g;hwhenever g�1h2Gƒ �G� andƒ is a minsquare
subgraph of � , that is, a minimal subgraph that contains opposite vertices of a square if
and only if it contains the whole square. Motivated by an analogy with relatively hyper-
bolic groups, Genevois proved that any quasi-isometry between graph products of finite
groups induces a quasi-isometry between their electrifications, and used this invariant to
distinguish several quasi-isometry classes of right-angled Coxeter groups [16]. Geomet-
rically, the electrification sits between the syllable metric on G� and the nesting-maximal
hyperbolic space in our hierarchically hyperbolic structure on G� . We exploit this situ-
ation to classify when the electrification has bounded diameter and when it is a quasi-line,
answering Questions 8.3 and 8.4 of [16].

Theorem D. LetG� be a graph product of finite groups and let E.�/ be its electrification.

(1) E.�/ has bounded diameter if and only if � is either a complete graph, a min-
square graph, or the join of minsquare graph and a complete graph.

(2) E.�/ is a quasi-line if and only if G� is virtually cyclic.

As a final application of Theorem A, we give a new proof of Meier’s classification of
hyperbolicity of graph products [24].

Outline of the paper. We begin by introducing the necessary tools from the geometry
of graph products in Section 2.1 and reviewing the definition of a relative hierarchically
hyperbolic group (HHG) in Section 2.2. In Section 3, we set up our proof of the relative
hierarchical hyperbolicity of graph products by defining the necessary spaces, projections,
and relations. In Section 4, we show that the spaces, projections, and relations defined in
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Section 3 satisfy the axioms of a relative HHG (or non-relative hierarchically hyperbolic
space in the case of the syllable metric). This completes the proofs of Theorem A and
Corollary B. Section 5 is devoted to applications. We start by proving that graph products
of HHGs are HHGs (Theorem C) in Section 5.1, which requires a technical result that can
be found in the appendix of [1]. In Section 5.2, we record our proof of Meier’s hyperbol-
icity criteria, and in Section 5.3, we classify when Genevois’ electrification has infinite
diameter and when it is a quasi-line, proving Theorem D.

2. Background

2.1. Graph products

Definition 2.1 (Graph product). Let � be a finite simplicial graph with vertex set V.�/
and edge set E.�/, and with each vertex v 2 V.�/ labelled by a group Gv . The graph
product G� is the group

G� D
�
�

v2V.�/

Gv

�.˝̋
Œgv; gw � j gv 2 Gv; gw 2 Gw ; ¹v;wº 2 E.�/

˛̨
:

We call the Gv the vertex groups of the graph product G� .
By deleting any vertices labelled by the trivial group, every graph product is iso-

morphic to a graph product where each vertex group is non-trivial. We will therefore
operate under the standing assumption that the vertex groups of our graph products are
always non-trivial.

Note that if all vertex groups of G� are copies of Z, then G� is the right-angled Artin
group with defining graph � , and if all vertex groups are copies of Z=2Z, then G� is the
corresponding right-angled Coxeter group.

We wish to study the geometry ofG� by adapting the cubical geometry of right-angled
Artin groups. To this end, we will first need to eliminate any badly behaved geometry
occurring within vertex groups. We do this by replacing the usual word metric with the
syllable metric.

Definition 2.2 (Syllable metric on a graph product). Let G� be a graph product. The
graph S.�/ is the metric graph whose vertices are elements of G� and where g; h 2 G�
are joined by an edge of length 1 labelled by g�1h if there exists a vertex v of � such that
g�1h 2 Gv . We denote the distance in S.�/ by dsyl.�; �/ and say dsyl.g; h/ is the syllable
distance between g and h. When convenient, we will use jgjsyl to denote dsyl.e; g/ and
call it the syllable length of g.

Notice that all cosets of vertex groups have diameter 1 under the syllable metric, thus
trivialising their geometry. Therefore, when working with S.�/, instead of expressing an
element g 2 G� as a word in the generators of G� , it is more geometrically meaningful
to express g as a product of any elements of vertex groups.
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Definition 2.3 (Syllable expressions). Let G� be a graph product and g 2 G� . If g D
s1 : : : sn where each si 2 Gvi for some vi 2 V.�/, then we say that s1 : : : sn is a syllable
expression for g. If s1 : : : sn is a syllable expression for g and n D dsyl.e; g/, then we say
that s1 : : : sn is a reduced syllable expression for g. In this case, n is the smallest number
of terms possible for any syllable expression of g.

A foundational fact about graph products is that any syllable expression can be reduced
by applying a sequence of canonical moves.

Theorem 2.4 (Reduction algorithm for graph products; [18, Theorem 3.9]). Let G� be a
graph product and g 2 G� . If s1 : : : sn is a reduced syllable expression for g and t1 : : : tm
is a syllable expression for g, then t1 : : : tm can be transformed into s1 : : : sn by applying
a sequence of the following three moves:

• remove a term ti if ti D e;

• replace consecutive terms ti and tiC1 belonging to the same vertex group Gv with the
single term ti tiC1 2 Gv;

• exchange the position of consecutive terms ti and tiC1 when ti 2 Gv and tiC1 2 Gw
with v joined to w by an edge in � .

The next corollary shows that when each of the vertex groups of the graph product is
finitely generated, Theorem 2.4 implies that the word length of any g 2 G� will be the
sum of the word lengths of the terms in any reduced syllable expression for g.

Corollary 2.5 (Reduced syllable expressions minimise word length). Let G� be a graph
product of finitely generated groups. For each v 2 V.�/, let Sv be a finite generating set
for the vertex group Gv , and let jgj be the word length of g 2 G� with respect to the
finite generating set S D

S
v2V.�/ Sv . For all g 2 G� , if s1 : : : sn is a reduced syllable

expression for g, then

jgj D

nX
iD1

jsi j:

Proof. Let s1 : : : sn be a reduced syllable expression for g 2G� . There existw1; : : : ;wm 2
S such that jgj D m and g D w1 : : : wm. Since every element of S is an element of one of
the vertex groups of G� , the product w1 : : : wm is also a syllable expression for g. Thus,
by applying a finite number of the moves from Theorem 2.4, we can transform w1 : : : wm
into s1 : : : sn. We can therefore write each si as a product si D w�i .1/ : : : w�i .mi /, where
mi �m and �i is a permutation of ¹1; : : : ;mº. Further, if i ¤ k, then ¹�i .1/; : : : ;�i .mi /º \
¹�k.1/; : : : ; �k.mk/º D ;. Thus,

nX
iD1

jsi j �

nX
iD1

mi � m:

However, m D jgj �
Pn
iD1 jsi j by definition, so jgj D

Pn
iD1 jsi j.
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Another critical consequence of Theorem 2.4 is that the terms in a reduced syllable
expression for an element of a graph product are well defined up to applying the commut-
ation relation. This ensures that the following notions are well defined for an element of a
graph product.

Definition 2.6 (Syllables and support of an element). Let G� be a graph product and let
g 2 G� . If s1 : : : sn is a reduced syllable expression for g, then we call the si the syllables
of g and use supp.g/ to denote the maximal subgraph of � with vertex set ¹v1; : : : ; vnº,
where si 2 Gvi . We call supp.g/ the support of g.

Convention 2.7. Whenever we consider a subgraphƒ� � , we will assume thatƒ is both
non-empty and an induced subgraph of � . That is, whenever v; w are vertices of ƒ that
are joined by an edge of � , then v and w are joined by an edge of ƒ as well.

Another hallmark feature of graph products is their rich collection of subgroups cor-
responding to subgraphs of the defining graph.

Definition 2.8 (Graphical subgroups). Let G� be a graph product with vertex groups
¹Gv W v 2 V.�/º and let ƒ � � be a subgraph. We use hƒi to denote the subgroup of G�
generated by ¹Gv W v 2 V.ƒ/º. We call such subgroups the graphical subgroups of G� .
Note, each subgroup hƒi is isomorphic to the graph product Gƒ.

Since the graphical subgroups are themselves graph products, we can also define the
syllable metric on them and their cosets.

Definition 2.9 (Syllable metric on graphical subgroups). Let G� be a graph product,
g 2 G� , and ƒ � � . Let S.ƒ/ be the metric graph defined in Definition 2.2 for the graph
product hƒi, and let S.gƒ/ denote the metric graph whose vertices are elements of the
coset ghƒi and where gx and gy are joined by an edge of length 1 if x and y are joined
by an edge in S.ƒ/.

Remark 2.10 (Graphical subgroups are convex in S.�/). Geodesics in S.�/ between
two elements k and h are labelled by the reduced syllable forms of k�1h. The induced
subgraph of S.�/ with vertex set ghƒi is therefore convex and graphically isomorphic to
S.gƒ/ via the identity map. In particular, the distance between two vertices k;h of S.gƒ/
is dsyl.k; h/.

In order to analyse how the graphical subgroups of G� interact, we make extensive
use of the following definitions from graph theory.

Definition 2.11 (Star, link, and join). Let � be a finite simplicial graph and ƒ a subgraph
of � . The link of ƒ, denoted by lk.ƒ/, is the subgraph spanned by the vertices of � Xƒ
that are connected to every vertex of ƒ. The star of ƒ, denoted by st.ƒ/, is ƒ [ lk.ƒ/.
We say that ƒ is a join if the vertices of ƒ can be expressed as V.ƒ/ D V.ƒ1/ [ V.ƒ2/,
whereƒ1 andƒ2 are disjoint subgraphs of � and every vertex ofƒ1 is connected to every
vertex of ƒ2. We denote the join of ƒ1 and ƒ2 by ƒ1 ‰ ƒ2. In particular, st.ƒ/ is the
join ƒ‰ lk.ƒ/.
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Remark 2.12. The star, link, and join have important algebraic significance. A join sub-
graph of � generates a subgroup of G� which splits as a direct product, while hst.ƒ/i is
the largest subgroup of G� which splits as a direct product with hƒi as one of the factors:
hst.ƒ/i D hƒi � hlk.ƒ/i. Moreover, since every element of hƒi commutes with every
element of hlk.ƒ/i, the reduced syllable form tells us that we can always write an element
g 2 hst.ƒ/i in the form g D �l , where � 2 hƒi and l 2 hlk.ƒ/i.

Genevois observed that the graph S.�/ is almost a cube complex, with the only non-
cubical behaviour arising from the vertex groups. More precisely, he showed the following
result.

Proposition 2.13 ([14, Lemmas 8.5 and 8.8]). Two adjacent edges of S.�/ are edges of a
triangle if and only if they are labelled by elements of the same vertex group. Two adjacent
edges of S.�/ are edges of an induced square if and only if they are labelled by elements
of adjacent vertex groups. In this case, opposite edges of the square are labelled by the
same vertex groups.

The above proposition means that while S.�/ is not a cube complex, it is the 1-
skeleton of a complex built from prisms glued isometrically along subprisms. Henceforth,
we will interchangeably refer to S.�/ and the canonical cell complex of which it is the
1-skeleton.

Definition 2.14 (Prism). A prism P of S.�/ is a subcomplex which can be written as a
product of simplices P D T1 � � � � � Tm.

Since a cube is a product of 1-simplices, prisms generalise the cubes in a cube com-
plex. Genevois used the prisms in S.�/ to build hyperplanes with very similar properties
to those in CAT.0/ cube complexes. We present a slightly different, but equivalent, con-
struction of these hyperplanes in S.�/.

In a cube complex, hyperplanes are built from mid-cubes. If we view each cube in
a cube complex as a product Œ�1

2
; 1
2
�n, we obtain a mid-cube by restricting one of the

intervals Œ�1
2
; 1
2
� to 0. In much the same way, we obtain a mid-prism from a prism by

performing a modified barycentric subdivision on one of its simplices. If this simplex is a
1-simplex, this just gives us the midpoint of the edge.

Definition 2.15 (Mid-prism). Given an n-simplex T in S.�/, perform a modified bary-
centric subdivision as follows. First, add a vertex at the barycentre of each sub-simplex
of T . Then, for each 2 � k � n, add edges connecting the barycentre of each k-simplex
in T to the barycentres of each of its .k � 1/-sub-simplices; see Figure 1. The complex
we have added through this procedure is then the 1-skeleton of a canonical simply con-
nected cell complex, which we denote by K.T /. We call K.T / the mid-prism of T . More
generally, we define a mid-prism Ki of a prism P D T1 � � � � � Tm to be the product
Ki D T1 � � � � � Ti�1 �K.Ti / � TiC1 � � � � � Tm.

Note that the simplices in S.�/ that arise from infinite vertex groups have infinitely
many vertices. A simplex with infinitely many vertices may still be assigned a mid-prism,
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Figure 1. The mid-prism of a 3-simplex and a mid-prism of the product of a 2-simplex and a 1-
simplex.

by constructing mid-prisms for each of its finite sub-simplices. The inductivity of the
barycentric subdivision procedure ensures that these mid-prisms all agree with each other.

A hyperplane of a cube complex is defined to be a maximal connected union of
mid-cubes. In the same way, we can construct hyperplanes in S.�/ by taking maximal
connected unions of mid-prisms.

Definition 2.16 (Hyperplane, carrier). Construct an equivalence relation � on the edges
of S.�/ by defining E1 � E2 if E1 and E2 are either opposite sides of a square or two
sides of a triangle, and then extending transitively. We say that the hyperplane dual to
the equivalence class ŒE� is the union of all mid-prisms that intersect edges of ŒE�; see
Figure 2. The carrier of the hyperplane dual to ŒE� is the union of all prisms that contain
edges of ŒE�.

If a geodesic 
 or a coset ghƒi contains an edge that is dual to a hyperplane H , then
we say that H crosses 
 or ghƒi. We say that a hyperplane H separates two subsets X
and Y of S.�/ if X and Y are each entirely contained in different connected components
of S.�/ XH .

Each hyperplane of a cube complex comes with two corresponding combinatorial
hyperplanes, obtained by restricting intervals to �1

2
or 1

2
instead of 0 when constructing

mid-cubes. The advantage of these combinatorial hyperplanes is that they form subcom-
plexes of the cube complex. In S.�/, we obtain combinatorial hyperplanes by restricting
a simplex to a vertex instead of performing barycentric subdivision when constructing
mid-prisms.

Definition 2.17 (Combinatorial hyperplane). Let P D T1 � � � � � Tm be a prism, where
each Ti is an ni -simplex. Each mid-prismKi splits P into ni C 1 sectors, each containing
a subcomplex T1 � � � � � ¹vkº � � � � �Tm, where vk is a vertex of Ti . Given a hyperplaneH
of S.�/, consider the union of all such subcomplexes obtained from the mid-prisms ofH .
We call each connected component of this union a combinatorial hyperplane associated
to H ; see Figure 2.

Remark 2.18 (Labelling hyperplanes). Proposition 2.13 tells us that if two edges E1 and
E2 of S.�/ are sides of a common triangle or opposite sides of a square, then they are
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Figure 2. A hyperplane (blue) inside its carrier, and an associated combinatorial hyperplane (red).

labelled by elements of the same vertex group. It follows that all edges that a hyperplaneH
intersects are labelled by elements of the same vertex groupGv . We therefore labelH with
the vertex group Gv . Moreover, the edges of the associated combinatorial hyperplanes
will then be labelled by elements of hlk.v/i. This fact will be exploited repeatedly in our
proofs.

Genevois established that the hyperplanes of S.�/ maintain many of the fundamental
properties from the cubical setting.

Proposition 2.19 (Properties of hyperplanes; [14, Section 2]). (1) Every hyperplane
of S.�/ separates S.�/ into at least two connected components.

(2) IfH is a hyperplane of S.�/, then any combinatorial hyperplane forH is convex
in S.�/.

(3) If H is a hyperplane of S.�/, then any connected component of S.�/ X H is
convex in S.�/.

(4) A continuous path 
 in S.�/ is a geodesic if and only if 
 intersects each hyper-
plane at most once.

(5) If two hyperplanes cross, then they are labelled by adjacent vertex groups.

Remark 2.20. Item (4) implies that a hyperplane H of S.�/ crosses a geodesic con-
necting a pair of points x; y if and only if H separates x and y. Thus, if 
1; : : : ; 
n is a
collection of geodesics in S.�/ such that 
1 [ � � � [ 
n forms a loop andH is a hyperplane
that crosses 
i , then H must also cross 
j for some j ¤ i .

It is important to note that while we still use the terms “hyperplane” and “combin-
atorial hyperplane” here, they differ from those of cube complexes in a critical way: the
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complement of a hyperplane H in S.�/ may have more than two connected components,
and thus H may have more than two associated combinatorial hyperplanes.

Genevois and Martin use the convexity of the cosets ghƒi to construct a nearest point
projection onto ghƒi, which we call a gate map. The map and its properties are given
below, and will be essential tools throughout this paper.

Proposition 2.21 (Gate onto graphical subgroups; [17, Section 2]). Let G� be a graph
product. For all ƒ � � and g 2 G� , there exists a map ggƒWG� ! ghƒi satisfying the
following properties.

(1) For all k; h 2 G� , dsyl.ggƒ.h/;ggƒ.k// � dsyl.h; k/.

(2) For all x;h 2G� , h � ggƒ.x/D ghgƒ.hx/. In particular, ggƒ.x/D g � gƒ.g
�1x/.

(3) For all x 2G� , ggƒ.x/ is the unique element of ghƒi such that dsyl.x;ggƒ.x//D

dsyl.x; ghƒi/.

(4) Any hyperplane in S.�/ that separates x from ggƒ.x/ separates x from ghƒi.

(5) If x;y 2 G� andH is a hyperplane in S.�/ separating ggƒ.x/ and ggƒ.y/, then
H separates x and y, so that x and ggƒ.x/ (resp. y and ggƒ.y/) are contained
in the same connected component of S.�/ XH .

We also obtain a convenient algebraic formulation for the gate map of an element g
onto a graphical subgroup hƒi by considering the collection of all possible initial sub-
words of g that are contained in hƒi.

Definition 2.22 (Prefixes and suffixes). Let g 2G� . If there exist p;s 2G� so that gDps
and jgjsyl D jpjsylC jsjsyl, we call p a prefix of g and s a suffix of g. We shall use prefix.g/
and suffix.g/ to respectively denote the collections of all prefixes and suffixes of g.

Lemma 2.23 (Algebraic description of the gate map). For all ƒ � � and g 2 G� , there
exists p 2 prefix.g/\ hƒi so that gƒ.g/D p. Further, p is the element of prefix.g/\ hƒi
with the largest syllable length.

Proof. Since prefix.g/ \ hƒi is a finite set, there exists p 2 prefix.g/ \ hƒi so that
jp0jsyl � jpjsyl for all p0 2 prefix.g/\ hƒi. Let x D gƒ.g/ and let s be the suffix of g cor-
responding to p. If there exists a non-identity element y 2 prefix.s/\ hƒi, then py would
be an element of prefix.g/ \ hƒi with syllable length strictly larger than p. Since this is
impossible by choice of p, we have prefix.s/\ hƒi D ¹eº. This implies jx�1psjsyl � jsjsyl

since x�1p 2 hƒi, and we have the following calculation:

dsyl.x; g/ D jx
�1psjsyl � jsjsyl D jp

�1gjsyl D dsyl.p; g/:

Since p 2 hƒi, this implies x D p, as x is the unique element of hƒi that minimises the
syllable distance of g to hƒi (Proposition 2.21 (3)).

Definition 2.24. Denote the element p of prefix.g/ \ hƒi with largest syllable length by
prefixƒ.g/, and define suffixƒ.g/ D .prefixƒ.g

�1//�1.
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2.2. Relative hierarchically hyperbolic groups

We break the definition of a relative hierarchically hyperbolic group (HHG) given by
Behrstock, Hagen, and Sisto in [3] into three parts in order to more clearly organise the
structure of our arguments. First we define what we call the proto-hierarchy structure,
which sets up the defining information (relations and projections) for the HHG structure.
We then give the more advanced geometric properties that we need to impose for the group
to be a relative hierarchically hyperbolic space (HHS). We then define a relative HHG to
be a group whose Cayley graph is a relative HHS in such a way that the relative HHS
structure agrees with the group structure.

Definition 2.25 (Proto-hierarchy structure). Let X be a quasi-geodesic space and E > 0.
An E-proto-hierarchy structure on X is an index set S and a set ¹C.W / W W 2 Sº of
geodesic spaces .C.W /; dW / such that the following axioms are satisfied.

(1) (Projections) For each W 2 S, there exists a projection �W WX ! 2C.W / such
that for all x 2 X, �W .x/ ¤ ; and diam.�W .x// � E. Moreover, each �W is
.E;E/-coarsely Lipschitz and C.W / � NE .�W .X// for all W 2 S.

(2) (Nesting) If S ¤ ;, then S is equipped with a partial order � and contains a
unique �-maximal element. When V � W , we say that V is nested in W . For
each W 2 S, we denote by SW the set of all V 2 S with V � W . Moreover,
for all V;W 2 S with V � W there is a specified non-empty subset �VW � C.W /
with diam.�VW / � E.

(3) (Orthogonality) S has a symmetric relation called orthogonality. If V and W are
orthogonal, we write V ? W and require that V and W are not �-comparable.
Further, whenever V � W and W ? U , we require that V ? U . We denote by
S?W the set of all V 2 S with V ? W .

(4) (Transversality) If V;W 2 S are not orthogonal and neither is nested in the other,
then we say that V;W are transverse, denoted by V tW . Moreover, for all V;W 2
S with V t W , there are non-empty sets �VW � C.W / and �WV � C.V / each of
diameter at most E.

We use S to denote the entire proto-hierarchy structure, including the index set S, spaces
¹C.W / WW 2Sº, projections ¹�W WW 2Sº, and relations�,?, t. We call the elements
of S the domains of S and call the set �VW the relative projection from V to W . The
number E is called the hierarchy constant for S.

Definition 2.26 (Relative HHS). An E-proto-hierarchy structure S on a quasi-geodesic
space X is a relative E-hierarchically hyperbolic space structure (relative E-HHS struc-
ture) on X if it satisfies the following additional axioms.

(1) (Hyperbolicity) For eachW 2S, eitherW is�-minimal or C.W / isE-hyperbolic.

(2) (Finite complexity) Any set of pairwise �-comparable elements has cardinality at
most E.
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(3) (Containers) For each W 2S and U 2SW with SW \S?U ¤;, there exists Q2
SW such that V �Q whenever V 2SW \S?U . We call Q a container of U in W .

(4) (Uniqueness) There exists a function � W Œ0;1/! Œ0;1/ so that for all r � 0, if
x; y 2 X and dX.x; y/ � �.r/, then there exists W 2 S such that

dW
�
�W .x/; �W .y/

�
� r:

We call � the uniqueness function of S.

(5) (Bounded geodesic image) For all x; y 2 X and V; W 2 S with V � W , if
dV .�V .x/; �V .y// � E, then every C.W /-geodesic from �W .x/ to �W .y/ must
intersect the E-neighbourhood of �VW .

(6) (Large links) For allW 2S and x;y 2X, there exists ¹V1; : : : ;Vmº �SW X ¹W º

such that m � EdW .�W .x/; �W .y// C E, and for all U 2 SW X ¹W º, either
U 2 SVi , for some i , or dU .�U .x/; �U .y// � E.

(7) (Consistency) If V t W , then

min
®
dW
�
�W .x/; �

V
W

�
; dV

�
�V .x/; �

W
V

�¯
� E

for all x 2 X. Further, if U � V and either V � W or V t W and W 6? U , then
dW .�UW ; �

V
W / � E.

(8) (Partial realisation) If ¹Viº is a finite collection of pairwise orthogonal elements
of S and pi 2 C.Vi / for each i , then there exists x 2 X so that

• dVi .�Vi .x/; pi / � E for all i ,

• for each i and eachW 2S, if Vi�W orW tVi , we have dW .�W .x/; �
Vi
W /�E.

If C.W / is E-hyperbolic for allW 2 S, then S is an E-HHS structure on X. We call
a quasi-geodesic space X a (relative) E-HHS if there exists a (relative) E-HHS structure
on X. We use the pair .X;S/ to denote a (relative) HHS equipped with the specific
(relative) HHS structure S.

Definition 2.27 (Relative HHG). Let G be a finitely generated group and let X be the
Cayley graph of G with respect to some finite generating set. We say that G is a (relative)
E-HHG if the following hold.

(1) The space X admits a (relative) E-HHS structure S.

(2) There is a �-, ?-, and t-preserving action of G on S by bijections such that S

contains finitely many G-orbits.

(3) For each W 2 S and g 2 G, there exists an isometry gW WC.W /! C.gW / sat-
isfying the following for all V;W 2 S and g; h 2 G:

• the map .gh/W WC.W /! C.ghW / is equal to the map ghW ı hW WC.W /!
C.ghW /;

• for each x2X , gW .�W .x// and �gW .g � x/ are at mostE-far apart inC.gW /;

• if V tW or V �W , then gW .�VW / and �gVgW are at mostE-far apart in C.gW /.
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The structure S satisfying (1)–(3) is called a (relative) E-HHG structure on G. We
use .G;S/ to denote a group G equipped with a specific (relative) HHG structure S.

We build the proto-hierarchy structure for a graph product of finitely generated groups
in Section 3 and spend Section 4 verifying that this structure satisfies the axioms of a
relative HHS and respects the group structure.

3. The proto-hierarchy structure on a graph product

For this section, G� will be a graph product of finitely generated groups. For each ver-
tex group Gv , let Sv be a finite generating set for Gv , then define S to be

S
v2V.�/ Sv .

Throughout this section, d will denote the word metric on G� with respect to S . We now
begin to explicitly construct the HHS structure on G� . We first define the index set, asso-
ciated spaces, and projection maps in Section 3.1 and then define the relations and relative
projections in Section 3.2.

3.1. The index set, associated spaces, and projections

The index set for our relative HHS structure on G� is the set of parallelism classes of
graphical subgroups. This mirrors the case of right-angled Artin groups studied in [5].

Definition 3.1 (Parallelism and the index set for a graph product). Let G� be a graph
product. For a subgraph ƒ � � , we shall use gƒ to denote the coset ghƒi for ease of
notation. We say that gƒ and hƒ are parallel if g�1h 2 hst.ƒ/i and write gƒkhƒ. Let
Œgƒ� denote the equivalence class of gƒ under the parallelism relation k. Define the index
set S� D ¹Œgƒ� W g 2 G� ; ƒ � �º.

The geometric intuition for the definition of parallelism comes from the fact that if
two cosets ghƒi and hhƒi satisfy g�1h 2 hst.ƒ/i, then they are each crossed by precisely
the same set of hyperplanes of S.�/. Again, it is important to note that these hyperplanes,
introduced in Definition 2.16, are generalisations of those in cube complexes.

Proposition 3.2 (Parallel cosets have the same hyperplanes). Let ƒ � � and g; h 2 G� .
If ghƒikhhƒi, then every hyperplane of S.�/ crossing ghƒi must also cross hhƒi.

Proof. Since ghƒikhhƒi, we have g�1h2 hst.ƒ/i and there exist �2 hƒi and l 2 hlk.ƒ/i
such that g�1h D �l (Remark 2.12). Since � and l commute, g�1hhƒi D lhƒi.

LetH be a hyperplane in S.�/ crossing ghƒi. In particular,H separates two adjacent
points ga and gb in ghƒi. Translating by g�1, we have that g�1H separates a and b
in hƒi. Let s1 : : : sn be a reduced syllable expression for l . Thus, there is a geodesic from
a to la and a geodesic from b to lb each labelled by s1 : : : sn, where each si 2 hlk.ƒ/i.
Since b�1a labels an edge of hƒi, b�1a and si span a square for each i 2 ¹1; : : : ; nº.
Thus, we have a strip of squares joining the edge between a and b to the edge between
la and lb with the hyperplane g�1H running through the middle. Hence g�1H crosses
lhƒi D g�1hhƒi and by translating by g, H crosses hhƒi.
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The hierarchy structure on a graph product on n vertices can be thought of as being
built up in n levels, with level k consisting of the subgraphs with k vertices. Whenever we
build up to the next level in the hierarchy, we need to record precisely the geometry we
have just added; any less will violate the uniqueness axiom, while any more may violate
hyperbolicity. When defining our spaces C.gƒ/, we therefore do not want to record any
distance travelled in strict subgraphs of ƒ. This leads us to the subgraph metric:

Definition 3.3 (Subgraph metric on a graph product). Let G� be a graph product. Define
C.�/ to be the graph whose vertices are elements of G� and where g; h 2 G� are joined
by an edge if there exists a proper subgraph ƒ ¨ � such that g�1h 2 hƒi, or if g�1h
is an element of the generating set S defined at the beginning of the section. We denote
the distance in C.�/ by d�.�; �/ and say that d�.g; h/ is the subgraph distance between g
and h. When � is a single vertex v, C.�/ D C.v/ is the Cayley graph of the vertex group
Gv with respect to the finite generating set S . Otherwise, d�.e; g/ is equal to the smallest
n such that g D �1 : : : �n with supp.�i / a proper subgraph of � for each i 2 ¹1; : : : ; nº.

If g D �1 : : : �n, where supp.�i / is a proper subgraph of � for each i 2 ¹1; : : : ; nº,
then we call �1 : : : �n a subgraph expression for g. If n D d�.e; g/, then �1 : : : �n is
a reduced subgraph expression for g. Note that when � is a single vertex, there are no
subgraph expressions.

Remark 3.4. When � has at least two vertices, S.�/ is obtained from Cay.G� ; S/ by
adding extra edges, where S is the generating set defined at the beginning of the sec-
tion. Likewise, C.�/ is then obtained from S.�/ by adding even more edges. It therefore
follows that d� � dsyl � d, where d is the word metric on G� induced by S .

In a reduced subgraph expression g D �1 : : : �n, we may assume

suffixƒiC1.�1 : : : �i / D e

for each i 2 ¹1; : : : ; n� 1º by removing any non-trivial suffix from the end of �1 : : :�i and
attaching it to the beginning of �iC1. By repeating this procedure for each i in ascending
order and then writing reduced syllable expressions for each �i , we then obtain a reduced
syllable expression for g.

Lemma 3.5. If � contains at least two vertices, then for each g2G� , there exist �1; : : : ;�n
2 G� with supp.�i / D ƒi ¨ � such that the following hold.

(1) �1 : : : �n is a reduced subgraph expression for g.

(2) For each i 2 ¹1; : : : ; n � 1º, suffixƒiC1.�1 : : : �i / D e.

(3) jgjsyl D j�1 : : : �njsyl D
Pn
jD1 j�j jsyl.

In particular, for each x; y 2 G� , there exists an S.�/-geodesic 
 connecting x and y
such that if �1 : : : �n is the above reduced subgraph expression for x�1y, then the element
x�1 : : : �i is a vertex of 
 for each i 2 ¹1; : : : ; nº.

Proof. We begin by noting how the final conclusion of the lemma follows from the main
conclusion. Let �1 : : : �n be a reduced subgraph expression for x�1y that satisfies (3).
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For each i 2 ¹1; : : : ; nº, let si1 : : : s
i
mi

be a reduced syllable expression for �i . Since
jx�1yjsyl D j�1 : : : �njsyl D

Pn
jD1 j�j jsyl, it follows that .s11 : : : s

1
m1
/ : : : .sn1 : : : s

n
mn
/ is

a reduced syllable expression for x�1y. Hence there exists an S.�/-geodesic � from e to
x�1y whose edges are labelled by .s11 : : : s

1
m1
/ : : : .sn1 : : : s

n
mn
/, and this implies that the

element �1 : : : �i appears as a vertex of � for each i 2 ¹1; : : : ; nº. Translating by x gives

 D x� as the desired geodesic.

We now prove that we can find a reduced subgraph expression satisfying (2) and (3)
for any element of G� . Our proof proceeds by induction on n D d�.e; g/. If n D 1, then
supp.g/ is a proper subgraph of � and the conclusion is trivially true.

Assume that the lemma holds for all h 2 G� with d�.e; h/ � n � 1 and let g 2 G�
with d�.e; g/ D n. Let !1 : : : !n be a reduced subgraph expression for g. Let �i D
supp.!i / for each i 2 ¹1; : : : ; nº. By the induction hypothesis, we can assume that g0 D
!1 : : : !n�1 satisfies the conclusion of the lemma. Hence j!1 : : : !n�1jsyl D

Pn�1
jD1 j!j jsyl

and suffix�iC1.!1 : : : !i / D e for i 2 ¹1; : : : ; n � 2º.
Let � D suffix�n.!1 : : : !n�1/. For each i 2 ¹1; : : : ; n� 1º, let si1 : : : s

i
mi

be a reduced
syllable expression for !i . Now .s11 : : : s

1
m1
/ : : : .sn1 : : : s

n�1
mn�1

/ is a reduced syllable expres-
sion for !1 : : : !n�1 as j!1 : : : !n�1jsyl D

Pn�1
jD1 j!j jsyl. Thus, each syllable of � is a

syllable of one of !1; : : : ; !n�1. For each i 2 ¹1; : : : ; n � 1º, let j1 < � � � < ji be the
elements of ¹1; : : : ; miº such that sij1 ; : : : ; s

i
ji

are the syllables of !i that are not syllables
of � . For i 2 ¹1; : : : ; n� 1º, let !0i D s

i
j1
: : : siji . Thus, we have !1 : : :!n�1 D !01 : : :!

0
n�1�

where suffix�n.!
0
1 : : : !

0
n�1/ D e.

Let !0n D �!n. Then !01 : : : !
0
n�1!

0
n is a reduced subgraph expression for g with

supp.!0n/ D �n and suffix�n.!
0
1 : : : !

0
n�1/ D e. Let g0 D !01 : : : !

0
n�1. Since !01 : : : !

0
n

is a reduced subgraph expression for g, then !01 : : : !
0
n�1 is a reduced subgraph expres-

sion for g0. Hence d�.e; g0/ D n � 1 and the induction hypothesis says that there exists a
reduced subgraph expression �1 : : : �n�1 for g0 such that suffixsupp.�iC1/.�1 : : : �i /D e for
i 2 ¹1; : : : ; n� 2º and j�1 : : : �n�1jsyl D

Pn�1
jD1 j�j jsyl. Further, suffix�n.�1 : : : �n�1/D e

as �1 : : : �n�1 D g0 D !01 : : : !
0
n�1.

Now let �n D !0n andƒi D supp.�i / for each i 2 ¹1; : : : ; nº. We verify that �1; : : : ; �n
satisfies the conclusion of the lemma for g.

(1) �1 : : :�n is a reduced subgraph expression for g as eachƒi D supp.�i / is a proper
subgraph of � and d�.e; g/ D n.

(2) For each i 2 ¹1; : : : ; n � 1º, the above shows that suffixƒiC1.�1 : : : �i / D e.

(3) We prove that writing each �i in a reduced syllable form produces a reduced
syllable form for the product �1 : : : �n. For each i 2 ¹1; : : : ; nº, let t i1 : : : t

i
ki

be a reduced syllable expression for �i . Since j�1 : : : �n�1jsyl D
Pn�1
jD1 j�j jsyl,

we know that .t11 : : : t
1
k1
/ : : : .tn�11 : : : tn�1

kn�1
/ is a reduced syllable expression for

�1 : : : �n�1. Therefore, if

.t11 : : : t
1
k1
/ : : : .tn1 : : : t

n
kn
/

is not a reduced syllable expression for �1 : : : �n, then Theorem 2.4 implies that
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there must exist syllables t ij of �1 : : : �n�1 and tn
`

of �n such that

supp.t ij / D supp.tn` /

and t ij can be moved to be adjacent to tn
`

using a number of commutation relations.
However, this implies that t ij is a suffix for �1 : : : �n�1 with support in ƒn. This
is impossible as suffixƒn.�1 : : : �n�1/ D e. Therefore, .t11 : : : t

1
k1
/ : : : .tn1 : : : t

n
kn
/

must be a reduced syllable expression for �1 : : : �n and hence

j�1 : : : �njsyl D j�1jsyl C � � � C j�njsyl

as desired.

We can now define the geodesic spaces associated to elements of the index set. In the
next section, we will show that they are hyperbolic.

Definition 3.6. LetG� be a graph product. For each g 2G� andƒ�� , letC.gƒ/ denote
the graph whose vertices are elements of the coset ghƒi and where gx and gy are joined
by an edge if x and y are joined by an edge in C.ƒ/. The metric on C.gƒ/ is denoted by
dgƒ.�; �/.

Remark 3.7. Ifƒ� � is a joinƒDƒ1‰ƒ2, then every element � 2 hƒi can be written
as � D �1�2, where �1 2 hƒ1i and �2 2 hƒ2i. Since ƒ1 and ƒ2 are proper subgraphs
of ƒ, this implies that C.ƒ/, and therefore C.gƒ/, has diameter at most 2 whenever ƒ
splits as a join.

We now wish to use our gate map from Proposition 2.21 to define projections for
our hierarchy structure. Since S� is the set of parallelism classes of cosets of graphical
subgroups, we must verify that the gate map is well behaved under parallelism.

Lemma 3.8 (Gates to parallelism classes are well defined). If gƒkhƒ, then for all x2G� ,
ghƒ.x/ D ghƒ ı ggƒ.x/. In particular, if gƒkhƒ, then ghƒjghƒiW ghƒi ! hhƒi agrees
with the isometry of S.�/ induced by the element hpg�1, where p D prefixƒ.h

�1g/.

Proof. Suppose that ghƒ.x/ ¤ ghƒ.ggƒ.x//. There must then exist a hyperplane H
separating ghƒ.x/ and ghƒ.ggƒ.x// in S.�/. By (4) and (5) of Proposition 2.21, H
separates x and ggƒ.x/ and thus cannot cross ghƒi. However, H crosses hhƒi, and
so must cross ghƒi by Proposition 3.2. As this is a contradiction, we must have that
ghƒ.x/ D ghƒ.ggƒ.x//.

Note that, if g� 2 ghƒi, then the equivariance (Proposition 2.21 (2)) plus the prefix
description of the gate map (Lemma 2.23) imply that

ghƒ.g�/ D h � gƒ.h
�1g�/ D h � prefixƒ.h

�1g�/:

Since h�1g 2 hst.ƒ/i, we can write h�1gDpl , where p 2 hƒi and l 2 hlk.ƒ/i. Therefore,
ghƒ.g�/ D h � prefixƒ.pl�/ D hp�, that is, ghƒjghƒi agrees with the isometry induced
by hpg�1.
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Since Cay.G� ; S/, S.�/, and C.�/ differ only in that the latter two have extra edges,
we can easily promote our gate map to a projection map.

Definition 3.9. For all ƒ � � and g 2 G� , define �gƒWG� ! C.gƒ/ by igƒ ı ggƒ,
where igƒ is the inclusion map from ghƒi into C.gƒ/.

Remark 3.10. Combining the prefix description of the gate map (Lemma 2.23) with
equivariance (Proposition 2.21 (2)), we have that ggƒ.x/ D g � prefixƒ.g

�1x/ for all
x 2 G� . Since the only difference between �gƒ and ggƒ is the metric on the image,
this means that �gƒ.x/ D g � prefixƒ.g

�1x/ as well.

Note that any coset of hƒi can be expressed in the form ghƒi, where suffixƒ.g/De
(and thus prefixƒ.g

�1/ D e). Indeed, let hhƒi be a coset of hƒi, and suppose that
suffixƒ.h/ D �. Then we can write h D g�, where suffixƒ.g/ D e. It therefore follows
that hhƒi D g�hƒi D ghƒi. The next proposition shows that choosing the representat-
ive of ghƒi in this way ensures that prefixƒ.g

�1x/ contains only syllables of x. This is
particularly helpful when considering the prefix description of �gƒ.x/.

Proposition 3.11. Let ƒ � � and let g 2 G� . Then, for all x; y 2 G� , every syllable of
.ggƒ.x//

�1 � ggƒ.y/ is a syllable of x�1y. In particular, if g is the representative of ghƒi
with suffixƒ.g/ D e and h 2 G� , then every syllable of prefixƒ.g

�1h/ D gƒ.g
�1h/ is a

syllable of h.

Proof. Let x;y 2G� , then let px D ggƒ.x/ and py D ggƒ.y/. Let � be an S.�/-geodesic
connecting px and py and let 
 be an S.�/-geodesic connecting x and y. Let s1; : : : ; sn
be the elements of the vertex groups of G� that label the edges of �. This means that
s1; : : : ; sn are the syllables of p�1x py . For each i 2 ¹1; : : : ; nº, let Hi be the hyperplane
dual to the edge of � that is labelled by si and let vi be the vertex of � such that si 2 Gvi .

Since each Hi separates ggƒ.x/ and ggƒ.y/, each Hi must also cross 
 by Proposi-
tion 2.19 (4) and Proposition 2.21 (5). For i 2 ¹1; : : : ; nº, let Ei be the edge of 
 dual to
Hi . Note that every edge dual toHi is labelled by an element of the vertex group Gvi , but
not necessarily by the same element of Gvi .

If Ei is not labelled by si 2 Gvi , then the hyperplane Hi must encounter a triangle
of S.�/ between � and 
 . This creates a branch of the hyperplane Hi that cannot cross
either � or 
 by Proposition 2.19 (4). Thus, this branch must cross either an S.�/-geodesic
connecting x and px or an S.�/-geodesic connecting y and py ; see Figure 3. Without loss
of generality, assume that Hi crosses an S.�/-geodesic connecting x and px D ggƒ.x/.
This means that Hi separates x from ggƒ.x/, and thus Hi must separate x from all of
ghƒi (Proposition 2.19 (4)). However, this is impossible as Hi crosses ghƒi. Therefore,
Hi cannot encounter a triangle between � and 
 , and Ei must therefore be labelled by
the element si . Since the elements labelling the edges of 
 are the syllables of x�1y, this
implies that every syllable of p�1x py is also a syllable of x�1y.

For the final clause of the proposition, note that suffixƒ.g/De implies that gƒ.g
�1/D

prefixƒ.g
�1/ D e. Thus, we can apply the above with x D g�1 and y D g�1h to con-
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x y

px py

ghƒi

X




�

Hi

Figure 3. If the the hyperplane Hi encounters a triangle of S.�/ between � and 
 , then a branch of
Hi must cross an S.�/-geodesic from x to px (shown) or from y to py .

clude that every syllable of .gƒ.g�1//�1gƒ.g�1h/ D gƒ.g
�1h/ is also a syllable of

.g�1/�1g�1h D h.

Given that h;k 2G� , we shall employ a common abuse of notation by using dgƒ.h;k/
to denote dgƒ.�gƒ.h/; �gƒ.k//. We can now prove our first HHS axiom.

Lemma 3.12 (Projections). For each g 2 G� and ƒ � � , the projection �gƒ is .1; 0/-
coarsely Lipschitz.

Proof. We want to show that dgƒ.x; y/ � d.x; y/ for all x; y 2 G� . First assume that ƒ
consists of a single vertex v. Let px and py be ggƒ.x/D �gƒ.x/ and ggƒ.y/D �gƒ.y/,
respectively. Since ƒ is the single vertex v, C.ƒ/ is the Cayley graph of Gv with respect
to our fixed finite generating set, and C.gƒ/ is a coset of C.ƒ/. Thus, it suffices to prove
that jp�1x py j is bounded above by jx�1yj, where j � j is the word length onG� with respect
to the generating set S defined at the beginning of the section.

Let s D p�1x py 2 Gv . By Proposition 3.11, s must be a syllable of x�1y, that is, s
appears in a reduced syllable expression for x�1y. Recall that if s1 : : : sn is a reduced
syllable expression for x�1y, then jx�1yj D

Pn
iD1 jsi j (Corollary 2.5). Thus, jx�1yj �

jsj D jp�1x py j.
Now assume that ƒ contains at least two vertices. By Proposition 2.21 (1), we have

dsyl.ggƒ.x/;ggƒ.y// � dsyl.x; y/ � d.x; y/:

Furthermore, C.gƒ/ is obtained from S.gƒ/ by adding edges as ƒ contains at least two
vertices. Thus, we have

dgƒ.x; y/ � dsyl
�
ggƒ.x/;ggƒ.y/

�
� dsyl.x; y/ � d.x; y/:

Given an S.�/-geodesic 
 , there is a natural order on its vertices which arises from
orienting 
 . The distances between the vertices of 
 under the projection �gƒ then satisfy
the following monotonicity property with respect to this order.
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Lemma 3.13 (Subgraph distance along S.�/-geodesics). Let 
 be an S.�/-geodesic con-
necting two elements x; y 2 G� . For each vertex q of 
 , each element g 2 G� , and each
subgraph ƒ � � , we have

dgƒ.x; q/ � dgƒ.x; y/ and dgƒ.q; y/ � dgƒ.x; y/:

Proof. Fix g 2 G� and a subgraph ƒ � � . Let px D ggƒ.x/, py D ggƒ.y/, and pq D
ggƒ.q/.

First suppose thatƒ consists of a single vertex of � . Then the S.�/-diameter of ghƒi
is 1 and there exists a single hyperplane H so that every edge of ghƒi is dual to H . If
pq ¤ px and pq ¤ py , thenH must separate pq from both px and py . Therefore,H must
cross 
 between x and q and again between q and y by Proposition 2.21 (5). However,
this is impossible as H cannot cross 
 twice (Proposition 2.19 (4)). Thus, we must have
either pq D px or pq D py . The conclusion of the lemma then automatically holds as
�gƒ.q/ D �gƒ.x/ or �gƒ.q/ D �gƒ.y/.

Now assume thatƒ has at least two vertices and pq ¤ px and pq ¤ py . Let �1 : : : �m
be a reduced subgraph expression for p�1x py of the form provided by Lemma 3.5. In
particular, there exists an S.�/-geodesic � connecting px and py whose vertices include
px�1 : : : �i for each i 2 ¹1; : : : ; mº.

Let ˛ and ˇ be S.�/-geodesics connecting px to pq and pq to py , respectively. Any
hyperplane that crosses ˛ must also cross 
 and separate x and q by Proposition 2.21 (5).
Similarly, any hyperplane that crosses ˇ must also cross 
 and separate y and q. Thus, a
hyperplane that crosses both ˛ and ˇ would cross the S.�/-geodesic 
 twice. Since no
hyperplane of S.�/ can cross the same geodesic twice (Proposition 2.19 (4)), it follows
that any hyperplane that crosses ˛ (resp. ˇ) cannot cross ˇ (resp. ˛). By Remark 2.20, any
hyperplane that crosses either ˛ or ˇ must therefore cross � as ˛ [ ˇ [ � forms a loop in
S.�/.

We now prove that dgƒ.x; q/ � dgƒ.x; y/. The proof for dgƒ.q; y/ � dgƒ.x; y/ is
nearly identical with ˇ replacing ˛. Let E1; : : : ; Ek be the edges of ˛ and let Hj be the
hyperplane that crosses Ej for j 2 ¹1; : : : ; kº. We say that two hyperplanes Hj and H`
cross between ˛ and � if there exists a vertex a of ˛ such that for each vertex b of �, either
Hj or H` separates a from b; see Figure 4.

Claim 3.14. There exists an S.�/-geodesic ˛0 that connects px and pq such that no two
of H1; : : : ;Hk cross between ˛0 and �.

Proof. Let ˛1 D ˛ and let Ki be the number of times two of H1; : : : ; Hk cross between
˛i and �. Note that K1 �

k.k�1/
2

. If K1 D 0, we are done. Otherwise, there exists j 2
¹1; : : : ; kº such that Hj is the first hyperplane, where Hj�1 and Hj cross between ˛1
and �. Since Hj�1 and Hj cross, Proposition 2.19 (5) tells us that the edges Ej�1 and Ej
are labelled by elements of adjacent vertex groups. By Proposition 2.13, Ej�1 and Ej are
two sides of a square S of S.�/ inside which Hj�1 and Hj cross. Let ˛2 be the S.�/-
geodesic obtained from ˛1 by replacing the edges Ej�1 and Ej with the other two sides
of the square S ; see Figure 5.
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Hk
Hk�1Hk�2

px

pq

py

a

˛ ˇ

�

Figure 4. The hyperplanesHk�2 andHk�1 cross between ˛ and � because the vertex a is separated
from every vertex of � by eitherHk�2 orHk�1. Even thoughHk�2 andHk cross, they do not cross
between ˛ and �.

HjHj�1

px

pq

py

Figure 5. The edges Ej�1 and Ej can be replaced with the other two edges of the square S to
obtain a new S.�/-geodesic with K2 D K1 � 1.

Since Hj�1 and Hj crossed between ˛1 and �, we now have K2 D K1 � 1; that is,
that the number of times two of H1; : : : ; Hk cross between ˛2 and � is one less than the
number of times two ofH1; : : : ;Hk crossed between ˛1 and �. ReindexH1; : : : ;Hk such
that Hj crosses the j th edge of ˛2.

IfK2 D 0, we are done, with ˛0 D ˛2. Otherwise, we can repeat this argument at most
k.k�1/
2

times to construct a sequence of geodesics ˛1; ˛2; : : : ; ˛r , where KiC1 D Ki � 1
and Kr D 0. Then ˛0 D ˛r .

Let ˛0 be as in Claim 3.14 and reindex H1; : : : ; Hk so that Hj crosses the j th edge
of ˛0 for each j 2 ¹1; : : : ; kº. Since Hj crosses � for each j 2 ¹1; : : : ; kº, the labels for
the edges of ˛0 are a subset of the labels of �. Further, since no two of H1; : : : ; Hk cross
between ˛0 and �, the order in which the labels of edges appear along ˛0 is the same as
the order in which they appear along �. Since the vertices of � include px�1 : : : �i for
each i 2 ¹1; : : : ;mº, this implies that we can write p�1x pq D �

0
1 : : : �

0
m, where supp.�0i /�

supp.�i / for each i 2 ¹1; : : : ; mº. It therefore follows that the C.gƒ/-distance between
px and pq is bounded above by the C.gƒ/-distance between px and py , and so we have
dgƒ.x; q/ � dgƒ.x; y/.
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3.2. The relations

Here we define the nesting, orthogonality, and transversality relations in the proto-hier-
archy structure, and prove that they have the desired properties. We tackle the nesting
relation first.

Definition 3.15 (Nesting). LetG� be a graph product and let S� be the index set of paral-
lelism classes of cosets of graphical subgroups described in Definition 3.1. We say that
Œgƒ� � Œh�� if ƒ � � and there exists k 2 G� such that Œkƒ� D Œgƒ� and Œk�� D Œh��.

Lemma 3.16. The relation � is a partial order.

Proof. The only property that requires checking is transitivity; that is, if Œg1ƒ1��Œg2ƒ2��
Œg3ƒ3�, then Œg1ƒ1� � Œg3ƒ3�.

Since � is transitive, we have ƒ1 � ƒ3. Furthermore, there exist a; b 2 G� such that
Œg1ƒ1� D Œaƒ1�, Œaƒ2� D Œg2ƒ2� D Œbƒ2�, Œg3ƒ3� D Œbƒ3�; that is, g�11 a 2 hst.ƒ1/i,
g�12 a; g�12 b 2 hst.ƒ2/i, and g�13 b 2 hst.ƒ3/i. Thus,

g�11 a D l1�1; g�12 a D l2�2; g�12 b D l 02�
0
2; g�13 b D l3�3;

where �i ; �0i 2 hƒi i and li ; l 0i 2 hlk.ƒi /i for each i . Let c D b.�02/
�1�2. Then g�13 c D

g�13 b.�02/
�1�2 2 hst.ƒ3/i since ƒ2 � ƒ3. Moreover, since lk.ƒ2/ � lk.ƒ1/,

g�11 c D g�11 aa�1g2g
�1
2 bb�1c D l1�1�

�1
2 l
�1
2 l 02�

0
2.�
0
2/
�1�2 D l1l

�1
2 l 02�1 2

˝
st.ƒ1/

˛
:

Thus, Œg1ƒ1� D Œcƒ1� and Œg3ƒ3� D Œcƒ3�, verifying that Œg1ƒ1� � Œg3ƒ3�.

Definition 3.17 (Upwards relative projection). If Œgƒ� � Œh��, for any choice of repres-
entatives gƒ 2 Œgƒ� and h� 2 Œh��, define �gƒ

h�
� C.h�/ to be

�
gƒ

h�
D

[
kƒkgƒ

�h�
�
khƒi

�
D �h�

�
g
˝
st.ƒ/

˛�
:

The equality between
S
kƒkhƒ �h�.khƒi/ and �h�.ghst.ƒ/i/ is a consequence of the

definition that kƒkgƒ if and only if g�1k 2 hst.ƒ/i. Indeed, ghst.ƒ/i D gg�1khst.ƒ/i D
khst.ƒ/i � khƒi for all kƒkgƒ. Conversely, each element of ghst.ƒ/i can be written as
gl� where l 2 hlk.ƒ/i and � 2 hƒi, so that gl� 2 glhƒi where g�1gl D l 2 hst.ƒ/i and
hence gƒkglƒ.

Lemma 3.18 (Upwards relative projections have bounded diameter). If Œgƒ�� Œh��, then
for any choice of representatives gƒ 2 Œgƒ� and h� 2 Œh��, we have diam.�gƒ

h�
/ � 2.

Proof. Let gƒ and h� be fixed representatives of Œgƒ� and Œh��, respectively. Sup-
pose first that � splits as a join. Then diam.C.h�// D 2 by Remark 3.7, and hence
diam.�gƒ

h�
/ � 2. For the remainder of the proof, we will therefore assume that � does

not split as a join. Note that this implies that st.ƒ/ \ � ¨ �. Indeed, suppose that
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st.ƒ/ \ � D �. Then � � st.ƒ/, so either � � ƒ, � � lk.ƒ/, or � splits as a join.
The first two cases are impossible as ƒ ¨ �, and the last case is ruled out by assumption.

Let a 2 G� be such that Œaƒ� D Œgƒ� and Œa�� D Œh��. Since Œaƒ� D Œgƒ�, we have
g�1a 2 hst.ƒ/i, so ghst.ƒ/iD gg�1ahst.ƒ/iD ahst.ƒ/i. Thus, �gƒ

h�
D�h�.ghst.ƒ/i/D

�h�.ahst.ƒ/i/. Note that any element of ahst.ƒ/i can be expressed in the form a�l ,
where � 2 hƒi and l 2 hlk.ƒ/i. Using the equivariance (Proposition 2.21 (2)) and the
prefix description of the gate map (Lemma 2.23), we have

ga�.a�l/ D a � g�.a
�1a�l/ D a � prefix�.�l/ D a� � prefix�.l/:

This implies that ga�.a�l/ D a�l0, where l0 D prefix�.l/ 2 hlk.ƒ/ \�i and so

supp.�l0/ � ƒ [
�

lk.ƒ/ \�
�
D st.ƒ/ \� ¨ �:

Moreover, by Lemma 3.8, gh�.a�l/ D gh�.ga�.a�l// D gh�.a�l0/.
Since a�kh�, the gate map from ah�i to hh�i agrees with the isometry of S.�/ in-

duced by the element hpa�1, where pDprefix�.h
�1a/ (Lemma 3.8). Since supp.�l0/¨�,

this implies that
gh�.a�l0/ D hpa

�1
� a�l0 D hp�l0:

Therefore, given two arbitrary elements a�l; a�0l 0 2 ahst.ƒ/i, we have�
gh�.a�l/

��1
gh�.a�

0l 0/ D l�10 ��1�0l 00;

where
supp.l�10 ��1�0l 00/ � st.ƒ/ \� ¨ �:

This implies that theC.h�/-diameter of �h�.ghst.ƒ/i/D�gƒ
h�

is at most 1 in this case.

Next we deal with the orthogonality relation.

Definition 3.19 (Orthogonality). Let G� be a graph product and let S� be the index set
of parallelism classes of cosets of graphical subgroups described in Definition 3.1. We
say that Œgƒ� ? Œh�� if ƒ � lk.�/ and there exists k 2 G� such that Œkƒ� D Œgƒ� and
Œk�� D Œh��.

Lemma 3.20 (Orthogonality axiom). The relation ? has the following properties:

(1) ? is symmetric;

(2) if Œgƒ�?Œh��, then Œgƒ� and Œh�� are not �-comparable;

(3) if Œgƒ� � Œh�� and Œh��?Œk…�, then Œgƒ�?Œk…�.

Proof. (1) If ƒ � lk.�/, then all vertices of ƒ are connected to all vertices of �, hence
� � lk.ƒ/ too. Thus, the relation ? is symmetric.

(2) Any graph is disjoint from its own link, hence if Œgƒ�?Œh��, then Œgƒ� and Œh��
cannot be �-comparable.
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(3) Suppose that Œgƒ� � Œh�� and Œh��?Œk…�. Thenƒ � � � lk.…/, and there exist
a; b 2 G� such that

Œaƒ� D Œgƒ�; Œa�� D Œh�� D Œb��; and Œb…� D Œk…�:

In particular, this means that b�1a 2 hst.�/i, hence we can write b�1a D !l , where
! 2 h�i and l 2 hlk.�/i. Then !�1b�1a D l 2 hlk.�/i � hlk.ƒ/i � hst.ƒ/i, and so
Œaƒ� D Œb!ƒ�. On the other hand, !�1b�1b D !�1 2 h�i � hlk.…/i � hst.…/i, and so
Œb…�D Œb!…�. Therefore, Œgƒ� ? Œk…�, becauseƒ � lk.…/ and Œgƒ�D Œb!ƒ�, Œk…�D
Œb!…�.

Our final relation is transversality, which is a little more nuanced, since our Œgƒ� and
Œh�� need not have a common representative k in this case.

Definition 3.21 (Transversality and lateral relative projections). If Œgƒ�; Œh�� 2 S� are
not orthogonal and neither is nested in the other, then we say Œgƒ� and Œh�� are transverse,
denoted by Œgƒ�t Œh��. When Œgƒ�t Œh��, for each choice of representatives gƒ2 Œgƒ�
and h� 2 Œh��, define �h�gƒ � C.gƒ/ by

�h�gƒ D
[

k�kh�

�gƒ
�
kh�i

�
D �gƒ

�
h
˝
st.�/

˛�
:

The next lemma verifies that �h�gƒ has diameter at most 2.

Lemma 3.22. If Œgƒ� t Œh��, then for any choice of representatives gƒ 2 Œgƒ� and
h� 2 Œh��, we have diam.�gƒ.hhst.�/i// � 2 and diam.�h�.ghst.ƒ/i// � 2.

Proof. We provide the proof for diam.�gƒ.hhst.�/i// � 2. The other case is identical.
Let x; y 2 hhst.�/i. Define px D �gƒ.x/ D ggƒ.x/ and py D �gƒ.y/ D ggƒ.y/.

If ƒ splits as a join ƒ1 ‰ ƒ2, then dgƒ.px ; py/ � diam.C.gƒ// � 2 by Remark 3.7.
Now suppose that ƒ does not split as a join. Since px ; py 2 ghƒi, we have

supp.p�1x py/ � ƒ:

If supp.p�1x py/ is a proper subgraph of ƒ, then the C.gƒ/-distance between px and py
will be at most 1. Thus, it suffices to prove that supp.p�1x py/ ¤ ƒ.

Since Œgƒ� t Œh��, we have that Œgƒ� 6? Œh��, Œgƒ� 6� Œh��, and Œh�� 6� Œgƒ�. This
can occur in two different ways: either ƒ 6� lk.�/, � 6� ƒ and ƒ 6� �, or there does not
exist k 2 G� so that Œgƒ� D Œkƒ� and Œh�� D Œk��.

First assume thatƒ 6� lk.�/ andƒ 6��. Thenƒ 6� st.�/, asƒ also does not split as a
join. This implies that st.�/ \ƒ ¤ ƒ. By Proposition 3.11, every syllable of p�1x py is a
syllable of x�1y. Since x�1y 2 hst.�/i, this implies that supp.p�1x py/� st.�/\ƒ¤ƒ
as desired.

Now assume thatƒ�lk.�/ orƒ��. Thus, there does not exist k2G� so that Œgƒ�D
Œkƒ� and Œh��D Œk��. For the purposes of contradiction, suppose that supp.p�1x py/Dƒ.



Hierarchical hyperbolicity of graph products 547

Hi

x y

px py

ghƒi
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�

hhst.�/i

Figure 6. Any hyperplane that crosses ˛x and ˛y must cross all of the hyperplanes separating px
and py .

Let sx and sy be the suffixes of x and y, respectively, such that x D pxsx and y D
pysy . Select the following S.�/-geodesics: ˛x connecting x and px , ˛y connecting y and
py , � connecting px and py , 
 connecting x and y; see Figure 6.

Let t1 : : : tn be the reduced syllable expression for sx corresponding to the geodesic
˛x . For each i 2 ¹1; : : : ; nº, let Hi be the hyperplane crossing the edge of ˛x labelled by
ti . Recall that a hyperplane in S.�/ crosses a geodesic segment if and only if it separates
the end points of the segment (Proposition 2.19 (4)). Each Hi therefore separates x and
px D ggƒ.x/, so each Hi must separate x from all of ghƒi by Proposition 2.21 (4). In
particular, no Hi crosses �. Thus, by Remark 2.20, each Hi must cross either 
 or ˛y . If
Hi crosses 
 , then ti 2 hst.�/i. On the other hand, if Hi crosses ˛y , then Hi must cross
every hyperplane that separates px and py ; see Figure 6. Because supp.p�1x py/ D ƒ, it
follows that for every vertex v ofƒ there exists a hyperplane that separates px and py and
is labelled by v. Hence, if Hi crosses ˛y , then Hi crosses at least one hyperplane that is
labelled by each vertex of ƒ. By Proposition 2.19 (5), if two hyperplanes cross then they
are labelled by adjacent vertices in � . Thus, the vertex labelling Hi must be in the link of
ƒ. In particular, ti 2 hlk.ƒ/i.

The above shows that ti 2 hst.�/i or ti 2 hlk.ƒ/i for each i 2 ¹1; : : : ; nº. Further,
ti 2 hst.�/i ifHi crosses 
 and ti 2 hlk.ƒ/i ifHi crosses ˛y . Now suppose that i < j and
that Hi crosses 
 , but Hj crosses ˛y . As shown in Figure 7, this forces Hi to cross Hj ,
which implies that ti and tj commute by Proposition 2.19 (5). Thus, by commuting the
syllables of sx , we have sx D lx!x where !x 2 hst.�/i and lx 2 hlk.ƒ/i.

Now, since x 2 hhst.�/i, we have h�1x 2 hst.�/i, which implies that Œh�� D Œx��.
Since x D pxsx D pxlx!x , we have Œx�� D Œpxlx!x�� D Œpxlx��. Similarly, px 2
ghƒi, so g�1px 2 hƒi, which implies that Œgƒ� D Œpxƒ�. Now Œpxƒ� D Œpxlxƒ� as
p�1x .pxlx/ D lx 2 hlk.ƒ/i � hst.ƒ/i. Thus, we have

Œh�� D Œpxlx�� and Œgƒ� D Œpxlxƒ�:
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ghƒi
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Figure 7. The hyperplane Hi crosses ˛x and 
 while Hj crosses ˛x and ˛y . Since Hi appears
before Hj along ˛x , Hi must cross Hj .

However, this contradicts our assumption that there is no k 2 G� such that Œh�� D Œk��
and Œgƒ� D Œkƒ�, proving that we must have supp.p�1x py/ ¤ ƒ as desired.

3.3. The proto-hierarchy structure

We now combine the work in this section to give a proto-hierarchy structure for G� .

Theorem 3.23. LetG� be a graph product of finitely generated groups. For each parallel-
ism class Œgƒ� 2S� , fix a representative gƒ 2 Œgƒ�. The following is a 2-proto-hierarchy
structure for .G� ; d/.

• The index set is the set of parallelism classes S� defined in Definition 3.1.

• The space C.Œgƒ�/ associated to Œgƒ� is the space C.gƒ/ from Definition 3.3, where
gƒ is the fixed representative of Œgƒ�.

• The projection map �Œgƒ�WG� ! C.Œgƒ�/ is the map �gƒWG� ! C.gƒ/ from Defin-
ition 3.9 for the fixed representative gƒ 2 Œgƒ�.

• Œgƒ�� Œh�� ifƒ�� and there exists k 2G� such that Œkƒ�D Œgƒ� and Œk��D Œh��.

• The upwards relative projection �Œgƒ�
Œh��

when Œgƒ� � Œh�� is the set �gƒ
h�

from Defini-
tion 3.17, where gƒ and h� are the fixed representatives for Œh�� and Œgƒ�.

• Œgƒ�? Œh�� ifƒ� lk.�/ and there exists k 2G� such that Œkƒ�D Œgƒ� and Œk��D
Œh��.

• Œgƒ� t Œh�� whenever Œgƒ� and Œh�� are not orthogonal and neither is nested into
the other.

• The lateral relative projection �Œgƒ�
Œh��

when Œgƒ� t Œh�� is the set �gƒ
h�

from Defini-
tion 3.21, where gƒ and h� are the fixed representatives for Œh�� and Œgƒ�.

Proof. The projection map �Œgƒ� is shown to be .1; 0/-coarsely Lipschitz in Lemma 3.12.
Nesting is shown to be a partial order in Lemma 3.16. The upward relative projection has
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diameter at most 2 by Lemma 3.18. Lemma 3.20 shows that orthogonality is symmetric
and mutually exclusive of nesting, and that nested domains inherit orthogonality. The
lateral relative projections have diameter at most 2 by Lemma 3.22.

4. Graph products are relative HHGs

In this section, we complete our proof that graph products of finitely generated groups are
relative HHGs (Theorem 4.22) by proving the eight remaining HHS axioms and showing
that the group structure is compatible with our hierarchy structure. In Section 4.1, we
prove hyperbolicity of C.gƒ/ whenever ƒ contains at least two vertices. Section 4.2 is
devoted to proving the finite complexity and containers axioms. Section 4.3 deals with
the uniqueness axiom, and in Section 4.4, we the prove the bounded geodesic image and
large links axioms. In Section 4.5, we verify partial realisation, and Section 4.6 deals with
the consistency axiom. Finally, in Section 4.7, compatibility of the relative HHS structure
with the group structure is checked.

We also obtain some auxiliary results along the way: in Section 4.1, we show that not
only are the spaces C.gƒ/ hyperbolic whenever ƒ contains at least two vertices, but they
are also quasi-trees; and in Section 4.3, we use uniqueness to give a classification of when
C.gƒ/ has infinite diameter.

We conclude the section by remarking that the syllable metric on G� is an HHS. This
is true even when the vertex groups are not finitely generated. However, until then we will
continue to assume thatG� is a graph product of finitely generated groups and that d is the
word metric on G� , where the generating set for G� is given by taking a union of finite
generating sets for each vertex group.

4.1. Hyperbolicity

Lemma 4.1 (Hyperbolicity). For each Œgƒ� 2S� , either Œgƒ� is�-minimal or C.gƒ/ is
7
2

-hyperbolic.

Remark 4.2. The hyperbolicity ofC.gƒ/ can also be deduced from [15, Proposition 6.4].
The proof presented below uses a different argument that produces the explicit hyperboli-
city constant of 7

2
.

Proof. Take Œgƒ� 2 S� and suppose it is not �-minimal; i.e., ƒ contains at least two
vertices. Let x; y; z 2 C.gƒ/ be three distinct points and let 
1, 
2, 
3 be three C.gƒ/-
geodesics connecting the pairs ¹y; zº, ¹z; xº, ¹x; yº, respectively. We wish to show that
this triangle is 7

2
-slim, that is, we will show that 
1 is contained in the 7

2
-neighbourhood

of 
2 [ 
3. Since C.gƒ/ is a metric graph whose edges have length 1, it suffices to show
that any vertex of 
1 is at distance at most 3 from 
2 [ 
3.

Let pi1; : : : ; p
i
mi

be the vertices of 
i , and let 
 0i be the path in S.gƒ/ obtained by
connecting each pair of consecutive vertices pij and pijC1 with an S.gƒ/-geodesic ˛ij .
Since ˛ij is labelled by vertices of supp..pij /

�1pijC1/, which is a proper subgraph of ƒ,
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3

x


2

y p1j�1
p1j


1
p1jC1

z

˛1j
˛1j�1

� 1

� 1

� 1

Figure 8. For each edge of the C.gƒ/-geodesic triangle, we construct an S.gƒ/-geodesic segment
˛ij between its endpoints (shown in blue). To show that the triangle is 7

2 -slim, it then suffices to

show that for each j , ˛1j�1 [ ˛
1
j is C.gƒ/-distance 1 from some ˛it with i ¤ 1.

the C.gƒ/-distance between any vertex of ˛ij and pij or pijC1 is at most 1. It therefore
suffices to show that given any vertex p1j of 
1, either ˛1j�1 or ˛1j is C.gƒ/-distance 1
from some ˛it with i D 2 or 3; see Figure 8.

If ƒ has no edges, then hƒi is the free product of the vertex groups, hence S.gƒ/
is a tree of simplices, that is, any cycle in S.gƒ/ is contained in a single simplex (a
coset of a vertex group). Therefore, any two paths in S.gƒ/ with the same endpoints are
contained in the 1-neighbourhood of each other, and in particular 
 01 is contained in the
1-neighbourhood of 
 02 [ 


0
3. Thus, any vertex of 
1 is at distance at most 3 from 
2 [ 
3

in C.gƒ/.
Now suppose that ƒ has at least one edge, so that it has a vertex w with non-empty

link. We may also assume that ƒ does not split as a join; otherwise, C.gƒ/ has diameter
2 by Remark 3.7 and hence is clearly 7

2
-hyperbolic. Take a vertex p1j of 
1. If p1j is one of

the first or last four vertices of 
1, then it is at distance at most 3 from 
2 or 
3 in C.gƒ/.
Otherwise, p1j is an endpoint of two consecutive edges Lj�1 and Lj of 
1 labelled by
strict subgraphs ƒj�1 and ƒj of ƒ. We must have ƒj�1 [ ƒj D ƒ, as otherwise we
could replace these two edges with a single edge labelled by ƒj�1 [ ƒj , contradicting

1 being a C.gƒ/-geodesic. It follows that all vertices of ƒ appear as labels on the edges
of the geodesic segments ˛1j�1 and ˛1j of 
 01 corresponding to Lj�1 and Lj . Consider the
collection Ew of edges of ˛1j�1 [ ˛

1
j labelled by the fixed vertex w with lk.w/ \ƒ ¤ ;,

and consider the collection Hw of hyperplanes in S.gƒ/ dual to the edges in Ew . We
proceed to construct an S.gƒ/-path from an edge of Ew to some ˛it with i D 2 or 3, either
by travelling through the carrier of a single hyperplane, labelled by st.w/\ƒ ¨ ƒ, or by
following a sequence of combinatorial hyperplanes labelled by lk.w/\ƒ¨ƒ. Since this
path will be labelled by a proper subgraph ofƒ, the C.gƒ/-distance between its endpoints
will be 1.
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H 00

w w
w w

w

H0

˛1j˛1j�1

pj�1 pj pjC1 pjC2

Figure 9. The outermost hyperplane H0 of Hw and its outermost combinatorial hyperplane H 00.

Suppose some hyperplane H 2 Hw also crosses a geodesic segment ˛it of 
 02 [ 

0
3.

Since the carrier of H is labelled by vertices of st.w/ \ ƒ, and st.w/ \ ƒ is a strict
subgraph of ƒ because ƒ does not split as a join, it follows that p1j is at most C.gƒ/-
distance 3 from either 
2 or 
3, as desired.

Suppose therefore that no hyperplane of Hw crosses 
 02 [ 

0
3. This means that each

H 2 Hw must cross 
 01 a second time (Remark 2.20). Further, Proposition 2.19 (5) tells
us that no two hyperplanes labelled by the same vertex may cross each other. It follows
that there exists an outermost hyperplaneH0 of Hw ; that is, no hyperplane of Hw crosses
edges of 
 01 both earlier and later than H0 does. Moreover, H0 has an outermost com-
binatorial hyperplane H 00; see Figure 9. Note that since this combinatorial hyperplane is
labelled by vertices of lk.w/\ƒ¨ƒ, the C.gƒ/-distance between any two points onH 00
is 1. In particular, since 
1 is a C.gƒ/-geodesic, it follows that the segments ˛1r and ˛1

k

that H 00 intersects must satisfy jk � r j � 2. As we know that H0 crosses ˛1j�1 [ ˛
1
j , this

implies that H 00 must intersect ˛1j�1 [ ˛
1
j too. Recalling that a hyperplane may not cross

the same geodesic twice (Proposition 2.19 (4)), we may therefore suppose without loss of
generality that r D j and j < k � j C 2 (the cases where j � 2 � k < j or r D j � 1
proceed similarly).

LetE0 be the edge of Ew on ˛1j thatH0 crosses, and let e1 and e2 denote its endpoints.
Let F0 be the edge of ˛1

k
labelled by w that H0 crosses, and denote its endpoints by f1

and f2. Then there is a path � connecting e1 and f2 that is contained in the combinatorial
hyperplane H 00 labelled by vertices of lk.w/\ƒ ¨ ƒ. Furthermore, if w does not appear
as a label of an earlier edge of ˛1j or a later edge of ˛1

k
, then dgƒ.p1j ; p

1
kC1

/ D 1 as the
path obtained by travelling from p1j to e1 along ˛1j , then from e1 to f2 along �, then
from f2 to p1

kC1
along ˛1

k
is labelled by the proper subgraph ƒ X w. This contradicts

the assumption that 
1 is a C.gƒ/-geodesic. On the other hand, if w appears as a label
of an earlier edge E�1 of ˛1j (take the closest one to E0) but not a later edge of ˛1

k
,

then the corresponding hyperplane H�1 must cross a segment ˛1
l

with l < j (since H0
is outermost), and there exists an S.gƒ/-path � labelled by ƒ X w connecting e1 and ˛1

l
.

Then the C.gƒ/-distance between the endpoints of the path � [ � is 1 and so we obtain
dgƒ.p1l ;p

1
kC1

/� 2, a contradiction. There therefore exists some edge labelled byw which
appears after F0 on ˛1

k
. LetE1 be the closest such edge toH0, and consider the hyperplane

H1 dual to E1.
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p1jp1j�1 p1jC1

˛1j�1 ˛1j

lk.w/ \ƒ lk.w/ \ƒ

ƒ X w

w w
w

Figure 10. By following a sequence of combinatorial hyperplanes, we obtain a path labelled by
ƒ X w (shown in red) that must eventually leave 
 01 and cross 
 02 [ 


0
3.

If H1 crosses ˛1s with js � j j � 3, then we obtain a contradiction since we have a
path in C.gƒ/ from p1j to p1sC1 (or p1jC1 to p1s if s < j ) of length at most 3. If H1
crosses ˛1s with js � kj � 3, then similarly we obtain a contradiction. Assume therefore
that js � j j � 2 and js � kj � 2. Note that since H0 and H1 cannot cross, we must have
s < j or s > k.

If s < j , then we must have k D j C 1 and s D j � 1. In this case, H1 crosses ˛1j�1,
which contradicts our assumption that H0 is an outermost hyperplane of Hw . Thus, H1
cannot cross any ˛1s with s < k. This implies that if H1 crosses a segment ˛is with i D 2
or 3, then we can conclude that p1j is at most C.gƒ/-distance 3 from either 
2 or 
3,
by following a sequence of geodesics labelled by vertices of lk.w/ \ƒ and contained in
combinatorial hyperplanes associated to H0 and H1; see Figure 10.

On the other hand, if H1 crosses ˛1s with s > k, then k D j C 1 and s D j C 2.
Repeating the same process, there must exist a later edge of ˛1s labelled by w. Let H2 be
the hyperplane dual to the closest such edge toH1. IfH2 also crosses ˛1t where t ¤ s, then
we must have t < j D s � 2 or t > sD j C 2, asH2 cannot cross the previous hyperplanes.
However, the first case results in jt � sj � 3, and the second case gives jt � j j � 3, both
of which give a contradiction. Therefore, H2 must cross ˛it where i D 2 or 3. Following
the sequence of geodesics labelled by vertices of ƒ X w, we again see that p1j is at most
C.gƒ/-distance 3 from either 
2 or 
3.

A similar technique can moreover show that the spaces C.gƒ/ are quasi-trees, by
applying Manning’s bottleneck criterion.

Theorem 4.3 (Bottleneck criterion [21]). Let Y be a geodesic metric space. The following
are equivalent:

(1) Y is quasi-isometric to some simplicial tree T ;

(2) there is some � > 0 so that for all y; z 2 Y there is a midpoint m D m.y; z/ with
d.y; m/ D d.z; m/ D 1

2
d.y; z/ and the property that any path from y to z must

pass within a distance � of m.



Hierarchical hyperbolicity of graph products 553

Theorem 4.4. For each Œgƒ� 2 S� , either Œgƒ� is �-minimal or C.gƒ/ is a quasi-tree.

The proof of Theorem 4.4 proceeds similarly to the proof of Lemma 4.1, with the
role of 
1 being played by a geodesic from y to z containing the midpoint m.y; z/, and
replacing 
2 [ 
3 with an arbitrary path from y to z.

Proof. Suppose that Œgƒ� is not�-minimal. Let x;y 2C.gƒ/, let 
 be a C.gƒ/-geodesic
connecting x and y, and let ˇ be another C.gƒ/-path from x to y. From 
 and ˇ, we
may obtain paths 
 0 and ˇ0 in S.gƒ/ by replacing each edge with a geodesic segment in
S.gƒ/. Note that any point on such a segment is C.gƒ/-distance 1 from the endpoints of
the segment. Let m be the midpoint of 
 , so that m is either a vertex of 
 or a midpoint of
an edge.

If ƒ has no edges, then S.gƒ/ is a tree of simplices in the same manner as in the
previous proof, and in particular any two paths in S.gƒ/ between x and y are contained
in the 1-neighbourhood of each other. Applying this to 
 0 and ˇ0 shows thatm is at distance
at most � D 7

2
from ˇ.

Now suppose that ƒ has at least one edge, and let L1 and L2 be two edges of 

adjacent to m (if m is the midpoint of an edge L, pick L and one edge adjacent to it).
Then L1 and L2 are labelled by strict subgraphsƒ1 andƒ2 ofƒ such thatƒ1 [ƒ2 Dƒ.
Thus, either ƒ1 or ƒ2 contains a vertex w with non-empty link, and w therefore appears
as a label of a hyperplane crossing an edge of the corresponding geodesic segments ˛1
and ˛2 of 
 0.

We can now repeat the argument in the proof of Lemma 4.1 to find a path connecting
˛1 [ ˛2 to ˇ0 that is labelled by a proper subgraph of ƒ. It follows that m is at most
C.gƒ/-distance � D 7

2
from ˇ.

4.2. Finite complexity and containers

Lemma 4.5 (Finite complexity). Any set of pairwise �-comparable elements has cardin-
ality at most jV.�/j.

Proof. If Œgƒ�� Œh�� andƒ and� have the same number of vertices, then we must have
ƒ D � and Œgƒ� D Œkƒ� D Œk�� D Œh�� for some k 2 G� . Therefore, any two distinct
�-comparable elements must have different numbers of vertices. Thus, any set of pairwise
�-comparable elements has cardinality at most jV.�/j.

Lemma 4.6 (Containers). Let Œh�� � Œgƒ� be elements of S� . If there exists Œk…� 2 S�

such that Œk…� � Œgƒ� and Œk…�?Œh��, then Œk…� � Œa.lk.�/ \ƒ/� � Œaƒ�, where a 2
G� satisfies Œaƒ� D Œgƒ� and Œa�� D Œh��.

Proof. First, since Œk…� � Œgƒ� and Œk…�?Œh��, we have… � ƒ and… � lk.�/, hence
… � lk.�/ \ƒ ¨ ƒ. Next, let b 2 G� be such that Œb…� D Œk…� and Œb�� D Œh��, and
let c 2 G� be such that Œc…�D Œk…� and Œcƒ�D Œgƒ�. We claim that there exists d 2 G�
such that Œk…�D Œd…� and Œa.lk.�/\ƒ/�D Œd.lk.�/\ƒ/�, which would complete our
proof.
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Indeed, k�1a D k�1bb�1a D k�1cc�1a, and we know that

supp.k�1b/ � st.…/; supp.b�1a/ � st.�/

and
supp.k�1c/ � st.…/; supp.c�1a/ � st.ƒ/:

Writing p D prefixst.…/.k
�1a/, we have p�1k�1aD s, where s satisfies prefixst.…/.s/

De. That is, prefixst.…/.p
�1k�1bb�1a/De. Since p�1k�1b2hst.…/i and b�1a2hst.�/i,

this implies that p�1k�1a 2 hst.�/i. Similarly, writing k�1a D k�1cc�1a shows us that
p�1k�1a 2 hst.ƒ/i.

That is to say, we can write k�1a D ps, where p 2 hst.…/i and s 2 hst.�/ \ st.ƒ/i.
But � � ƒ and lk.ƒ/ � lk.�/, hence

st.�/ \ st.ƒ/ D � [ lk.ƒ/ [
�

lk.�/ \ƒ
�
:

Moreover,�[ lk.ƒ/� lk.lk.�/\ƒ/, hence s 2 hst.lk.�/\ƒ/i. Thus, k�1as�1 D p 2
hst.…/i and a�1as�1 2 hst.lk.�/ \ƒ/i. Letting d D as�1, we have Œk…� D Œd…� and
Œa.lk.�/ \ƒ/� D Œd.lk.�/ \ƒ/� as desired.

4.3. Uniqueness

Here we prove the uniqueness axiom, which tells us that all geometry of G� is witnessed
by some associated space C.gƒ/. This means we do not lose any geometric information
through our projections. We also use this axiom to classify boundedness of the hyperbolic
spaces C.gƒ/. In what follows, j � jG� denotes the word length on G� with respect to the
generating set S defined at the beginning of Section 3.

Lemma 4.7 (Uniqueness). Let G� be a graph product of finitely generated groups. For
all g 2 G� , if dhƒ.e; g/ � r for all h 2 G� and subgraphs ƒ � � , then

jgjG� � .2
jV.�/jr C 2/jV.�/j:

Proof. Let r � 0. If � is a single vertex, then the conclusion is immediate as the only
subgraph is � and d�.e; g/ D jgjG� D r . Suppose that � contains n C 1 vertices and
assume that the lemma holds for any graph product of finitely generated groups whose
defining graph contains at most n vertices. Suppose that g 2 G� with dhƒ.e; g/ � r for
all h 2 G� and subgraphs ƒ � � .

Since d�.e;g/� r , there exist proper subgraphsƒi ¨� and elements �i with supp.�i /
Dƒi so that gD �1 : : : �m and d�.e;g/Dm� r . We shall see that dh�.e;g/� r implies
that dh�.e; �i / is uniformly bounded for each� � ƒi and h 2 hƒi i. Since each hƒi i is a
graph product on at most n vertices, induction will imply that the word length of each �i
is bounded, which in turn will bound the word length of g.

If � splits as a join � D ƒ1 ‰ ƒ2, then any element g 2 G� can be written in the
form g D �1�2, where �i 2 hƒi i for i D 1; 2 and jgjG� D j�1jG� C j�2jG� . Moreover, if
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h 2 hƒi i and��ƒi , then gh�.g/D h � prefix�.h
�1g/D h � prefix�.h

�1�i /D gh�.�i /.
Therefore, dh�.e;�i /D dh�.e;g/� r and by induction j�i jG� � .2

nr C 2/n for i D 1;2.
Thus, jgjG� � 2.2

nr C 2/n � .2nC1r C 2/nC1.
Suppose that � does not split as a join, and define p0 D e and pi D �1 : : : �i for

i 2 ¹1; : : : ;mº. Note that the pi are the vertices of the C.�/-geodesic connecting e and g
with edges labelled by the �i . By Lemma 3.5, we can assume that suffixƒi .pi�1/ D e for
each i 2 ¹2; : : : ;mº and that there exists an S.�/-geodesic connecting e to g that contains
each pi as a vertex. Fix i 2 ¹1; : : : ; mº, h 2 hƒi i, and � � ƒi .

As stated above, we wish to show that dh�.e; �i / is bounded uniformly in terms
of r so that we can apply the induction hypothesis. Since dh�.e; �i / is independent of
the choice of representative of the coset hh�i, we can assume that suffix�.h/ D e. To
achieve the bound on dh�.e; �i /, we use the following two claims plus the assumption
that dh�.e; g/ � r .

Claim 4.8. �pi�1h�.pi�1/ D �pi�1h�.e/.

Proof. By equivariance and the prefix description of the gate map (Lemma 2.23),

gpi�1h�.pi�1/ D pi�1h � prefix�.h
�1/

and
gpi�1h�.e/ D pi�1h � prefix�.h

�1p�1i�1/:

Since prefixƒi .p
�1
i�1/D e, we have prefix�.p

�1
i�1/D e too. Moreover, since h 2 hƒi i and

prefix�.p
�1
i�1/ D e, we have prefix�.h

�1p�1i�1/ D prefix�.h
�1/ and so gpi�1h�.pi�1/ D

gpi�1h�.e/. This implies that �pi�1h�.pi�1/ D �pi�1h�.e/.

Claim 4.9. dpi�1h�.pi ; g/ � r .

Proof of Claim 4.9. Recall that we can write each �i in reduced syllable form to produce
an S.�/-geodesic connecting e and g and containing each pi as a vertex (Lemma 3.5).
Thus, Lemma 3.13 says that dpi�1h�.pi ; g/ � dpi�1h�.e; g/ and dpi�1h�.e; g/ � r by
assumption.

By the equivariance of the gate map (Proposition 2.21 (2)),

dh�.e; �i / D dpi�1h�.pi�1; pi /:

Claim 4.8 then implies that

dpi�1h�.pi�1; pi / D dpi�1h�.e; pi / � dpi�1h�.e; g/C dpi�1h�.g; pi /:

Since dpi�1h�.e; g/ � r by assumption and dpi�1h�.g; pi / � r by Claim 4.9, we have
dh�.e;�i /D dpi�1h�.pi�1;pi /� 2r for each h 2 hƒi i and��ƒi . The induction hypo-
thesis now implies that the word length of �i in hƒi i is at most .2n.2r/C 2/n. Thus, we
have

jgjG� � r.2
nC1r C 2/n � .2nC1r C 2/nC1

because each graphical subgroup is convexly embedded in the word metric d on G� .
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The uniqueness axiom allows us to classify boundedness of the hyperbolic spaces
C.gƒ/.

Theorem 4.10. For any g 2G� and any subgraphƒ of � containing at least two vertices,
the space C.gƒ/ has infinite diameter if and only if ƒ does not split as a join.

Proof. Recall that if ƒ splits as a join, then diam.C.gƒ// � 2 by Remark 3.7. Suppose
therefore that ƒ does not split as a join and let v1; : : : ; vk be the vertices of ƒ. For each
i 2 ¹1; : : : ; kº, pick si 2 Svi , where Svi is the finite generating set for Gvi that we fixed
at the beginning of Section 3. Define � D s1 : : : sk . For each i 2 ¹1; : : : ; kº and j 2
¹1; : : : ; nº, let sji be the j th copy of si in the product .s1 : : : sk/n D �n; that is, �n D
.s11 : : : s

1
k
/.s21 : : : s

2
k
/ : : : .sn1 : : : s

n
k
/.

We claim that for each n 2 N, .s11 : : : s
1
k
/ : : : .sn1 : : : s

n
k
/ is a reduced syllable expres-

sion for �n. Indeed, if .s11 : : : s
1
k
/ : : : .sn1 : : : s

n
k
/ is not reduced, then there exists sji that

is combined with some s`i (j ¤ `) after applying some number of commutation rela-
tions (Theorem 2.4). However, if s`i were to be combined with sji , then si would need
to commute with each of s1; : : : ; si�1; siC1; : : : ; sk . This only happens if the vertex vi is
connected to every other vertex of ƒ, but this does not happen as ƒ does not split as a
join. Therefore, .s11 : : : s

1
k
/ : : : .sn1 : : : s

n
k
/ is a reduced syllable expression for �n, and we

have j�njsyl D kn for all n 2 N.
To prove C.gƒ/ has infinite diameter, we use the following claim plus the uniqueness

axiom to show that dƒ.e; �n/ can be made as large as desired by increasing n.

Claim 4.11. For all � ¨ ƒ, h 2 hƒi, and n � 2, dh�.e; �n/ � 3.

For now we accept Claim 4.11, deferring its proof until after we have proved that
C.gƒ/ has infinite diameter.

For the purposes of contradiction, assume that there existsR>0 such that dƒ.e;�n/�
R for all n 2 N. By Claim 4.11, for every proper subgraph � ¨ ƒ and h 2 hƒi, we have
dh�.e; �n/ � 3. Applying the uniqueness axiom (Lemma 4.7) to the graph product hƒi D
Gƒ, this implies that there existsD DD.R; jV.ƒ/j/ > 0 such that j�njGƒ D j�

njG� �D

for all n 2 N. However, this is a contradiction as j�njG� � j�
njsyl D kn for all n 2 N.

Thus, for each R > 0, there exists nR such that dƒ.e; �nR/ > R. Therefore, C.ƒ/, and
hence C.gƒ/, has infinite diameter.

Proof of Claim 4.11. Let � ¨ ƒ be a proper subgraph and h 2 hƒi. Since dh�.e; �n/
does not depend on the choice of representative of the coset hh�i, we can assume that
suffix�.h/ D e, and thus prefix�.h

�1/ D e.
Recall that �h�.e/ D h � prefix�.h

�1/ and �h�.�n/ D h � prefix�.h
�1�n/ (Remark

3.10). Since prefix�.h
�1/ D e, it suffices to prove that d�.e; h�1�n/ � 3. We can also

assume that prefix�.h
�1�n/ ¤ e.

Proposition 3.11 tells us that all syllables of prefix�.h
�1�n/ are syllables of �n. As

prefix�.h
�1�n/¤ e, there must exist i 2 ¹1; : : : ; kº and j 2 ¹1; : : : ; nº such that sji is the

first syllable of .s11 : : : s
1
k
/.s21 : : : s

2
k
/ : : : .sn1 : : : s

n
k
/ that is also a syllable of prefix�.h

�1�n/.
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Let `;m 2 ¹1; : : : ; kº be such that v` 2 V.ƒ X st.�// and vm 2 V.�/ is not joined to
v` by an edge. These vertices exist sinceƒ does not split as a join and thusƒ 6� st.�/. We
will show that prefix�.h

�1�n/ can be written as a product p1p2p3 where supp.p2/ is a
single vertex v of� and supp.p1/; supp.p3/��X v. This implies that theC.�/-distance
between e and prefix�.h

�1�n/ is at most 3, which in turn says that dh�.e; �n/ � 3.
Suppose that i < `. Since v` … V.�/, every syllable of prefix�.h

�1�n/must either be
one of sji ; s

j
iC1; : : : ; s

j

`�1
or must commute with sj

`
. As sm does not commute with s`, it

follows that no sJm is a syllable of prefix�.h
�1�n/ for J > j . Therefore, prefix�.h

�1�n/

can contain at most one syllable with support vm, namely sjm. Thus, prefix�.h
�1�n/ D

p1p2p3 with supp.p1/ � � X vm, supp.p2/ � vm, and supp.p3/ � � X vm. Note that
if � D vm, then prefix�.h

�1�n/ D p2 D s
j
m and dh�.e; �n/ D d�.e; s

j
m/ D 1 because

s
j
m 2 Svm .

The case i > ` proceeds similarly since every syllable of prefix�.h
�1�n/ must either

be one of sji ; s
j
iC1; : : : ; s

j

k
; s
jC1
1 ; : : : ; s

jC1

`�1
or must commute with sjC1

`
.

In Section 5, we use our characterisation of when C.gƒ/ has infinite diameter to
answer two questions of Genevois [16] (Theorems 5.14 and 5.16).

4.4. Bounded geodesic image and large links

As the bounded geodesic image axiom is used to prove large links, we include both in this
section.

Lemma 4.12 (Bounded geodesic image). Let x;y 2G� and Œh��� Œgƒ�. For any choice
of representatives h� 2 Œh�� and gƒ 2 Œgƒ�, if dh�.x; y/ > 0, then every C.gƒ/-
geodesic 
 from �gƒ.x/ to �gƒ.y/ intersects the closed 2-neighbourhood of �h�gƒ.

Proof. We first need to establish that when Œh�� � Œgƒ�, gating onto hh�i is the same as
first gating onto ghƒi and then gating onto hh�i. This will allow us to relate �gƒ.x/ and
�h�.x/.

Claim 4.13. If Œh�� � Œgƒ�, then gh�.ggƒ.x// D gh�.x/ for all x 2 G� and for all
representatives gƒ 2 Œgƒ� and h� 2 Œh��.

Proof. Let k 2 G� so that Œk�� D Œh�� and Œkƒ� D Œgƒ�. Without loss of generality, we
can assume that x … ghƒi.

Suppose that we have gh�.ggƒ.x//¤ gh�.x/. Then there is a hyperplaneH separat-
ing gh�.ggƒ.x// and gh�.x/. By Proposition 2.21, H also separates ggƒ.x/ and x and
cannot cross ghƒi. However, we know that H crosses hh�i � hhƒi and by parallelism
(Proposition 3.2) H must also cross kh�i � khƒi. But kƒkgƒ, so H must also cross
ghƒi. This contradiction means that we must have gh�.ggƒ.x// D gh�.x/.

Let 
 be a C.gƒ/-geodesic from �gƒ.x/ to �gƒ.y/ and let p1; : : : ; pn 2 hƒi so
that �gƒ.x/ D gp1; gp2; : : : ; gpn D �gƒ.y/ are the vertices of 
 . Let ˛i be an S.gƒ/-
geodesic from gpi to gpiC1 for each i 2 ¹1; : : : ; n � 1º. Let 
 0 be the path in S.gƒ/ that
is the union of all the ˛i .
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ghƒi

hh�i

x
y

ggƒ.y/

gh�.y/

ggƒ.x/

gh�.x/

H�

˛ia0

b0


 0

Figure 11. The S.�/-geodesic � connecting b02hh�i and a02˛i when dh�.x; y/ is larger than 0.

Suppose that dh�.x; y/ > 0. Then dsyl.gh�.x/; gh�.y// > 0 and so there is a hyper-
planeH separating gh�.x/D gh�.ggƒ.x// and gh�.y/D gh�.ggƒ.y// that is labelled
by a vertex w 2 V.�/. The hyperplane H then also separates ggƒ.x/ and ggƒ.y/ by
Proposition 2.21. Thus, H must cross one of the segments ˛i that make up 
 0. Since H
crosses both hh�i and ˛i and H cannot separate ggƒ.x/ from gh�.x/ D gh�.ggƒ.x//

nor ggƒ.y/ from gh�.y/ D gh�.ggƒ.y// (Proposition 2.21 (4)), there exists an S.�/-
geodesic, �, from an element b0 2 hh�i to a0 2 ˛i that is labelled by vertices in lk.w/;
see Figure 11.

Let a1 D �gƒ.a0/ and b1 D �gƒ.b0/. Since � was labelled by vertices in lk.w/, Pro-
position 3.11 tells us we have supp.a�11 b1/� lk.w/\ƒ, which is a proper subgraph ofƒ.
Thus, in the subgraph metric, dgƒ.˛i ; �h�gƒ/ � 1 as a1 2 �gƒ.˛i / and b1 2 �gƒ.hh�i/ �
�h�gƒ. As ˛i is labelled by a proper subgraph of ƒ, any subsegment is also labelled by a
proper subgraph, hence dgƒ.ga;gpiC1/� 1 for any vertex ga of ˛i . Thus, dgƒ.ga;
/� 1
and therefore dgƒ.
; �h�gƒ/ � 2.

We can now use the bounded geodesic image axiom together with the following lemma
to prove large links.

Lemma 4.14. Let Œgƒ�; Œh�� 2 S� . For any representatives gƒ 2 Œgƒ� and h� 2 Œh��,
if diam.�gƒ.hh�i// > 2, then Œgƒ� � Œh��.

Proof. If Œgƒ� t Œh�� or Œh�� � Œgƒ�, then �gƒ.hh�i/ � �h�gƒ, which is shown to have
diameter at most 2 in Lemmas 3.18 and 3.22. If Œgƒ�? Œh��, thenƒ�lk.�/. Let !2h�i.
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Then ggƒ.h!/ D g � prefixƒ.g
�1h!/. Assume without loss of generality that

suffixƒ.g/ D e and suffix�.h/ D e:

By Proposition 3.11, all syllables of prefixƒ.g
�1h!/ are syllables of h!. Further, since

ƒ � lk.�/, we have supp.!/ \ƒ D ;. As suffix�.h/ D e, this implies that

prefixƒ.g
�1h!/ D prefixƒ.g

�1h/:

Thus, �gƒ.h!/ D g � prefixƒ.g
�1h/ for all ! 2 h�i, and so diam.�gƒ.hh�i// D 0.

Lemma 4.15 (Large links). Let x;y 2G� and nD dk….x;y/, where k 2G� and…� � .
There exist Œh1�1�; : : : ; Œhn�n� 2 S� each nested into Œk…� so that for any Œgƒ� 2 S�

with Œgƒ� � Œk…�, if dgƒ.x; y/ > 18 for some representative of Œgƒ�, then Œgƒ� � Œhi�i �
for some i 2 ¹1; : : : ; nº.

Proof. Let 
 be a C.k…/-geodesic connecting �k….x/ and �k….y/, let

�k….x/ D p0; p1; : : : ; pn D �k….y/

be the vertices of 
 , and let �iDp�1i�1pi for each i2¹1; : : : ; nº. For i2¹1; : : : ; nº, define Ti
to be pi�1 � hsupp.�i /i. Note that pi 2 Ti \ TiC1, and Ti � kh…i since pi�1 2 kh…i and
supp.�i / ¨…. In particular, ŒTi � � Œk…�. Note also that �k….Ti /D Ti is contained in the
closed 1-neighbourhood of pi in C.k…/, because supp.�i / is a proper subgraph of ….

Next, let Œgƒ� 2 S� with Œgƒ� � Œk…� and suppose that dgƒ.x; y/ > 18 for some
representative gƒ 2 Œgƒ�. We shall show that Œgƒ� � ŒTi � for some i 2 ¹1; : : : ; nº. Since
we have established the bounded geodesic image axiom (Lemma 4.12), we have 
 \
N2.�

gƒ

k…
/ ¤ ;, where Nr .A/ is the closed r-neighbourhood of A in C.k…/. Let j be

the first number in ¹0; : : : ; nº so that pj 2 N4.�
gƒ

k…
/, and recall that each �k….Ti / D Ti

is contained in N1.pi / and diam.�gƒ
k…
/ � 2 (Lemma 3.18). Therefore, if 1 � i � j or

i � j C 10, then
�k….Ti / \N2.�

gƒ

k…
/ D ;

and the bounded geodesic image axiom says that �gƒ.Ti / is a single point.
Since Ti�1 \ Ti ¤ ; for i 2 ¹2; : : : ; nº and x 2 T1, y 2 Tn, we have

�gƒ

� j[
iD1

Ti

�
D �gƒ.x/ and �gƒ

� n[
iDjC10

Ti

�
D �gƒ.y/;

whenever j > 0 and j C 9 < n, respectively. This implies that

dgƒ.x; y/ �
min¹n;jC9ºX
iDjC1

diam
�
�gƒ.Ti /

�
:

Since dgƒ.x; y/ > 18, there must exist j0 2 ¹j C 1; : : : ;min¹n; j C 9ºº so that
diam.�gƒ.Tj0// > 2. By Lemma 4.14, this implies that Œgƒ� � ŒTj0 �.
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4.5. Partial realisation

We now prove partial realisation, which roughly says that given a collection of pairwise
orthogonal Œgiƒi � 2S� , the hyperbolic spaces C.giƒi / give a coordinate system forG� .

We first prove that we can always represent n mutually orthogonal elements of S�

by the same group element, and similarly for nesting chains. This allows us to simplify
arguments involving three or more orthogonal domains by working within a fixed coset.

Proposition 4.16. Let Œg1ƒ1�; : : : ; Œgnƒn� 2 S� . If either Œg1ƒ1� � : : : � Œgnƒn� or
Œg1ƒ1�; : : : ; Œgnƒn� are pairwise orthogonal, then there exists g 2 G� so that Œgƒi � D
Œgiƒi � for all i 2 ¹1; : : : ; nº.

Proof. We proceed by induction. The initial case n D 2 is true by definition. Suppose
that the statement is true for all n < m, and consider n D m; that is, we have Œg1ƒ1�; : : : ;
Œgmƒm� 2S� which are either pairwise orthogonal or nested. Then, in particular, Œg1ƒ1�;
: : : ; Œgm�1ƒm�1� are pairwise orthogonal (respectively nested), hence there exists g 2
G� such that Œgƒi � D Œgiƒi � for all i < m. Since Œgƒi � D Œgiƒi � if and only if Œƒi � D
Œg�1giƒi �, we can assume that g D e without loss of generality. Then Œƒi �?Œgmƒm�
(respectively, Œƒi � � Œgmƒm�) for each i < m, so for each i < m there exists ki such
that ki 2 hst.ƒi /i and g�1m ki 2 hst.ƒm/i. Let h be the shortest prefix of gm such that
g�1m h 2 hst.ƒm/i. Since g�1m ki 2 hst.ƒm/i for each i 2 ¹1; : : : ; m � 1º, we know that
supp.h/ � supp.ki / � st.ƒi / for each i < m. Hence Œƒi � D Œhƒi � for each i < m and
Œgmƒm� D Œhƒm�. Thus, by induction the statement is true for all n.

Lemma 4.17 (Partial realisation). Let ¹Œgiƒi �ºniD1be a finite collection of pairwise ortho-
gonal elements of S� . For each i 2 ¹1; : : : ; nº, fix a choice of representative giƒi for
Œgiƒi � and let pi 2 C.giƒi /. There exists x 2 G� so that

• dgiƒi .x; pi / D 0 for all i ;

• for each i and each Œh�� 2S� , if Œgiƒi �� Œh�� or Œh��t Œgiƒi �, then for any choice
of representative h� 2 Œh�� we have dh�.x; �

giƒi
h�

/ D 0.

Proof. By Proposition 4.16, there exists some g 2 G� such that Œgiƒi � D Œgƒi � for all i .
Define p0i D ggƒi .pi /D g�i , where �i 2 hƒi i, and let xD g�1�2 : : :�n. Then �gƒi .x/D
g � prefixƒi .g

�1x/ D g�i D �gƒi .pi / for each i , since orthogonality tells us that the
elements �i all commute with each other and the subgraphsƒi are all disjoint. Therefore,
dgƒi .x; pi / D 0 for all i , and so by Lemma 3.8, we have dgiƒi .x; pi / D 0 for all i .

Now suppose that Œgƒi � � Œh�� or Œgƒi � t Œh�� for some i 2 ¹1; : : : ; nº and Œh�� 2
S� . Since ƒj � lk.ƒi / � st.ƒi / for each j ¤ i , we have x D g�1 : : : �n 2 ghst.ƒi /i.
Thus, �h�.x/ 2 �h�.ghst.ƒi /i/ D �

gƒi
h�

for any choice of representative h� of Œh��.
Moreover, we have

�
gƒi
h�
D

[
kƒikgƒi

�h�
�
khƒi i

�
D �

giƒi
h�

;

since giƒikgƒi . This implies that dh�.x; �
giƒi
h�

/ D 0.
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4.6. Consistency

Finally, we prove consistency, which says that given two transverse domains Œgƒ� and
Œh�� in S� , each element of G� projects uniformly close to one of the lateral relative
projections �gƒ

h�
and �h�gƒ.

Our proof shall proceed by contradiction. Assuming that each element of G� projects
far from both lateral projections, we can use Lemma 4.14 to show that Œgƒ� � Œh lk.w/�
for each vertexw of�, which will imply that Œgƒ�?Œhw� for each vertexw of�. We then
obtain Œgƒ�?Œh�� by adapting the proof of Proposition 4.16 to show that we may promote
orthogonality with multiple domains to orthogonality with their union. This contradicts
Œgƒ� t Œh��.

Lemma 4.18. Let Œgƒ1�; : : : ; Œgƒn�1�; Œkƒn� 2 S� . If Œgƒi �?Œkƒn� for all i < n, then
Œg
S
i<nƒi �?Œkƒn�.

Proof. Since Œgƒi �?Œkƒn� if and only if Œƒi �?Œg�1kƒn�, we may assume that g D e.
By orthogonality, for each i < n there exists ki such that ki 2 hst.ƒi /i and k�1ki 2
hst.ƒn/i. Following the proof of Proposition 4.16, let h be the shortest prefix of k such
that k�1h 2 hst.ƒn/i. Then supp.h/� supp.ki /� st.ƒi / for all i < n, so h 2 hst.ƒi /i for
all i < n. Therefore, h 2 h

T
i<n st.ƒi /i � hst.

S
i<nƒi /i, hence Œ

S
i<nƒi �D Œh

S
i<nƒi �

and Œkƒn� D Œhƒn�. Moreover, by orthogonality, ƒn � lk.ƒi / for all i < n, hence ƒn �T
i<n lk.ƒi / D lk.

S
i<nƒi /. We therefore have Œ

S
i<nƒi �?Œkƒn�.

Lemma 4.19 (Consistency). If Œgƒ� t Œh��, then for all x 2 G� and for any choice of
representatives gƒ 2 Œgƒ� and h� 2 Œh�� we have

min
®
dh�

�
�h�.x/; �

gƒ

h�

�
; dgƒ

�
�gƒ.x/; �

h�
gƒ

�¯
� 2: (�)

Further, if Œk…� � Œgƒ� and either Œgƒ� � Œh�� or Œgƒ� t Œh�� and Œh�� 6? Œk…�, then
dh�.�k…h� ; �

gƒ

h�
/ D 0.

Proof. We prove (�) by contradiction. Suppose that

dh�
�
�h�.x/; �

gƒ

h�

�
> 2 and dgƒ

�
�gƒ.x/; �

h�
gƒ

�
> 2:

Then we also have

dsyl
�
gh�.x/;gh�

�
ghƒi

��
> 2 and dsyl

�
ggƒ.x/;ggƒ

�
hh�i

��
> 2:

Thus, gh�.x/ and gh�.ghƒi/ are separated by some hyperplane Hw labelled by a vertex
w of�. By Proposition 2.21 (5),Hw also separates x and ghƒi. In particular,Hw crosses
any S.�/-geodesic segment 
 connecting x and ghƒi. Because of Proposition 2.21 (4),
Hw cannot separate ghƒi and gh�.ghƒi/ as Hw crosses hh�i. Thus, there exists a com-
binatorial hyperplane of Hw contained in the same component of S.�/ X Hw as both
ghƒi and gh�.ghƒi/. Let H 0w be this particular combinatorial hyperplane of Hw ; see
Figure 12.
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x

ghƒi hh�i

ggƒ.hh�i/ gh�.ghƒi/

ggƒ.x/ gh�.x/




Hw
H 0w

Figure 12. The combinatorial hyperplane H 0w of Hw that is in the same component of S.�/ XHw
as both ghƒi and gh�.ghƒi/.

We claim that diam.�gƒ.H 0w// > 2. By construction, H 0w contains both a vertex
of hh�i and a vertex of 
 . Thus, �gƒ.H 0w/ contains points from both �gƒ.hh�i/ and
�gƒ.
/. Since ggƒ.x/ is the unique point in ghƒi that minimises the S.�/-distance from
x to ghƒi, we have ggƒ.
/ D ggƒ.x/ 2 �gƒ.H

0
w/. Since

dgƒ
�
�gƒ.x/; �gƒ

�
hhst.�/i

��
D dgƒ

�
�gƒ.x/; �

h�
gƒ

�
> 2;

and �gƒ.H 0w/ must contain points from both �gƒ.x/ and �gƒ.hh�i/, we must have
diam.�gƒ.H 0w// > 2.

By Remark 2.18, H 0w � hhlk.w/i. Thus, diam.�gƒ.H 0w// > 2 implies that

diam
�
�gƒ

�
hhlk.w/i

��
> 2:

Lemma 4.14 then forces

Œgƒ� �
�
h lk.w/

�
�
�
h st.w/

�
:

This implies that ƒ � lk.w/ and that there exists k 2 G� such that Œkƒ� D Œgƒ� and
Œk st.w/� D Œh st.w/�. Since st.st.w// D st.w/, Œk st.w/� D Œh st.w/� implies that Œkw� D
Œhw�. Thus, Œgƒ� D Œkƒ� ? Œkw� D Œhw�. Moreover, since dh�.�h�.x/; �

gƒ

h�
/ > 2, every

vertex of � must appear as an edge label for the S.h�/-geodesic connecting gh�.x/

and gh�.ghƒi/. Therefore, such a hyperplane Hw exists for every vertex w of �, and so
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Œgƒ� ? Œhw� for all w 2 V.�/. Lemma 4.18 then tells us that Œgƒ� ? Œh��, contradicting
transversality. Hence inequality (�) must hold.

Now suppose that Œk…��Œgƒ� and either Œgƒ��Œh�� or Œgƒ�t Œh�� and Œh��6 ?Œk…�.
Then there exists some element a such that Œk…� D Œa…� and Œgƒ� D Œaƒ�. Therefore,
�h�.ah…i/� �

k…
h�

and �h�.ahƒi/� �
gƒ

h�
. But ah…i � ahƒi, so dh�.�k…h� ; �

gƒ

h�
/D 0.

4.7. Compatibility of the group structure

The results so far show that a graph product G� can be given the structure of a relative
HHS. It remains to show that this structure agrees with the group structure of G� .

Lemma 4.20. The map � W G� �S� ! S� , where �.a; Œgƒ�/ D Œagƒ�, defines a �-,
?-, and t-preserving action of G� on S� by bijections such that S� contains finitely
many G� -orbits.

Proof. Let �a D �.a; �/. This is well defined, since Œgƒ� D Œkƒ� if and only if Œagƒ� D
Œakƒ�. Further, since �a does not alter the subgraph ƒ, it preserves the orthogonality,
nesting, and transversality relations. Each �a is also a bijection: if Œagƒ� D Œah��, then
ƒ D � and .ag/�1.ah/ D g�1h 2 hst.ƒ/i, hence Œgƒ� D Œh��, proving injectivity. Sur-
jectivity holds since we can always write Œgƒ� D �a.Œa�1gƒ�/. Finally, there are finitely
many G� -orbits; one for each subgraph ƒ � � .

Lemma 4.21. For each subgraphƒ� � and elements a;g 2G� , there exists an isometry
agƒWC.gƒ/!C.agƒ/ satisfying the following for all subgraphsƒ;�� � and elements
a; b; g; h 2 G� .

• The isometry .ab/gƒWC.gƒ/! C.abgƒ/ is equal to the composition

abgƒ ı bgƒWC.gƒ/! C.abgƒ/:

• For each x 2 G� , we have agƒ.�gƒ.x// D �agƒ.ax/.

• If Œh�� t Œgƒ� or Œh�� � Œgƒ�, then agƒ.�h�gƒ/ D �
ah�
agƒ.

Proof. Let the isometry agƒ be left-multiplication by a; that is, for any gx 2 C.gƒ/, let
agƒ.gx/ D agx. Then

• the equality .ab/gƒ D abgƒ ı bgƒ is immediate from our definition;

• we have agƒ.�gƒ.x// D �agƒ.ax/ by Proposition 2.21 (2);

• the final property follows as an immediate consequence of the previous one and the
definition of the relative projections.

4.8. Graph products are relative HHGs

We now compile the results from Section 4 to obtain the main result of this paper, that any
graph product of finitely generated groups is a relative HHG.
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Theorem 4.22. Let G� be a graph product of finitely generated groups. The proto-hier-
archy structure S� from Theorem 3.23 is a relative HHG structure for G� with hierarchy
constant max¹18; jV.�/jº and uniqueness function

�.r/ D .2jV.�/jr C 2/jV.�/j:

Proof. Let S� be the proto-hierarchy structure for .G� ;d/ from Theorem 3.23. The work
of this section has shown that S� is a relative HHS structure for .G� ; d/.

(1) We proved that the spaces associated to the non-�-minimal domains of S� are
7
2

-hyperbolic in Lemma 4.1.

(2) We proved finite complexity in Lemma 4.5.

(3) We proved the container axiom in Lemma 4.6.

(4) The proof of the uniqueness axiom follows from Lemma 4.7, since if dC.Œgƒ�/.x;y/
is uniformly bounded for all Œgƒ� 2 S� , then Lemma 3.8 implies that dgƒ.x; y/
has the same uniform bound for all g 2 G� and ƒ � � .

(5) We proved the bounded geodesic image axiom in Lemma 4.12.

(6) We proved the large links axiom in Lemma 4.15.

(7) We proved the consistency axiom in Lemma 4.19.

(8) We proved the partial realisation axiom in Lemma 4.17.

We now verify the remaining axioms required for .G� ;d/ to be a relative HHG, as laid
out in Definition 2.27.

Let � W G� �S� ! S� be the map �.a; Œgƒ�/ D Œagƒ�. By Lemma 4.20, this is a
well-defined G� -action by bijections that preserves the nesting, orthogonality, and trans-
versality relations and has finitely many orbits.

For each Œgƒ�2S� , let Ngƒ denote the fixed representative of Œgƒ� such thatC.Œgƒ�/D
C. Ngƒ/; see the proto-hierarchy structure in Theorem 3.23. Left multiplication by a 2 G�
gives an isometry agƒWC.gƒ/!C.agƒ/ for each g 2G� and each subgraphƒ� � . For
each a 2 G� and Œgƒ� 2 S� , define aŒgƒ�WC. Ngƒ/! C.agƒ/ by aŒgƒ� D gagƒ ı a Ngƒ.

Let a; b 2G� and Œgƒ�; Œh�� 2S� . We now verify the remaining axioms of a relative
HHG (Definition 2.27).

• Let � 2 hƒi. To show .ab/Œgƒ� D aŒbgƒ� ı bŒgƒ�, we will show that

.ab/Œgƒ�. Ng�/ D .aŒbgƒ� ı bŒgƒ�/. Ng�/:

Using the last clause of Lemma 3.8, we have

.ab/Œgƒ�. Ng�/ D gabgƒ.ab Ng�/ D abg � pab�;

where pab D prefixƒ..abg/
�1 � ab Ng/. Similarly, we have

.aŒbgƒ� ı bŒgƒ�/. Ng�/ D aŒbgƒ�.bg � pb�/ D abg � papb�;

where pb D prefixƒ..bg/
�1 � b Ng/ and pa D prefixƒ..abg/

�1 � abg/. Thus, it suffices
to prove that papb D pab .
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Since bg and b Ng are both representatives of the parallelism class Œbgƒ�, we have
.bg/�1 � b Ng 2 hst.ƒ/i. Therefore, .bg/�1 � b Ng D pblb , where lb 2 hlk.ƒ/i. Similarly,
.abg/�1 � abgD pala, where la 2 hlk.ƒ/i. Hence the following calculation concludes
our argument:

.abg/�1 � ab Ng D .abg/�1 � abg � pblb;

prefixƒ
�
.abg/�1 � ab Ng

�
D prefixƒ

�
.abg/�1 � abg � pblb

�
;

pab D prefixƒ.palapblb/;

pab D papb :

• Let x 2G� . Since a Ngƒkagƒ, we can use Lemma 3.8 and the equivariance of the gate
map (Proposition 2.21 (2)) to conclude that

gagƒ
�
ga Ngƒ.ax/

�
D gagƒ.ax/;

gagƒ
�
a � g Ngƒ.x/

�
D gagƒ.ax/;

.gagƒ ı a Ngƒ/
�
� Ngƒ.x/

�
D �agƒ.ax/;

aŒgƒ�
�
�Œgƒ�.x/

�
D �Œagƒ�.ax/:

• Suppose that Œh�� t Œgƒ� or Œh�� � Œgƒ�. Lemmas 3.8, 4.20, and 4.21 imply that
aŒgƒ�.�

Œh��

Œgƒ�
/ D �

Œah��

Œagƒ�
:

aŒgƒ�.�
Œh��

Œgƒ�
/ D .gagƒ ı a Ngƒ/.�

Nh�
Ngƒ/ .definition of aŒgƒ�/

D gagƒ.�
a Nh�
a Ngƒ/ (Lemma 4.21)

D gagƒ
�
ga Ngƒ

�
a Nh
˝
st.�/

˛��
.definition of �/

D gagƒ
�
a Nh
˝
st.�/

˛�
(Lemma 3.8)

D gagƒ
�
ah
˝
st.�/

˛�
.a Nh�kah�/

D �ah�agƒ:

Behrstock, Hagen, and Sisto show that any relative HHS has a distance formula, which
expresses distances in the space as a sum of distances in the projections [3, Theorem 6.10].
As a result, we now have such a distance formula for graph products of finitely generated
groups.

Corollary 4.23 (Distance formula for graph products). Let G� be a graph product of
finitely generated groups. There exists �0 > 0 such that for all � � �0 there exist K � 1
and L � 0 such that for all g; h 2 G�

1

K

X
Œkƒ�2S�

®®
dŒkƒ�.g; h/

¯̄
�
� L � d.g; h/ � K

X
Œkƒ�2S�

®®
dŒkƒ�.g; h/

¯̄
�
C L;

where we define ¹¹N ºº� D N if N � � and 0 if N < � .
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Another key consequence of relative hierarchical hyperbolicity for a group is that the
action of the group on the �-maximal space is acylindrical. Thus, we have that the action
of G� on C.�/ is acylindrical. Recall that the action of a group G on a metric space X is
acylindrical if for all " � 0, there exist R;N � 0 so that if x;y 2 X satisfy dX .x; y/ � R,
then there are at most N elements g 2 G such that dX .x; gx/ � " and dX .y; gy/ � ".

Corollary 4.24 (The action onC.�/ is acylindrical). LetG� be a graph product of finitely
generated groups. The action of G� on C.�/ by left multiplication is acylindrical.

Proof. Behrstock, Hagen, and Sisto proved that if .G;S/ is a (non-relative) HHG and
T 2 S is the �-maximal element, then the action of G on C.T / is acylindrical [5, The-
orem 14.3]. However, the argument they employ only uses the hyperbolicity of the space
C.T / and not the hyperbolicity of any of the other spaces in the HHG structure. Thus, their
argument carries through verbatim if .G;S/ is a relative HHG provided that S ¤ ¹T º. In
the case when S D ¹T º, then C.T / is equivariantly quasi-isometric to a Cayley graph of
G with respect to some finite generating set. Thus, G acts on C.T / properly, and hence
acylindrically. Applying this to the graph productG� with relative HHG structure S� , we
have that G� acts on C.�/ acylindrically.

4.9. The syllable metric is an HHS

Since nearly every argument used in the proof of Theorem 4.22 factors through the syllable
metric on the graph product G� , the same arguments show that the syllable metric on G�
is itself an HHS. This proves Corollary B stated in the introduction and answers a question
of Behrstock, Hagen, and Sisto about the syllable metric on a right-angled Artin group.
Note that since we are not working with a word metric on G� in this situation, we do not
require the vertex groups to be finitely generated. As the only use of the finite generation
of the vertex groups in Theorem 4.22 is to ensure that G� has a word metric, this does not
create any additional difficulty.

Corollary 4.25. Let � be a finite simplicial graph, with each vertex v labelled by a group
Gv . Then the graph product G� endowed with the syllable metric is an HHS.

Proof. Define the proto-hierarchy structure for G� as before, except whenever v 2 V.�/
and g 2 G� , and define C.gv/ to be the graph whose vertices are elements of gGv and
where every pair of vertices is joined by an edge (that is, we endow gGv with the syllable
metric rather than the word metric). The proofs of the HHG axioms then follow as before,
with any instance of “word metric” replaced with “syllable metric”, and with trivial �-
minimal case for the majority of axioms due to such C.gv/ having diameter 1.

5. Some applications of hierarchical hyperbolicity

We nowgive some applications of the relative hierarchical hyperbolicity of graph products.
Our main result of this section is Theorem 5.1, which shows that if the vertex groups of a
graph product G� are HHGs, then G� is itself a (non-relative) HHG.
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We then give a new proof of a theorem of Meier, classifying when a graph product
G� with hyperbolic vertex groups is itself hyperbolic. We do this using the relative HHS
structure that we just obtained, noting that when the vertex groups are hyperbolic, this is
in fact a (non-relative) HHS structure.

Finally, we answer two questions of Genevois regarding the electrification E.�/ of a
graph productG� of finite groups [16, Questions 8.3 and 8.4]. The similarity of Genevois’
definition of E.�/ to our own subgraph metric C.�/ allows us to leverage properties of
C.�/ to prove statements about E.�/. In particular, we use � to classify when E.�/ has
bounded diameter (Theorem 5.14) and when it is a quasi-line (Theorem 5.16). As Gene-
vois proved that any quasi-isometry between graph products of finite groups induces a
quasi-isometry between their electrifications [16, Proposition 1.4], these two theorems
provide us with tools for studying quasi-isometric rigidity of graph products of finite
groups.

5.1. Graph products of HHGs

Theorem 5.1. Let G� be a graph product of finitely generated groups. If for each v 2
V.�/, the vertex group Gv is an HHG, then G� is an HHG.

Proof. For each v 2 V.�/, let RŒv� be the HHG structure forGv and let S� be the relative
HHG structure for G� coming from Theorem 4.22. Fix E0 > 0 to be the maximum of the
hierarchy constants for S� and for each RŒv�. For each Œgƒ� 2 S� , let Ngƒ be the fixed
representative of Œgƒ� so that C.Œgƒ�/ D C. Ngƒ/. If Œgƒ� D Œƒ�, then we choose Ng D e.

Let Smin
� D ¹Œgƒ� 2 S� W ƒ is a single vertex of �º. If ƒ is a single vertex v of � ,

then C.Œv�/ is the Cayley graph of the vertex group Gv with respect to a finite generating
set. Thus, RŒv� is an HHG structure for C.Œv�/. For each Œgv� 2 Smin

� , RŒv� is also an
E0-HHS structure for C.Œgv�/, since C.Œgv�/ is isometric to C.Œv�/. Let RŒgv� denote
the HHS structure for C.Œgv�/ induced by RŒv�. If U 2 RŒv�, then we will denote the
corresponding element of RŒgv� by NgU , where Ng is the chosen fixed representative of
Œgv�. Let xR D

S
Œgv�2Smin

�
RŒgv�, then let T0 D .S� XSmin

� / [ xR.
We shall use �S, ?S, and tS to denote the nesting, orthogonality, and transversality

relations between elements of S� , and �R, ?R, and tR to denote the relations between
elements of a fixed RŒgv�.

The bulk of our proof of Theorem 5.1 does not use the specifics of the relative HHG
structure S� and instead relies on more general relative HHS properties. Thus, to simplify
notation, we will use the capital letters V or V 0 to denote elements of Smin

� and use RV or
RV 0 to denote the corresponding HHS structure on C.V / or C.V 0/. That is, if V D Œgv�
for a vertex v 2 V.�/, then RV D RŒgv�. We will use the capital letters U , W , and Q to
denote elements of T0. For U;W 2S� XSmin

� or U;W 2RV we shall denote the relative
projection from U to W in S� or RV as �UW . We shall use �W to denote the projection
G� ! 2C.W / if W 2 S� and �VW to denote the projection C.V /! 2C.W / if W 2 RV .

Our proof of Theorem 5.1 proceeds via four claims. First, we prove that the structure
S� can be combined with all of the RV structures in a natural way to produce a proto-



D. Berlyne and J. Russell 568

hierarchy structure forG� with index set T0 (Claim 5.2). This proto-hierarchy structure is
not quite an HHS structure, as it satisfies every axiom except the container axiom (Claim
5.3). However, we show that this proto-hierarchy structure has the property that any set
of pairwise orthogonal elements of T0 has uniformly bounded cardinality (Claim 5.4).
This allows us to use the results of the appendix of [1] to upgrade T0 to a genuine HHS
structure T . Since the proto-structure will satisfy the equivariance properties of an HHG
structure for G� (Claim 5.6), this HHS structure will also be an HHG structure.

Claim 5.2. G� admits an E1-proto-hierarchy structure with index set T0, where E1 D
E20 CE0.

Proof. For U 2 T0, the associated hyperbolic space C.U / will be the same as the space
associated to U in either S� or xR.

Projections. For all W 2 T0, the projection map will be denoted by  W WG� ! 2C.W /.
If W 2 S� XSmin

� , then  W D �W and if W 2 RV , then  W D �VW ı �V . Each  W is
.E20 ; E

2
0 CE0/-coarsely Lipschitz.

Nesting. Let W;U 2 T0. We define U � W if one of the following holds:

• W;U 2 S� XSmin
� and U �S W ;

• W;U 2 RV and U �R W ;

• W 2 S� XSmin
� and U 2 RV with V �S W .

This definition makes Œ��, the �S-maximal element of S� , also the �-maximal ele-
ment of T0. For U;W 2 T0 with U � W we denote the relative projection from U to W
by ˇUW and define it as follows.

• If W;U 2 S� XSmin
� and U �S W or W;U 2 RV and U �R W , then ˇUW is �UW ,

the relative projection from U to W in S� or RV respectively.

• IfW 2S� XSmin
� and U 2RV with V �S W , then ˇUW is �VW , the relative projection

from V to W in S� .

The diameter of ˇUW is bounded by E0 in all cases as it always coincides with a relative
projection (�UW or �VW ) from an existing hierarchy structure with constant E0.

Orthogonality. Let W;U 2 T0. We define U ? W if one of the following holds:

• W;U 2 S� XSmin
� and U ?S W ;

• W;U 2 RV and U ?R W ;

• W 2 S� XSmin
� and U 2 RV with V ?S W ;

• W 2 RV 0 and U 2 RV where V ?S V 0.

Transversality. Let U;W 2 T0. We define U t W whenever they are not orthogonal or
nested in T0. This arises in three different situations, which determine the definition of
the relative projections ˇWU and ˇUW .
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• Either U; W 2 S� or U; W 2 RV and U tS W or U tR W , respectively. In this
case, ˇUW is �UW , the relative projection from U to W in S� or RV , respectively, and
ˇWU is �WU .

• W 2 S� and U 2RV whereW tS V . In this case, ˇUW is �VW , the relative projection
from V to W in S� , and ˇWU D �

V
U .�

W
V /.

• W 2 RV 0 and U 2 RV where V tS V 0. In this case, ˇUW D �V
0

W .�
V
V 0/ and ˇWU D

�VU .�
V 0

V /.

The projection and transversality axioms of RV and S� ensure that ˇUW has diameter at
most E20 CE0 in all cases.

Claim 5.3. T0 satisfies all of the axioms of an HHS except for the container axiom.

Proof. Recall thatE1 > 0 is the hierarchy constant from the proto-hierarchy structure T0.
Note that E1 is larger than E0, which in turn is larger than the hierarchy constants for S�

and each RV .

Hyperbolicity. For all W 2 T0, the space C.W / is E1-hyperbolic.

Uniqueness. Let � � 0 and � W Œ0;1/ ! Œ0;1/ be the maximum of the uniqueness
functions for S� and each RV . If x; y 2 G� and d.x; y/ � �.�.�/ C �/, then there
exists W 2 S� such that dW .x; y/ � �.�/C � by the uniqueness axiom in .G� ;S�/. If
W … Smin

� , then W is in T0 and the uniqueness axiom is satisfied. If W 2 Smin
� , then the

uniqueness axiom in .C.W /;RW / provides U 2 RW so that dU .x; y/ � �. The unique-
ness function for .G� ;T0/ is therefore �.�/ D �.�.�/C �/.

Finite complexity. The length of a �-chain in T0 is at most 2E1.

Bounded geodesic image. Let x; y 2 G� and U;W 2 T0 with U � W . If U;W 2 S�

or U;W 2 RV , then the bounded geodesic image axiom from .G� ;S�/ or .C.V /;RV /

implies the bounded geodesic image axiom for .G� ;T0/. Suppose, therefore, thatU 2RV

and W 2 S� X Smin
� . By definition, V �S W and ˇUW coincides with �VW , the relative

projection of V to W in S� . If dU .x; y/ > E21 CE1, then we have

E21 CE1 < dU .x; y/ D dU
�
�VU
�
�V .x/

�
; �VU

�
�V .y/

��
� E1dV

�
�V .x/; �V .y/

�
CE1;

which implies that E1 < dV .�V .x/; �V .y//. Now the bounded geodesic image axiom in
.G� ;S�/ says that every geodesic in C.W / from  W .x/ D �W .x/ to  W .y/ D �W .y/
must pass through theE1-neighbourhood of �VW Dˇ

U
W . Thus, the bounded geodesic image

axiom is satisfied for .G� ;T0/.

Large links. LetW 2T0 and x;y 2G� . IfW 2RV for some V 2Smin
� , then all elements

of T0 that are nested into W are also elements of RV . Thus, the large links axiom in
.C.V /;RV / immediately implies the large links axiom for .G� ;T0/.
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Assume that W 2 S� XSmin
� . The large links axiom for .G� ;S�/ gives a collection

L D ¹U1; : : : ; Umº

of elements of S� nested into W such that m is at most E1dW .�W .x/; �W .y//C E1,
and for all V 2 SW , either V �S Ui for some i or dV .�V .x/; �V .y// < E1. For each
i 2 ¹1; : : : ; mº, define xUi to be the �R-maximal element of RUi if Ui 2 Smin

� and define
xUi to be Ui if Ui … Smin

� . Let xL D ¹U1; : : : ; Umº.
If V 2 Smin

� is nested into W , but is not nested into an element of L, then

dV
�
�V .x/; �V .y/

�
< E1

and so
dQ
�
 Q.x/;  Q.y/

�
< E21 CE1

for all Q 2 RV . Thus, if dQ. Q.x/;  Q.y// � E21 C E1 and Q is nested into W , then
either Q 2 S� X Smin

� or Q 2 RV where V is nested into an element of L (and so Q
is nested into an element of xL). If Q 2 S� X Smin

� , then Q must be nested into an ele-
ment of L that is not in Smin

� by the large links axiom of .G� ;S�/, and hence must
be nested into an element of xL. Thus, Q � W is nested into an element of xL whenever
dQ. Q.x/;  Q.y// � E21 CE1.

Consistency. Let U;W 2T0 with U tW and x 2 G� . Since the relative projections are
inherited from S� and the RV , we only need to consider the case where either W 2 S�

and U 2 RV , or W 2 RV 0 and U 2 RV with V 0 ¤ V . Define Q D W if W 2 S� and
Q D V 0 if W 2 RV 0 . In either case Q tS V .

First assume that Q D W so that ˇUW D �
V
Q and ˇWU D �

V
U .�

Q
V /. If dW .x; ˇUW / D

dQ.x; �VQ/>E1, then the consistency axiom for .G� ;S�/ says that dV .x; �
Q
V /�E1. The

coarse Lipschitzness of the projections then implies that dU .x; �VU .�
Q
V // D dU .x; ˇWU /�

E21 CE1.
Now assume thatQD V 0 so that ˇUW D �

Q
W .�

V
Q/ and ˇWU D �

V
U .�

Q
V /. If dW .x; ˇUW / >

E21 C E1, then dQ.x; �VQ/ > E1. The consistency axiom for .G� ;S�/ then says that
dV .x; �

Q
V / � E1 and we again have

dU .x; ˇWU / D dV
�
x; �VU .�

Q
V /
�
� E21 CE1:

For the last clause of the consistency axiom, letQ;U;W 2T0 withQ�U . IfU �W , the
definition of nesting and relative projection in T0 and the consistency axioms in .G� ;S�/

and the .C.V /;RV / ensure that dW .ˇ
Q
W ; ˇ

U
W / � E

2
1 C E1. Similarly, if W 2 S� with

W t U and W 6? Q, then dW .ˇ
Q
W ; ˇ

U
W / � E

2
1 C E1. Assume that W 2 RV for some

V 2Smin
� ,W t U , andW 6?Q. If U;Q 2RV 0 , then V 0 tS V and ˇUW D ˇ

Q
W . If U;Q 2

S� , then U tS V and Q tS V . Thus, the consistency axiom for .G� ;S�/ provides
dV .�UV ; �

Q
V / � E1. Similarly, if U 2 S� and Q 2 RV 0 , then U tS V , V 0 tS V , and

dV .�UV ; �
V 0

V / � E1. Hence in both cases dW .ˇUW ; ˇ
Q
W / � E

2
1 CE1.
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Partial realisation. Let W1; : : : ; Wn be pairwise orthogonal elements of T0 and pi 2
C.Wi / for each i 2 ¹1; : : : ; nº. Since .G� ;S�/ satisfies the partial realisation axiom, we
can assume at least oneWi is not an element of S� . There exist V1; : : : ; Vr 2 Smin

� so that
for each i 2 ¹1; : : : ; nº, either Wi 2 S� or there exists a unique j 2 ¹1; : : : ; rº such that
Wi 2 RVj . For each j 2 ¹1; : : : ; rº, let ¹W j

1 ; : : : ; W
j

kj
º be the elements of ¹W1; : : : ; Wnº

that are also elements of RVj and let ¹pj1 ; : : : ; p
j

kj
º be the subset of ¹p1; : : : ;pnº satisfying

p
j
i 2 C.W

j
i / for all j 2 ¹1; : : : ; rº and i 2 ¹1; : : : ; kj º. For each j 2 ¹1; : : : ; rº, use partial

realisation in .C.Vj /;RVj / on the points pj1 ; : : : ; p
j

kj
to produce a point yj 2 C.Vj / so

that

• d
W
j
i
.yj ; p

j
i / � E1 for all i 2 ¹1; : : : ; kj º;

• for each i 2 ¹1; : : : ; kj º and each U 2 RVj , if W j
i � U or W i

j t U , we have

dU .yj ; �
W
j
i

U / � E1:

Assume, without loss of generality, that Wm; WmC1; : : : ; Wn are all of the Wi that
are not contained in any of the RVj (it is possible that the set of such Wi is empty).
Now applying partial realisation for .G� ;S�/ to y1; : : : ; yr ; pm; : : : ; pn produces a point
x 2 G� so that  Wi .x/ is uniformly close to pi for each i 2 ¹1; : : : ; nº and  U .x/ is
uniformly close to ˇWiU whenever Wi � U or U t Wi , for any U 2 T0. Note that if the
set of Wi that are not elements of any of the RVj is empty, then the above applies just to
y1; : : : ; yr , but the conclusion still holds.

Claim 5.4. TheE1-proto-hierarchy structure T0 has the following property: ifW1; : : : ;Wn
2 T0 are pairwise orthogonal, then n � 4E21 C 2E1.

Proof. We first note the following basic lemma from the theory of HHSs.

Lemma 5.5 ([11, Lemma 1.5]). If .X;S/ is an E-HHS, then any set of pairwise ortho-
gonal elements of S has cardinality at most 2E.

Now let W1; : : : ; Wn 2 T0 be pairwise orthogonal. Without loss of generality, let
W1; : : : ;Wk be the elements of ¹W1; : : : ;Wnº that are elements of S� . Since W1; : : : ;Wk
is a pairwise orthogonal collection of elements of S� , Lemma 5.5 says that k � 2E1.

Let V1; : : : ; Vm be the minimal collection of elements of Smin
� such that if i 2

¹k C 1; : : : ; nº (i.e., Wi … S� ), then Wi 2 RVj for some j 2 ¹1; : : : ; mº. Minimality
implies that for each j 2 ¹1; : : : ; mº, there exists i 2 ¹k C 1; : : : ; nº such that Wi 2 RVj .
Suppose thatWi 2RVj andW` 2RVr with j ¤ r . SinceWi ?W` in T0, the definition of
orthogonality in T0 implies that Vj ?S Vr . Thus, V1; : : : ; Vm is a pairwise orthogonal col-
lection of elements of S� andm� 2E1 by Lemma 5.5. Similarly, for each j 2 ¹1; : : : ;mº
the set ¹Wi W Wi 2 RVj º is a pairwise orthogonal collection of elements of RVj and must
have cardinality at most 2E1. Putting this together, we have that

n � k C 2E1m � 2E1 C 4E
2
1 :
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Claim 5.6. The action of G� on S� induces an action of G� on T0 that satisfies axioms
(2) and (3) of the definition of an HHG (Definition 2.27).

Proof. The action of G� on T0: let � 2 G� and W 2 T0. Define ˆWG �T0 ! T0 as
follows.

• If W D Œgƒ� 2 S� XSmin
� , then ˆ.�; Œgƒ�/ D Œ�gƒ�; i.e., the action is the same as

the action of G� on S� .

• IfW D NgR 2RŒgv� for some Œgv� 2Smin
� , then .�g/�1� Ng 2 StabG� .Œv�/, where �g is

the chosen fixed representative of Œ�gv� D Œ� Ngv�. Since StabG� .Œv�/ D hst.v/i, there
exists l 2 hlk.v/i and y� 2 hvi such that ly� D .�g/�1� Ng. Because RŒv� is an HHG
structure for hvi D Gv , there existsR� D y�R 2RŒv� determined by � and NgR. Define
that ˆ.�; NgR/ D �gR� 2 RŒ�gv�. The following diagram summarises how � takes
elements of RŒgv� to elements of RŒ�gv�:

RŒgv� RŒ�gv�

RŒv�

Ng�1

�

�g

y�

We now verify that ˆ preserves the relations in T0. Let W;U 2 T0. If W;U 2 S� X

Smin
� or W; U 2 RŒgv� for some Œgv� 2 Smin

� , then ˆ preserves the relation between W
and U , since the actions of G� on S� and Gv D hvi on RŒv� preserve the relations in
their respective hierarchy structures. If W 2 S� XSmin

� and U 2 RŒgv�, then W D Œh��
and the relation between W and U in T0 is the same as the relation between Œh�� and
Œgv� in S� . Thus, ˆ preserves the relation between W and U , since the action of G�
preserves the relations in S� . Similarly, the same is true in the case whereW 2RŒgv� and
U 2 RŒhw� for Œgv� ¤ Œhw� as the relation between W and U in T0 is the same as the
relation between Œgv� and Œhw� in S� .

The definition of ˆ implies that NgR 2 RŒgv� is in the G� -orbit of NhR0 2 RŒhw� if and
only if v D w and R is in the Gv-orbit of R0. Thus, the action of G� on T0 has finitely
many orbits since the actions of G� on S� and Gv on RŒv� contain finitely many orbits.

For the remainder of the proof, we shall use �W to denote ˆ.�;W / for all W 2 T0.
This does not conflict with the previous use of the notation as the action of G� on T0

agrees with the action ofG� on S� or the action ofGv on RŒv�, whenW 2S� or � 2 hvi
and W 2 RŒv�, respectively.

Associated isometries and equivariance with the projection maps: let �; � 2 G� and
W 2 T0. Since the action of G� on T0 agrees with the action of G� on S� for the
elements of T0 in S� , we can define the isometry

�Œgƒ�WC
�
Œgƒ�

�
! C

�
Œ�gƒ�

�
to be the same as the original isometry in .G� ;S�/; this guarantees that the HHG axioms
are satisfied in this case.
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IfW 2RŒgv�, thenW D NgR for someR2RŒv�. Now �W D�gR� , whereR� is defined
as above. In this case, define the isometry �W WC.W /! C.�W / to be the composition

C.W /
. NgR/

�1

����! C.R/
y�R
�! C.R� /

�gR�
���! C.�W /;

where y�RWC.R/! C.R� / is the isometry in RŒv� induced by y� 2 Gv , and NgR and �gR�
are the isometries resulting from identifying RŒv� with RŒgv� and RŒ�gv�, respectively.

Now, if � 2 G� , then .Gv;RŒv�/ being an HHG implies that y�R� ı y�R D c��R. Thus,
the isometry .��/W equals the isometry ��W ı �W for any W 2 T0. We continue to
use the notation set out before Claim 5.2:  � and ˇ�� denote the projections and relative
projections in T0, while ��� and ��� denote the projections and relative projections in
S� and RŒgv�. Since the projection map  W WG� ! 2C.W / is equal to � Œgv�W ı �Œgv�,
the uniform bound on the distance between  �W .�x/ and �W . W .x// follows from the
HHG axioms of .G� ;S�/ and .Gv;RŒv�/. Similarly, since the relative projection ˇUW
(where U � W or U t W in T0) is defined using the coarsely equivariant projections
and relative projections of S� and RŒv�, we have that �W .ˇUW / is uniformly close to ˇ�U�W
whenever U � W or U t W .

We now finish the proof of Theorem 5.1 using the following result.

Theorem 5.7 ([1, Theorem A.1]). Let G be a finitely generated group and let T0 be a
proto-hierarchy structure for the Cayley graph of G with respect to some finite generating
set. If T0 satisfies the following:

• all of the axioms of an HHS except the container axiom;

• any set of pairwise orthogonal elements of T0 has uniformly bounded cardinality;

• axioms (2) and (3) of an HHG structure (Definition 2.27);

then there exists an HHG structure T for the group G such that T0 ¨ T and for all
W 2 T XT0, the associated hyperbolic space C.W / is a single point.

Claims 5.3, 5.4, and 5.6 show that the proto-hierarchy structureT0 satisfies the require-
ments of Theorem 5.7. Thus, there exists an HHG structure T for G� .

Remark 5.8 (The HHG structure from Theorem 5.7). The proof of Theorem 5.7 produces
an explicit HHG structure given the proto-structure T0. We will describe that structure
briefly now, and direct the reader to the appendix of [1] for full details.

Let U denote a non-empty set of pairwise orthogonal elements of T0 and letW 2T0.
We say that the pair .W;U/ is a container pair if the following are satisfied:

• U � W for all U 2 U;

• there exists Q � W such that Q ? U for all U 2 U.

Let D denote the set of all container pairs. We will denote a pair .W;U/ 2D byDU
W . The

crux of Theorem 5.7 is that the elements of D will serve as containers for the elements
of T0, while the rest of the proto-structure is set up in the minimal way that satisfies all
the other axioms.
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The HHG structure produced by Theorem 5.7 has index set T0 [D. The hyperbolic
spaces, projection maps, relations, and relative projections for elements of T0 remain
unchanged. The hyperbolic spaces for elements of D are single points and the projection
maps are the constant maps to these points. The nesting relation involving elements of D

is defined as follows:

• define Q � DU
W if Q � W in T0 and Q ? U for all U 2 U;

• define DU
W � Q if W � Q in T0;

• define DU
W � DR

T if W � T in T0 and for all R 2 R either R ? W or there exists
U 2 U with R � U .

Two elements DU
W ;D

R
T 2D are orthogonal if W ? T in T0. An element Q 2 T0 is

orthogonal toDU
W 2D if, in T0, eitherW ?Q orQ�U for some U 2U. Two elements

of T are transverse if they are not orthogonal and neither is nested into the other.
Since the associated hyperbolic spaces for elements of D are single points, the relative

projections onto these elements are just these single points. IfDU
W �Q orQ tDU

W , then
the relative projection �

DU
W

Q is defined in one of two ways:

(1) if there exists U 2 U such that U � Q or U t Q, then �
DU
W

Q is the union of all
�UQ for U 2 U with U � Q or U t Q;

(2) if there does not exist U 2 U such that U � Q or U t Q, then the definition of

the relations given above forces Q t DU
W and W t Q. In this case, �

DU
W

Q D �WQ .

5.2. Meier’s condition for hyperbolicity

We now recover a theorem of Meier classifying hyperbolicity of graph products. We
do this by applying Behrstock, Hagen, and Sisto’s bounded orthogonality condition for
HHSs.

Theorem 5.9 ([6, Corollary 2.16]). Let .X;S/ be an HHS. The following are equivalent.

• X is hyperbolic.

• (Bounded orthogonality.) There exists a constant D � 0 such that

min
�

diam
�
C.U /

�
; diam

�
C.V /

��
� D

for all U; V 2 S satisfying U?V .

Theorem 5.10 (Meier’s criterion for hyperbolicity of graph products; [24]). Let � be a
finite simplicial graph with hyperbolic groups associated to its vertices. Let �F be the
subgraph spanned by the vertices associated with finite groups. Then G� is hyperbolic if
and only if the following conditions hold:

(i) there are no edges connecting two vertices of � X �F ;

(ii) if v is a vertex of � X �F , then lk.v/ is a complete graph;

(iii) �F does not contain any induced squares.
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Proof. We show hyperbolicity via the bounded orthogonality condition, noting that since
each of the vertex groups is hyperbolic, the graph product G� is an HHS. We call the
vertices of �F the finite vertices of � and the vertices of � X �F the infinite vertices of � .

()) Suppose that we have bounded orthogonality. Then the following hold.

(i) Suppose that two infinite vertices v;w are connected by an edge. Then Œv�?Œw�
and C.v/, C.w/ have infinite diameter as they are the infinite groups Gv; Gw
with the word metric. This contradicts bounded orthogonality.

(ii) Suppose that lk.v/ is incomplete for some vertex v of � X �F . Then there exist
some vertices x; y in lk.v/ with no edge between them. Moreover, Œv�?Œx [ y�,
C.v/ has infinite diameter as v is an infinite vertex, and C.x [ y/ has infinite
diameter since dx[y.e; .gxgy/n/D2n for elements gx2GxX¹eº, gy 2GyX¹eº.
This again contradicts bounded orthogonality.

(iii) Suppose that �F contains a square with vertices v; x; w; y, where v; w and
x; y are non-adjacent. Then Œv [ w�?Œx [ y� and both C.v [ w/ and C.x [
y/ have infinite diameter as in case (ii). Once again, this contradicts bounded
orthogonality.

(() Conversely, suppose that conditions (i), (ii), and (iii) are satisfied, and set D D
max¹2; jGvj W v 2 V.�F /º. Moreover, suppose that Œgƒ�; Œh�� 2 S satisfy Œgƒ�?Œh��.

Suppose that diam.C.gƒ// > D. Then Theorem 4.10 tells us that eitherƒ consists of
a single infinite vertex or ƒ contains at least two vertices and does not split as a join.

If ƒ consists of a single infinite vertex, then conditions (i) and (ii) tell us that lk.ƒ/ �
� is a complete graph consisting of finite vertices, hence either � is a single finite vertex
or � splits as a join. In both cases, diam.C.h�// � D.

Ifƒ contains at least two vertices and does not split as a join, then, in particular, it con-
tains two non-adjacent vertices v and w. As� � lk.ƒ/, every vertex of� is connected to
both v andw. Since v andw are non-adjacent, condition (ii) implies that�� �F . If either
v or w is an infinite vertex, condition (ii) implies that � is a complete graph, and if both
v and w are finite vertices, condition (iii) implies that � is a complete graph. That is, �
either consists of a single finite vertex or splits as a join. In both cases, diam.C.h�// � D.
Thus, the bounded orthogonality condition holds.

5.3. Genevois’ minsquare electrification

We now use our characterisation of when C.gƒ/ has infinite diameter (Theorem 4.10) to
answer two questions of Genevois [16, Questions 8.3 and 8.4] regarding the electrification
of G� , defined as follows.

Definition 5.11. Let � be a simplicial graph. An induced subgraph ƒ � � is called
square-complete if every induced square in � sharing two non-adjacent vertices with ƒ
is a subgraph of ƒ. A subgraph is minsquare if it is a minimal square-complete subgraph
containing at least one induced square.
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The electrification E.�/ of a graph product G� is the graph whose vertices are ele-
ments of G� and where two vertices g and h are joined by an edge if g�1h is an element
of a vertex group or g�1h 2 hƒi for some minsquare subgraph ƒ of � . We use dE.g; h/

to denote the distance in E.�/ between g; h 2 G� .

Genevois’ interest in the electrification arises from the fact that it forms a quasi-
isometry invariant whenever the vertex groups of a graph product are all finite, as is the
case for right-angled Coxeter groups.

Theorem 5.12 ([16, Proposition 1.4]). LetG� andGƒ be graph products of finite groups.
Any quasi-isometry G� ! Gƒ induces a quasi-isometry between E.�/ and E.ƒ/.

For graph products of finite groups, we classify when E.�/ has bounded diameter and
when E.�/ is a quasi-line. These classifications answer Questions 8.3 and 8.4 of [16] in
the affirmative. The core idea behind both proofs is the same: when � is not minsquare,
the electrification E.�/ sits between the syllable metric S.�/ and the subgraph metric
C.�/; that is, we obtain E.�/ from S.�/ by adding edges and then obtain C.�/ from
E.�/ by adding more edges. This means that large distances in C.�/, which we can
detect with Theorem 4.10, will persist in E.�/. We start with a lemma that we use in both
classifications to reduce to the case where � does not split as a join.

Lemma 5.13. If � splits as a join and contains a proper minsquare subgraph, then �
splits as a join � D �1 ‰ �2, where �1 contains every minsquare subgraph of � and �2
is a complete graph. In this case, E.�/ is the 1-skeleton of E.�1/ � E.�2/.

Proof. Suppose that � contains a proper minsquare subgraph ƒ and splits as a join � D
�1 ‰ �2. We first show that � splits as a (possibly different) join �1 ‰ �2, where �1
contains the minsquare subgraph ƒ. If ƒ is a subgraph of either �1 or �2 we are done.
Otherwise, ƒ contains vertices of both �1 and �2. By minimality of ƒ, there must exist
a square of ƒ containing vertices of both �1 and �2. Moreover, since �1 and �2 form
a join, this square must arise in the form of two pairs of disjoint vertices vi ; wi 2 V.�i /,
i D 1;2. Then any vertex v of�1 Xƒmust be connected to every vertexw ofƒ\�1, else
v, w, v2, w2 form an induced square, contradicting square-completeness of ƒ. Similarly,
any vertex of �2 X ƒ must be connected to every vertex of ƒ \ �2. This then gives a
decomposition of � as a join of the minsquare subgraph ƒ and the graph � Xƒ.

We have shown that � splits as a join �1 ‰ �2 with ƒ � �1. We now show that
�2 must be a complete graph. Since ƒ is minsquare, there exists an induced square S in
ƒ � �1. Let v1, w1 be two disjoint vertices of S , and suppose that there exists a pair of
disjoint vertices v2, w2 in �2. Since � is a join of �1 and �2 and ƒ � �1, the vertices v1,
w1, v2, w2 define an induced square that shares two opposite vertices with ƒ, but is not
contained in ƒ. This would contradict square-completeness of ƒ. Therefore, �2 must be
complete.

Finally, we show that every other minsquare subgraph of � must also be contained
in �1. Let � � � be minsquare. If four vertices v1, v2, v3, v4 of � form an induced
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square of � , then each vi must be contained in �1, since any vi that �2 contains must
be connected to all vj in �1, but �2 cannot contain a pair of disjoint vertices since it is
complete. Thus, the minimality of � implies that � must be contained in �1 (otherwise
� \ �1 would be a proper square-complete subgraph of �).

Since � splits as a join �1 ‰ �2, it follows that S.�/ is the 1-skeleton of S.�1/ �
S.�2/ and since the only minsquare subgraphs of � are the minsquare subgraphs of �1,
E.�/ is the 1-skeleton of E.�1/ � E.�2/ by construction.

We now show that E.�/ is bounded only in the obvious cases.

Theorem 5.14. The electrification E.�/ is bounded if and only if � is either minsquare,
complete or splits as a join of a minsquare subgraph and a complete graph.

Proof. We first show that if � is minsquare, complete, or splits as the join of a minsquare
subgraph and a complete graph, then the electrification is bounded. If � is minsquare,
then E.�/ has diameter 1 by definition. Let x; y be vertices of E.�/, so that x�1y 2 G� .
If � is a complete graph on n vertices, then all vertex groups of � commute, so we can
write x�1y D s1 : : : sn, where supp.si / D vi 2 V.�/ and vi ¤ vj for all i ¤ j . Thus,
dE.x; y/ � n, and hence E.�/ is bounded. If � splits as a join of a minsquare subgraph
�1 and a complete graph �2 on n vertices, then G� Š h�1i � h�2i and so we can write
x�1y D g1g2, where gi 2 h�i i. Therefore, dE.x; y/ � nC 1, hence E.�/ is bounded.

We now assume that E.�/ is bounded and prove that this implies that � either is
complete, minsquare or splits as a join of a minsquare subgraph and a complete graph.
The proof will proceed by induction on the number of vertices of � . The base case is
immediate as � is complete and E.�/ has diameter 1 when � is a single vertex. Assume
that the conclusion holds whenever the defining graph has at most n � 1 vertices. Let G�
be a graph product of groups where � contains n � 2 vertices.

Claim 5.15. If E.�/ is bounded and � is neither complete nor minsquare, then � must
split as a join and must contain a proper minsquare subgraph.

Proof. Suppose that � does not split as a join. By Theorem 4.10, C.�/ is therefore
unbounded. Since � is not minsquare, E.�/ can be obtained from C.�/ by removing
some edges. In particular, if C.�/ has infinite diameter, then so does E.�/. This implies
that if � is not minsquare and does not split as a join, then E.�/ is unbounded, contradict-
ing our assumption.

Now suppose that � does not contain any proper minsquare subgraphs. Then E.�/
is simply S.�/. Since � is not complete, there exist two disjoint vertices v; w 2 V.�/.
Therefore, dE.e; .gvgw/

m/ D dsyl.e; .gvgw/
m/ D 2m for any gv 2 Gv X ¹eº and gw 2

Gw X ¹eº, hence E.�/ is unbounded, a contradiction.

Assume that � is neither complete nor minsquare, so that � must contain a strict
minsquare subgraph ƒ and splits as a join by Claim 5.15. By Lemma 5.13, � must split
as a join of �1 and �2, where �2 is complete and E.�/ is the 1-skeleton of E.�1/ �
E.�2/. Thus, E.�/ having bounded diameter implies that E.�1/ must also have bounded
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diameter. Since �1 contains at most n � 1 vertices, the induction hypothesis then implies
that �1 is either minsquare, complete, or splits as a join of a minsquare subgraph and a
complete graph. Since ƒ � �1 contains a square, �1 cannot be complete. Thus, �1 is
either minsquare or a join of ƒ with a complete graph �. Hence � splits either as a join
of the minsquare subgraph �1 and the complete graph �2 or as a join of the minsquare
subgraph ƒ and the complete graph �‰ �2.

Finally, we show that E.�/ being a quasi-line coincides with G� being virtually cyc-
lic. The key step of the proof is to produce two elements of G� that act as independent
loxodromic elements on C.�/. This creates more than two directions to escape to infinity
in C.�/, which then gives more than two directions to escape to infinity in E.�/.

Theorem 5.16. Let G� be a graph product of finite groups. The electrification E.�/ is a
quasi-line if and only if G� is virtually cyclic.

Proof. A graph product of finite groups G� is virtually cyclic if and only if either � is a
pair of disjoint vertices each with vertex group Z2 or � splits as a join �1 ‰ �2, where
�1 is a pair of disjoint vertices each with vertex group Z2 and �2 is a complete graph
(this follows from [2, Lemma 3.1]). Thus, if G� is virtually cyclic, then E.�/ D S.�/ is
a quasi-line by construction.

Let us now assume that G� is not virtually cyclic. If � is either minsquare, complete
or the join of a minsquare graph and a complete graph, then E.�/ has bounded diameter
by Theorem 5.14 and is therefore not a quasi-line. Let us therefore assume that � is not
minsquare, not complete, and does not split as a join of a minsquare graph and a complete
graph.

First assume that � does not split as a join at all. Since the action of G� on C.�/ by
left multiplication is acylindrical (Corollary 4.24), a result of Osin [25, Theorem 1.1] says
that G� must satisfy exactly one of the following: G� has bounded orbits in C.�/, G� is
virtually cyclic or G� contains two elements that act loxodromically and independently
on C.�/. Since � does not split as a join, the proof of Theorem 4.10 implies that G�
does not have bounded orbits in C.�/. Further, G� is not virtually cyclic by assumption.
Thus, there exist g; h 2 G� such that n 7! ��.g

n/ and n 7! ��.h
n/ are bi-infinite quasi-

geodesics in C.�/ whose images, ��.hgi/ and ��.hhi/, have infinite Hausdorff distance
from each other. Now, since � is not minsquare, C.�/ is obtained from E.�/ by adding
edges and therefore

d�.x; y/ � dE.x; y/ for all x; y 2 G� :

Hence the subsets hgi and hhi in E.�/ are also the images of bi-infinite quasi-geodesics
that have infinite Hausdorff distance from each other. This implies that E.�/ is not a quasi-
line, as any two bi-infinite quasi-geodesics in a quasi-line have finite Hausdorff distance.

Now assume that � splits as a join. If � contains no minsquare subgraph, then E.�/D
S.�/. Since the vertex groups are all finite, S.�/ is quasi-isometric to the word metric on
G� and hence S.�/ D E.�/ is not a quasi-line, because we assumed that G� is not vir-
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tually cyclic. Thus, we can assume that � contains a minsquare subgraph ƒ. By applying
Lemma 5.13 iteratively, we have that � splits as a join � D �1 ‰ �2 such that

• �1 either does not split as a join or is minsquare;

• �2 is a complete graph;

• E.�/ is the 1-skeleton of E.�1/ � E.�2/.

Recall our assumption that � does not split as a join of a minsquare graph and a complete
graph, hence �1 cannot be minsquare and thus must not split as a join by the first item
above. Further, h�1i is not virtually cyclic since it is a finite index subgroup of G� , which
is not virtually cyclic. Thus, we can apply the previous case to conclude that E.�1/ is not
a quasi-line and hence E.�/ is not a quasi-line.
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